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The self-organization of clusters of particles is a fundamental phenomenon across various physical systems,
including hydrodynamic and colloidal systems. One example is that of dense spherical particles submerged in
a viscous fluid and subjected to horizontal oscillations. The interaction of the particles with the oscillating flow
leads to the formation of one-particle-thick chains or multiple-particle-wide bands, both oriented perpendicular
to the oscillation direction. In this study, we model the hydrodynamic interactions between such particles and
parallel chains using simplified potentials. We first focus on the hydrodynamic interactions between chains,
which we characterize using data from fully resolved numerical simulations. Based on these interactions, we
propose a simplified model potential, called the Siren potential, which combines the representative hydrodynamic
interactions: short-range attraction, mid-range repulsion, and long-range attraction. Through one-dimensional
Monte Carlo simulations, we successfully replicate the characteristic patterns observed in hydrodynamic exper-
iments and draw the phase diagram for the model potential. We further extend our analysis to two-dimensional
systems, introducing a dipole-capillary model potential that accounts for both chain formation and Siren-like
chain interactions. This potential is based on a system with colloidal particles at an interface, where chain
formation is driven by an external electric field that induces a dipole moment parallel to the interface in each
particle. The capillary force contributes the long-range attraction. Starting with parallel chains, the patterns
in the two-dimensional Monte Carlo simulations of this colloidal system are similar to those observed in the
hydrodynamic experiments. However, we identify that nonlinear interactions are important for some distinct
steps in the chain formation. Still, the model potentials help clarify the dynamic behavior of the particles
and chains due to the complex interactions encountered in both hydrodynamic and colloidal systems, drawing
parallels between them.

DOI: 10.1103/PhysRevE.110.035103

I. INTRODUCTION

The self-organization of clusters of particles is a common
and important feature in a wide range of systems across mul-
tiple orders of magnitude in space and time. A few notable
examples include the formation of ripples in sediment bed-
forms [1], the collective dynamics of microswimmers [2], and
flows of granular materials [3]. Recently, there has been a
renewed interest in exploring the connections between such
different systems in an interdisciplinary approach [4]. The
aim is to enhance the understanding of self-organization phe-
nomena and the influence of confinement by drawing parallels
across different scientific disciplines.

*Contact author: m.duran.matute@tue.nl

A particular case of self-organization occurs in electrorhe-
ological fluids, where colloidal particles suspended in a liquid
medium are subjected to an external oscillating electric field.
Such systems have been studied extensively a few decades ago
(see, e.g., the reviews in Refs. [5,6]). The electric field induces
a dipole moment in each particle, causing them to interact and
form chains within a few milliseconds [5–7]. These chains
align with the external field and interact with other chains.
They repel each other at large distances but also attract at
very short distances, forming stable clusters [8]. Such chain
formation also occurs for particles with intrinsic dipole mo-
ments [9]. However, in such a case, the chains do not align
along a preferential direction due to the lack of external forc-
ing and its associated directionality. Similar self-organization
phenomena are also observed in other colloidal systems with
charged colloids or colloid–polymer mixtures [10].
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FIG. 1. Examples of the patterns observed in the experiments by van Overveld et al. [19], as a function of the relative particle-fluid
excursion length normalized by particle diameter, Ar/D, and particle coverage fraction φ. The patterns range from one-particle-thick chains
to multiple-particle-wide bands, all with an intrinsic spacing between them that varies with Ar/D. The colors indicate different regions in the
parameter space, with only chains and irregular clusters (blue), chains and bands (green), and more disordered structures (orange).

The interactions in these colloidal systems are often mod-
eled using short-range attractive and long-range repulsive
(SALR) potentials [11]. Such potentials are sometimes re-
ferred to as Mermaid potentials due to their attractive head and
repulsive tail (as beautifully demonstrated by Hooshanginejad
et al. [12]). Typical examples of SALR models are the hard-
core double-Yukawa potential, used for studying equations of
state in hard-core fluids [13], and the combined Lennard-Jones
and Yukawa potentials, used for studying clustering phenom-
ena in fluids and gels [14]. The combination of short-range
attraction and long-range repulsion in systems governed by
SALR interactions can lead to clustering and phase separation
[11,15]. For clustering, particles must overcome a potential
barrier, possibly due to (thermal) fluctuations or driven by
confinement [4].

Self-organization can also be found in hydrodynamic
systems, driven by the particle-fluid interactions and non-
linearities in the flow [16–18]. A good example are the
experiments by van Overveld et al. [19], where patterns are
formed by spherical particles inside an oscillating box filled
with viscous fluid and observed a wide range of distinct
patterns. These patterns range from one-particle-thick chains
to multiple-particle-wide bands, all with an intrinsic spacing
between them that varies with the oscillatory forcing. Note
that this hydrodynamic system is macroscopic, such that ther-
mal fluctuations do not play a role in the particle behavior.
An overview of these patterns is given in Fig. 1, representing
the parameter space as a function of the relative particle-fluid
excursion length (i.e., how far the particle moves with respect

to the ambient fluid) Ar normalized by the particle diameter D
and the particle coverage fraction φ.

Complementary numerical simulations revealed that the
hydrodynamic interactions are due to vortices in the period-
averaged flow. These vortices vary in size, position, and
magnitude with different flow conditions, adding complexity
to the interactions. Overall, the interactions can be divided
into a short-range attraction, a mid-range repulsion, and a
long-range attraction. The first two interactions are consistent
with the SALR model. However, the long-range attraction is
an additional effect, leading to compact patterns that do not
necessarily spread out over the entire domain. The balance
between mid-range repulsion and long-range attraction de-
termines the intrinsic spacing between the chains or bands.
Notably, the long-range attraction emerges due to the hy-
drodynamic interaction between the particle chains and the
surrounding fluid, becoming apparent only when the chains
are formed. Therefore, it can be described as “self-reinforced
confinement” since it arises from the collective dynamics and
internal feedback loops within the system itself [4].

By combining the experiments and simulation data, three
distinct regions were identified, as illustrated in Fig. 1. For
Ar/D � 0.7, one-particle-thick chains form, accompanied by
some irregular clusters if φ is relatively large. For Ar/D ≈ 2
and small φ, many isolated particles and only a few large
structures, primarily two-particle-wide bands, were found.
The patterns in the rest of the parameter space consist of com-
binations of chains and bands, characterized by an increasing
distance between them with increasing Ar/D and a typical
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width that increases with both Ar/D and φ (see van Overveld
et al. [19] for a detailed discussion).

In this study, we capture the essential aspects of the com-
plex self-organization of spherical particles in an oscillating
flow, using a simplified model potential, that we name the
Siren potential,1 which incorporates four distinct interactions:
hard-sphere repulsion, short-range attraction, mid-range re-
pulsion, and long-range attraction.

