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Universal phase-field mixture representation of thermodynamics and shock-wave mechanics
in porous soft biologic continua
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A continuum mixture theory is formulated for large deformations, thermal effects, phase interactions, and
degradation of soft biologic tissues suitable at high pressures and low to very high strain rates. Tissues
consist of one or more solid and fluid phases and can demonstrate nonlinear anisotropic elastic, viscoelastic,
thermoelastic, and poroelastic physics. Under extreme deformations or shock loading, tissues may fracture,
tear, or rupture. Existing models do not account for all physics simultaneously, and most poromechanics and
soft-tissue models assume incompressibility of some or all constituents, generally inappropriate for modeling
shock waves or extreme compressions. Motivated by these prior limitations, a thermodynamically consistent
formulation that combines a continuum theory of mixtures, compressible nonlinear anisotropic thermoelasticity,
viscoelasticity, and phase-field mechanics of fracture is constructed to resolve the pertinent physics. A metric
tensor of generalized Finsler space supplies geometric insight on effects of rearrangements of microstructure,
for example degradation, growth, and remodeling. Shocks are modeled as singular surfaces. Hugoniot states and
shock decay are analyzed: Solutions account for concurrent viscoelasticity, fracture, and interphase momentum
and energy exchange not all contained in previous analyses. Suitability of the framework for representing blood,
skeletal muscle, and liver is demonstrated by agreement with experimental data and observations across a range
of loading rates and pressures. Insight into previously unresolved physics is obtained, for example importance of
rate sensitivity of damage and quantification of effects of dissipation from viscoelasticity and phase interactions
on shock decay.
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I. INTRODUCTION

Constitutive models describe the complex physics of soft
biological tissue—for example, skin, muscle, connective tis-
sue, blood vessels, and the internal organs—when subject
to mechanical and thermal stimuli. These materials are of-
ten simultaneously nonlinear anisotropic elastic, viscoelastic,
thermoelastic, and poroelastic [1,2]. Large deformations man-
ifesting nonlinear mechanical response occur even under
normal physiological activity. Medical events involving dis-
ease and surgery incur cutting or tearing (i.e., fracture) of the
tissue. For traumatic scenarios involving dynamic impact or
blast, even more extreme deformations and rapid loading rates
arise [1,3–6].

Microstructures are often hierarchical and highly complex
[1,2]. Materials consist of multiple solid- and fluidlike phases.
The liver includes the spongy parenchyma, connective tissue,
blood vessels and ducts plus blood and bile [7]. Skeletal
and cardiac muscles contain fibers (i.e., cells), connective
tissue, blood and interstitial fluid [2,8]. Skin includes dermal
tissue layers, cells, and interstitial fluid [9]. Lung includes
parenchyma (e.g., alveoli and ducts), air, and surfactant fluid,
as well as stiffer elements of the bronchiole. structure [1].
Membraneous tissues (e.g., in skin) contain ground substance,
elastin, and collagen fibers [10]. Blood has cells immersed
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in the extracellular plasma [2,11]. Cells themselves include
solidlike walls and internal fluids [12].

Most constitutive treatments of mechanics of soft tissues
focus on their nonlinear elastic response [8,13,14]. Effects
of fluids are included implicitly in the energy densities and
parameters, perhaps augmented with viscoelasticity or other
dissipation elements [15,16]. Even in the nondissipative case,
sophisticated models are needed to account for anisotropy and
nonlinearity, for example due to collagen fiber distributions
[17–19]. If tearing or degradation occur, then continuum dam-
age mechanics theories are fairly standard [20,21], whereby
a phenomenological kinetic equation is prescribed for an in-
ternal state variable measuring local loss of stress-bearing
capacity.

In contrast to the former, the phase-field approach has been
more recently advocated for modeling tearing of soft biologic
tissues [22,23]. Diffuse-interface modeling has witnessed use
over a broad application space; models with elasticity include
phase changes, twinning, and dislocations in crystals [24–27].
The method appeared for brittle fracture around 25 years ago
[28–30], typically for small-strain, isotropic elasticity the-
ory. Finite-strain approaches for fracture appeared thereafter
[31,32]. Fluid cavitation [33] and fluid injection [34] have
been modeled.

Continuum mixture theories and porous media theories
emerged in the mid-20th century [35–38]. Microstructure
details are smeared, but these models distinguish stresses
and deformations of each constituent and capture transfers
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of mass, momentum, and energy between phases. Mixture-
and porous-media theories introduce length and timescales
that are absent in single-phase viscoelasticity [39]. Although
porous media models have been used for soft tissues [7,39–
41], they have not been combined with the phase-field frac-
ture approach for the class of soft biologic materials. Finite
strain and thermal exchange [42] effects have, however, been
considered for phase-field fracture modeling of brittle porous
media.

The theory of porous media classically models a two-phase
system of one solid and one fluid, though models with mul-
tiple fluids exist. The fully dense solid and fluid phases are
usually treated as incompressible, but the mixture overall is
compressible as fluid is locally squeezed out [7,39,40]. Solid
and fluid are usually, but not always [43], treated as invis-
cid individually, but interactions of viscous origin between
phases are captured by permeability and dissipation from fluid
transport (e.g., Darcy’s law). An effective stress principle [44]
decomposes total stress into solid skeleton stress and pore
pressure. Constitutive equations are supplied for the solid
skeleton (i.e., drained material) and fully dense fluid rather
than for partial stresses of mixture components. This method
has proven successful for soil and rock mechanics in which
the distinction between solid and fluid(s) is clear (e.g., water
flowing through sand or porous rock), and it has been used
elsewhere for porous tissues [39,40].

The effective stress principle with solid skeleton concept
is not implemented here for several reasons. First, tissue may
consist of multiple solid and fluid phases. For example, the
liver has the parenchyma, blood vessels, and connective tissue
(which might be tied or displace independently) and distinct
fluids of blood and bile. Second, designation of a constituent
as a “solid” or “fluid” may be ambiguous, for example, the
extracellular matrix of tissue or blood demonstrating both
viscous (fluidlike) and viscoelastic (solidlike) physics [11,45].
With no single true solid or fluid phase, the soil mechanics
analogy is tenuous. Cracking in ambiguously soft materials
also shows richer physics than in brittle elastic solids due to
stochastic bond opening and closure (i.e., healing) [46].

A mixture theory similar to that of Refs. [37,47,48] is ad-
vocated here instead, with constituent energies formulated on
a per-unit-mass basis. Complexity in thermodynamic deriva-
tions is reduced since partial stresses rather than effective
stress and pore pressure are used. However, potential difficulty
can arise in ascertaining properties of isolated phases as ex-
periments might measure responses of only some (e.g., fluid)
phase(s) and the mixture as a whole. This issue is rectified by
example later.

Here the typical assumption of incompressibility of indi-
vidual phases [7,39,40] is abandoned to resolve bulk sound
waves and longitudinal shocks. Furthermore, in a two-phase
nonreactive mixture of a solid and fluid, incompressibil-
ity of the “real” solid phase restricts local compression
to not exceed the porosity (i.e., an initial fluid volume
fraction) [49,50]. For biologic systems modeled later with
porosities ≈10%, solid incompressibility is incompatible
with strong shock loading [51]. If no interphase mass ex-
change occurs, then the system is closed (i.e., no mass
flux across boundaries), and all constituents are truly in-
compressible, global volumetric compression is impossible.

Incompressibility is unrealistic if materials rupture or cavitate
(i.e., tensile damage).

A unified framework is formulated in Secs. II and III,
synthesizing continuum mixture theory, nonlinear anisotropic
thermoelasticity, viscosity, viscoelasticity, and phase-field
fracture mechanics for biologic systems. A universal, ther-
modynamically consistent theory containing all such features
relevant to soft-tissue mechanics for intense rapid loading
does not seem to exist. Another notable aspect is generalized
Finsler geometry describing the material manifold with evolv-
ing microstructure [52].

Traditional continuum models are couched in ambient
Euclidean three-space. Residual stresses from growth or re-
modeling have been considered via Riemannian geometry
with a metric of nonvanishing curvature tensor [53–55]. A
recent approach [56,57] accounts for effects of microstructure
using a generalized Finslerian metric [58] as opposed to a
Riemannian metric. In addition to residual stress and growth,
the Finsler-geometric approach on the material manifold has
been used to describe changes in local configurations of col-
lagen fibers as tissues degrade and tear [52]. A Finsler metric
was used elsewhere to quantify effects of fiber orientations
on mechanical responses of soft tissues in a discrete bond-
based model [59] rather than a continuum physics approach
as herein. The Finsler-geometric theory has similarities to mi-
cropolar theory [60,61], but the former is more general [56].
Much past work focused on hard crystalline solids [62,63].

