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Long-time emergent dynamics of liquid films undergoing thermocapillary instability
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The study of viscous thin film flow has led to the development of highly nonlinear partial differential
equations that model how the evolution of the film height is affected by different forces. We investigate a model
of interaction between surface tension and the thermocapillary Marangoni effect, with a particular focus on
the long-time limit. In this limit, the model predicts the creation of an infinite cascade of successively smaller
satellite droplets near points where the film thickness vanishes. Motivated by recent progress on the analysis
of discrete self-similarity in thin film equations, we compute solutions in a space- and time-rescaled coordinate
system. Using this rescaled system we observe the dynamics much further in time than has previously been
achieved. The observed behavior is close to, but distinct from, previous observations of discretely self-similar
thin film flows, in that the rescaled system does not settle down to a periodic solution, but instead has aspects
that continue to evolve monotonically in scaled time. This discovery suggests there are as-yet unexplored ways
in which discrete self-similarity may be exhibited.
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I. INTRODUCTION

The complex emergent behavior of solutions to nonlinear
partial differential equations is a central topic in applied math-
ematics and physics. In fluid mechanics, the flow of a viscous
thin film on a substrate is often modeled with a single evolu-
tion equation for the local film thickness h(x, t ) as a function
of space x and time t [1–4] (see Fig. 1). Under idealized or
approximate circumstances, this equation is frequently of the
form

∂h

∂t
+ ∂

∂x

(
hm ∂3h

∂x3
+ hn ∂h

∂x

)
= 0, (1)

where the exponents m and n depend on the geometry and the
physical forces under consideration; the fourth-order spatial
term in (1) arises due to surface tension, while the second-
order term may arise from any number of destabilising effects
[1,3,5].

The nonlinear behavior of (1) is strongly dependent on
the values of the exponents m and n. For example, Eq. (1)
with m = 3 and n = −1 is used to model finite-time thin film
rupture due to attractive van der Waals forces. Mathematically,
such a model exhibits classical self-similarity, in which the
thickness near the rupture point asymptotically tends to a pro-
file that is unchanging under an appropriate time-dependent
rescaling of the spatial dimensions [6,7]. Recently it has been
shown that for different values of the exponents m and n, (1)
may instead exhibit discrete self-similarity, in which the pro-
files are only self-similar at discretely chosen times [8,9]. The
boundaries between different behaviors in (m, n) parameter
space has recently been explored in Ref. [10]. A more general
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description of discrete and classical self-similarity is provided
in Refs. [11,12].

The similarity analysis described above has thus far
concentrated on equations that exhibit finite-time rupture,
meaning h → 0 as time t approaches a finite value. However,
a particularly interesting application of (1) is destabilization,
thinning, and pattern formation of a heated thin film due
to thermocapillary (Marangoni) stress, for which (1) with
m = 3 and n = 2 represents an ideal case. Using thermocap-
illarity (the dependence of surface tension on temperature)
to control interfaces is of interest as a method of creat-
ing patterned surfaces [13]. It has been observed for some
time that the nature of thermocapillary thin film solutions
is for the minimum thickness to tend to zero as time in-
creases without bound (or infinite-time rupture), producing
a cascade of structures of successively smaller sizes as it
does so. This property has been observed both in lubrica-
tion equations of the form (1) and generalizations [5,14–
17], as well as more comprehensive Stokes flow models that
do not use the lubrication approximation [18]. In Ref. [19],
these structures are referred to as dissipative compactons,
as they represent (in the limit that time increases with-
out bound) compactly supported steady-state solutions to
(1). As these structures are only asymptotically compactly
supported, we will refer to these as satellite droplets in
our study, in analogy to the structures that form in thread
breakup [20,21].

While this cascade of structures present in models for
thermocapillary flows is highly suggestive of the presence of
discrete self-similarity, the analysis of thermocapillary thin
film flows in such a framework has not previously been under-
taken. As the thinning process occurs over a considerably long
time scale, numerical simulation has previously only been
able to produce three to four generations of satellite droplets
at most [19].
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FIG. 1. Schematic of the thin film model, with local film height
h(x, t ), normal n, and tangent t.