By independently tuning the relative interaction strengths
in the Siren potential, we replicate self-organization phenom-
ena observed in hydrodynamic or colloidal systems. This
potential allows us to explore the full parameter space without
constraints. This level of control of the individual interactions
is typically not feasible in physical systems, since interactions
are coupled to each other and depend on the external forcing
in a complex manner. For example, in colloidal systems, the
dipole interactions that induce short-range attraction, leading
to clustering, also cause long-range repulsion. In the hydro-
dynamic system, the vortices in the period-averaged flow
underlie the chain and band formation (through short-range
attraction) and their mutual interactions (through mid-range
repulsion and long-range attraction). The individual interac-
tions can, therefore, not be tuned individually.

The Siren potential is a generalization encompassing
other commonly observed potentials in various systems.
Through different parameter combinations, we can qualita-
tively reproduce potentials resembling a SALR (Mermaid)
potential, a potential well (e.g., similar to Lennard-Jones),
and a purely attractive potential. Furthermore, the Siren
potential shares similarities with potentials used in Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory, which describes
interactions between charged colloidal particles in aqueous
dispersions [21]. In DLVO theory, electrostatic repulsion
(dominant at mid-range) and Van der Waals attraction (dom-
inant at short and long-range) contribute to the interaction
potential. The combination results in a deep primary mini-
mum at a short range and a shallow secondary minimum at
a larger range, corresponding to irreversible coagulation and
reversible flocculation, respectively [22].

A systematic approach is followed to reach our aim
of capturing the essential aspects of the complex self-
organization processes. We first apply the Siren potential to
a one-dimensional model system, effectively describing the
interactions between parallel chains in the experiments con-
ducted by van Overveld et al. [19]. Even within this simplified
framework, we show that a rich range of patterns can be
found. The equilibrium states are predicted using analytical
calculations based on lattice sums. We further explore the
phase space and the pattern’s sensitivity to initial conditions
using one-dimensional Monte Carlo simulations. Then, we
extend to two-dimensional cases to also consider the inter-
actions between individual particles and the formation of the
chains. We propose a novel approach for realizing the Siren

1Like the Mermaid potential, the name Siren potential is inspired by
(Greek) mythology. Although mermaid and siren are now sometimes
used as synonyms, sirens were first described as mythological beings
with attractive human heads and repulsive birdlike bodies. They lure
their prey from far away using their voices [20].

potential in two dimensions based on common interactions in
colloidal systems with dipolar particles (in an external electric
field) and an interface between two fluids (exploiting capillary
forces). We explore the self-organization in such systems us-
ing two-dimensional Monte Carlo simulations, including the
effects of initial conditions and confinement. We highlight
similarities and differences between this colloidal system and
the hydrodynamic system by van Overveld et al. [19].

We explore the interactions between parallel chains in
the hydrodynamic system in Sec. II. Then, in Sec. III,
we introduce the Siren potential along with an analysis of
the equilibrium states. The Monte Carlo results for one-
dimensional systems are shown in Sec. IV, and the connection
to colloidal systems is explored in Sec. V. Finally, the conclu-
sions are drawn in Sec. VII.

II. INTERACTIONS IN THE HYDRODYNAMIC SYSTEM

As a starting point, we consider numerical simulations
of two particle chains in an oscillating flow, following the
approach by van Overveld et al. [19]. The two chains are
oriented along the y axis, which is perpendicular to the os-
cillation direction along the x axis. The chains are separated
by a distance λ. The particles, with diameter D, are kept
fixed in space. The flow around each particle is fully resolved.
The particle-fluid interactions are accounted for using an im-
mersed boundary method, based on the code by Breugem [23].
This code was previously used in related studies involving
spherical particles in oscillatory flows [24,25].

In our simulations, we place two particle chains (each
consisting of ten particles) on a flat bottom within a doubly
periodic domain of size 10D × 20D (along and perpendicular
to the chains, respectively), filled with a Newtonian fluid with
density ρ f . The fluid oscillates with excursion amplitude Ar

and angular frequency ω. The top and bottom boundaries,
separated by a distance H = 5D (as in the experiments) and
characterized by no-slip/no-penetration conditions, oscillate
with the same amplitude and frequency as the fluid to simulate
an oscillating box.

We calculate the period-averaged forces acting on the par-
ticles within one of the two parallel chains. Specifically, we
consider the forces in the oscillation direction since these
provide insight into the interaction between the chains and
their equilibrium spacing. The average streamwise force on
each particle is nondimensionalized by ρ f (πD3/6)Arω

2 and
denoted as Fx. Figure 2(a) shows Fx on each particle as a
function of the normalized chain spacing λ/D and normalized
oscillation amplitude Ar/D. Negative values of Fx correspond
to attraction between the chains, while positive values cor-
respond to repulsion. We observe two important aspects in
Fig. 2(a): First, the maximum values of the forces increase
with Ar/D, and, second, the maximum force shifts towards
larger λ/D values as Ar/D increases.

Next, we rescale Fx with Ar/D and subtract Ar/D from
λ/D so that the data roughly collapses on a single curve. The
result is shown in Fig. 2(b). This rescaling approach aligns
with previous findings on the period-averaged flow fields [19],
where the vortices grow stronger with increasing Ar/D, justi-
fying the rescaling of Fx with Ar/D. Additionally, the size of
these vortices is roughly proportional to Ar/D, such that their

035103-3



T. J. J. M. VAN OVERVELD et al. PHYSICAL REVIEW E 110, 035103 (2024)

FIG. 2. (a) The dimensionless, average streamwise force per par-
ticle Fx as a function of the normalized chain spacing λ/D, where
positive values of Fx correspond to repulsive interactions (see insert).
The chains are aligned (as in the insert), except for the cases with
open symbols, which correspond to touching chains in a staggered
configuration. (b) Collapse of the data displayed in (a). The tri-
angles represent forces from simulations of two touching chains
in staggered (λ/D = √

3/2, upward triangle) or straight (λ/D = 1,
downward triangle) configuration (as shown in the upper left corner),
for Ar/D = [0.5, 0.6, . . . , 1]. Around the first zero crossing, the data
roughly follows the black dashed line, given by Eq. (1).

centers shift linearly away from the chains with increasing
Ar/D. Since the vortex is the active interaction center, the
normalized distance between particle and vortex, (λ − Ar )/D,
determines the (relative) magnitude of the instantaneous inter-
action, justifying the rescaling of the horizontal axis.