Shock waves in soft tissues are analyzed here with the
mixture theory and constitutive frameworks. Hugoniot solu-
tions and evolution equations are derived for compressive
shocks, extending prior works [50,64–66] to simultaneously
account for internal state variables (e.g., order parameters)
and the Finsler metric that, in the present application, can be
transformed to an osculating Riemannian metric [52,67,68].
Dissipation from viscoelasticity, momentum and energy trans-
fer between phases, and degradation due to shear-induced
tearing all potentially affect shock amplitudes over time.
Treatment of shocks as singular surfaces of velocity differs
from those of continuous waves in nonlinear materials [69].
Shock structures (e.g., shapes of continuous waves) are stud-
ied elsewhere in nonlinear solids and fluid mixtures [48].

Modeled in Sec. IV are three soft-tissue systems: skeletal
muscle with interstitial fluid, liver with blood, and lung with
air. Solutions to physical problems involving tension, com-
pression, or shock-wave loading grant understanding of the
physics demonstrated by these materials. Concluding remarks
give closure in Sec. V.

II. GOVERNING EQUATIONS

The present theory builds on the finite-strain mixture the-
ories of Refs. [37,38,50]. This framework of Bowen [37],
with origins in the treatise of Truesdell and Toupin [36] and
consistent with the rational thermodynamics philosophy of
Truesdell et al. [70], is used as starting point for several
reasons. First, this framework is of sufficient generality, on
several augmentations discussed shortly, to describe all phys-
ical phenomena of present interest. Second, although other
rigorous mixture theories exist and numerous generalizations
and specializations of the Bowen-Truesdell framework have
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been postulated, especially with regard to thermodynamics
(see, e.g, discussion in Refs. [71,72], and references therein),
the original theory was then, and still is, widely accepted as
physically credible and mathematically “correct” [37].

To the same extent as the original theories [36,37,70],
the present framework obeys the three principles of mixture
theory emphasized in Ref. [70], paraphrased as follows: (1)
All properties of the mixture are mathematically obtained
from properties of its constituents, (2) each constituent’s be-
haviors can be described by governing equations for that
single constituent, provided these equations account for its
interactions with other constituents; and (3) behavior of the
mixture obeys governing equations of the same form as those
for a single-constituent body. The third principle constrains
interactions and suggests definitions for “average” quantities
of the mixture as a whole. The latter are not unique [73],
nor even all exist. For example, average (e.g., tensor-valued)
quantities referred to “material” coordinates may not exist,
there being no unique reference configuration of the mixed
system when velocity histories of constituents differ or mass
supplies exist [74,75]. Average temperature is not well defined
in Ref. [37] unless all constituents share the same temperature,
but it has been defined elsewhere [76].

Two main enhancements are incorporated here. First,
time-dependent general internal state vectors are introduced.
Elements of these vectors are associated with history de-
pendent mechanisms in the material microstructure, namely
viscoelasticity, active tension, and damage, all generally
anisotropic. Dependence of energy potentials on internal state
and gradients of internal state is permitted, with terms as-
sociated with internal state gradients incorporated in the
balance of energy and boundary conditions. This enables a
phase-field type representation if variables are interpreted as
order parameters [24,26,77], suitable for modeling regular-
ized fracture [23,31,32]. Second, metric tensors on spatial
and material manifolds may depend on internal state and can
be time dependent. Distances measured in the material can
include remnant strains from dissipative processes, or bio-
logic growth and remodeling if resolved by state variables.
If internal-state dependence of metrics is explicit and dis-
tinct from coordinate dependence, then a generalized Finsler
representation emerges [56,57]. If internal-state dependence
is implicit and state vectors are (time-dependent) functions
of position [78], then an osculating Riemannian geometry
[52,68] is obtained. In the Riemannian setting, similarities
exist with Refs. [53–55].

A mixture of N � 1 constituents is considered, where at
time t , these occupy a shared infinitesimal control volume d�
centered at spatial position x. Motions are

x = χα (Xα, t ). (1)

Greek superscripts α = 1, . . . ,N label constituents having
reference coordinates Xα; constituents coincident at x may
occupy different Xα due to diffusion, growth, etc.

A spatial manifold comprising the material body, pa-
rameterized by coordinate chart(s) {xk}, is m. Referential
manifold(s) Mα are parameterized by coordinate chart(s)
{(X α )K} corresponding to reference positions of constituent
α. Denote by {ξα (x, t )} and {�α (Xα, t )} sets of internal state
variables viewed as auxiliary coordinates over m and Mα ,

respectively. Metric tensors g and Gα with components gi j

and Gα
IJ are permitted to be coordinate and time dependent, of

the forms

g = g(x, t ) = g̃(x, {ξα (x, t )}), (2)

Gα = Gα (Xα, t ) = G̃α (Xα, {�α (Xα, t )}). (3)

The ∼ notation denotes the generalized Finsler description
[56–58] of metrics on m and Mα , whereas unadorned ver-
sions are interpreted as osculating Riemannian metric tensors
[52,67,68] at any fixed time t . Determinants are written g =
det g and Gα = det Gα . The partial time derivative at fixed x is
∂t (·); the material time derivative at fixed Xα is Dα

t (·), related
by

Dα
t (·) = ∂t (·) + ∇(·) · υα, (υα )k = Dα

t (χα )k . (4)

Particle velocity is υα , and ∇(·) is the covariant derivative
with respect to x where Christoffel symbols are those of the
Levi-Civita connection derived from gi j . The covariant deriva-
tive with respect to Xα on Mα is ∇α

0 (·).
Spatial and referential gradient operators obey

∇(·) = ∂ (·)/∂xk ⊗ gk, ∇α
0 (·) = ∂ (·)/∂ (X α )K ⊗ GK . (5)

When used on typical scalars, vectors, and tensors, ∂t (·) and
Dα

t (·) are performed with natural basis vectors gk = ∂x/∂xk

and Gα
K = ∂X/∂ (X α )K held fixed with respect to t at x and

Xα , respectively, so ∂t gk and Dα
t Gα

K vanish in such circum-
stances. This produces commutation rules:

∇[∂t (·)] = ∂t [∇(·)], ∇α
0

[
Dα

t (·)] = Dα
t

[∇α
0 (·)]. (6)

The deformation gradient Fα and Jacobian determinant Jα

are defined as follows, giving a relation between reference and
spatial gradient operators:

(Fα )i
J = ∂ (χα )i

∂ (X α )J
, Jα = det

[
(Fα )i

J

]√
g/Gα, (7)

Fα = (Fα )i
Jgi ⊗ GJ , ∇α

0 (·) = ∇(·)Fα. (8)

The velocity gradient lα and its trace are

lα = ∇υα = Dα
t Fα (Fα )−1, ∇ · υα = trlα. (9)

Spatial and material volume elements, d� and d�α
0 , obey

d�(x(Xα, t ), t ) = Jα (Xα, t )d�α
0 (Xα, t ). (10)

Time derivatives of local volume elements allow for time
dependence of metric tensors. Extending Refs. [54,55],

∂t (d�) = 1
2 tr(∂t g)d� = ∂t (ln

√
g)d�, (11)

Dα
t

(
d�α

0

) = 1
2 tr

(
Dα

t Gα
)
d�α

0 = Dα
t (ln

√
Gα )d�α

0 , (12)

Dα
t (d�) = (

Dα
t Jα + JαDα

t ln
√

Gα
)
d�α

0

= (∇ · υα + ∂t ln
√

g)d�. (13)

In (13), Dα
t

√
g/Gα is included in Dα

t Jα , and ∂t g = Dα
t g since

∇g vanishes for a Levi-Civita connection [79].
Define the following, all fields of (x, t ): partial Cauchy

stress tensor σα , traction vector tα = σα · n, body force
per unit mass bα , partial internal energy per unit mass
uα , heat source per unit mass rα , heat flux vector qα ,
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mass exchange rate cα , linear momentum exchange hα , and
energy exchange rate εα . The spatial mass density of con-
stituent α is ρα (x, t ). Referential mass density at fixed time
t = t0 is ρα0 (Xα ) with metric Gα

0 (Xα ) and mass element
dmα

0 (Xα ) = ρα0
√

Gα
0/Gαd�α

0 . At arbitrary t , the mass element
is dmα (Xα, t ) = ραd� = ραJαd�α

0 .

