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Critical dimension for hydrodynamic turbulence
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Hydrodynamic turbulence exhibits nonequilibrium behavior with k−5/3 energy spectrum, and equilibrium
behavior with kd−1 energy spectrum and zero viscosity, where d is the space dimension. Using recursive
renormalization group in Craya-Herring basis, we show that the nonequilibrium solution is valid only for d < 6,
whereas equilibrium solution with zero viscosity is the only solution for d > 6. Thus, d = 6 is the critical
dimension for hydrodynamic turbulence. In addition, we show that the energy flux changes sign from positive
to negative near d = 2.15. We also compute the energy flux and Kolmogorov’s constants for various d’s, and
observe that our results are in good agreement with past numerical results.
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I. INTRODUCTION

Field-theoretic tools help explain complex phenomena
in high-energy physics, condensed-matter physics, statisti-
cal physics, and turbulence [1–4]. For example, Wilson and
coworkers [5] constructed a theory for the second-order phase
transition that goes beyond the mean field theory of Landau
[6]. In Wilson’s theory, the nonlinear term yields nontriv-
ial scaling for d < 4, but it become irrelevant for d � 4.
Therefore, the critical dimension for the second-order phase
transition is 4. In this paper, we compute the critical dimension
for hydrodynamic turbulence.

The frameworks of quantum field theory and statis-
tical field theory have been extended to hydrodynamic
turbulence. Prominent field-theoretic computations for hy-
drodynamic turbulence are direct interaction approximation
(DIA) [7], renormalization group (RG) [8–10], generating
functionals [10,11], Martin-Siggia-Rose (MSR) formalism
[12], Recursive renormalization group [13–15], functional
renormalization [16]. Other field theory works on hydrody-
namic turbulence are Refs. [16–22]. These works are reviewed
in Orszag [23] and Zhou [24]. Most of the prominent field
theory works are for three dimensions (3D), where the RG
analysis predicts that the energy spectrum E (k) ∝ k−5/3, and
that the renormalization viscosity ν(k) scales as k−4/3 with
the renormalization constant around 0.40. Some calculations
(e.g., Ref. [9]) employ particular forcing, whereas some others
employ self-consistent procedure [13,24]. In comparison, RG
works on 2D hydrodynamic turbulence is limited. In one such
works, Olla [25] obtained two different spectral regimes: k−3

energy spectrum with a constant enstrophy flux at large wave
numbers, and k−5/3 spectrum with a constant energy flux
at small wave numbers. For the k−5/3 spectral regime, Olla
[25] derived the renormalization constant to be 0.642 and the
Kolmogorov constant to be 6.45. Nandy and Bhattacharjee
[26] employed self-consistent mode-coupling scheme and ob-
tained similar constants.
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The energy transfers and fluxes of hydrodynamic turbu-
lence are also computed using field theory. Kraichnan [7]
employed DIA for these computations. Later, eddy-damped
quasinormal Markovian approximation (EDQNM) and other
schemes have been used for the flux calculations [23]. Verma
[27,28] computed the energy fluxes using the mode-to-mode
energy transfers. The equation for the energy flux yields Kol-
mogorov’s constant [23].

Fournier and Frisch [29] employed EDQNM procedure
to compute the stable energy spectra for various space di-
mensions, denoted by d . They showed that the energy flux
changes sign from positive to negative near d = 2.05 as d
decreases from 3 to 2. Gotoh et al. [30] employed Lagrangian
Renormalized Approximation and showed that the energy
transfer in 4D is more efficient compared to that in 3D. Con-
sequently, the Kolmogorov’s constant for 4D, KKo = 1.31, is
smaller than that for 3D, KKo = 1.72. Gotoh et al. [30] verified
the field-theoretic predictions using numerical simulations.
Berera et al. [31] observed similar results in their numerical
simulations, for example, KKo = 1.7 and 1.3 for 3D and 4D
respectively.

In statistical and quantum field theory, the parameters of
theory (e.g., coupling constant and mass) depend critically
on the space dimension [1–4]. For example, the fluctua-
tions in φ4 theory obey Gaussian property for d � 4. Hence,
d = 4 is called the upper critical dimension for the φ4 theory.
Theorists have been exploring whether such a upper critical
dimension exists for hydrodynamic turbulence. For example,
Adzhemyan et al. [32] showed that the Kolmogorov constant
KKo ∝ d1/3, which leads to the energy flux εu ∝ K−3/2

Ko ∝
d−1/2 → 0 as d → ∞. Similarly, Fournier et al. [33] showed
that intermittency, which is a reflection of non-Gaussian
nature of the fluctuations, vanishes as d → ∞. These obser-
vations indicate that the velocity fluctuations possibly exhibit
Gaussian behavior for large d . In this paper, we explore this
issue for hydrodynamic turbulence using RG calculation in
Craya-Herring basis that provides detailed picture of interac-
tions in hydrodynamic turbulence.
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In this paper, we compute the renormalized viscosity us-
ing recursive renormalization, and Kolmogorov’s constant
using energy transfers for various dimensions. For these
computations, we employ Craya-Herring basis [28,34–36]
that simplifies the field-theoretic calculations of turbulent
flows dramatically. In addition, this basis allows separate
computations of the renormalized viscosities and energy
transfers for each component, thus yielding finer details of
turbulence without complex tensor algebra. In addition to
the above simplification, we deviate from the conventional∫

d pdqδ(k − p − q) integrals to
∫

d pdγ , where γ is the an-
gle between k and p in a triad (k, p, q). This new scheme
simplifies the asymptotic analysis, as well as the evaluation
of the singular integrals of energy fluxes [37].

Using the above techniques, we compute the renormalized
viscosity and Kolmogorov’s constant for various d . We show
that ν(k) ∼ k−4/3 solution exists only for d < 6, whereas
ν = 0 is the solution of the RG equation beyond d = 6.
Hence, the critical dimension for hydrodynamic turbulence is
6. In addition, we also compute the energy flux in the inertial
range that yields Kolmogorov’s constant. Our Kolmogorov
constants for various dimensions are in good agreement with
the past works [30,31].

The outline of the paper is as follows: In Sec. II, we intro-
duce the relevant hydrodynamic equations in Craya-Herring
basis. In Sec. III, we describe the renormalization group anal-
ysis for hydrodynamic turbulence using Craya-Herring basis.
Section IV contains discussions on the energy transfers in a
triad, as well as the energy fluxes for various d . Section V
provides a brief discussion on the fractional energy transfers.
Section VI reproduces the RG and energy flux computa-
tions for Kraichnan’s k−3/2 energy spectrum. We conclude in
Sec. VII.