The rescaled data in Fig. 2(b) give a comprehensive
overview of the interactions between two chains, revealing
three distinct regimes. On increasing the value of (λ − Ar )/D,
the interaction is first attractive, then repulsive, and finally,
attractive again. Moreover, the data around the first zero cross-
ing ((λ − Ar )/D ≈ 0.3) collapse onto a straight line which we
approximate by

Fx

Ar/D
= −0.75 + 2.5

(λ − Ar )

D
, (1)

shown as the black dashed line in Fig. 2(b). Based on Eq. (1)
and the collapsed data, we estimate that short-range attrac-
tion occurs when λ/D � 0.3 + Ar/D. This means that two
touching chains (i.e., with λ/D = 1) form a stable two-
particle-wide band when Ar/D � 0.7, which is in complete
agreement with the results of van Overveld et al. [19].

Note that in Fig. 2(a), the leftmost data point for each
value of Ar/D (with an open symbol) does not follow the
linear trend described by Eq. (1). These points correspond
to two touching chains in a staggered configuration, where
λ/D = √

3/2. The magnitude of the forces in this staggered
configuration is smaller than in the straight configuration,
which is especially evident for large Ar/D, e.g., for the

leftmost green data point. The discrepancy between the stag-
gered and straight configurations also appears in the offset
between the red and purple triangles in Fig. 2(b).

III. MODEL POTENTIAL FOR THE HYDRODYNAMIC
INTERACTIONS BETWEEN PARALLEL CHAINS

We now describe the interactions from the previous sec-
tion in a more generalized manner. We use lattice sums to
analyze the energy associated with specific configurations to
gain insight into the equilibrium states of particles within a
given potential. For the sake of simplicity, we solely focus on
a one-dimensional pattern within an infinitely large domain.
This particular case corresponds to the streamwise interac-
tions between (nonstaggered) chains in the hydrodynamic
system. Essentially, each particle within the one-dimensional
model system represents a chain in the hydrodynamic system.

A. Siren potential

We introduce an effective potential U that qualitatively
captures the essential aspects of the hydrodynamic interac-
tions between parallel chains. The potential has three terms
and is given by

U (r/D) = − A

(r/D)2 + B

(r/D)4 − C

(r/D)6 , (2)

where r/D is the normalized distance between two particles
in the oscillation direction, and A, B, and C are positive con-
stants, representing the magnitude of long-range attraction,
mid-range repulsion, and short-range attraction, respectively.

This model is remarkably versatile since it can reproduce
potentials that are similar to those in other studies. We can
characterize different types of potential based on the relative
magnitude of the terms, A/B and C/B, as shown in Fig. 3.
Details on the boundaries between the regions are given in the
Appendix.

In the subsequent analysis, we focus on the specific
case with [A, B,C] = [1, 3, 2], as shown in Fig. 3.
For these specific values, the maximum is found at

(rmax/D,Umax) = (
√

3 − √
3, 1/(6

√
3)) ≈ (1.13, 0.096) and

the (secondary) minimum is found at (rmin/D,Umin) =
(
√

3 + √
3,−1/(6

√
3)) ≈ (2.18,−0.096). The potential is

attractive for r < rmax, repulsive for rmax < r < rmin, and
attractive for r > rmin. As shown in Fig. 3(b), the short-range
behavior is similar to that of a Mermaid potential (with
[A, B,C] = [0, 1, 1]), while the long-range behavior is
similar to a potential well (with [A, B,C] = [1, 1, 0]).

B. Lattice sums

We consider lattice sums for more fundamental insight into
the connection between the previously introduced potential
and the (one-dimensional) equilibrium particle configurations.
A more in-depth treatment of lattice sums is given in Ref. [26].
Note that the analysis in this section focuses on novel results
rather than an overview of the literature. The total energy in-
side the system is given by the sum of all interactions between
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FIG. 3. (a) The parameter space in terms of A/B and C/B that
determines the characteristics of the potential in Eq. (2). A net short-
range attraction only occurs for sufficiently large C/B (above the
lower black line). The interaction is attractive at every distance if the
magnitudes of the two attractive terms are too large (above the upper
black line). Above the dotted line, the potential is similar to those
commonly used in DLVO theory, with the primary minimum (related
to irreversible clustering) below the secondary minimum. (b) Ex-
amples of the potentials as indicated by the colored symbols in (a).
The Siren potential (solid green curve), characterized by [A, B,C] =
[1, 3, 2], is used for the rest of this section. The vertical black line
at r/D = 1 represents the shortest possible center-to-center distance
between two hard spheres.

the particles,

Ū = 1

2

N∑
i=1

N∑
j=1
j �=i

U (ri j/D) ≡ Nu, (3)

where N is the total number of particles in the system, u is
the average energy per particle, and the factor 1/2 corrects for
double counting of particle pairs.

We now apply this energy calculation to two distinct par-
ticle arrangements schematically shown in Fig. 4. We first
consider the uniform particle distribution, shown in Fig. 4(a),
since it is conceptually and mathematically straightforward.
Then, we consider groups of particles with a specific inter-
particle spacing, shown in Fig. 4(b), which are more complex
but also more versatile. For relatively large values of M, the
configuration can be interpreted as a pattern of parallel chains
with equilibrium spacing �. Alternatively, when � = D (i.e.,
clusters of touching particles), the configuration resembles
bands that are M particles wide, with the spacing between
these bands depending on L. Finally, note that for M = 1, case
(b) is equivalent to (a).

FIG. 4. The lattice sums are calculated for two distinct one-
dimensional configurations: (a) a uniform particle distribution and
(b) groups of M particles with an equal spacing �. In the example
configuration shown here, M = 3. The particle diameter is D and the
unit cell length L.

1. Uniform particle distribution

For a uniform distribution, we consider a particle with size
D in a unit cell of length L, as shown in Fig. 4(a). The energy
per particle is given by

u0 = 1

2

∞∑
j=−∞

j �=0

U ( jL/D),

= − A

2(L/D)2

∞∑
j=−∞

j �=0

1

j2
+ B

2(L/D)4

∞∑
j=−∞

j �=0

1

j4

− C

2(L/D)6

∞∑
j=−∞

j �=0

1

j6
,

= −A
π2φ2

6
+ B

π4φ4

90
− C

π6φ6

945
, (4)

where φ = D/L is the portion of the unit cell occupied by the
particle. The treatment of the infinite sums is described in,
e.g., Ref. [27]. The three terms on the bottom line in Eq. (4)
correspond to those in Eq. (2), demonstrating that the energy
per particle, unsurprisingly, depends on the strengths of the
separate interactions.