A. Continuous processes

A global energy balance for each constituent is posited on
a region of m occupying transient control volume �, enclosed
by oriented boundary ∂� with unit outward normal n. Ve-
locity and heat flux normal to ∂� are υαn = υα · n and qαn =
qα · n. The global balance per constituent extends Ref. [37] to
account for working of generalized tractions {zα} = {ζα · n}
conjugate to rates of auxiliary variables {Dα

t ξα} on ∂�, simi-
larly to Ref. [77]:

∂t

∫
�

ρα
(

uα + 1

2
|υα|2

)
d�+

∮
∂�

ρα
(

uα + 1

2
|υα|2

)
υαn d∂�

=
∮
∂�

(
tα · υα + {zα} · {

Dα
t ξα

} − qαn

)
d∂�

+
∫
�

[
ρα (bα · υα + rα ) + hα · υα + εα

+ cα
(

uα + 1

2
|υα|2

)]
d�. (14)

Angular momentum exchange between constituents [37] is
omitted herein. When {ζα} → {0}, (14) matches the Bowen-
Truesdell theory [36,37]. Working of {zα} is necessary to
enable derivation of Ginzburg-Landau (i.e., Allen-Cahn) ki-
netic laws for internal variables of gradient type [77,80].
Field variables in (14) are assumed sufficiently smooth on
� such that the divergence theorem applies on m. Energy
conservation under rigid motions (i.e., various time-dependent
translations and rigid-body rotations [81,82]) of all con-
stituents then furnishes local conservation laws for mass,
momenta, and energy:

∂tρ
α + ∇ · (ραυα ) = cα − ρα∂t ln

√
g = ĉα, (15)

∇ · σα + ραbα + hα = ραDα
t υα, σα = (σα )T, (16)

ραDα
t uα = σα : ∇υα + ∇ · ({ζα} · {

Dα
t ξα

})
− ∇ · qα + ραrα + εα. (17)

Differentiation ∂t (·) is at fixed coordinates {xk}, but volume
element d�(xk, t ) may vary with time due to time depen-
dence of g in (2), producing (11) and ∂t

∫
(·)d� = ∫

[∂t (·) +
(·)∂t ln

√
g]d�. This yields the ρα∂t ln

√
g term in (15). This

term only explicitly enters (15) and not (16) or (17). It van-
ishes from the latter two according to steps in derivations of
the local laws, where mass conservation is obtained first and
then eliminated in the process of obtaining local momentum
and energy balances [37]. All agree with invariance of the
global energy balance under rigid-body motions [81], parallel-
ing derivations in spatial coordinates in Ref. [82] and general
treatments with transient material metrics for growth given in
Refs. [54,55].

The cα account for mass transfer between constituents
when all internal variables {ξβ}, β = 1, . . . ,N affecting the
metric g through (2) are held fixed. The ρα∂t ln

√
g mea-

sure density changes manifesting from rates of these internal
variables, which could include growth or damage, the latter
considered an opposite of remodeling. The net mass supply
rate for both sources is ĉα = cα − ρα∂t ln

√
g.

Denote by ηα the local entropy per unit mass and θα > 0
the absolute temperature of constituent α. As in Refs. [37,50],
an entropy inequality for each constituent is avoided in lieu of
an inequality for the whole mixture:

∂t

∫
�

∑
α

ραηαd�+
∮
∂�

∑
α

ραηαυαn d∂�

�
∫
�

∑
α

ραrα

θα
d�−

∮
∂�

∑
α

qαn
θα

d∂�. (18)

Note that (18) is identical to Bowen-Truesdell theory [37,83].
From the divergence theorem, (15), and localization [84],∑

α

[
ραDα

t η
α + ∇ · qα

θα
− qα · ∇θα

(θα )2
− ραrα

θα
+ cαηα

]
� 0.

(19)

Let ψα be Helmholtz free energy per unit mass, whereby
substitution of (17) into (19) yields

ψα = uα − θαηα, (20)∑
α

(1/θα )
[
σα : ∇υα + ∇ · ({ζα} · {

Dα
t ξα

})
− (qα · ∇θα )/θα + εα + cαθαηα

− ρα
(
Dα

t ψ
α + ηαDα

t θ
α
)]

� 0. (21)

B. Singular surfaces

Now consider a propagating singular surface 
(t ) in m,
with image 
α (t ) in Mα . The Eulerian function φ defines
this surface, from which the unit normal n and Eulerian speed
U > 0 in the direction of n follow:

φ(x, t ) = 0, n = ∇φ/|∇φ|, U = −∂tφ/|∇φ|. (22)

Let (·)+ and (·)− label limiting values of (·) as 
 is ap-
proached from either side; n is directed from the (·)− side
(behind 
) to the (·)+ side. The jump across 
 is

�(·)� = (·)− − (·)+. (23)

Across a shock front 
, each χα is continuous, but space-
time derivatives of χα are not necessarily so. Nor always are
other field variables such as ρα , σα , θα , etc. With n defined
per (22), the normal velocity, heat flux, and tractions are υαn =
υα · n, qαn = qα · n, tα = σα · n, and {zα} = {ζα · n}. Conser-
vation laws for mass, linear momentum, and energy, and the
entropy imbalance, across 
 are derived using principles set
forth in Refs. [36,85].

Specifically, a closed region � of m is partitioned by

 at an instant in time into two sub-bodies, within which
the local continuum balance laws (15)–(17) and (19) hold.
These continuum laws are integrated over � and then over
each sub-body, the latter accounting for possible boundary
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contributions on 
 from tractions and heat flux. Integrals
are assumed to be physically meaningful even if m is non-
Euclidean. The total mass rate, linear momentum rate, energy
rate, and entropy production rate are required to be equal
for � and the summed contributions of each sub-body with
boundary 
. Application of a form of Reynolds’s transport
theorem [85,86] derived from the divergence theorem and
(13) then gives analogs of (15), (16), and (17) across 
 for
each α: �

ρα
(
υαn − U

)� = 0, (24)�
ραυα

(
υαn − U

)� = �tα�, (25)�
ρα

(
uα + 1

2 |υα|2)(υαn − U
)�

= �
tα · υα + {zα} · {

Dα
t ξα

} − qαn
�
. (26)

A jump equation for angular momentum can be derived, but
it encompasses nothing beyond (25). Similarly, arguments in
Ref. [85] applied to (19) furnish a local entropy inequality
across 
 for the mixture:∑

α

�
ραηα

(
U − υαn

) − qαn /θ
α
�

� 0. (27)

Now consider one-dimensional (1D) loading conditions:
nk → n1 = 1, xk → x1 = x, (χα )k → (χα )1 = χα , (Fα )i

J →
(Fα )1

1 = ∂χα/∂X α = Fα , (υα )k → (υα )1 = υαn = υα ,
(tα )k → (tα )1 = (σα )1

1 = tα , {(zα )k} → {(zα )1} = {(ζ α )1
1} =

{zα}, {(ξα )k} → {(ξα )1} = {ξα}, and (qα )k → (qα )1 =
qαn = qα . The shock is planar, with Eulerian speed U .
Eulerian forms of Rankine-Hugoniot equations (24)–(27)
reduce to

�ρα (υα − U )� = 0, (28)

�ραυα (υα − U )� = �tα�, (29)�
ρα

(
uα + 1

2
|υα|2

)
(υα − U )

�
= �

tαυα + {zα}{Dα
t ξ

α
} − qα

�
, (30)∑

α

�ραηα (U − υα ) − qα/θα� � 0. (31)

A Lagrangian description of a singular surface, denoted

α (t ) for each constituent α, is, analogously to (22),

�α (Xα, t ) = 0, Nα = ∇α
0�

α
/∣∣∇α

0�
α
∣∣,

Uα = −Dα
t �

α
/∣∣∇α

0�
α
∣∣. (32)

In 1D, Eulerian and Lagrangian shock speeds are [66]

U (t ) = d
(t )/dt, Uα (t ) = d
α (t )/dt . (33)

From 1D inverse motion X α (χα, t ) = (χα )−1(x, t ) [66],


α (t ) = (χα )−1(
(t ), t ) ⇒ Uα = (Fα )−1(U − υα ), (34)

with (Fα )−1 = ∂ (χα )−1/∂x. Now assume a continuous refer-
ential density field ρα0 (X α ) exists and can be related in 1D to
any other spatial density field ρα (x, t ) via ρα0 = Fαρα . Suf-
ficient conditions for the latter consistent with mass conser-
vation are cα = ρα∂t ln

√
g with g(χα (X α, t ), t ) = Gα (X α, t ).