II. GOVERNING EQUATIONS AND FRAMEWORK

In Fourier space, the equations for the incompressible
Navier-Stokes equations in d dimensions are [28,38]

(∂t + νk2)u(k, t ) = −i
∫

dp
(2π )d

{k · u(q, t )}u(p, t )

− ikp(k, t ) + Fu(k, t ), (1)

k · u(k, t ) = 0, (2)

where k = p + q; u, p are the velocity and pressure fields re-
spectively; ν is the kinematic viscosity; and Fu is the external
forcing, which is active at large scales, as in Kolmogorov’s
theory of turbulence. The transformation from real space to
Fourier space and vice versa are as follows [1]:

u(r, t ) =
∫

dk
(2π )d

u(k, t ) exp(ik · r), (3)

u(k, t ) =
∫

dr[u(r, t ) exp(−ik · r)]; (4)

and the pressure field is determined using the following
equation:

p(k, t ) = − i

k2
k · Fu(k, t ) − 1

k2

∫
dp

(2π )d

× {k · u(q, t )}{k · u(p, t )}} (5)

with k = p + q.

The equation for the modal energy E (k) = |u(k)|2/2 is
[27,39]

(∂t + 2νk2)E (k, t ) =
∫

dp
(2π )d

Suu(k|p|q)

+ Re[Fu(k, t ) · u∗(k, t )], (6)

where

Suu(k|p|q) = Im[{k · u(q, t )}{u(p, t ) · u∗(k, t )}}] (7)

is the mode-to-mode energy transfer rate from the giver mode
u(p) to the receiver mode u(k) with the mediation of mode
u(q). Here Im denotes the imaginary part of the argument.
The energy flux 	(R) is the net nonlinear energy transfer rate
from all the modes residing inside the sphere of radius R to
the modes outside the sphere. Hence, the ensemble average of
	(R) is [27,28,39]

〈	(R)〉 =
∫ ∞

R

dk′

(2π )d

∫ R

0

dp
(2π )d

〈Suu(k′|p|q)〉. (8)

In this paper, we will compute the renormalized viscosity,
as well as 〈Suu(k′|p|q)〉 and 〈	(k0)〉, using field theory in
Craya-Herring basis. In this basis, the basis vectors in 3D are
[34–36]:

ê0(k) = k̂; ê1(k) = k̂ × n̂

|k̂ × n̂| ; ê2(k) = ê0(k) × ê1(k), (9)

where the unit vector k̂ is along the wave number k, and the
unit vector n̂ is chosen along any direction. For space dimen-
sion d greater than 3, we choose additional d − 3 orthogonal
unit vectors that are perpendicular to ê0(k), ê1(k), and ê2(k).
For an incompressible flow,

u(k, t ) =
d−1∑
j=1

u j (k, t )ê j (k). (10)

In this paper, we will derive the renormalized viscosity
and energy flux by summing up contributions from all the
interacting triads. Therefore, as a first step, we write down the
evolution equations for u j (k, t ) in a triad. For the same, we
consider a wave-number triad (k′, p, q) with k′ + p + q = 0,
and choose n̂ as follows [28,40]:

n̂ = q × p
|q × p| . (11)

Since k = p + q, we deduce that k′ = −k. The Craya-
Herring basis vectors for the interacting wave numbers are
illustrated in Fig. 1. Note that α, β, and γ are the angles in
front of k, p, and q, respectively. The net nonlinear interaction
is a sum over all possible triads. Hence, the equations for the
u1 components of a triad (k′, p, q) are [28]:

(∂t + νk2)u1(k′, t ) = ik′
∫

dp
(2π )d

sin(β − γ )u∗
1(p, t )u∗

1(q, t )

+ F1(k′, t ), (12)

(∂t + νk2)u1(p, t ) = ip
∫

dq
(2π )d

sin(γ − α)u∗
1(q, t )u∗

1(k′, t )

+ F1(p, t ), (13)
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FIG. 1. Craya-Herring basis vectors for an interacting wave-
number triad (k′, p, q). Reprinted with permission from Verma [28].

(∂t + νk2)u1(q, t ) = iq
∫

dk′

(2π )d
sin(α − β )u∗

1(p, t )u∗
1(k′, t )

+ F1(q, t ), (14)

with k′ + p + q = 0, and the angles α, β, γ are computed for
the respective triads. The equations for u2(k′, t ), u3(k′, t ),...,
ud−1(k′, t ), denoted by u j (k′, t ), are similar:

(∂t + νk2)u j (k′, t ) = ik′
∫

dp
(2π )d

{sin γ u∗
1(p, t )u∗

j (q, t )

− sin βu∗
1(q, t )u∗

j (p, t )} + Fj (k′, t ),

(15)

(∂t + νk2)u j (p, t ) = ip
∫

dq
(2π )d

{sin αu∗
1(q, t )u∗

j (k
′, t )

− sin γ u∗
1(k′, t )u∗

j (q, t )} + Fj (p, t ),

(16)

(∂t + νk2)u j (q, t ) = iq
∫

dk′

(2π )d
{sin βu∗

1(k′, t )u∗
j (p, t )

− sin αu∗
1(p, t )u∗

j (k
′, t )} + Fj (q, t ),

(17)

with k′ + p + q = 0.
The energy flux is compactly captured by the following

mode-to-mode energy transfers in the Craya-Herring basis
[28,39]:

Suu(k′|p|q) =
d−1∑
j=1

Suj u j (k′|p|q), (18)

with

Su1u1 (k′|p|q) = k′ sin β cos γ Im{u1(q, t )u1(p, t )u1(k′, t )},
(19)

Suj u j (k′|p|q) = −k′ sin βIm{u1(q, t )u j (p, t )u j (k′, t )} (20)

for j ∈ [2..(d − 1)]. An isotropic d-dimensional divergence-
free flow field has d − 1 Craya-Herring components with

〈|u1(k|2〉 = 〈|u2(k|2〉 = ... = 〈|ud−1(k|2〉 = C(k). (21)

In this paper, we denote 〈|u j (k|2〉 = Cj (k). The total kinetic
energy is

〈u2〉
2

=
∫

E (k)dk = 1

2

∫
dk

(2π )d
(d − 1)C(k)

= 1

2

Sd

(2π )d
(d − 1)

∫
dkkd−1C(k), (22)

where E (k) is the one-dimensional (1D) shell spectrum, and
Sd = 2πd/2/�(d/2) is the surface area of the d-dimensional
sphere. The above equation yields the following relationship
between the modal energy and 1D energy spectrum [7,27,41]:

E (k) = (d − 1)

2
C(k)

Sd kd−1

(2π )d
. (23)

After the above preliminary discussion on the relevant
equations, we perform RG and energy transfer analysis for
d-dimensional hydrodynamic turbulence.

III. RENORMALIZATION GROUP ANALYSIS
OF HYDRODYNAMIC TURBULENCE

In this section, we derive the renormalized viscosity using
the Craya-Herring basis. We follow the recursive RG method
proposed by McComb, Zhou, and coworkers [13,15,42]. Note
that the coupling constant, the coefficient in front of the non-
linear term u · ∇u, is unchanged under renormalization due to
the Galilean invariance [8,14]. Therefore, vertex renormaliza-
tion is not required in hydrodynamic turbulence. In addition,
in the recursive RG, the forcing or noise is introduced at
large scales so as to produce a steady state with Kolmogorov
spectrum. Hence noise renormalization too is avoided in this
scheme [13,15,42], and the energy spectrum is taken as k−5/3.
Note that such a choice for E (k) is as arbitrary as the choice of
noise that yields Kolmogorov’s spectrum (as is done in noise
renormalization [9]).