2. Groups of particles with a specific interparticle spacing

Next, we consider a group of M particles with the cen-
ters between neighboring particles separated by a distance
� within a unit cell of length L, as shown in Fig. 4(b). The
average energy per particle is given by

uM = 1

2

∞∑
j=−∞

j �=0

U ( jL/D)

+ 1

M

M−1∑
m=1

m
∞∑

j=−∞
U ( jL/D + (�/D)(M − m))

= u0 + 1

M

M−1∑
m=1

[
− A

(L/D)2
�

(
1,

�

L
(M − m)

)

+ B

6(L/D)4
�

(
3,

�

L
(M − m)

)

− C

120(L/D)6
�

(
5,

�

L
(M − m)

)]
, (5)
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FIG. 5. The average energy per particle u, given by Eq. (5), as
a function of φ and �/L for the Siren potential, for (a) M = 2 and
(b) M = 4. The red and blue curves indicate local minima and max-
ima, respectively. The white dashed lines indicate the position of the
secondary minimum in the Siren potential (�/D = rmin/D ≈ 2.18),
as shown in Fig. 3. The Roman numerals (I-V) correspond to the five
distinct configurations illustrated for the case with M = 4 in Fig. 6.

where

�(n, x) ≡ ψ (n, x) + ψ (n, 1 − x), (6)

with ψ (n, x) the polygamma function of order n, defined as

ψ (n, x) ≡ dn+1

dxn+1
ln 
(x), (7)

with 
(x) the Gamma function [28].
We now consider this average energy uM as a function

of φ = MD/L and �/L for the Siren potential, as shown in
Fig. 5. For two different values of M, this figure highlights
the (local) minima (in red) and maxima (in blue) on top of
the energy landscape. These extreme values correspond to
five distinct particle configurations shown in Fig. 6. The two
diagonal lines bounding the wedge (i.e., the limiting values
of �/L) are determined by M, L, and D. The configura-
tions along these boundaries always minimize the potential
energy. The maximum value, �/L = (1 − D/L)/(M − 1),
corresponds to the particles at the edges of the unit cell
touching those in the neighboring cells (configuration I). The
minimum value, �/L = D/L, corresponds to the clusters of
touching particles (configuration V). Moreover, the horizontal
lines in Fig. 5 represent �/L = 1/M, for which the particles
are evenly distributed over the unit cell (configuration III).
In this case, Eq. (5) is equivalent to the uniform distribution
of single particles (M = 1), given by Eq. (4) and shown in
Fig. 4(a). Furthermore, the blue and red curved lines in Fig. 5

FIG. 6. Schematic overview of the five distinct configurations
corresponding to the extrema in Fig. 5, here with M = 4 and φ = 0.5.
The dotted lines indicate the edges of the unit cell.

correspond to (local) extrema in uM , which are associated with
the maxima or minima of the particular potential (configura-
tions II and IV).

For M = 2, in Fig. 5(a), the energy landscape is symmetric
with respect to the line �/L = 1/M = 1/2. The clustered
states along the edges (red lines, configurations I and V) are
always stable. At low φ values, the additional stable equilibria
correspond to pairs of particles near the potential’s (sec-
ondary) minimum. However, for 0.35 � φ � 0.77, the density
is sufficiently large, preventing the particles from being at the
spacing associated with the minimum of the potential. As a
result, the particles repel each other, leading to the uniform
distribution (�/L = 1/2, configuration III) being a stable
configuration. The uniform distribution is again unstable at
higher densities, leaving the clustered configuration as the
only stable option. The transitions at φ ≈ 0.35 and 0.77 corre-
spond to a supercritical and subcritical pitchfork bifurcation,
respectively.2

When M > 2, in Fig. 5(b), the symmetry of the wedge is
broken. The clustered state (lower diagonal, configuration V)
is no longer equivalent to the state with maximum interpar-
ticle spacing (upper diagonal, configuration I). An additional
asymmetry arises around the bifurcation points. The intersec-
tions between the curves (configurations II and IV) and the
horizontal line (configuration III) are no longer symmetric
with respect to the horizontal line. This asymmetry is a sign
of hysteresis on varying the value of φ: the preparation of
the system in terms of φ and initial particle distribution can
lead to different stable states, as further explored in Sec. IV.
For example, starting from a uniform distribution (�/L =
1/M = 1/4) with φ ≈ 0.5 and gradually decreasing its value
(e.g., by increasing the domain size in an experiment), the
system follows the upper branch with relatively large particle
spacing compared to the lower branch. Similarly, on gradu-
ally increasing φ, the value of � briefly decreases after the
bifurcation before it jumps towards the clustered state on the
lower edge. In principle, the system should always transition
to the lower edge since it avoids crossing a maximum in
the energy landscape, while this would be required to go
to the upper edge. Such preferential transitions are absent
for the symmetric M = 2 cases.

Moreover, we have indicated the expected equilibrium
spacing based on the secondary minimum rmin/D ≈ 2.18 by
the white dashed lines in Fig. 5. The particles settle at a
slightly smaller spacing for small φ and M > 2, as indi-
cated by the lower red branch. This deviation is attributed
to the potential accounting only for the interactions between
two particles. However, the energy calculation for this figure
includes multiple particles in the same unit cell (M > 2) over
an infinite array of unit cells.

IV. ONE-DIMENSIONAL MONTE CARLO SIMULATIONS

In the previous section, we have gained a basic understand-
ing of the energy landscape near the equilibrium states for

2A supercritical pitchfork bifurcation describes a transition from
one stable equilibrium to two stable equilibria (or vice versa). The
stability is reversed for the subcritical pitchfork bifurcation [29].
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systems with only a few particles. There are often multiple
local minima for a given particle number density, which addi-
tionally show hysteresis in the transitions between equilibrium
states. The particle configurations thus depend on the initial
conditions and the noise level, which we explore further in
this section.

A. Monte Carlo method

We use the conventional Metropolis Monte Carlo (MC)
algorithm to simulate a system of N particles in a one-
dimensional domain with periodic boundaries [30]. The
domain length L is determined by the user-defined value of
the packing fraction φ = ND/L. Each simulation consists of
105 MC steps, where in each step, one particle is randomly
selected and moved with a random step size between −0.1D
and 0.1D. The maximum step size is kept constant throughout
the simulation.

Before accepting a proposed step, several checks are made
to prevent particle overlap, thereby accounting for the hard-
sphere repulsion, and to determine the total energy of the
new state. The new state is automatically accepted if it has
lower energy than the old state and no particle overlap. A
proposed step resulting in an energy increase �E is accepted
with probability

p = e−�E/(kBT ), (8)

where kB is the Boltzmann constant and T is the
temperature [31].

By setting kBT > 0, we incorporate (thermal) fluctuations
into the system (as commonly included when simulating col-
loids [8]), which govern the amount of noise in the particle
motion. It is worth noting that the value of kBT in our simu-
lations does not reflect the actual thermodynamic temperature
of the system but is used to capture the noise also present in
the experiments (due to, e.g., particle collisions, fluctuations
in the flow, or inhomogeneity of the bottom over which the
particles move). Furthermore, a positive value of kBT prevents
the system from getting trapped in shallow, local minima of
the energy landscape.