In this case, (28) with (34) and �ρα0 � = 0 produces �Uα� = 0.
Thus, noting that Uα is intrinsic and (34) should hold at
all (·)± states, the following Lagrangian forms of the 1D
Rankine-Hugoniot equations are derived:

ρα0 Uα�1/ρα� = −�υα�, (35)

ρα0 Uα�υα� = −�tα�, (36)

ρα0 Uα

�
uα + 1

2
|υα|2

�
= −�

tαυα + {zα}{Dα
t ξ

α
} − qα

�
,

(37)∑
α

(
ρα0 Uα�ηα� − �qα/θα�) � 0. (38)

Routine algebra produces velocity jumps and Lagrangian
shock speeds in terms of jumps in stress and mass density:

�υα� = (�tα��1/ρα�)1/2, ρα0 Uα = (�tα�/�1/ρα�)1/2. (39)

Also, since ρα0 /ρ
α = Fα by construction,

�υα� = −Uα�Fα�, �tα� = ρα0 (Uα )2�Fα�. (40)

The Rankine-Hugoniot energy balance follows by eliminating
particle and shock velocities from (37):

�uα� = 〈tα〉�1/ρα� −
�{zα}{Dα

t ξ
α
} − qα

�
(�tα�/�1/ρα�)1/2

, (41)

where 〈(·)〉 = 1
2 [(·)+ + (·)−] is the average across 
α .

The displacement derivative δt (·) is defined as follows in
1D [36], consistently with (4) and (33):

δt (·) = ∂t (·) + U∂ (·)/∂x = Dα
t (·) + Uα∂ (·)/∂X α. (42)

This is the time derivative of a quantity measured by an ob-
server moving with the shock front. Structured steady waves
(e.g., of finite width) are addressed in Appendix A.

C. Total expressions for mixture

The spatial mass density of the mixture ρ, mean velocity
of the mixture υ, and diffusion velocities μα are

ρ =
∑
α

ρα, υ = 1

ρ

∑
α

ραυα, μα = υα − υ. (43)

Note
∑

α ρ
αμα = 0. Define the material time derivative of �

with respect to the mixture as

�̇ = ∂t (�) + ∇(�) · υ ⇒ Dα
t (�) = �̇ + (∇�) · μα. (44)

Recall from (15) that ĉα = cα − ρα∂t ln
√

g. Summing (15)
over α then gives the total mass balance for the mixture at
space-time location (x, t ):

ρ̇ + ρ∇ · υ = Ĉ, Ĉ =
∑
α

ĉα =
∑
α

cα − ρ ∂t ln
√

g. (45)

Define, respectively, the total Cauchy stress tensor, total body
force vector, total internal energy density, total entropy den-
sity, total heat supply, total heat flux, total internal state vector,
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and total conjugate force vector:

σ =
∑
α

(σα − ραμα ⊗ μα ), b = 1

ρ

∑
α

ραbα, (46)

u = 1

ρ

∑
α

ρα
[

uα + 1

2
|μα|2

]
, (47)

η = 1

ρ

∑
α

ραηα, r = 1

ρ

∑
α

ραrα, (48)

q =
∑
α

(
qα − σα · μα + ραuαμα + ρα

2
|μα|2μα

)
, (49)

{ξ} = ({ξ}1, . . . , {ξ}N ), {ζ} = ({ζ}1, . . . , {ζ}N ). (50)

Imposed henceforth are the following constraints on mass,
momentum, and energy supplies and exchanges:

Ĉ =
∑
α

ĉα = 0,
∑
α

(hα + ĉαμα ) = 0, (51)

∑
α

[
εα + hα · μα + ĉα

(
uα + 1

2
|μα|2

)]
= 0. (52)

In classical mixture theory [37], the body consisting of all α =
1, . . . ,N phases is viewed as a closed system in Euclidean
space, ∂t ln

√
g = 0, and cα account exclusively for exchange

of mass between phases, locally summing to zero. In many
theoretical models of biologic growth and remodeling, the
material body is analyzed as an open system [54,87,88]: Mass
can be injected or extracted due to chemical-biological inter-
actions with a background environment. In that open-system
interpretation, even in a single-phase body,

∑
α ĉα (x, t ) can be

nonzero. Here, per the first of (51), a closed-system viewpoint
is accepted: total mass comprised by all phases is constant, so
Ĉ = 0.

Given (43)–(50) with constraints (51) and (52), the total
balances of mass, linear momentum, angular momentum, and
energy and the dissipation inequality are obtained by accumu-
lating (15), (16), (17), and (19) over α = 1, . . . ,N , following
steps detailed by Bowen [37], with the addition of work con-
tributions from (50) whose individual entries are defined as
orthogonal:

ρ̇ + ρ∇ · υ = 0, ∇ · σ + ρb = ρυ̇, σ = σT, (53)

ρu̇ = σ : ∇υ + ∇ · ({ζ} · {ξ′}) − ∇ · q + ρr

+
∑
α

ραbα · μα, {ξ′} = {ξ̇} +
∑
α

{∇ξα · μα}, (54)

ρη̇ + ∇ ·
∑
α

(
qα

θα
+ ραηαμα

)
−

∑
α

ραrα

θα
� 0. (55)

For the particular case when θα = θ is uniform among con-
stituents at (x, t ), then (55) simplifies to

ρη̇ + ∇ · (q̂/θ ) − ρr/θ � 0, q̂ =
∑
α

(qα + θραηαμα ).

(56)

The quantity {ζ} · {ξ′} in (54) can be identified with an inter-
stitial flux vector of Ref. [89] in a broad sense, but the present
theory does not later incorporate higher-order deformation or
density gradients in energy potentials as in that work. Notice
that the entropy fluxes in the divergence terms of (55) and

(56) are generally different than what would be obtained from
the mixture heat flux q of (49) entering (54). The difference
is well known [73] and consistent with Bowen and Truesdell
[37,70]. It emerges naturally if spatial form of second law in
(18) is accepted as fundamental. If a global form of (55) is
used as a starting point, then different energy or entropy fluxes
in first and second laws must be prescribed a priori [37].

Jump conditions across singular surfaces can be derived
from (53), (54), and (56) using the methods already discussed
for constituent α. Let U now be the Eulerian shock speed for
the mixture as a whole. Analogs of (24)–(27) are, with an
obvious change of notation,�ρ(υn − U )� = 0, �ρυ(υn − U )� = �t�, (57)�

ρ
(
u + 1

2 |υ|2)(υn − U )
� = �t · υ + {z} · {ξ′} − q̂n�, (58)

�ρη(U − υn) − q̂n/θ� � 0. (59)

Eulerian equations for the 1D case follow trivially. Lagrangian
equations for the 1D case are obtained by defining Lagrangian
speed U0, deformation mapping F , and space-time continuous
reference mass density ρ0 to obey

U0 = F−1(U − υ ), F = ρ0/ρ. (60)

Given ρ0, υ, and U , F and U0 are well defined. Analogs of
(35)–(38) are then derived as, with tk → t1 = σ ,

ρ0U0�1/ρ� = −�υ�, ρ0U0�υ� = −�σ �, (61)

ρ0U0
�

u + 1
2υ

2
� = −�συ + {z}{ξ ′} − q̂�, (62)

ρ0U0�η� − �q̂/θ� � 0. (63)

Equations fully analogous to (39)–(41) can be derived sum-
marily with the obvious substitutions.

If invertibility and integrability of the second of (60) hold,
then a 1D deformation gradient F = ∂x/∂X and Lagrangian
coordinate X for the mixture exist whereby

Ḟ = (∂υ/∂x)F = ∂υ/∂X, (64)

X (x, t ) = χ−1(x, t ) =
∫ x

x0

F−1(x̃, t )dx̃. (65)

The analog of the displacement derivative of (42) for the entire
mixture is then

δt (�) = ∂t (�) + U∂ (�)/∂x = (�̇) + U0∂ (�)/∂X. (66)

Returning to the general 3D case, diffusion problems
are often analyzed using dimensionless measures of local
amounts of each constituent. Recall ρα is the local mass of
α per unit total spatial volume of mixture. The spatial volume
fraction nα is the ratio of volume occupied by α to that of the
mixture, while the “real” mass density ραR is the local mass
of α per unit spatial volume occupied by α (i.e., ραR is mass
density of the isolated, fully dense constituent). The spatial
mass concentration mα is the mass of α per total mass of the
mixture. Equations are

nα (x, t ) = ρα (x, t )

ραR (x, t )
,

∑
α

nα = 1, (67)

mα (x, t ) = ρα (x, t )

ρ(x, t )
,

∑
α

mα = 1. (68)
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At a reference t = t0 when all particles occupy positions
Xα , reference volume and mass fractions are nα0 (Xα ) =
ρα0 (Xα )/ραR0(Xα ) and mα

0 (Xα ) = ρα0 (Xα )/ρ0(Xα ).