The evolution equations for u1 differs from the other
components. Therefore, we expect that u1’s renormalized vis-
cosity, denoted by ν1(k), differs from that of others, which
is denoted by ν2(k). Note that the renormalized viscosities
of u2, u3, . . . , ud−1 are the same due to the symmetries of
Eqs. (15)–(17).

A. Renormalization of u1 component

In a recursive renormalization scheme, we divide the
Fourier space into wave-number shells (km, km+1), where
km = k0bm with b > 1. We perform coarse-graining or aver-
aging over a wave-numbers band, and compute its effects on
the modes with lower wave number. Let us assume that we
are at a stage with wave-number range of (k0, kn+1), among
which the shell (kn, kn+1) is coarse-grained. See Fig. 2 for an
illustration.

We start with a dynamical equation for u<
1 (k′, t ) of

Eq. (12). Note that q = −k′ − p. The convolution in the
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FIG. 2. In wave-number renormalization, the modes in the wave-
number band (kn, kn+1), denoted by >, are coarse-grained. The
coarse-graining leads to enhancement of effective viscosity for wave
numbers k < kn, denoted by <.

dynamical equation involves the following four sums:[
∂t + ν

(n+1)
1 k2

]
u<

1 (k′, t )

= ik′
∫

dp
(2π )d

sin(β − γ )

× [u∗<
1 (p, t )u∗<

1 (q, t ) + u∗<
1 (p, t )u∗>

1 (q, t )

+ u∗>
1 (p, t )u∗<

1 (q, t )] + u∗>
1 (p, t )u∗>

1 (q, t )] (24)

because p and q may be either less than kn or greater than
kn. As in large-eddy simulations (LES), ν

(n+1)
1 in Eq. (24)

represents the renormalized viscosity for u1 in the wave-
number range (k0, kn+1) [38,43]. Now, we ensemble-average
or coarse-grain the fluctuations at scales (kn, kn+1). After
coarse-graining, the viscosity would be ν

(n)
1 , which acts on the

wave numbers (k0, kn).
For the coarse-graining process, we assume that u>

1 (k, t )
is time-stationary, homogeneous, isotropic, and Gaussian with
zero mean, and that u<

1 (k, t ) are unaffected by coarse-graining
[5,24,42]. That is,

〈u>
1 (k, t )〉 = 0, (25)

〈u<
1 (k, t )〉 = u<

1 (k, t ). (26)

Therefore, assuming weak correlation between < and >

modes, we arrive at

〈u∗<
1 (p, t )u∗<

1 (q, t )〉 = u∗<
1 (p, t )u∗<

1 (q, t ), (27)

〈u∗<
1 (p, t )u∗>

1 (q, t )〉 = u∗<
1 (p, t )〈u∗>

1 (q, t )〉 = 0, (28)

〈u∗>
1 (p, t )u∗<

1 (q, t )〉 = 〈u∗>
1 (p, t )〉u∗<

1 (q, t ) = 0. (29)

Substitution of the above relations in Eq. (24) yields[
∂t + ν

(n+1)
1 k2

]
u<

1 (k′, t )

= ik′
∫

dp
(2π )d

sin(β − γ )u∗<
1 (p, t )u∗<

1 (q, t )

+ ik′
∫




dp
(2π )d

sin(β − γ )〈u∗>
1 (p, t )u∗>

1 (q, t )〉, (30)

where 
 represents the wave-number region (p, q) ∈
(kn, kn+1). The second term of Eq. (30) enhances or renormal-
izes the kinematic viscosity leading to the following equation:

[
∂t + ν

(n)
1 k2

]
u<

1 (k′, t ) = ik′
∫

dp
(2π )d

sin(β − γ )

× [u∗<
1 (p, t )u∗<

1 (q, t )], (31)

FIG. 3. Feynman diagrams associated with the renormalization
of ν1 for the u1 component.

where

ν
(n)
1 k2 = ν

(n+1)
1 k2 − second integral of Eq. (30). (32)

As we show below, Eq. (32) has two solutions. The first
solution corresponds to the delta-correlated u1 for which the
second integral of Eq. (30) is trivially zero [44–46]. For this
case,

ν
(n)
1 k2 = ν

(n+1)
1 k2 = 0 (33)

That is, the viscosity is not renormalized, and it remains 0 at
all scales. This corresponds to the absolute equilibrium solu-
tion of Euler equation that has ν = 0 [44–46]. Hence, Euler
equation and the corresponding field-theoretic equations sat-
isfy time-reversal symmetry. The second solution, which is
more complex and out of equilibrium, is computed as follows.

Under the quasi-Gaussian approximation, the second inte-
gral of Eq. (30) vanishes to the zeroth order. Hence, we expand
the second term to the first order in perturbation that leads
to the Feynman diagrams of Fig. 3. We compute the integral
corresponding to the first loop diagram as follows. We expand
u∗>

1 (p, t ) using the Green’s function [see Eq. (13)]:

u∗>
1 (p, t ) =

∫ t

0
dt ′G1(p, t − t ′)(−ip)

∫
dh

(2π )d
sin(γ − α)

× u1(h, t ′)u1(s, t ′), (34)

where p + h + s = 0. We substitute the expression of Eq. (34)
in the right-hand side of Eq. (30) and simplify the expression
using the following relations [24,42]:

〈u∗
1(q, t )u1(h, t ′)〉 = C̄1(q, t − t ′)δ(q − h)(2π )d , (35)

G1(k, t − t ′) = θ (t − t ′) exp[−ν1(k)k2(t − t ′)], (36)

C̄1(k, t − t ′) = C1(k) exp[−ν1(k)k2(t − t ′)]. (37)

In the above equations, C̄1(k, t − t ′) is the unequal time
correlation, whereas C1(k) is the equal-time correlation.
Note that ν1(k) of Eqs. (36, 37) is the renormalized vis-
cosity at wave number k. As in all field theories of
turbulence, we assume that the timescales for G1(k, t − t ′)
is same as that of C̄1(k, t − t ′). Equation (35) yields
s = −p − h = −p − q = k′, using which we deduce that the
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integral corresponding to the first loop diagram is

I1 =
∫




dp
(2π )d

∫ t

0
dt ′G(p, t − t ′)(k′ p) sin(β − γ )

× sin(γ − α)C̄1(q, t − t ′)u<
1 (k′, t ′). (38)

Now, we employ Markovian approximation [23,38,41]. When
ν(k)k2 � 1, the function exp[−ν(k)k2(t − t ′)] rises sharply
to unity near t ′ = t . Hence, the dt ′ integral gets maximal
contribution near t ′ = t . Therefore, u1(k, t ′) → u1(k, t ), and

I1 =
∫




dp
(2π )d

kp sin(β − γ ) sin(γ − α)C1(q)

ν1(p)p2 + ν1(q)q2
u<

1 (k′, t ).

(39)

Following similar steps, we compute the integral corre-
sponding to the second loop diagram of Fig. 3 as

I2 =
∫




dp
(2π )d

kq sin(β − γ ) sin(α − β )C1(p)

ν1(p)p2 + ν1(q)q2
u<

1 (k′, t ).