Finally, we allow for cluster moves to increase the effi-
ciency of the simulations. Before accepting a move, we define
a 20% chance that the neighboring particle to the right will
also be moved by the same amount.3 This procedure is ap-
plied iteratively: If the neighboring particle is added to the
move, then there is a subsequent 20% chance to add the next
neighbor. This loop is truncated once a particle is not added
to the cluster move. This procedure satisfies detailed balance,
such that the step is reversible with equal probability [31].

B. Equilibrium states and the role of initial conditions

We begin by examining the equilibrium states of the
one-dimensional system governed by the Siren potential
without thermal fluctuations (kBT = 0). To illustrate the self-
organization at the particle level, we show the results of two

3The final configuration is not sensitive to the exact percentage;
the clusters moves here are primarily used for efficiency, such that
clusters are more likely to move.

FIG. 7. Particle positions over time obtained from one-
dimensional Monte Carlo simulations using the Siren potential for
N = 6, φ = 0.2, and kBT = 0. The simulations are initiated from
either a uniform distribution of (a) single particles or (b) pairs of
particles. The vertical dashed lines indicate the periodic boundary,
and the horizontal dashed line indicates the time at which the system
has reached an equilibrium state (after which the particle positions
relative to each other remain constant).

small simulations, each with N = 6 particles and φ = 0.2, as
shown in Fig. 7. Starting from an initial uniform distribution,
in Fig. 7(a), the particles form structures with a spacing of ap-
proximately r/D ≈ 1.9. This value roughly corresponds to the
secondary minimum in the potential at rmin/D ≈ 2.2, but is
slightly smaller, as previously predicted based on Fig. 5. Next,
for a uniform distribution of touching pairs, in Fig. 7(b), the
pairs are stable and stay together throughout the simulation.
Once the system reaches an equilibrium state, the pairs form
a compact pattern similar to that of the single particles, with
the distance between the centers of the pairs approximately
r/D ≈ 2.7. The difference in final states (arrays made of sin-
gle particles versus pairs) confirms that, at low temperatures,
the system is not ergodic.

Next, Fig. 8 gives a comprehensive overview of one-
dimensional MC results for three values of φ = [0.2,

0.5, 0.8]. At low φ values, the particles form patterns with
an intrinsic spacing that (approximately) corresponds to the
(secondary) minimum in the potential energy (related to con-
figuration IV in Fig. 6). For larger values of φ, beyond the
bifurcation transition in Fig. 5, the particles arrange them-
selves equidistantly at relatively small spacing (configuration
III). Continuing to increase φ yields the formation of clusters
due to short-range attraction (similarly to configuration V).

The final states shown in Fig. 8 are remarkably similar
to the patterns in the hydrodynamic experiments in Fig. 1.
The behavior in the green region (with chains and bands)
is captured by the Siren potential, where particles maintain
an intrinsic spacing until reaching a critical density, after
which multiple-particle-wide clusters form. Moreover, the
blue region (with chains and irregular clusters) can effectively
be described by omitting the short-range attraction [setting
C = 0 in Eq. (2)] such that multiple-particle-wide clusters are
always unstable. See the comparison of particle distributions
in different potentials in Fig. 15 in the Appendix.

The similarities between the simulations and experiments
are further supported by the distributions of particle spac-
ings shown in Fig. 9. At low values of φ (e.g., φ = 0.2),
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FIG. 8. Resulting particle distributions from the one-dimensional MC simulations after 105 steps for φ = [0.2, 0.5, 0.8]. The colors indicate
the total potential energy of each particle in the shown configuration. A comparison of the particle distributions in different potentials (Well,
Mermaid, and Siren) is given in Fig. 15 in the Appendix.

the distances are distributed around the secondary minimum,
with a median (normalized) distance of 1.92. As φ increases
(φ = 0.5), the distribution shifts towards a narrow peak, cor-
responding to a uniform distribution with a median distance
of 2.00. Increasing φ further (to φ = 0.8), we find a bimodal
distribution with a clustered and unclustered population with
a median distance of 1.44. In the latter case, some particles
form clusters (with r/D = 1), so the other particles have a
larger spacing shifted towards the secondary minimum.

C. Effect of fluctuations

We introduce fluctuations into the system by considering
cases with kBT > 0. The magnitude of these fluctuations is
described by the typical thermal energy kBT normalized by
the maximum value of the potential Umax ≈ 0.096, as dis-
cussed in Sec. III. Our simulations cover a wide range of
parameter values, with kBT/Umax spanning from 0.01 to 2.0,
and coverage fractions φ ranging from 0.1 to 1.0.

At the end of each MC simulation, the distribution of
interparticle distances is used to identify different states.
Specifically, we define a “densely clustered” state if more
than 50% of the distances are smaller than 1.05. Similarly,
a state is classified as “loosely clustered” if more than 50%
of the distances fall between 1.8 and 2.3. These distances are
evenly spaced around the secondary minimum at r/D ≈ 2.2
and close to the intrinsic spacing r/D ≈ 1.9 observed in, e.g.,

FIG. 9. Normalized histogram of the distances between the par-
ticles for the Siren potential simulations in Fig. 8, averaged over the
final 104 MC steps, with bin size �r/D = 0.45. The dashed lines
indicate the median distances at r/D ≈ [1.92, 2.00, 1.44] for φ =
[0.2, 0.5, 0.8], respectively. The insert shows the relative distribution
at short distances, with bin size �r/D = 0.025.

Fig. 7). Last, we define an “equidistant” state if more than
50% of the distances lie within the range [1/φ − 0.1, 1/φ +
0.1] (since the equidistant spacing is given by 1/φ). The
threshold of 50% defines phases where most particles are
within a specific state. Different threshold values shift the
“boundaries” of the different phases, especially for larger kBT ,
but do not qualitatively alter the phase diagram.

These states are indicated in the phase diagram in Fig. 10
as a function of φ and kBT/Umax. The phase diagram clearly
shows distinct regions corresponding to densely clustered
states, loosely clustered states, equidistant states, and states
where no configuration is dominant.