III. CONSTITUTIVE THEORY

Thermodynamic identities are derived in Sec. III A by ap-
pealing to the local balance of energy and entropy inequality.
Pragmatic and thermodynamically admissible energy func-
tions, metric tensors, and kinetic relations are posited in
respective Secs. III B, III C, and III D. The comprehensive
model, and certain specializations used afterwards in Sec. IV,
are summarized in Sec. III E.

A. Thermodynamics

Helmholtz free energy per unit mass and entropy density
are of the following functional forms, each depending only on
state variables for its particular constituent α and not others β
when β �= α:

ψα = ψα
(
Fα, θα, {ξα}, {∇α

0 ξα
}
,Xα

)
, (69)

ηα = ηα
(
Fα, θα, {ξα}, {∇α

0 ξα
}
,Xα

)
. (70)

Partial stress consists of elastic σ̄α and viscous σ̂α parts:

σα = σ̄α
(
Fα, θα, {ξα}, {∇α

0 ξα
}
,Xα

)
+ σ̂α

(
Fα, θα, {ξα}, {∇α

0 ξα
}
,Dα

t Fα,Xα
)
. (71)

Relations (69)–(71) are justified as the standard for ideal
thermoelastic mixtures [37,50,90] with three additions. First,
internal state variables are added to represent dissipative
processes such as viscoelasticity and damage mechanisms
[5,91,92] and growth and remodeling [93,94]. Second, state
variable gradients are added to represent surface energies or
phase boundaries [31,32] and support derivation of Ginzburg-
Landau kinetics for these variables [49,77,80]. Last, viscous
stress [95] is added to address (e.g., Newtonian or another
admissible) viscosity, important in biologic fluids such as
blood [2].

Arguments in (2) and (3) connect at time t via [52,57]

{�α}(t ) = {�α ({ξα},Xα, x)}(t ). (72)

Thus, all dependence of response functions on metrics (g,Gα )
and states {�α} is implicitly included via arguments {ξα}.
Kinetic equations for heat flux, internal state, and interphase
mass, momentum, and energy exchange are more general,
allowing for dependence on all constituents β = 1, . . . ,N
including α = β and α �= β:

qα = qα
(
Fβ,∇Fβ, θβ,∇θβ, ξβ,∇β

0 ξβ,υβ, ρβ
)
, (73)

hα = hα
(
Fβ,∇Fβ, θβ,∇θβ, ξβ,∇β

0 ξβ,υβ, ρβ
)
, (74)

cα = cα
(
Fβ,∇Fβ, θβ,∇θβ, ξβ,∇β

0 ξβ,υβ, ρβ
)
, (75)

εα = εα
(
Fβ,∇Fβ, θβ,∇θβ, ξβ,∇β

0 ξβ,υβ, ρβ
)
, (76)

Dα
t {ξα} = Dα

t {ξα}(Fβ,∇Fβ, θβ,∇θβ, · · ·
· · · ξβ,∇β

0 ξβ,υβ, ρβ
)
. (77)

Notation {·} on ξα and admissible explicit dependence on Xα

for heterogeneous phases α are omitted in arguments of (73)–
(77) for brevity. Particular forms of (73)–(76) must satisfy
principles of spatial invariance for objective spatial vectors
qα and hα and scalars cα and εα . Evolution equations (77)
must also be objective. Invariance under rigid translation of
the mixture as a whole necessitates that dependence on ve-
locities υα is at most only on the N − 1 velocity differences
υ1 − υN , . . . ,υN−1 − υN . See Ref. [37]. Diffusion velocities
μα = μα (υβ, ρβ ) of (43) fulfill this requirement. Spatial in-
variance of (69) and (70) is obtained via dependence on Fα

through symmetric deformation tensor Cα:

Cα = (Fα )TFα, (Cα )K
J = (Gα )KI (Fα )i

I gi j (F
α ) j

J ; (78)

∂ψα/∂Fα = 2Fα∂ψα/∂Cα, Jα =
√

det Cα; (79)

Dα
t Cα = 2(Fα )TdαFα, 2dα = lα + (lα )T. (80)

The spatial deformation rate is dα , and Dα
t Cα is taken with

(Gα )IJ and gi j fixed with respect to t in (80).
Expanding Dα

t ψ using the chain rule on (69) and inserting
the result and (71) into (21) gives

∑
α

1

θα

{[
σ̄α (Fα )−T − 2ραFα ∂ψ

α

∂Cα

]
: Dα

t Fα

− ρα[ηα + ∂ψα/∂θα]Dα
t θ

α

+
[
{(Fα )−1ζα} − ρα

∂ψα

∂{∇0ξ
α}

]
:
{
Dα

t (∇0ξ
α )

}

+
[{

(Fα )−1 : ∇α
0 ζα

} − ρα
∂ψα

∂{ξα}
]

· {
Dα

t ξα
}

+σ̂α : dα − (qα · ∇θα )/θα + εα + cαθαηα
}

� 0. (81)

Identities from (6) and (8) have been used to obtain

∇ · ({ζα} · {
Dα

t ξα
}) = (∇ · {ζα}) · {

Dα
t ξα

}
+{(Fα )−1ζα} :

{
Dα

t

(∇α
0 ξα

)}
. (82)

From standard arguments [32,77,95,96] and (69)–(77), the
first three sets of terms in (81) should vanish for admissibility
under general thermodynamic processes, leading to the fol-
lowing constitutive equalities:

σ̄α = 2ραFα ∂ψ
α

∂Cα
(Fα )T, ηα = −∂ψα

∂θα
, (83)

{ζα} = ρα
{
Fα∂ψα/∂∇α

0 ξα
} = ρα

∂ψα

∂{∇ξα} , (84)

{πα} = ρα∂ψα/∂{ξα}, (85)

where (85) defines a conjugate force to internal state variables
or order parameters. Then (81) reduces to

∑
α

1

θα

[
({∇ · ζα} − {πα}) · {

Dα
t ξα

}
+ σ̂α : dα − (qα · ∇θα )/θα + εα + cαθαηα

]
� 0.

(86)
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Applying the Legendre transformation from (20) with

uα = uα
(
Fα, ηα, {ξα}, {∇α

0 ξα
}
,Xα

)
, (87)

θα = θα
(
Fα, ηα, {ξα}, {∇α

0 ξα
}
,Xα

)
, (88)

in conjunction with (83) and (84), gives

σ̄α = 2ραFα ∂uα

∂Cα
(Fα )T, θα = ∂uα

∂ηα
, (89)

{πα} = ρα
∂uα

∂{ξα} , {ζα} = ρα
∂uα

∂{∇ξα} . (90)

Define specific heat per unit mass at constant strain cαε , ther-
mal stress coefficients βα , and Grüneisen tensor γα:

cαε = θα∂ηα/∂θα = −θα ∂2ψα/∂ (θα )2, (91)

βα = ραcαε γ
α = −2ρα ∂2ψα/∂θα∂Cα. (92)

Define the intrinsic dissipation for constituent α:

Dα = ({∇ · ζα} − {πα}) · {
Dα

t ξα
} + σ̂α : dα. (93)

Expand the rate of ηα using (70), (83), (91), and (92):

ραθαDα
t η

α = ραcαε Dα
t θ

α + 1
2θ

αβα : Dα
t Cα

− ραθα
[
(∂2ψ/∂θα∂{ξα}) · {

Dα
t ξα

}
+ (∂2ψ/∂θα∂{∇ξα}) :

{∇(
Dα

t ξα
)}]

. (94)

From (17), time differentiation of (20), and (83) and (84):

ραθαDα
t η

α = Dα − ∇ · qα + ραrα + εα. (95)

Temperature rates then are, combining (94) and (95),

ραcαε Dα
t θ

α =Dα − 1
2θ

αβα : Dα
t Cα

+ ραθα
[
(∂2ψ/∂θα∂{ξα}) · {

Dα
t ξα

}
+ (∂2ψ/∂θα∂{∇ξα}) :

{∇(
Dα

t ξα
)}]

− ∇ · qα + ραrα + εα. (96)

An alternative formulation using a strain measure independent
of non-Euclidean parts of Finsler metric tensors is discussed in
Appendix B. Though not needed for 1D problems of Sec. IV,
this construction has found utility in applications on crystals
[57,62] and biologic tissue [52].