In this article, we use a dynamically rescaled version of
(1), motivated by the search for discrete self-similar behav-
ior, to study the solution for very long times. In Sec. II, we
summarize how modeling thin viscous films with the thermo-
capillary Marangoni effect leads to an evolution equation of
the form (1). In Sec. III, we describe the numerical solu-
tion of the thin film equation in which the initial formation
of satellite droplets is observed, and which is necessary for
choosing an appropriate initial condition for the dynamically
rescaled equation. In Sec. IV, we show how a dynamically
rescaled version of the evolution equation allows us to con-
tinue much further in time than has previously been possible.
Our rescaling is such that classical or discrete self-similarity,
if present, would correspond to a steady state or periodic
solution, respectively. However, we observe that evolution to
a periodic solution occurs very slowly, if at all. On the time
interval we calculate over, each satellite droplet forms at a
size slightly less than a constant fraction of the previous one
(that is, at a slightly super-geometric rate), although the ratio
of successive sizes does seem to slowly approach a constant
value.

II. PROBLEM FORMULATION

The following derivation uses methodology from the works
in Ref. [5] in order to include the thermocapillary effect for
free surface Stokes flow. We begin the derivation of our model
by stating the Navier-Stokes equations in the fluid region,
including an energy equation for temperature

ρ

(
∂u
∂t

+ (u · ∇ )u
)

= −∇p + μ∇2u, (2)

∇ · u = 0, (3)

ρc

(
∂ϑ

∂t
+ (u · ∇ )ϑ

)
= kth∇2ϑ, (4)

with fluid velocity u = (u,w), density ρ, viscosity μ, pressure
p, temperature ϑ , specific heat c, and thermal conductivity
kth. Boundary conditions on the substrate z = 0 are no-slip
u = w = 0 and fixed temperature ϑ = ϑ0. The boundary

conditions on the free surface z = h are

T · n̂ = −κσ n̂ + ∂σ

∂s
t̂, (5)

w = ∂h

∂t
+ u

∂h

∂x
, (6)

kth∇ϑ · n̂ = αth(ϑ∞ − ϑ ), (7)

describing the effects of interfacial shear and normal stresses,
the kinematic boundary condition, and Newton’s law of cool-
ing, respectively. Here we have the stress tensor T, outward
normal unit vector n̂, tangent unit vector t̂, mean curvature
κ , surface tension σ , interfacial arc length s, heat transfer
coefficient αth, and ambient temperature ϑ∞. The unit normal,
unit tangent, and mean curvature are defined as

n̂ =
(− ∂h

∂x , 1
)

√
1 + (

∂h
∂x

)2
, t̂ =

(
1, ∂h

∂x

)
√

1 + (
∂h
∂x

)2
, κ =

∂2h
∂x2(

1 + (
∂h
∂x

)2
)3/2 .

Surface tension is assumed to change linearly with respect to
temperature (see, e.g., [5]), modeled by the following consti-
tutive relation

σ (ϑ ) = σ0

(
1 − γ

ϑ − ϑ∞
ϑ0 − ϑ∞

)
,

with reference surface tension σ0 = σ (ϑ0), and nondimen-
sional temperature dependence coefficient γ .

We nondimensionalize the governing equations and bound-
ary conditions by introducing the following nondimensional
variables:

x̂ = x/L, ẑ = z/H, ĥ = h/H, t̂ = t/T,

û = u/U, ŵ = w/W, p̂ = p/P, ϑ̂ = ϑ − ϑ∞
ϑ0 − ϑ∞

,

with the following choices for the dimensional scales T =
L/U , W = UH/L, P = LμU/H2, and U = 3σ0ε

3/μ. These
scales introduce the lubrication parameter ε, Biot number Bi,
and Marangoni number Ma, defined as

ε = H

L
, Bi = αthH

kth
, Ma = ε

σ0γ

μU
.

Substituting the nondimensional parameters into the govern-
ing equations (2)–(4), dropping the hat notation and applying
the lubrication limit ε � 1, we have governing equations

∂ p

∂x
= ∂2u

∂z2
, (8)

∂ p

∂z
= 0, (9)

∂u

∂x
+ ∂w

∂z
= 0, (10)

∂2ϑ

∂z2
= 0, (11)

and boundary conditions on z = h,

p = 3
∂2h

∂x2
, (12)

∂u

∂z
= −Ma

∂ϑ

∂x
, (13)
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w = ∂h

∂t
+ u

∂h

∂x
, (14)

∂ϑ

∂z
+ Biϑ = 0. (15)

The nondimensional boundary conditions on the substrate z =
0 are u = w = 0 and ϑ = 1.