At low values of kBT/Umax and φ, a loosely clustered
state is found akin to the previous Monte Carlo simulations
in Fig. 8. As φ increases, the particles are gradually pushed
out of the secondary equilibrium towards smaller interparticle
distances. After a region where neither state (loosely clustered
or equidistant) is dominant, the particles eventually form an
equidistant pattern around φ ≈ 0.5−0.7. Further increasing φ

leads to particles overcoming the potential barrier and forming
a densely clustered state. Note that the equidistant state can
overlap with the other states since our chosen criteria for
the different states are not mutually exclusive. For example,
for φ = 0.50−0.55, the equidistant spacing 1/φ = 1.8−2.0
is close to the secondary minimum of the potential. The

FIG. 10. Phase diagram illustrating the different states in the
one-dimensional system governed by the Siren potential. The control
parameters are the particle coverage fraction φ and the normalized
thermal energy kBT/Umax. The different states are identified based on
the criterion that at least 50% of the interparticle distances satisfy the
corresponding condition. The black dots indicate simulations where
no dominant state is found. The black vertical bars at φ = 0.35 and
0.77 correspond to the bifurcation points in Fig. 5(a) for two particles
per unit cell (M = 2).
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transitions between the states at low temperatures are accu-
rately predicted by the two black bars at 0.35 and 0.77 in
Fig. 10, corresponding to the bifurcation points illustrated in
Fig. 5(a) for two particles per unit cell (M = 2).4

At larger values of φ, densely clustered states are found.
Remarkably, at φ = 0.8, the clustered states only form within
a specific temperature range: 0.03 � kBT/Umax � 0.2. Below
this range, there are still some clusters and some particles
at large distances, i.e. hysteresis is relatively important here.
However, the thermal energy is insufficient to enable more
particles to overcome the potential barrier and cluster together.
Conversely, for sufficiently large values of kBT/Umax, the vari-
ations in the potential are only minor compared to the thermal
energy. As a result, the particles do not strongly feel the
potential, and their dynamics are not significantly influenced.
The interparticle distances in these cases are more randomly
distributed, analogous to a gaslike phase in higher dimensions.

Concerning the hydrodynamic experiments, we can cap-
ture the behavior in the blue and green regions of the
parameter space in Fig. 1 using the Siren potential in
a one-dimensional system. Nonetheless, the orange-shaded
region (characterized by isolated particles and mostly two-
particle-wide bands) is not effectively captured by such
one-dimensional modeling, as the structures in this region
are two dimensional. The following section addresses such
two-dimensional cases and further relates our efforts to similar
colloidal systems.

V. FROM INDIVIDUAL PARTICLES TO PATTERNS

So far, we have focused on the one-dimensional case gov-
erned by the Siren potential, representing the interactions
between already-existing parallel chains in the hydrodynamic
system. We now use a two-dimensional approach to simu-
late individual particles instead of entire chains to obtain a
more complete representation of the physical system. This
extension allows for including the formation of the chains and
bands in the simulations, i.e., the stage before the system can
be described as one-dimensional. Furthermore, this approach
allows us to address which patterns from the hydrodynamic
system can also be replicated in a colloidal system.

A. Two-dimensional model potential

We propose a two-dimensional (2D) model potential in-
spired by the dipolar structure of the steady streaming flow
around a single particle and additionally based on polarizable
colloidal particles at a fluid-fluid interface. The deforma-
tion of the interface around each colloid induces capillary
interactions between them. Following the description by
Kralchevsky and Nagayama [32], the capillary force between
two particles at an interface is inversely proportional to their
separation r, for interparticle distances which are large com-
pared to the particle size but small compared to the capillary
length (approximately 2.7 mm for an air-water interface).
Both criteria are satisfied for long-range attraction between

4Note that M = 2 does not imply a system with only two particles.
Instead, it only implies a maximum cluster size of two.

FIG. 11. Example of the dipole-capillary potential described by
Eq. (9), incorporating dipolar and capillary interactions, with Ac =
Ad = 1. The colors correspond to the values of Udc and are separated
by black contour lines with steps of 0.25. The arrow represents the
direction of the dipole moment.

colloidal particles at an air-water interface. An external oscil-
lating electric field parallel to the interface induces a dipole
moment in each particle, with the resulting interactions also
parallel to the interface. The potential of each particle is then
described using the dipole-capillary (dc) potential

Udc(r/D, θ ) = Udipolar + Ucapillary

= Ad

(r/D)3
(1 − 3 cos2 θ ) + Ac ln (r/D), (9)

where Ad is a positive constant controlling the formation of
chains and bands and their interactions at close range (similar
to Ref. [8]), Ac is a positive constant that sets the strength of
the long-range attractions due to capillary effects, and θ is the
angle with respect to the direction of the electric field. Note
that Udc does not converge to a constant value as r/D → ∞.
While this may not be strictly physical, it serves nevertheless
as a useful model for our analysis. The corresponding force
scales as 1/r at long ranges and thus goes to zero at infinity.
We further assume that the interactions are pairwise addi-
tive and that the induced dipoles do not induce higher-order
effects.

The characteristics of the potential in Eq. (9) are gov-
erned by two control parameters, but the specific shape is
determined only by the ratio Ac/Ad . Such a single control
parameter that sets the shape is analogous to the potential
observed in the hydrodynamic system. There, the shape of the
potential depends on Ar/D, which determines the strength and
positions of the vortices in the time-averaged flow (shaping
the hydrodynamic forces on the particles).

Figure 11 shows an example of the potential described by
Eq. (9) around a single particle with Ac = Ad = 1. Note that
the potential is strongly attractive along the direction of the
dipole moment, i.e., in the y direction. Conversely, along the
x axis, the potential has a (local) minimum where the dipole
repulsion and capillary attraction balance each other.

In Fig. 12, we consider a configuration with two parallel
particle chains with five particles each. We set Ad = 1 and
Ac = 0.05, so the capillary attraction dominates only at long
ranges. Overall, the interactions resemble those previously
described for both the Siren potential and the hydrodynamic
experiments. For the staggered configuration in Fig. 12(a),
where the chains are shifted by D/2 relative to each other
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FIG. 12. Examples of the interaction between two parallel particle chains, each consisting of five particles, at various normalized spacings
λ/D, for Ad = 1 and Ac = 0.05. The colors represent the values of the potential given by Eq. (9). The black arrows indicate the direction of
the forces, with the larger arrows being the forces at the centers of the particles.

in the y direction, the chains experience a relatively strong
attractive force, as previously observed for dipolar interac-
tions in this configuration [8]. Conversely, for an aligned
configuration in Fig. 12(b), the force between the chains is
strongly repulsive instead. Also, for small chain spacings λ/D,
in Fig. 12(c), the interaction is repulsive at mid-ranges (due
to dipolar repulsion). Increasing λ/D further in Fig. 12(d)
leads to a net attraction between chains at long ranges due
to capillary effects.

The interaction between two parallel chains depends on
both Ac/Ad and the specific arrangement of the chains. To
gain a better understanding, we show the x component of the
force averaged over all particles within a chain, F̄x, in Fig. 13.
We vary the values of Ac (with Ad = 1 fixed), the normalized
chain spacing λ/D, the number of particles K within each
chain, and the configuration (staggered or straight).

For Ac > 0 and a fixed value of K , such as K = 4 in
Fig. 13(a), the interaction is always attractive at sufficiently
large spacings. Note that for Ac = 0, long-range attraction is
absent. Moreover, at these large spacings, the difference in the
average force between the straight and staggered configura-
tions becomes negligible. However, as the spacing decreases,
the configuration significantly impacts the interaction. At very
short ranges, with (almost) touching chains, the force is either
strongly repulsive for straight chains or attractive for stag-
gered chains. Furthermore, for certain combinations of K and
Ac, e.g., for K = 4 and Ac = 0.05, there is an intermediate
repulsive range for staggered chains.