(40)

Since I1 and I2 are proportional to u<
1 (k′, t ), these terms can be

added to ν
(n+1)
1 k2u<

1 (k′, t ) to yield the renormalized viscosity
ν

(n)
1 . In particular, using Eqs. (31) and (32) we show that

ν
(n)
1 k2 = ν

(n+1)
1 k2 − I ′

1 − I ′
2

= ν
(n+1)
1 k2 −

∫



dp
(2π )d

k sin(β − γ )

ν1(p)p2 + ν1(q)q2

× [pC1(q) sin(γ − α) + qC1(p) sin(α − β )], (41)

where I ′
1, I ′

2 are I1, I2 without u<
1 (k′, t ).

To compute ν
(n)
1 , we choose k = kn in Eq. (41). In addition,

we make the following change of variables:

k = kn; p = p′kn; q = q′kn (42)

that yields a triad (1, p′, q′) with 1 � p′ � b and 1 � q′ �
b. We choose b = 1.7 for our calculation. Zhou et al. [47]
showed that b ∈ (4/3, 1.8) yields a nearly constant value for
the renormalized viscosity. McComb and Shanmugasundaram
[13], and Zhou et al. [15] employed b in the same range.
In our RG scheme, a modified version of Zhou et al. [47],
we employ b = 1.7 [which lies within (4/3,1.8)] so that the
renormalized parameter and Kolmogorov’s constant are close
to the experimental values.

For the integral we employ p′ and z = cos γ , where γ is
the angle between k and p, as the independent variables that
yields ∫

dp = Sd−1

∫



p′d−1d p′
∫


′
dz(1 − z2)

d−3
2 , (43)

where 
,
′ are the domain of integrations: p′ = [1, b] and
z = [(p′2 + 1 − b2)/(2p′), p′/2], in which the latter limits are
obtained by setting q′ = (1, b). In this paper, we focus on
k−5/3 spectral regime, for which C1(k) is given by Eq. (23),
and

E (k) = KKoε
2/3
u k−5/3, (44)

ν
(n)
1 = ν1∗

√
KKoε

1/3
u k−4/3

n , (45)

where εu is the energy flux, KKo is the Kolmogorov constant,
and ν1∗ is the renormalization constant for u1.

FIG. 4. Plot of f (ν1∗) vs. ν1∗ [Eq. (46)]. The solution ν1∗ is the
root of f (ν1∗) = 0. We have finite ν1∗ (both positive and negative)
for d < 6, but it has no solution for d � 6. For d > 6, the allowed
solution for the RG equation is ν1∗ = 0.

We substitute Eqs. (44) and (45) in Eq. (41), and sim-
plify the expressions using trignometric identities for the triad
(1, p′, q′) (see Fig. 1). At k = kn, these operations yield

ν1∗(1 − b−4/3) + 2Sd−1

(d − 1)Sd

1

ν1∗

∫ b

1
p′d−1d p′

∫ p′/2

(p′2+1−b2 )/(2p′ )
dz(1 − z2)

d−3
2 (F1 + F2) = f (ν1∗) = 0, (46)

where

F1(p′, z) = (1 − z2)(p′ − 2z)(2p′z − 1)p′q′−8/3−d

p′2/3 + q′2/3
, (47)

F2(p′, z) = (1 − z2)(1 − p′2)(2p′z − 1)p′−2/3−d q′−2

p′2/3 + q′2/3
, (48)

are functions of the independent variables p′ and z. Equa-
tion (46) differs from those employed by McComb and
Shanmugasundaram [13] and Zhou et al. [48] who computed
the correction to ν1(k) [Eq. (41)] for all k’s that leads to a
k-dependent ν1∗. In our paper, we interpret ν

(n)
1 as the renor-

malized viscosity for wave numbers (k0, kn) that leads to a
constant ν1∗. Our scheme, which is motivated by LES [38,43],
simplifies the computation of ν1∗ significantly.

The solution ν1∗ is the root of f (ν1∗) = 0 [see Eq. (46)],
which is illustrated in Fig. 4 for d = 2, 4, 6, 8. For d < 6, we
have positive and negative roots, out of which only the positive
root is sensible because it leads to diminishing temporal cor-
relation with the increase of t − t ′ [see Eq. (37)] and negative
energy flux for d = 2 in the k−5/3 regime. Hence, we work
with positive ν1∗ for d < 6. In Table I we list ν1∗ for various
d’s. Note that ν1∗ decreases gradually to zero as d → 6.

For d � 6, Eq. (46) has no root. Therefore, ν1∗ = 0, the
equilibrium solution of Euler equation, is the only solution
for the RG equation. This is similar to Wilson’s φ4 theory
[5], where the system transitions from nontrivial fixed point
to Gaussian fixed point at d = 4. These observations indicate
that d = 6 is the upper critical dimension for hydrodynamic
turbulence.
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TABLE I. Renormalization constants, ν1∗ and ν2∗, and
Kolmogorov’s constants, Ko and Ko′. For d = 6, the parameters
correspond to the equilibrium solution.

d ν1∗ ν2∗ Ko Ko′

2 0.098 0.619 4.66 4.66
2.1 0.095 0.608 11.93 5.82
2.15 0.093 0.603 5.56 4.42
2.2 0.092 0.598 4.05 3.70
3 0.070 0.533 1.63 1.88
4 0.049 0.479 1.45 1.69
5 0.030 0.441 1.48 1.69
5.95 0.006 0.417 5.27 1.73
6* 0 0 – –

To determine ν1∗, we compute the integral of Eq. (46)
numerically. For an accurate integration, we perform the dz
integral using Gaussian quadrature and the d p′ integral using
a Romberg scheme. In addition, we employ midpoint method
for computing the roots of Eq. (46). Refer to Appendix for
details on the integration schemes used in this paper. We em-
ploy Python’s scipy.integrate.romberg function whose
tolerance limit is 1.48 × 10−8. The values of ν1∗ for various
d’s are listed in Table I and illustrated in Fig. 5.

For d = 2, ν1∗ is the only renormalized parameter. How-
ever, higher dimensions have both ν1∗ and ν2∗. Refer to Verma
[37] for a detailed comparison of our ν1∗ with those reported
earlier. In the next subsection, we will compute the renormal-
ized viscosities for the u2,..., ud−1 components.

FIG. 5. Values of constants for various d’s: (a) ν1∗ and ν2∗ and
(b) Ko and Ko′.

FIG. 6. Feynman diagrams associated with the renormalization
of ν2 for the uj component.

B. Renormalization of uj ( j > 2) components

For isotropic turbulence, the renormalized viscosities for
the components u2,..., ud−1 are the same. We denote this
quantity as ν

(n)
2 and compute it following the same steps as

in Sec. III A, but with Eq. (15). One of the intermediate steps
in the derivation of ν

(n)
2 is(

∂t + ν
(n+1)
2 k2

)
u<

j (k′, t )

= ik′
∫

dp
(2π )d

{sin γ u<∗
1 (p, t )u<∗

j (q, t )

− sin βu<∗
1 (q, t )u<∗

j (p, t )}

+ ik′
∫

dp
(2π )d

{sin γ u>∗
1 (p, t )u>∗

j (q, t )

− sin βu>∗
1 (q, t )u>∗

j (p, t )}, (49)

where j � 2. In the above equation, the terms of the form∫
dp〈u>∗

1 (q, t )u>∗
j (p, t )〉 contribute to viscosity renormaliza-

tion. In this subsection we show that ν
(n+1)
2 �= ν

(n+1)
1 , which

is expected because u1 and u j with j � 2 evolve differently
[Eqs. (12) and (15)].