We now derive a nondimensional expression for the tem-
perature through the height of the film. We integrate the
simplified governing equation (11) twice in the z direction and
apply the boundary conditions ϑ (0) = 1 and Eq. (15) to arrive
at

ϑ = 1 − Biz

1 + Bih
. (16)

We derive an expression for the horizontal velocity profile by
integrating (8) twice through z. With the no-slip boundary
condition at z = 0, and the shear stress condition (13), we
have

u = ∂ p

∂x

(
z2

2
− hz

)
− Ma

∂ϑ

∂x
z. (17)

Using the zero divergence condition (10) and integrating
through the height of the film, we find an expression for
w at the interface which is used in the kinematic boundary
condition. Substituting these results for u and w into the kine-
matic boundary condition returns the evolution equation for
the interface:

∂h

∂t
= ∂

∂x

(
h3

3

∂ p

∂x
+ Ma

h2

2

∂ϑ

∂x

)
.

Hence we have our governing PDE,

∂h

∂t
+ ∂

∂x

(
h3 ∂3h

∂x3
+ Ma Bih2

2(1 + Bi h)2

∂h

∂x

)
= 0, (18)

which is equivalent to Eq. (2.62) found in Ref. [5].
In the nondimensionalization thus far, no specific choice

was made for the horizontal or vertical length scales, L and
H . Generally, these are set by the initial condition and domain
size. However, since we ultimately focus on the behavior over
a long time period, and in a vanishing spatial region, it is more
appropriate to select length scales based on the dynamics. We
thus rescale (18) by

h �→ (
1
2 Ma Bi

)−2
h, x �→ (

1
2 Ma Bi

)−3/2
x.

In addition, as h → 0 the term (1 + Bi h)2 tends to unity. For
this reason the long-time dynamics of (18) is described by the
parameter-free equation

∂h

∂t
+ ∂

∂x

(
h3 ∂3h

∂x3
+ h2 ∂h

∂x

)
= 0, (19)

which is in the form considered in [19].

III. NUMERICAL SIMULATION

In this section we describe numerical simulation
ofEq. (19), exhibiting the initial dynamics that we will
then continue using, the numerical method described in
Sec. IV, for longer times. We use a central finite difference
scheme on a uniform spatial grid, solved in time by using

FIG. 2. Numerical solution to (19) and (20) on periodic bound-
aries at t = 4000, with choices δ = 0.1 and L = 10. (a) The solution
on the entire computational domain in black online with initial condi-
tion in red dashed line, with (b) and (c) magnification of the indicated
regions, revealing the continuing formation of satellite droplets.

Matlab’s ODE15s stiff ODE system solver. Since (19) is
in conservative form ht + Qx = 0, we discretize the flux
Q = h3hxxx + h2hx with a central finite difference in h, then
apply a central finite difference to calculate its derivative,
which results in a seven-point stencil. This two-step spatial
discretization appears to result in a more numerically stable
scheme compared to expanding and directly discretizing each
individual term in the flux.

Using the above method we solve (19) on a domain x ∈
[0, L] with periodic boundary conditions, and with an initial
condition comprising a perturbed flat interface:

h(x, 0) = 1 + δ cos

(
2πx

L

)
. (20)

In Fig. 2 we show the result of this simulation with δ = 0.1,
L = 10. The flat interface is unstable for this wavelength
perturbation (as is easily demonstrated by linear stability
analysis) and the initial perturbation grows in amplitude.
After some time the perturbation bifurcates into two local
minima. Subsequently, the film thickness tends toward zero
at two points as time increases. Between these two points
the remaining fluid forms a bump, referred to as a com-
pacton in Ref. [19], and a satellite droplet in the present
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FIG. 3. (a) The minimum film thickness hmin(t ) over time, on a
logarithmic scale. The dotted line is the solution to the unscaled prob-
lem, (19) and (20), while the solid line comes from the solution to the
dynamically rescaled problem, (22) and (23), transformed back to the
original variables h and t for comparison. The minimum thickness
tends to a power law proportional to t−1, but oscillates indefinitely
around this power law. (b) the scaled minimum thickness Hmin(τ ),
from which the bulk of the minimum thickness in (a) is computed, is
observed to oscillate around a value that is slowly approaching ∼0.1.

study. As the film thins further, each local minimum bifur-
cates into two minima, resulting in a further droplet on a
smaller scale. With N = 10 000 spatial nodes we can accu-
rately simulate this equation up to roughly t = 4000, beyond
which the spatial accuracy required near rupture becomes
too challenging, making it extremely difficult to observe
further generations of satellite droplets when solving (19)
directly.