Remarkably, for a fixed value of Ac, e.g., for Ac = 0.05
in Fig. 13(b), increasing the chain length K has a similar
effect on the average force as increasing the capillary at-
traction. This can be attributed to the increasing number of
interactions between particles in neighboring chains as K
increases. For long chains, the value of θ (the angle be-
tween the line connecting two particle centers and the electric
field direction) between two particles in neighboring chains
is typically close to 0 or π , such that the force is attrac-
tive. Contrarily, for shorter chains, values of θ closer to π/2
are relatively more important, leading to a strongly repulsive
force.

The results in Fig. 13(b) imply that the magnitude of the
long-range attraction increases with chain length and thus
increases over time during the self-organization of single
particles into chains. These results also show that the chain
spacing λ, closely related to the zero crossings of the solid
lines in Fig. 13, depends on K and thus changes dynamically
over time, even if Ad and Ac are kept constant. In contrast, the

FIG. 13. The average of the force Fx on each particle (in the right
chain) for a configuration with two parallel chains in straight (solid)
and staggered (dashed) configurations, with Ad = 1. (a) Variation of
Ac while keeping K = 4 fixed. (b) Variation of K while keeping
Ac = 0.05 fixed. Positive values of F̄x correspond to repulsion
between the chains.
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FIG. 14. Particle positions after 105 MC steps, starting from
parallel chains, with Ad = 1 and Ac = 0.01 both constant. We either
increase N at constant kBT (left column) or increase kBT at constant
N (right column). The colors indicate the energy of each particle
within the potential landscape.

chain length does not influence the equilibrium spacing for the
hydrodynamic system, especially not for longer chains. The
influence of the chain length on the system’s interactions is
thus a fundamental difference between the hydrodynamic and
these model systems.

In summary, Fig. 13 demonstrates that the potential de-
scribed by Eq. (9) can produce interactions between chains
that are similar to those governed by the Siren potential.
However, these specific results in Fig. 13 only hold for par-
ticles that are already arranged in parallel chains. Next, we
briefly explore the formation and subsequent dynamics of the
chains in such two-dimensional systems (including the sen-
sitivity to initial conditions), again resorting to Monte Carlo
simulations.

B. Two-dimensional Monte Carlo simulations

Now we consider Monte Carlo simulations of a two-
dimensional system governed by the dipole-capillary potential
to replicate some of the typical patterns observed in the hy-
drodynamic experiments, as shown in Fig. 1. We use a code
similar to that used in Sec. IV. We use a domain of size
(Lx × Ly) = (20 × 10)D with a periodic boundary in the x
direction and an impenetrable boundary in the y direction.
This choice intentionally limits the maximum chain length
to ten particles and allows us to adjust Ac accordingly to
obtain a Siren-like interaction between parallel chains (recall
that longer chains induce stronger attractive interactions, as
depicted in Fig. 13).

In Fig. 14, we specifically fix the values of Ad = 1,
Ac = 0.01, while varying the number of particles in the

domain. At the start of each simulation, the particles are
already in parallel chains to prevent clustering during chain
formation.5 To prevent the system from getting trapped in
shallow local minima, we set kBT = 0.01, i.e., small with
respect to both Ad and the local extrema of the potential [see,
e.g., Fig. 11]. At low values of φ, as shown in Fig. 14(a), the
chains maintain their preferential spacing without spreading
out. As we gradually increase φ, depicted in Figs. 14(c) and
14(e), the chains form wider bands, resembling the behavior
observed in systems governed by a Siren potential. Specifi-
cally, this behavior corresponds to the green-shaded region in
Fig. 1.

Using the dipole-capillary potential, we cannot reproduce
the result from the blue-shaded region in Fig. 1, characterized
by predominantly one-particle-wide chains and some irregu-
lar clusters, without any multiple-particle-wide bands. As we
already learned in the previous sections, this pattern only oc-
curs if there is no short-range attraction, with the interactions
described by the Well potential.6 However, the short-range at-
traction in the dipole-capillary potential is inherently linked to
the dipole interaction and is thus always present. Reproducing
the hydrodynamic patterns in the blue-shaded region is thus
not feasible with the specific dipolar interactions used in our
2D model system.

Contrarily, we can attempt to reproduce the pattern in
the orange-shaded region in Fig. 1, characterized by isolated
particles and mostly two-particle-wide bands. The instanta-
neous interactions between particles are weak in this part of
the parameter space, relative to the noise due to, e.g., small
inhomogeneities in the flow field or in the bottom over which
the particles move. The weak interactions destabilize particle
pairs (see van Overveld et al. [24]) and likely also particle
chains (see van Overveld et al. [19]). We try to reproduce this
more disordered state by increasing the influence of thermal
fluctuations on the system, as shown in the right column of
Fig. 14. The increase in kBT in Figs. 14(b) and 14(d) allows
some particles to overcome the potential barrier and form
bands. Moreover, the fluctuations lead to tortuosity in the
chains and introduce some defects. As we raise the temper-
ature further, i.e., in Fig. 14(f), the chains break, resulting
in a mixture of dispersed single particles and more coherent
clusters. This state resembles the hydrodynamic experiments
conducted at Ar/D ≈ 2 and φ ≈ 0.17, i.e., the orange-shaded
region in Fig. 1.

VI. DISCUSSION

Most characteristic patterns of the hydrodynamic exper-
iments from van Overveld et al. [19] can be captured in
the 2D MC simulations using the model potential [Eq. (9)].
However, we cannot replicate all the different distinct pat-
terns observed in the experiments, strongly suggesting that

5Preliminary simulations show that starting from a random initial
condition leads to enhanced clustering.

6We additionally recall from van Overveld et al. [19] that for
Ar � 0.7, the inner vortices in the time-averaged flow are small,
leading to no short-range attraction and the two-particle-wide bands
being unstable.
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the hydrodynamic interactions have additional complexity. In
particular, the dipolar-capillary model is always attractive at
short distances (for the staggered configuration), limiting the
range of different cases that can be captured. Removing (or
negating) such a feature requires adding more complexity to
the model. In contrast, the vortex-induced interactions in the
hydrodynamic system already include this complexity: i.e.,
the interactions at different ranges (short, mid, long) are all
intrinsically present. Another crucial aspect is the difference
between the nonlinear interactions in the hydrodynamic sys-
tem versus the linear interactions in our 2D potential based
on a colloidal system. Moreover, in our simplified model,
the inherently multibody interactions are simplified using the
assumption of pairwise additive interactions.