As in Sec. III A, we employ the isotropic correlation func-
tion of Eq. (23) and

ν
(n)
2 = ν2∗

√
KKoε

1/3
u k−4/3

n , (50)

where εu is the energy flux, and ν2∗ is the renormalization
constant for ν j with j � 2. The second integral of Eq. (49)
contributes to the viscosity renormalization, whose associated
Feynman diagrams are shown in Fig. 6, and the corresponding
integral is

I3 = −u<
2 (k′, t )

∫



dp
(2π )d

×
[

kqC1(p) sin γ sin α

ν1(p)p2 + ν2(q)q2
+ kpC1(q) sin β sin α

ν2(p)p2 + ν1(q)q2

]
(51)

that contributes to the viscosity renormalization as follows:

ν2∗(1 − b−4/3) = 2Sd−1

(d − 1)Sd

∫ b

1
p′d−1d p′

×
∫ p′/2

(p′2+1−b2 )/(2p′ )
dz(1 − z2)

d−3
2 F3(p′, z),

(52)
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with

F3(p′, z) = (1 − z2)p′−2/3−d

ν1∗ p′2/3 + ν2∗q′2/3
+ (1 − z2)p′2q′−8/3−d

ν2∗ p′2/3 + ν1∗q′2/3
. (53)

We solve for ν2∗ by iterating Eq. (52) starting with a guess
value of ν2∗. The iterative process converges to ν2∗ listed in
Table I and illustrated in Fig. 5. Since nonzero ν1∗ solution
exists only for d < 6, Eq. (52) implies that ν2∗ too is valid
for d < 6. For d � 6, ν1 = ν2 = 0 that corresponds to the
equilibrium solution of Euler equation. Note ν1∗ � ν2∗, as
illustrated in Fig. 5.

For d � 3, hydrodynamic turbulence exhibits multitudes of
triads, each of which have different n̂. Hence, for a given k,
the Craya-Herring vectors of Fig. 1 transform to each other
(depending on the triads). Note, however, that ν1(k) � ν2(k),
hence we may estimate that ν(k) ≈ ν2(k), which would be
useful for LES. In spite of the above complications, indepen-
dent evaluations of ν1(k) and ν2(k) yield valuable insights,
chiefly that ν1∗ → 0 as d → 6, leading to the upper criti-
cal dimension of hydrodynamic turbulence as 6. The earlier
works, e.g., Ref. [29], could not reach this result because they
did not resolve the renormalized viscosities for the different
components of the velocity field.

Using Eqs. (45) and (50), we derive that for both ν
(n)
1 and

ν
(n)
2 ,

ν
(n)
1,2

ν
(n)
1,2

=
(

kn+1

kn

)−4/3

= b−4/3. (54)

In quantum field theory, we express the running coupling
constant in terms of b = exp(l ) [1]. Using b−4/3 ≈ 1 − 4l/3
(for small l), we derive the beta function for ν using

dν

dl
≈ −4

3
ν, (55)

or

β(ν) = d ln ν

d ln k
≈ −4

3
. (56)

Note that the beta function for the coupling constant is

β(λ) = d ln λ

d ln k
= 0 (57)

due to Galilean invariance. These relations would be useful in
relating field theory of turbulence and quantum field theory
[1].

In the next section, we compute the energy flux using field
theory.

IV. ENERGY TRANSFERS AND FLUXES
IN d DIMENSIONS

In this section, we compute the energy transfer rates
and energy flux in the inertial range of hydrodynamic
turbulence.

A. Energy transfers and flux for u1 component

In this subsection, we will compute the mode-to-mode
energy transfers among the u1 components within a triad.
We start with Eq. (19) and present the ensemble-averaged

FIG. 7. Feynman diagrams associated with the energy transfers
between the u1 components. Equation (61) illustrates two ways to
get the second-order correlation functions, which leads to the factor
2 in all the digrams.

mode-to-mode energy transfer from u1(p, t ) to u1(k′, t ) with
the mediation of u1(q, t ), which is

〈Su1u1 (k′|p|q)〉 = k′ sin β cos γ

×�{〈u1(q, t )u1(p, t )u1(k′, t )〉} (58)

with k′ + p + q = 0. Following earlier literature [7,23], we
assume that the variables u1(p, t ), u1(k′, t ), and u1(q, t ) are
quasinormal. Under this assumption, the triple correlation of
Eq. (58) vanishes to the zeroth order. However, the first-order
expansion of the triple correlation of Eq. (58) leads to a fourth-
order correlation, that is expanded as a sum of products of
two second-order correlations. The corresponding Feynman
diagrams are given in Fig. 7.

Let us evaluate the integral corresponding to the first
Feynman diagram of Fig. 7. Here, u1(k′, t ) is expanded using
the Green’s function as [see Eq. (12)]

u1(k′, t ) = i
∫ t

0
dt ′G1(k′, t − t ′)k′

∫
dh

(2π )d
sin(β − γ ) (59)

× [u∗
1(h, t ′)u∗

1(s, t ′)] (60)

with k′ + h + s = 0. Substitution of the above in Eq. (58)
leads to a fourth-order correlation, which is expanded as a sum
of products of two second-order correlations:

〈u1(q, t )u1(p, t )u1(h, t ′)u1(s, t ′)〉
= 〈u1(q, t )u1(p, t )〉〈u1(h, t ′)u1(s, t ′)〉

+ 〈u1(q, t )u1(h, t ′)〉〈u1(p, t )u1(s, t ′)〉
+ 〈u1(q, t )u1(s, t ′)〉〈u1(p, t )u1(h, t ′)〉. (61)

Note that 〈u1(q, t )u1(p, t )〉 = 〈u1(h, t ′)u1(s, t ′)〉 = 0 because
p + q = k �= 0 and r + s = k �= 0. Using the above
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(a) (b)

(d)(c)

(e) (f)

FIG. 8. The density plots of 〈Su1u1 (v, z)〉 and 〈Su2u2 (v, z)〉 for d = 2 (top row), d = 3 (middle row), and d = 5 (bottom row).

correlations, we deduce that

〈u1(q, t )u1(p, t )u1(k′, t )〉a

=
∫ t

0
dt ′G1(k′, t − t ′)ik′

× sin(β − γ )2C̄1(p, t − t ′)C̄1(q, t − t ′). (62)

Using the properties of temporal relations of Eqs. (36) and
(37), we deduce that

〈u1(q, t )u1(p, t )u1(k′, t )〉 = i2k′ sin(β − γ )C1(p)C1(q)

ν1(k)k2 + ν1(p)p2 + ν1(q)q2
.