In Fig. 3 we plot the minimum thickness hmin(t ) as a
function of time t ; the dotted portion of the curve represents
the results of the simulation performed in this section. If
the solution were to be self-similar in this time span, we
would expect the minimum thickness to approach a power law
(equivalent to a straight line on logarithmic axes). However,
for the time scales achievable when solving (19) directly,
no convergence to a power law is observed. We are thus
motivated to solve a dynamically rescaled form of (19) that
actively focuses on the region where the thickness goes to
zero, and will allow us to observe solution behavior for much
larger times.

IV. RESCALED EQUATION FOR LONG TIME BEHAVIOR

In order to observe the behavior of solutions to (19) on long
time scales, and close to a point at which the film thickness
vanishes, we apply the following change of variables:

h(x, t ) = t−1H (η, τ ), η = x − x0

t−1/2
, τ = ln t, (21)

to (19), resulting in the new equation for H (η, τ ),

∂H

∂τ
= H − 1

2
η
∂H

∂η
− ∂

∂η

[
H3 ∂3H

∂η3
+ H2 ∂H

∂η

]
. (22)

Here x0 is an assumed rupture point, that is, where h(x0, t ) →
0 as t → ∞.

As any fixed value of x 	= x0 corresponds to η → ±∞ as
t → ∞, (22) must be posed on the infinite domain −∞ <

η < ∞. Since we expect the time evolution of the film thick-
ness to go to zero away from x0 much faster than at x0,
appropriate far-field conditions are

∂H

∂τ
∼ H − 1

2
η
∂H

∂η
, η → ±∞, (23)

used by Ref. [8] for finite-time rupture.
The substitution (21) is inspired by, but not limited to,

the search for self-similar behavior [6]. A classical similarity
solution of (19) corresponds to a steady state of (22), which is
known to exist and be stable for equations similar to (1) with
certain exponents, such as for models of thin film rupture due
to van der Waals force [6,7]. In our case, a similarity solution
would satisfy the boundary value problem

0 = H − 1
2ηH ′ − [H3H ′′′ + H2H ′]′, (24)

H ∼ Cη2, η → ±∞, (25)

for constant C, where the far-field algebraic behavior (25)
results from the steady version of (23). However, we have
been unable to find a solution to (24) and (25) by applying
the method in Ref. [6] [the similarity solutions reported in
Ref. [19] do not satisfy the appropriate bounday condition
(25), which means they do not correspond to behavior exhib-
ited by (19)]. This apparent absence of a similarity solution
is consistent with the observations of the long-time behavior
of the time-dependent problem, (22) and (23), that we make
shortly.

The inclusion of dependence on logarithmic time τ in (22)-
and (23) means that nonclassical self-similar behavior can
also be studied; recent work has shown how equations of
the form (1) can (depending on the value of the exponents)
exhibit discrete, rather than classical, self-similar behavior,
corresponding to periodic (in τ ) solutions to their counterparts
to (22). Such discrete similarity solutions are of interest here
as they form an infinite cascade of structures of geometrically
decreasing size, similar to the cascade of satellite droplets
exhibited by (19). More generally, however, (22) may be
solved numerically without making any prior assumption on
its eventual dynamics, although accurate estimation of the
rupture location x0 is crucial, as we describe further below.