The interactions in the hydrodynamic system are in-
duced by the vortices in the steady streaming flow. Their
size, strength, and position are predominantly influenced by
the system’s geometry, as it is specifically related to the wake
shed by the objects in the flow [19]. When two chains merge
into a two-particle-wide band, the time-averaged flow is not
merely the superposition of the two flow fields around the
single chains. Consequently, the net interactions also com-
bine in a nonlinear way, such that the net interactions with
a two-particle-wide band are not a simple summation of the
interactions with two separate chains.

In contrast, in our 2D MC simulations, we assume that the
net interactions are due to a linear superposition of potentials
from each individual particle. As a result, forces associated
with two-particle-wide bands are approximately twice as large
compared to single chains. During the formation of a pat-
tern, this leads to self-enhanced clustering as the long-ranged
attractive forces increase as the structures grow. These differ-
ences emphasize that nonlinear interactions, even for similar
potentials of the single particle, can fundamentally alter self-
organization processes.

The linear interactions additionally have implications for
the control of the patterns. The dipole-capillary potential in
the 2D MC simulations requires careful tuning of the value
of Ac in relation to the chain length K since the interactions
between two aligned chains depend on the number of par-
ticles in each chain. Moreover, confining the system along
the direction of the chains is essential to prevent excessively
long chains from forming, as their interactions would always
become attractive when they grow sufficiently long. This
confinement also restricts the mobility in the direction of
the chains, resulting in predominantly one-dimensional dy-
namics. For future work, rather than being a limitation, this
confinement constraint can be advantageous in an experiment
where the domain boundaries are controlled. The manipula-
tion of the boundaries directly leads to active control over the
strength of the interactions within the system. Such an ap-
proach of manipulating self-organization through confinement
is gaining significant research interest [4].

VII. CONCLUSIONS

In this study, we explored self-organization phenomena in
a hydrodynamic system, using tools commonly used to de-
scribe colloidal systems. Specifically, we introduced the Siren

potential - a simplified model potential combining short-range
attraction, mid-range repulsion, and long-range attraction,
which serves as a generalization of other common potentials
like the Mermaid (SALR) or Well potentials. By applying
the Siren potential to describe the interactions between paral-
lel particle chains, our Monte Carlo simulations successfully
replicate many of the characteristic patterns observed in hy-
drodynamic experiments. Moreover, this approach yielded a
comprehensive phase diagram, providing valuable insight into
the system’s equilibrium states.

We expanded our analysis to two-dimensional systems of
colloidal particles at an interface, with dipole moments in-
duced by an external oscillating electric field parallel to the
interface. We introduced a model potential that incorporates
both the dipolar and capillary interactions. Starting from a
distribution of parallel chains, the simulations within the two-
dimensional colloidal system resemble the patterns observed
in several of the hydrodynamic experiments.

While the model potentials offer promising results, our
MC simulations also highlight challenges in designing col-
loidal experiments with Siren-like interactions. A key factor
is confinement, which limits the maximum chain length and,
consequently, the net interactions between the chains. While
this mechanism typically adds complexity to the system, it
also presents opportunities for control. Additionally, we iden-
tified that the interactions of separate particles forming chains
differ from those between parallel chains. From this, we derive
that the nonlinear interactions (such as multiparticle effects)
in the hydrodynamic system are important for the distinct
steps in the self-organization process. An equivalent nonlinear
mechanism is currently not included in the dipole-capillary
potential used. However, such an addition (e.g., by changing
the interactions based on the cluster size) may be crucial to
obtaining the different stages of the pattern formation within
a single simulation.

In conclusion, the Siren and dipole-capillary potentials
are powerful tools for exploring and understanding self-
organization phenomena in various systems. They clarify the
dynamic particle behavior due to the complex interactions
encountered in both hydrodynamic and colloidal systems. Our
research can serve as a proof-of-principle for future studies,
providing a foundation for theoretical model systems and their
experimental counterparts.

The data that support the findings of this study are openly
available in 4TU.ResearchData at [33].

APPENDIX: MODEL POTENTIAL CHARACTERISTICS

We examine the potential U with three contributions,
given by

U (r) = − A

r2
+ B

r4
− C

r6
, (A1)

where r is the distance between two particles (here normalized
by the diameter), and A, B, and C are positive constants, rep-
resenting the magnitude of long-range attraction, mid-range
repulsion, and short-range attraction, respectively. Addition-
ally, we define r = 1 as the smallest possible particle spacing,
representing hard-sphere repulsion.
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FIG. 15. The particle distributions from the one-dimensional MC simulations for the Well, Mermaid, and Siren potentials, as given in
Fig. 3. Results are shown after 105 steps for φ = [0.2, 0.5, 0.8]. The colors indicate the total potential energy of each particle in the shown
configuration.

The extreme values of this potential are located at

r1 =
√

B − √
B2 − 3AC

A
, (A2)

r2 =
√

B + √
B2 − 3AC

A
, (A3)

which additionally yields

U1 = U (r1) = 2C

r6
1

− B

r4
1

, (A4)

U2 = U (r2) = 2C

r6
2

− B

r4
2

. (A5)

Based on the positions of these extrema and the values of A,
B, and C, we can categorize the potential into qualitatively
distinct forms used in Sec. III.

Based on Eq. (A2), in order for the values of r1 and r2

to be real, it is necessary that B2 − 3AC � 0, which implies
AC � B2/3. Above this criterion, the long-range attraction
dominates over the other interactions such that the potential
is attractive at any range.

There is no short-range attraction if the maximum of
the potential occurs at a shorter range than the hard-sphere

repulsion, i.e., for r1 < 1. This condition yields 3C � (2B −
A) to obtain a Well potential. For A > 2B, this condition can
not hold regardless of the value of C (since all constants are
positive), and long-range attraction overcomes the repulsion
at all ranges.

Furthermore, there is no long-range attraction if A = 0.
However, for any positive value of A, long-range attraction
becomes dominant at (very) long distances. Note that, ad-
ditionally, for a Mermaid potential, short-range attraction
should be included, yielding 3C � 2B for r1 > 1.

In all other cases, all three interactions are relevant.
The combination of hard-sphere repulsion and r1 > 1 im-
plies that r = 1 is a (primary) minimum of the potential.
This primary minimum is the global minimum when 3C >

2
√

A2 − AB + B2 − 2A + B, resulting in a potential simi-
lar to those used in DLVO theory. Finally, if the sec-
ondary minimum is the global minimum, i.e., for 3C �
2
√

A2 − AB + B2 − 2A + B, then we obtain a Siren potential.
For the three aforementioned model potentials, we present

in Fig. 15 the particle distributions obtained from one-
dimensional Monte Carlo simulations, as detailed in Sec. IV.
The values of A, B, and C are identical to those in Fig. 3(b).
Note the similarity between the distribution in the Siren po-
tential and that in the Well potential (with an intrinsically
set spacing) or the Mermaid potential (with small clusters of
touching particles), for low or high φ values, respectively.
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