(63)

This term plus other two terms of Fig. 7 yields

〈Su1u1 (k′|p|q)〉 = numr1

ν1(k)k2 + ν1(p)p2 + ν1(q)q2
, (64)

where

numr1 = 2k′ sin β cos γ [k′ sin(β − γ )C1(p)C1(q)

+ p sin(γ − α)C1(k′)C1(q)

+ q sin(α − β )C1(k′)C1(p)]. (65)

The physics in the inertial range is scale invariant, hence we
employ the following transformations [7,41]:

k = R

u
; p = Rv

u
; q = Rw

u
; (66)

that leads to

〈Su1u1 (k′|p|q)〉 = (2π )2dεuk−2d K3/2
Ko

4

S2
d (d − 1)2

〈Su1u1 (v, z)〉,
(67)

where

〈Su1u1 (v, z)〉 = numr2

ν1∗(1 + v2/3 + w2/3)
(68)

with

numr2 = 2(2vz − 1)(1 − z2)zvw−2(vw)−2/3−d

+ 2(v − 2z)(1 − z2)zv2w−8/3−d

+ 2(1 − v2)(1 − z2)zw−2v−1/3−d (69)

and w2 = 1 + v2 − 2vz. Note that 〈Su1u1 (k′|p|q)〉 has a di-
mension of k−2d , whereas 〈Su1u1 (v, z)〉 is dimensionless. In
Figs. 8(a), 8(c), and 8(e) we illustrate the density plots of
〈Su1u1 (v, z)〉 for d = 2, 3, 5 respectively.

As is evident in Figs. 8(a), 8(c), and 8(e), the function
〈Su1u1 (v, z)〉 exhibits the following interesting properties:

(1) 〈Su1u1 (v, z)〉 → ∞ as z → 1 and v → 1, hence
〈Su1u1 (v, z)〉 is singular near this region. Note that 〈Su1u1 (v, z)〉
in the figure is bounded due to the finite resolution. For z ≈ 1,
〈Su1u1 (v, z)〉 is positive when v < 1 and negative otherwise.
This feature illustrates forward energy transfers in hydrody-
namic turbulence [37,49,50].
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(2) 〈Su1u1 (v, z)〉 takes large negative values for all z’s when
v → 0. These are nonlocal reverse energy transfers from k′ to
p when p � k′. These transfers are responsible for the inverse
energy cascade in 2D hydrodynamic turbulence when E (k) ∼
k−5/3.

(3) The singularity of 〈Su1u1 (v, z)〉 become more se-
vere with the increase of d . For example, asymptotically
〈Su1u1 (v, z)〉 → (1 − v)−8/3−d as v → 1 and z → 1 [37,50].

The above properties are in agreement with the earlier
results [37,50].

After a brief discussion on 〈Su1u1 (v, z)〉 we compute the en-
ergy flux in 2D arising from the cumulative energy transfers:

〈
	u1 (R)

〉 =
∫ ∞

R

dk′

(2π )2

∫ R

0

dp
(2π )2

〈Su1u1 (k′|p|q)〉. (70)

Substitution of Eq. (67) transforms the energy flux equation to
[7,37]

〈	u1 (R)〉
εu

= A
∫ 1

0
dv[ln(1/v)]vd−1

∫ 1

−1
dz(1 − z2)

d−3
2

×〈Su1u1 (v, z)〉, (71)

where

A = K3/2
Ko

4

(d − 1)2

Sd−1

Sd
. (72)

We compute the double integral of Eq. (71) numerically.
We employ Gauss-Jacobi quadrature for the dz integral, and
Romberg iterative scheme for the dv integral. Refer to Sec-
tion A for a brief discussion on the integration procedure.

Two-dimensional hydrodynamics has only u1 compo-
nent. Hence, 	u1 (R) is the energy flux for 2D turbulence.
In the k−5/3 regime of 2D turbulence, we observe that
	u1 (R) < 0 indicating an inverse cascade of energy, consis-
tent with the predictions of Kraichnan [51]. Using 	u1 (R) =
−εu and ν1∗ = 0.098, we deduce that KKo = 1.19. This KKo is
lower than that reported in experiments and numerical situa-
tions, which is approximately 6. This inconsistency is possibly
due to the inability of the recursive RG schemes to capture
the nonlocal interactions [37]. Note that 2D hydrodynamic
turbulence involves local forward energy transfer and nonlocal
inverse energy transfer, which is difficult to incorporate in
RG procedure. Verma [37] employed a temporary fix for this
problem by increasing the lower cutoff of the flux integral to
0.22. We find that

∫ 1
0.22 dv... yields KKo = 4.46, which is close

to the earlier numerical and experimental results. Hopefully,
in future we will understand the reason for the cutoff better.

B. Energy transfers and fluxes for the uj components
with j � 2

As shown in Eq. (20), the mode-to-mode energy transfer
from u j (p) to u j (k′) [ j � 2] with the mediation of u1(q) is

〈Suj u j (k′|p|q)〉 = −k′ sin β�{〈u1(q, t )u j (p, t )u j (k′, t )〉}.
(73)

Note that 〈Suj u j (k′|p|q)〉 are the same for all j’s from j = 2
to d − 1 due to isotropy. To compute this quantity we em-
ploy the scheme described in Sec. IV A. For simplicity, we
restrict ourselves to flows for which 〈u1u j〉 = 0 when j > 1.

FIG. 9. Feynman diagrams associated with the energy transfers
between the uj component ( j � 2).

Consequently, the expansion of u j components in terms of
the Green’s function yields nonzero values, whereas the terms
arising from the expansion of u1 component vanishes identi-
cally. The Feynman diagrams associated with 〈Suj u j (k′|p|q)〉
(for j � 2) are illustrated in Fig. 9.

Following the same steps as in Sec. IV A, the field-theoretic
estimate for 〈Suj u j (k′|p|q)〉 is

〈Suj u j (k′|p|q)〉 = (k sin β )2 C1(q)[Cj (p) − Cj (k′)]
ν2(k)k2 + ν2(p)p2 + ν1(q)q2

.

(74)

We assume that turbulence is isotropic, hence Cj (k′) = C(k′).
In addition, we transform 〈Suj u j (k′|p|q)〉 to 〈Suj u j (v, z)〉 as
follows:

〈Suj u j (k′|p|q)〉 = (2π )2dεuk−2d K3/2
Ko

4

S2
d (d − 1)2

×〈Suj u j (v, z)〉 (75)

with

〈Suj u j (v, z)〉 = v2w−8/3−d (v−2/3−d − 1)(1 − z2)

ν2∗(1 + v2/3) + ν1∗w2/3
. (76)

In Figs. 8(b), 8(d), and 8(f), we illustrate 〈Su2u2 (v, z)〉 for
d = 2, 3, 5. As shown in the figure, 〈Su2u2 (v, z)〉 exhibits the
following interesting properties:

(1) 〈Suj u j (v, z)〉 is singular when z → 1 and v → 1.
〈Suj u j (v, z)〉 is positive when v < 1 and negative otherwise,
implying forward energy transfers when p → k′ [37,49,50].

(2) 〈Suj u j (v, z)〉 � 1 for all z’s when v → 0. These trans-
fers represent forward nonlocal energy transfers from p to k′.