To simulate (22), we need to create a suitable initial con-
dition. By taking a late-time solution to the problem in the
original coordinate system (19), and scaling it into the new
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FIG. 4. Numerical results to (22) and (23), highlighting the time-dependent oscillatory behavior of the scaled thin film profile. (a) The
evolution of the profile H (η, τ ) over a subinterval of the scaled time variable τ . (b) The evolution of H at a specific choice of the similarity
variable η = 6 to the right of the assumed rupture point near η = 0, demonstrating the oscillatory behavior in this region. (c) The evolution
of = H at η = −0.5, to the left of the rupture point, demonstrating the monotonically increasing slope in this region. The times indicated by
circles in (b) and (c) are points where the profile H has a local maximum at η = 6, which are used to calculate the droplet sizes in Fig. 5.

coordinate system (η, H ), we may view the solution as a con-
tinuation of the original one for long times. From solving the
unscaled problem to t = 2000, where we still have relatively
high resolution, we use the scaling equations (21) to convert
the numerical solution h(x, t = 2000) to an initial condition
H (η, 0) for (22).

In order to carry out this conversion, the infinite-time rup-
ture location x0 must be numerically estimated, as it cannot
be determined exactly through symmetry arguments. Indeed,
the arbitrary value of x0 is due to the spatial invariance of
the original equation (19), which corresponds to an artificial
instability in the scaled problem (22) [6,8]. In selecting an
initial condition for H , the value of x0 must be carefully
chosen to avoid the minimum film height rapidly leaving the
computational window. We use a bisection approach to esti-
mate x0 by initially choosing the x coordinate of the minimum
film height, solving the scaled problem until the minimum
film height moves away from the neighborhood of η = 0, then
adjusting the estimate of x0 so the scaled solution retains its
minimum near η = 0 for as long as possible.

We solve Eq. (22) numerically, using a finite difference
method similar to that described in Sec. III. The equation is
solved on the domain η ∈ [−2.5, 7.5] with 600 spatial nodes,
with the far-field condition (23) implemented using upwind
approximations of the derivatives at the last three spatial nodes
at each end. With a good quality unscaled solution as the
initial condition and x0 chosen carefully through the method
described above, the solution may be continued to values τ ≈
50, corresponding to original time t = O(e50). This length
of time is not possible to achieve in the original coordinate
system, and is far beyond that reached previously [19].

In Fig. 4 we show the solution behavior up to a scaled
time of τ = 50. The solution profiles are highly asymmetric
in η, with the profile acting in a highly oscillatory fashion for
η > 0, and in a monotonically steepening fashion for η < 0.
To demonstrate this behavior, we plot the value of H as τ

increases at two fixed values of η: η = 6 > 0 [Fig. 4(b)],
and η = −0.5 < 0 [Fig. 4(c)]. We also note that although
small, the minimum scaled thickness Hmin(τ ) = minη H (η, τ )
remains finite [as depicted in Fig. 3(b)].

However, the solution has not settled down to a periodic or-
bit in the (η, τ ) coordinate system, as can be most clearly seen
in the monotonic, seemingly linear behavior of H in τ when
η < 0 [Fig. 4(b)]. If this monotonic increase continues, it in-
dicates that the slope of the scaled profile becomes unbounded
in the limit τ → ∞. Solution behavior with this property has
not previously been observed in the thin film models in which
discrete self-similarity arises from the presence of a periodic
orbit in rescaled coordinates [8].

We also use the rescaled solution to extend the observed
behavior of the minimum thickness in Fig. 3. The solid line in
this figure represents the minimum thickness found using the
rescaled method described in this section, translated back into
the original variables. This plot emphasizes that although not
observable for the times achieved when solving (19) in the
original, unscaled coordinate system, for much longer times
the minimum thickness asymptotically approaches a regime in
which it oscillates around the power law t−1. The oscillations
around this power law are connected with the formation of
discrete undulations for η > 0 observed in Fig. 4.

A meaningful solution property to estimate is the size
of successive satellite droplets produced by the long-time
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FIG. 5. A summary of the spatiotemporal information of nu-
merical solutions to (22) and (23). (a) The measured period of the
scaled solution. (b), (c) The height and the length ratios, respectively,
between successive droplets, calculated using (26) and (27).

dynamics. In order to estimate the height of and distance
between successive droplets, we use the scaled times τn when
the local spatial maximum in the solution passes the point
η = η0 = 6 (as in Fig. 4), which is sufficiently far from zero,
to represent the far field, but not so close to the boundary to
be affected by the imposed boundary condition. Returning to
the original coordinate system h = h(x, t ), we estimate the
height of the nth droplet hn and distance between the nth and
(n + 1)th droplet ln to be

hn = e−ατn H (η0, τn), ln = (e−βτn − e−βτn+1 )η0,

while taking the ratio of these quantities results in

hn+1

hn
≈ e−α(τn+1−τn ) H (η0, τn+1)