B. Energy functions

Internal state variables {ξα} consist of three sets: configu-
rational variables associated with viscoelastic processes {�α},
damage variables associated with degradation processes {Dα},
and electrochemical activation (e.g., muscle contraction) vari-
ables {�α} [16,20,23,52]:

{ξα}(x, t ) = ({�α}, {Dα}, {�α})(x, t ). (97)

In the present work, as in phase-field and related theories
[23,52], free and internal energy functions can depend on
spatial gradients of damage variables, which are viewed as
order parameters, but not on spatial gradients of viscoelastic
and tissue activation variables. The present formulation is sep-
arate order parameters for degradation of matrix and each fiber
family. Prior models [22,23] used but a single order parameter
for the whole solid. Here, since strain energies of matrix

and fibers are separately resolved, and since strain energies
are driving forces for fracture, physics suggest distinct order
parameters be assigned for degradation of matrix and fibers.
This enables delineation of mechanisms that can be compared
with experimental observation. In addition, the current ap-
proach is realistic in the sense that unstretched and unsheared
fibers should not witness any ruptures. Use of distinct order
parameters for fiber families is similar to assigning separate
parameters for fractures on discrete cleavage planes in crystal
models [80].

Denote by ςαV and ςαS degradation functions associated with
loss of strength due to changes in bulk and deviatoric strain
energies, respectively. These scalar functions obey

ςαV = ςαV ({Dα},Cα ) ∈ [0, 1],

ςαS = ςαS ({Dα}) ∈ [0, 1], (98)

∂ςαV /∂Cα ({Dα},Cα ) = 0 ∀ Cα �= 1. (99)

A degradation operator for fibrous energy contributions with
similar properties is ςαF ({Dα}).

Let �α = ραR0ψ
α and U α = ραR0uα be free and internal

energies per unit reference volume of individual phases. Prag-
matic functional forms consist of the following sums:

�α
(
Cα, θα, {ξα}, {∇α

0 Dα
})

= ςαV ({Dα},Cα )�α
V (Jα, θα )

+ ςαS ({Dα})
[
�α

S (Cα ) +�α
� (Cα, {�α})

]
+ ςαF ({Dα}) ◦ [

�α
F (Cα ) +�α

�(Cα, {�α})
]

+�α
A (Cα, {�α}) +�α

θ (θα )

+�α
σ (Jα ) +�α

D

({ξα}, {∇α
0 Dα

})
, (100)

U α
(
Cα, ηα, {ξα}, {∇α

0 Dα
})

= ςαV ({Dα},Cα )U α
V (Jα, ηα )

+ ςαS ({Dα})
[
U α

S (Cα ) + U α
� (Cα, {�α})

]
+ ςαF ({Dα}) ◦ [

U α
F (Cα ) + U α

�(Cα, {�α})
]

+ U α
A (Cα, {�α}) + U α

θ (ηα )

+ U α
σ (Jα ) + U α

D

({ξα}, {∇α
0 Dα

})
. (101)

In �α , volumetric equilibrium free energy for the entire con-
stituent α is �α

V , including isotropic thermoelastic coupling.
Deviatoric equilibrium energy of the isotropic matrix is �α

S .
Viscoelastic configurational energy of the isotropic matrix
is �α

� . Anisotropic deviatoric equilibrium free energy from
fibrous microstructures is �α

F . Configurational energy, often
but not always anisotropic, from fibers is �α

�. Energy from
fiber activation is �α

A . Thermal energy of specific heat is �α
θ .

Energy from a nonzero reference pressure is �α
σ . Surface

energy from fractures, tears, and other damage is contained
in �α

D.
Fully analogous descriptors apply to internal energy con-

tributions in U α . Forms (100) and (101) are not the most
mathematically and physically general, but they are sufficient
for soft tissue materials of present interest given the scope
of available data on their properties and response. A few, or
even most, terms vanish for certain classes of materials (e.g.,
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isotropic solids, viscoelastic fluids, gas phases, and so forth).
All functions in (100) and (101) in materials with heteroge-
neous properties can further depend explicitly on Xα , omitted
in the arguments for brevity. Dependence of state-dependent
metric tensors is implicit, for example in Jα and scalar func-
tions of certain vectors and tensors.

1. Ideal gas equation of state

For gaseous fluids such as air in the lung, an ideal gas
model [50] is sufficient. For the ideal gas, ψα = (�α

V +
�α
θ )/ραR0 and uα = (U α

V + U α
θ )/ραR0. At a reference state, the

following conditions hold: Jα = 1, θα = θα0 , ηα = ηα0 , ρα0 =
nα0ρ

α
R0, pαV = pα0 = nα0 pαR0, and cαε = cαε0. Quantities with zero

subscripts are constants; pαV = − 1
3 trσ̄α is the partial inviscid

pressure. From the identity ∂Jα/∂Cα = 1
2 Jα (Cα )−1, the stress

contribution is spherical: σ̄α = −pαV 1. The ideal gas constant
is Rα . Equation of state (EOS) and internal energy function
are

pαV = ραRαθα, uα = cαε0θ
α. (102)

From (102) and ψα = uα + θα (∂ψα/∂θα ), it follows that

ψα (Jα, θα ) = −Rαθα ln Jα − cαε0θ
α
[

ln
(
θα/θα0

) − 1
]
,

(103)

uα (Jα, ηα ) = cαε0θ
α
0 (Jα )−γ

α
0 exp

(
ηα/cαε0

)
, (104)

noting ηα0 = 0 and γ α0 = Rα/cαε0. Thermal stress tensor is
βα = ραRα (Cα )−1 in (92), and cαε = cαε0 in (91). The ideal
gas model is justified as standard for shock compression of air
[50]. Other models [41,97] could be substituted if consistent
with (100) and (101).

2. Condensed matter EOS

For solid and liquid tissue phases, an EOS combining the
third-order logarithmic form used for high-pressure physics
[98,99] with an exponential form for tissue mechanics [100] is
sufficiently general for the present applications. This model is
chosen for its ability to capture bulk stiffening at high pressure
as well as tensile stiffening observed in dilatation of some soft
tissues [2,100]. It requires relatively few parameters, and its
accuracy for depicting shock Hugoniot data for water, blood,
and muscle is demonstrated in Sec. IV A.

Thermoelastic coupling is linear and isotropic with con-
stant volumetric expansion coefficient Aα , and specific heat
cαε is constant. Reference temperature is θα0 , and reference
pressure is pαR0. The reference isothermal bulk modulus is Bα

θ ,
and the pressure derivative of the isothermal bulk modulus in
the reference state is Bα

θ p. Analogously, the isentropic bulk
modulus and pressure derivative are Bα

η and Bα
ηp. Denote a

constant controlling exponential stiffening by kαV . Free ener-
gies per unit initial volume of constituent α are

�α
V = Bα

θ

2

[
exp

{
kαV (ln Jα )2

} − 1

kαV
−

(
Bα
θ p − 2

)
(ln Jα )3

3

]

− AαBα
θ

(
θα − θα0

)
ln Jα, �α

σ = −pαR0 ln Jα, (105)

�α
θ = −ραR0cαε

[
θα ln

(
θα/θα0

) − (
θα − θα0

)]
. (106)

The contribution to stress σ̄α from �α
V and �α

σ is spherical,
with Cauchy pressure

pαV = − ρα

ραR0

∂
(
�α

V +�α
σ

)
∂ ln Jα

= − ρα

ραR0

Bα
θ ln Jα

[
exp

{
kαV (ln Jα )2} − 1

2

(
Bα
θ p − 2

)
ln Jα

]

+ ρα

ραR0

AαBα
θ

(
θα − θα0

) + ρα

ραR0

pαR0. (107)

From (15), if cα = ρα∂t ln
√

g, ∂t ln
√

g = Dα
t ln

√
Gα , and

ρα0 = ρα0 (Xα ), then ρα0 = ραJα ⇒ ρα/ραR0 = nα0/Jα .
The thermal stress tensor and Grüneisen tensor are

βα = ρα

ραR0

AαBα
θ (Cα )−1, γα = AαBα

θ

ραR0cαε
(Cα )−1. (108)

The scalar Grüneisen constant is γ α0 = AαBα
θ /(ραR0cαε ).