(3) The severity of the singularity of 〈Suj u j (v, z)〉 increases
with d , with 〈Su2u2 (v, z)〉 → (1 − v)−8/3−d as v → 1 and
z → 1 [37,50].

Now we compute the energy flux that receives contribu-
tions from the u j components as given below:

〈
	u j (R)

〉 =
∫ ∞

R

dk′

(2π )3

∫ R

0

dp
(2π )3

〈Suj u j (k′|p|q)〉, (77)

035102-9



MAHENDRA K. VERMA PHYSICAL REVIEW E 110, 035102 (2024)

hence〈
	u j (R)

〉
εu

= A
∫ 1

0
dv[ln(1/v)]vd−1

∫ 1

−1
dz(1 − z2)

d−3
2

×〈Suj u j (v, z)〉, (78)

where A is given by Eq. (72). For Eq. (78), we perform the
dz integral using Gauss-Jacobi quadrature, whereas the dv

integral using Romberg iterative scheme. Note that the total
energy flux in the inertial range is

	(R) = 〈
	u1 (R)

〉 + (d − 2)
〈
	u2 (R)

〉
, (79)

which equals the dissipation range εu.
Now a brief discussion on the 3D energy flux, which is

〈	(R)〉 = 〈
	u1 (R)

〉 + 〈
	u2 (R)

〉 = εu (80)

Note that ν1∗ and ν2∗ appear in the denominators of Eqs. (68)
and (76) respectively. Since ν1∗ � ν2∗, the negative energy
flux 	u1 dominates positive 	u2 leading to 	(R) < 0. This
is a problem. Fortunately, this issue is easily resolved by
employing

∫ 1
0.22 dv for 	u1 (R) of Eq. (70) (as in Sec. IV A);

this procedure yields KKo = 1.64, which is in good agreement
with earlier field-theoretic computations, as well as numerical
and experimental results. As discussed in Sec. III B, ê1(k)
and ê2(k) are transformed to each other under the change of
triads (n̂). Therefore, we may also use ν1∗ ← ν2∗ that yields
K ′

Ko = 1.89.
For d dimensions, the solution of Eq. (79) yields KKo and

K ′
Ko for various d’s. These results are listed in Table I and

illustrated in Fig. 5. The constant KKo increases from d = 2
to d = 2.1, then decreases up to d = 4, and finally increases
again up to d = 6. Note that these constants are not defined
for d � 6, where the equilibrium solution [E (k) ∼ kd−1 with
zero flux] is valid. Thus, d = 6 is the critical dimension for
hydrodynamic turbulence. Also, for a given E (k), εu ∝ K−3/2

Ko .
Hence, εu is inversely proportional to K3/2

Ko .
We compare our predictions with those in the past liter-

ature. Using Lagrangian renormalized approximation, Gotoh
et al. [30] showed that the Kolmogorov’s constant for 3D and
4D are 1.72 and 1.31, respectively. Berera et al. [31] reported
the corresponding constants to be 1.7 and 1.3, respectively.
The corresponding numbers in our calculations, 1.63 and 1.45,
are in general agreement with the earlier results.

Exploration of turbulence in fractal dimension remains a
challenge. Lanotte et al. [52] simulated hydrodynamic tur-
bulence in fractal dimension between 2.5 to 3. They studied
variations of energy spectrum and probability distribution
function of vorticity as function of fractional dimensions.
It will be interesting to employ similar ideas to dimensions
close to 2 and for much higher dimensions, but we expect
these numerical experiments to be very expensive. It is pos-
sible that the fractional dimensions is related to the quasi-2D
anisotropic turbulence that shows a transition from positive
energy flux to negative energy flux with the decrease of verti-
cal dimension [53].

V. FRACTIONAL ENERGY TRANSFERS

To disentangle the energy transfers between various wave-
number regimes, as well as to quantify the dependence of the

FIG. 10. The fractional energy transfer 〈	V (R)〉/εu is the energy
transfer from wave-number shell (RV, R) to (R, R/V ), where V < 1.

energy flux on d , we define fractional energy flux as follows:

〈	V (R)〉
εu

= A
∫ 1

V
dv[ln(1/v)]vd−1

∫ 1

−1
dz(1 − z2)

d−3
2

× [〈Su1u1 (v, z)〉 + (d − 1)〈Su2u2 (v, z)〉]

=
∫ 1

V
dvT (v), (81)

where 0 < V < 1. Based on the relations of Eq. (66), we
deduce that 〈	V (R)〉 represents the net energy transfer from
the giver modes in the band (RV, R) to the receiver modes in
the band (R, R/V ). See Fig. 10 for an illustration.

We compute
∫ 1

V dvT (v) for V = (0, 1) and d =
2, 2.1, 2.15, 2.5, 3, 4, 5.9, and plot them in Figs. 11(a)
and 11(b). The plots in the figure reveal that 	(R)/εu =∫ 1

0 dvT (v) is negative for d < 2.15, positive for d > 2.15,
and 0 for d ≈ 2.15. Hence, the energy flux 〈	(R)〉 changes
sign at d ≈ 2.15. The spiking in KKo near d = 2.15 is due to
the vanishing of the energy flux (see Fig. 5). Our results are
in a reasonable agreement with those of Fournier and Frisch
[29] who reported the transition dimension for the energy flux
to be approximately 2.06.

FIG. 11. Fractional energy transfer 〈	V (R)〉/εu for various
dimensions.
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In 2D,
∫ 1

V dvT (v) changes sign from negative to positive
as V crosses 0.265 from left to right [see Fig. 11(a)]. This
feature arises due to the positive local transfers, but signifi-
cant negative (inverse) nonlocal energy transfers [37,50]. The
inverse energy cascade in 2D hydrodynamics is due to the
above nonlocal reverse energy transfers. For more details on
local and nonlocal energy transfers, refer to Verma [37].

In the next section, we compute the renormalization and
Kolmogorov’s constants for Kraichnan’s k−3/2 spectrum.

VI. RENORMALIZATION AND ENERGY FLUX
COMPUTATIONS FOR KRAICHNAN’S k−3/2 SPECTRUM

Kraichnan [54] argued that the sweeping effect may
lead to k−3/2 energy spectrum for hydrodynamic turbulence.
However, experiments, numerical simulations, and analyt-
ical works rule out this spectrum, and strongly support
Kolmogorov’s k−5/3 spectrum. Still, for mathematical cu-
riosity we explore whether k−3/2 spectrum satisfies the RG
equation.