H (η0, τn)
, (26)

ln+1

ln
≈ e−βτn+1 − e−βτn+2

e−βτn − e−βτn+1
. (27)

If H (η, τ ) were exactly periodic with period τn+1 − τn = T ,
then the ratios hn+1/hn = e−αT and ln+1/ln = 1 − e−βT would
be independent of n, and satellite droplets would be of exactly
geometrically decreasing size. Given our solution plotted in
Fig. 4 is not exactly periodic, we do not expect this to be
exactly the case. In Fig. 5, we plot the apparent periods τn+1 −
τn, as well as the ratios of successive heights and lengths
for our numerical solution, found using (26) and (27). This
amounts to taking the respective height and length ratios of the
shapes formed in Fig. 4(c), after converting their dimensions
back to the original unscaled (x, t ) coordinates. Over the time
interval calculated, the period is an increasing function of n,

and the ratios are a decreasing function of n. We do observe
that these values are slowly approaching constant values

τn+1 − τn → 6,
hn+1

hn
→ 0.002,

ln1

ln
→ 0.05

as τ becomes large, although they have not done so by the
end of our simulation (τ = 50). As this time corresponds to
an unscaled time of t ≈ e50 ≈ 1021, this long-time regime
where satellites are geometrically decreasing in scale. This
is practically unachievable in unscaled numerical simulations
(and any real-life situation).

V. DISCUSSION

In this paper, we have numerically computed the solu-
tion to the thin film equation (19), modeling the effects of
surface tension and thermocapillarity, for times greatly ex-
ceeding what has previously been achieved. This long-time
solution was found by solving the equation in a dynamically
rescaled coordinate system (21) that focuses on the region
where the film thickness vanishes. This coordinate system is
related to similarity analysis in that a similarity solution to
the original equation represents a steady state of the rescaled
problem (22), and that a periodic solution of the rescaled
equation represents a discretely self-similar solution to the
original problem, as described in Ref. [8] for similar mod-
els. However, no assumption of self-similarity is made when
solving (22) as an initial-value problem, allowing observation
of other potential phenomena.

The major issues introduced by the rescaled problem is the
artificial instability introduced by the translational invariance
of the original problem, and the choice of far-field boundary
conditions (23). The instability was resolved by choosing an
initial condition from the original problem at a sufficiently late
time, using a bisection method to determine the appropriate
translation to allow the rescaled simulation to run as long as
possible.

The previous method by Shklyaev et al. [19] provided
results by numerically solving up to a point in time, truncating
the computational window, applying new boundary condi-
tions, interpolating onto a new mesh, and resume the solver for
up to t = 8000, at which time four satellite droplets (referred
to as compactons) were generated. In order to extend their
solution to later times, they needed to artificially restrict the
domain to a subset of the original domain, and set pinning
conditions on the new subdomain. We believe that solving the
dynamically rescaled problem (19) is a more natural way to
increase resolution in the region of interest.

While our simulated results for Eq. (22) oscillate in exactly
the way expected to produce an infinite cascade of droplets of
successively decreasing size, it is quite clear that the solution
has not settled down to a strictly periodic solution in the
logarithmic time variable τ . While the period of oscillations
τn+1 − τn and ratios of length and height scales depicted in
Fig. 5 do seem to be very slowly approaching fixed val-
ues, the monotonic increase in slope for η < 0 [shown in
Fig, 4(b)] indicates that solutions are not being attracted to
a finite-amplitude periodic orbit in the scaled variables, in the
manner observed in [8] for different exponents in the thin film
equation (1).
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One direction of future research is into whether the behav-
ior observed in (22) represents the existence of a periodic orbit
under subtly different assumptions. One possibility is that
logarithmic (in time) corrections are required in the power-law
scales in the ansatz (21). This phenomenon is known to oc-
cur in some continuously self-similar problems (for example,
the curve shortening equation described in [11], and related

second order equations [22]), but the possible combination of
this phenomenon with discrete self-similarity has not previ-
ously been observed in any system. Another possibility is that
the solution is tending to a periodic orbit that has a singularity
to the left of η = 0, hence the ever-increasing slope observed
in Fig. 4(b).
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