Internal energy complementary to (105) and (106) is

U α
V = Bα

η

2

[
exp

{
kαV (ln Jα )2

} − 1

kαV
−

(
Bα
ηp − 2

)
(ln Jα )3

3

]

− ραR0θ
α
0 γ

α
0 η

α ln Jα, U α
σ = −pαR0 ln Jα, (109)

U α
θ = ραR0θ

α
0 η

α
[
1 + ηα/

(
2cαε

)]
. (110)

Pressure and temperature from (109) and (110) are

pαV = − ρα

ραR0

∂
(
U α

V + U α
σ

)
∂ ln Jα

= − ρα

ραR0

Bα
η ln Jα

[
exp

{
kαV (ln Jα )2

} − 1

2

(
Bα
ηp − 2

)
ln Jα

]

+ ραθα0 γ
α
0 η

α + ρα pαR0/ρ
α
R0, (111)

θα = 1

ραR0

∂
(
U α

V + U α
θ

)
∂ηα

= θα0

[
1 + ηα

cαε
− γ α0 ln Jα

]
. (112)

Bulk moduli Bα
θ and Bα

η are non-negative, and kαV should be
non-negative for stiffening under large strain typical of soft
tissues, compressive or tensile. If Bα

θ p > 2, then the material
stiffens in compression and softens in tension, and vice versa
for Bα

θ p < 2. Similar statements hold for Bα
ηp. Energy functions

(105) and (109) are not (poly)convex in Jα . Polyconvexity
is appealing for existence of unique solutions to boundary
value problems [101] but is not essential. If ςαV < 1, then pαV
contributions from�α

V and U α
V (i.e., all terms except rightmost

in (107) and (111) with pαR0) require multiplication by ςαV , as
do βα , γα , and γ α0 .

3. Deviatoric matrix equilibrium

Deviatoric deformation gradient and deformation tensor
are, with f = f (C̃α ) a generic differentiable function of its
argument,

F̃α = (Jα )−1/3Fα, C̃α = (Jα )−2/3Cα, (113)

∂ f

∂Cα
= (Jα )−2/3

[
∂ f

∂C̃α
− 1

3

(
∂ f

∂C̃α
: Cα

)
(Cα )−1

]
. (114)

035001-9



J. D. CLAYTON PHYSICAL REVIEW E 110, 035001 (2024)

Let μα
S � 0 be a shear modulus. Energy is [101]

�α
S = U α

S = 1
2μ

α
S (tr C̃α − 3). (115)

From (114), the contribution of (115) to Cauchy stress is

σαS = 2
ρα

ραR0

Fα ∂�
α
S

∂Cα
(Fα )T = 2

ρα

ραR0

Fα ∂U α
S

∂Cα
(Fα )T

= ρα

ραR0

μα
S

[
B̃α − 1

3
(trB̃α )1

]
, B̃α = F̃α (F̃α )T. (116)

This contribution is linear in spatial deformation tensor B̃α ,
traceless, and ultimately scaled by ςαS . Further nonlinearity
can be furnished by �α

F and U α
F . Function (115) is polyconvex

[101] and isotropic. Many strain energy functions have been
proposed for soft-tissue elasticity [14]. The present form (115)
is used because it requires only one parameter, is simple to
implement, and is widely used [101]. It is also compatible
with (69), (100), and the fiber elastic model that follows next.

4. Fiber equilibrium

Let index k denote a fiber family of reference alignment
by unit vector ιαk . Let καk ∈ [0, 1

3 ] be dispersion constants.
Structure tensors [17] are

Hα
k = καk 1 + (

1 − 3καk
)
ιαk ⊗ ιαk . (117)

Strain energy contributions are of functional forms

�α
F = �α

F

(
C̃α,Hα

k (Xα )
) = U α

F

(
C̃α,Hα

k (Xα )
)
, (118)

with Hα
k time independent at Xα (i.e., not transient state

variables). Depending on the number of fiber families k and
their orientations, different scalar invariants entering (118)
are possible. For the current presentation, one invariant per
fiber family is sufficient: Iαk = C̃α : Hα

k . The particular form
of (118) is polyconvex [8,13,52,101]:

�α
F =

∑
k

�α
Fk

=
∑

k

μα
k

4kαk

{
exp

[
kαk

(
Iαk − 1

)2] − 1
}
H

(
Iαk − 1

)
. (119)

A fiber modulus and stiffening coefficient are μα
k � 0 and

kαk > 0. Optional right-continuous Heaviside function is H (·);
this disables fiber stiffness for buckling in compression along
ιαk . Contributions to stress are traceless:

σαF = 2
ρα

ραR0

Fα ∂�
α
F

∂Cα
(Fα )T = 2

ρα

ραR0

Fα ∂U α
F

∂Cα
(Fα )T

= ρα

ραR0

∑
k

μα
k

(
Iαk − 1

)
exp

[
kαk

(
Iαk − 1

)2]
H

(
Iαk − 1

)
h̃αk ,

h̃αk = F̃αHα
k (F̃α )T − 1

3
tr
[
F̃αHα

k (F̃α )T]
1. (120)

Family k is isotropic as καk → 1
3 . Fiber compressibility is

encompassed by the condensed matter EOS for phase α

rather than distinct energetic terms. Stress contributions from
(120) are affected by ςαF if fibers are damaged. Many other
anisotropic elasticity models for soft tissues exist [14]. The
framework of (117)–(120) is implemented here because it
is widely used (e.g., based on seminal works of Holzapfel,

Ogden, and Gasser [8,13,17]) and can account for energies
and anisotropies induced by any number of fiber families of
arbitrary orientations.

5. Matrix viscoelasticity

The viscoelastic formulation combines features from prior
works [91,92,100,102,103] in a thermodynamically consistent
manner. Let {�α} → {�α

V l ,�
α
Sm,�

α
�k,n} be internal strainlike

configurational variables for constituent α. Index l spans a
set of discrete relaxation time constants ταV l = ταV 1, . . . for
viscoelastic relaxation processes associated with volumetric
deformation of the matrix. Index m spans times ταSm associated
with deviatoric (shear) deformation of the matrix. Index n
spans times τα�k,n associated with fiber family k discussed in
the next subsection. Internal stresses {Qα

V l ,Qα
Sm} conjugate to

the matrix internal strains, in coordinates referred to Mα , obey
[92,102]

Qα
V l = − ∂�α

�

∂�α
V l

= 2
∂�α

V l

∂Cα
, Qα

Sm = − ∂�α
�

∂�α
Sm

= 2
∂�α

Sm

∂Cα
,

(121)

�α
� = U α

� =
∑

l

�α
V l

(
�α

V l ,Cα
) +

∑
m

�α
Sm

(
�α

Sm,Cα
)

=
∑

l

∫
1

2
Qα

V l : dCα +
∑

m

∫
1

2
Qα

Sm : dCα. (122)

Indefinite integrals (122) are not needed explicitly. Evolution
equations for internal stresses are

Dα
t Qα

V l + Qα
V l/τ

α
V l = 2Dα

t

(
∂�̂α

V l/∂Cα
)
, (123)

Dα
t Qα

Sm + Qα
Sm/τ

α
Sm = 2Dα

t

(
∂�̂α

Sm/∂Cα
)
, (124)

�̂α
V l = 1

2β
α
V lB

α
θ (ln Jα )2, (125)

�̂α
Sm = 1

2β
α
Smμ

α
S (tr C̃α − 3). (126)

Dimensionless factors are βαV l � 0, βαSm � 0. Initial condi-
tions and convolution solutions to (123) and (124) are

Qα
V l0 = 2∂�̂α

V l/∂Cα, Qα
Sm0 = 2∂�̂α

Sm/∂Cα, (127)

Qα
V l (t ) = Qα

V l0 exp
[−t/ταV l

]
+

∫ t

0+
exp

[−(t − s)/ταV l

]
Dα

s

(
2∂�̂α

V l/∂Cα
)
ds,

(128)

Qα
Sm(t ) = Qα

Sm0 exp
[−t/ταSm

]
+

∫ t

0+
exp

[−(t − s)/ταSm

]
Dα

s

(
2∂�̂α

Sm/∂Cα
)
ds.

(129)

Cauchy stress contributions are sums over l,m:

σα� = 2
ρα

ραR0

Fα ∂�
α
�

∂Cα
(Fα )T = 2

ρα

ραR0

Fα ∂U α
�

∂Cα
(Fα )T

= ρα

ραR0

∑
l

FαQα
V l (F

α )T + ρα

ραR0

∑
m

FαQα
Sm(Fα )T. (130)
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As t/ταV l → 0 and t/ταSm → 0, σα� in (130) sums to the instan-
taneous (glassy) viscoelastic stresses

2
ρα

ραR0

∑
l

Fα ∂�̂
α
V l

∂Cα
(Fα )T + 2

ρα

ραR0

∑
m

Fα ∂�̂
α
Sm

∂Cα
(Fα )T

= ρα

ραR0

∑
l

βαV lB
α
θ (ln Jα )1

+ ρα

ραR0

∑
m

βαSmμ
α
S

[
B̃α − 1

3
(trB̃α )1

]
. (131)

As t/ταVl → ∞ and t/ταSm → ∞, Qα
V l → 0 and Qα

Sm → 0
so that σα� → 0 in (130) for relaxed equilibrium response.
Numerous viscoelastic theories for soft materials exist [2,5].
The framework of (121)–(131) is used here because its inter-
nal variable formalism is compatible with (69), (77), (100),
and (115). Algorithms for updating viscoelastic stress con-
tributions are robust and efficient [92] and have been used
elsewhere for soft tissues [16].