In the k−3/2 framework,

Ē (k) = KKr(εuU0)1/2k−3/2, (82)

ν̄1(kn) = νKr1∗K1/2
Kr (εuU0)1/4k−5/4

n , (83)

ν̄2(kn) = νKr2∗K1/2
Kr (εuU0)1/4k−5/4

n , (84)

where U0 is the large-scale fluid velocity; νKr1∗ and νKr2∗ are
the renormalization constants for u1 and u2 components; and
KKr is Kraichnan’s constant (corresponding to Kolmogorov’s
constant). For the k−3/2 energy spectrum, the Feynman dia-
grams and all the equations of Secs. III and IV, except those
for F1(p′, z), F2(p′, z), F3(p′, z), 〈Su1u1 (v, z)〉, 〈Suj u j (v, z)〉,
numr2, E (k), ν1(kn), and ν2(kn), are unchanged. The above
equations are modified to the following form (with bar):

F̄1(p′, z) = (1 − z2)(p′ − 2z)(2p′z − 1)p′q′−5/2−d

p′3/4 + q′3/4
, (85)

F̄2(p′, z) = (1 − z2)(1 − p′2)(2p′z − 1)p′−1/2−d q′−2

p′3/4 + q′3/4
, (86)

F̄3(p′, z) = (1 − z2)p′−1/2−d

νKr1∗ p′3/4 + νKr2∗q′3/4

+ (1 − z2)p′2q′−5/2−d

νKr2∗ p′3/4 + νKr1∗q′3/4
, (87)

〈S̄u j u j (v, z)〉 = v2w−5/2−d (v−1/2−d − 1)(1 − z2)

νKr2∗(1 + v3/4) + νKr1∗w3/4
, (88)

〈S̄u1u1 (v, z)〉 = numr2

νKr1∗(1 + v3/4 + w3/4)
(89)

numr2 = 2(2vz − 1)(1 − z2)zvw−2(vw)−1/2−d

+ 2(v − 2z)(1 − z2)zv2w−5/2−d

+ 2(1 − v2)(1 − z2)zw−2v−1/2−d (90)

for j � 2. Using the revised equations we compute the new
renormalization and Kraichnan’s constants for various space
dimensions. We observe that νKr1∗ has nonzero solution for
d < 6, and it has no solution for d > 6. However, ν∗ = 0

FIG. 12. For Kraichnan’s k−3/2 spectrum, the values of constants
for various d’s: (a) νKr1∗ and νKr2∗; (b) Kr and Kr′.

is a valid solution for d > 6. Hence, d = 6 is the critical
dimension for the Kraichnan’s spectrum as well. In Fig. 12
we present the renormalized parameters and Kraichnan’s con-
stant for various dimensions. Note that the constants Kr and
Kr′ correspond respectively to cases when νKr1∗ �= νKr2∗ and
νKr1∗ = νKr2∗

Thus, surprisingly, Kraichnan’s k−3/2 spectrum and the
corresponding viscosity formulas are solutions to the RG
equations for d < 6. We conclude in the next section.

VII. CONCLUSIONS

In this paper, we employ perturbative field theory to
the incompressible Navier-Stokes equation and compute the
renormalized viscosities and Kolmogorov’s constant for var-
ious space dimensions. We employ Craya-Herring basis that
simplifies the calculations considerably. We summarize our
findings as follows.

(1) For space dimension less than 6, Kolmogorov’s spec-
trum E (k) ∼ k−5/3 is a solution of the RG equation with
the renormalized viscosity scaling as ν(1,2)∗

√
Koε1/3

u k−4/3,
where ν(1,2)∗ are the prefactors for the components of the
Craya-Herring basis. These constants are computed using the
recurrence relation for the renormalized viscosity. Our com-
puted constants are in general agreement with earlier results.
These solutions are out of equlibrium when the energy flux is
nonzero.

(2) The renormalization constants ν(1,2)∗ are functions of
space dimension. Interestingly ν1∗ gradually decreases to zero
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at d = 6. Our detailed calculations show that the solutions for
d < 6 are out of equilibrium, but they merge with equilibrium
solution at d = 6. Thus, d = 6 is the critical upper dimension
for hydrodynamic turbulence.

(3) For d � 6, the viscosity remains unnormalized
(ν = 0), and the equilibrium solution of Euler equation,
E (k) ∼ kd−1, satisfies the RG equation. Note that the en-
ergy flux vanishes under this condition. Adzhemyan et al.
[32] showed that the Kolmogorov constant KKo ∝ d1/3 which
leads the vanishing energy flux, εu ∝ K−3/2

Ko ∝ d−1/2 → 0, as
d → ∞. In similar lines, Fournier et al. [33] showed that
intermittency vanishes as d → ∞. These observations too
indicate Gaussianity of the velocity field at large d , consistent
with our results. Our renormalization calculation indicates
that the upper critical dimension for hydrodynamic turbulence
is 6. Thus, we can argue that the nonequilibrium solution with
nonzero energy flux transitions to the equilibrium solution
with εu = 0. Note that the equilibrium solution with ν = 0
respects time-reversal symmetry. However, the nonequilib-
rium solution with finite ν and nonzero energy flux breaks the
time-reversal symmetry [55].

(4) Using field theory, we compute the mode-to-mode en-
ergy transfers, energy fluxes, and Kolmogorov’s constant for
d < 6. The energy flux is negative for d < 2.15, whereas it
is positive for d > 2.15. The transition dimension d = 2.15 is
in reasonable agreement with the predictions of Fournier and
Frisch [29], according to which the energy flux changes sign
near d ≈ 2.05.

(5) Our results, in particular Kolmogorov’s constant, are in
agreement with previous works for 4D turbulence simuations
[30,31]. Note that simulation of turbulent flows for d � 4 is
very expensive due to large grid size. Simulation of turbulence
in fractional dimension is of interest [52], but these simula-
tions too require considerable computing resources.

(6) The present work does not include intermittency cor-
rection, which is more complex to compute. Researchers
have employed multiloop field-theoretic calculations (e.g.,
Ref. [56]) and Lagrangian field-theory calculations (e.g.,
Ref. [57]) to quantify intermittency in turbulence. It will be
interesting to use Craya-Herring basis for intermittency com-
putations.

(7) Interestingly, Kraichnan’s k−3/2 energy spectrum,
which is inspired by the sweeping effect, too satisfies the
recursive RG equation for hydrodynamic turbulence. Note,
however, that k−3/2 energy spectrum is ruled out based on

numerical and experimental findings, as well as from analyti-
cal works such as Kolmogorov’s K41 theory [58].

In summary, field-theoretic tools provide valuable insights
into hydrodynamic turbulence.
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APPENDIX: EVALUATION OF THE RENORMALIZATION
AND ENERGY FLUX INTEGRALS

For the RG procedure, the integrals of Eqs. (46) and (52)
are finite because they are performed in the band 1 � p′ � b
and 1 � q′ � b. Here, we employ the Gaussian quadrature for
the dq′ integral and a Romberg scheme for the d p′ integral.
This procedure yields finite and accurate results. However, the
integrals for the energy flux are singular [1] and they need
special attention.

The energy-flux integral is of the following form:

I =
∫ 1

0
dv[ln(1/v)]vd−1

∫ 1

−1
dz(1 − z2)

(d−1)/2
f (v, z), (A1)

where f (v, z) involves singularities. For accurate evaluation
of dz integration, we employ the Gauss-Jacobi quadrature:

∫ 1

−1
dz f (v, z)(1 − z)(d−1)/2(1 + z)(d−1)/2 ≈

∑
k

f (v, zk )wk,

(A2)

where zk is the kth root of Jacobi polynomials, and wk is
the corresponding weight. Note that f (v, zk ) is evaluated at
z = zk . The Gauss-Jacobi quadrature yields finite answer
for these singular integrals. We employ a Romberg iterative
scheme for the subsequent dv integration.
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