6. Fiber viscoelasticity

Dissipative response of fiber families k = 1, . . . is dictated
by internal variables �α

�k,n each with n = 1, . . . relaxation
times τα�k,n and conjugate internal stresses Qα

�k,n. Internal
stresses and energies are

Qα
�k,n = −∂�α

�/∂�
α
�k,n = 2∂�α

�k,n/∂Cα, (132)

�α
� = U α

� =
∑

k

�α
�k =

∑
k

∑
n

�α
�k,n

(
�α
�k,n,Cα

)

=
∑

k

∑
n

∫
1

2
Qα
�k,n : dCα. (133)

Evolution equations and stored viscoelastic energies are

Dα
t Qα

�k,n + Qα
�k,n

/
τα�k,n = 2Dα

t

(
∂�̂α

�k,n/∂Cα
)
, (134)

�̂α
�k,n = βα�k,nμ

α
k

4kαk

{
exp

[
kαk

(
Iαk − 1

)2] − 1
}
H

(
Iαk − 1

)
,

(135)

with βα�k,n � 0. Initial conditions and solutions (convolution
integrals), followed by Cauchy stress terms, are

Qα
�k,n0 = 2∂�̂α

�k,n/∂Cα, (136)

Qα
�k,n(t ) = Qα

�k,n0 exp
[−t/τα�k,n

]
+

∫ t

0+
exp

[−(t − s)/τα�k,n

]
Dα

s

(
2∂�̂α

�k,n/∂Cα
)
ds,

(137)

σα� = 2
ρα

ραR0

Fα ∂�
α
�

∂Cα
(Fα )T = 2

ρα

ραR0

Fα ∂U α
�

∂Cα
(Fα )T

= ρα

ραR0

∑
k

∑
n

FαQα
�k,n(Fα )T. (138)

As t/τα�k,n → 0, σα� in (138) becomes the glassy stress

2
ρα

ραR0

∑
k

∑
n

Fα
∂�̂α

�k,n

∂Cα
(Fα )T

= ρα

ραR0

∑
k

∑
n

{
βα�k,nμ

α
k

(
Iαk − 1

)
exp

[
kαk

(
Iαk − 1

)2]
× H

(
Iαk − 1

)
h̃αk

}
. (139)

As t/τα�k,n → ∞, Qα
�k,n → 0 leading to σα� → 0 in (138).

This viscoelastic fiber model of Holzapfel et al. [16,92,102]
is used for like reasons as and consistency with the prior
framework for the soft-tissue matrix.

7. Active tension

Electrochemistry of soft tissue cellular activation [104]
is beyond the present scope. A phenomenological ap-
proach is used instead, generalizing other continuum models
[20,105,106]. Let {�α} → {�α

k }(Xα, t ) be a set of scalar inter-
nal variables associated with potentially active fiber families
k in phase α. These variables can include internal strains in
contractile elements and time-dependent switching functions.
Define the fiber orientation tensors Hα

k as in (117). In many
models, cells are fully aligned such that k = 1 and κα1 = 0
[20,105], but this is inessential [106]. Stretch in the fiber
direction is λαk = √

Iαk . A generic energy function is

�α
A = U α

A =
∑

k

�α
Ak =

∑
k

[
�α

k

(
λαk ,

{
�α

k

}) + χα
k

({
�α

k

})]
.

(140)

Strain energy functions �α
k furnish active stress terms

σαA = 2
ρα

ραR0

Fα ∂�
α
A

∂Cα
(Fα )T = ρα

ραR0

∑
k

1

λαk

∂�α
k

∂λαk
h̃αk . (141)

Energy functions χα
k ensure non-negative net dissipation.

Stresses σαA should vanish for passive conditions. General
form (140) is sufficient to embody successful models of
muscle contraction [20,105,106]. It is physically justified by
coupling of (muscle) fiber stretch to activation energy and
active stress. For example, (140) and (141) do not involve
deformation of the matrix since the matrix is deemed a passive
element of muscle [105,106].

8. Damage

Internal variables {Dα} → {D̄α,Dα
k }. Scalar damage mea-

sures in the isotropic matrix or fluid are D̄α ∈ [0, 1], and
Dα

k ∈ [0, 1] are scalar functions for each fiber family k. All
are akin to order parameters in phase-field fracture theory
[23,31]. Degradation functions in (98)–(101) are, with ϑ̄α ∈
[0,∞), ϑα

k ∈ [0,∞) constants,

ςαV = [1 − D̄αH (ln Jα )]ϑ̄
α

, ςαS = (1 − D̄α )ϑ̄
α

, (142)

ςαF ◦ (·) = ςαF ◦
∑

k

(·)k =
∑

k

ςαFk (·)k =
∑

k

(
1 − Dα

k

)ϑαk (·)k,

ςαFk = (
1 − Dα

k

)ϑαk . (143)

The Heaviside function in ςαV prevents degradation in com-
pression so the bulk modulus is maintained [31,80]. Operator
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ςαF in (100) and (101) is applied to a sum of energetic contri-
butions (i.e., hyperelastic and viscoelastic) over all families k
via (143). Partial stress less viscous stress of constituent α is
σ̄α = σα − σ̂α . For an ideal gas, D̄α = ϑ̄α = 0 → ςαV = 1, so
σ̄α = −ραRαθα1 by (102). For solid and liquid α, applying
(100), this stress is the sum of (107), (116), (120), (130),
(138), and (141) scaled by one or more functions in (142) and
(143):

σ̄α = ρα

ραR0

[1 − D̄αH (ln Jα )]ϑ̄
α

Bα
θ

×
{

ln Jα
[

exp
{
kαV (ln Jα )2

} − 1

2

(
Bα
θ p − 2

)
ln Jα

]

− Aα
(
θα − θα0

)}
1 − (

ρα/ραR0

)
pαR01

+ ρα

ραR0

(1 − D̄α )ϑ̄
α

μα
S

[
B̃α − 1

3
(trB̃α )1

]

+ ρα

ραR0

∑
k

(
1 − Dα

k

)ϑαk μα
k

(
Iαk − 1

)

× exp
[
kαk

(
Iαk − 1

)2]
H

(
Iαk − 1

)
h̃αk

+ ρα

ραR0

(1 − D̄α )ϑ̄
α
∑

l

FαQα
V l (F

α )T

+ ρα

ραR0

(1 − D̄α )ϑ̄
α
∑

m

FαQα
Sm(Fα )T

+ ρα

ραR0

∑
k

[(
1 − Dα

k

)ϑαk ∑
n

FαQα
�k,n(Fα )T

]

+ ρα

ραR0

∑
k

1

λαk

∂�α
k

∂λαk
h̃αk . (144)

To preclude damage induced by normal muscle contraction,
the final term is decoupled from {Dα} consistently with (100)
and (101). If (109) is used instead of (105), then spheri-
cal terms in (144) should appeal to (111) rather than (107).
Equation (144) is compatible with the second law since it
follows from (83), where the latter is deduced from the local
dissipation inequality (81) using the “Coleman-Noll-Gurtin”
procedure [95,96].

Let �α
D = U α

D comprise cohesive and surface energies of
fracture per unit referential volume scaled by contributions
of dimensionless Finsler-type metric Ĝα in (B2) [52,57],
where Ĝα = Ĝα ({ξα},Xα, x) via (72). Extending usual single-
parameter phase-field theories, quadratic forms for matrix
[ ¯(·)] and fiber [(·)k] contributions are

�̂α
D = �α

D/
√

Ĝα = Ēα
C |D̄α|2 + ϒ̄α l̄αR

∣∣∇α
0 D̄α

∣∣2

+
∑

k

[
Eα

Ck

∣∣Dα
k

∣∣2 + ϒα
k lαRk

∣∣∇α
0 Dα

k

∣∣2]
. (145)

In (145), cohesive energies per unit volume are Ēα
C and Eα

Ck ,
surface energies are ϒ̄α and ϒα

k , and gradient regularization
lengths are l̄αR = ᾱα l̄α and lαRk = ααk lαk , all non-negative con-
stants. For solids, typically Ēα

C = ϒ̄α/l̄α and Eα
Ck = ϒα

k /lαk .
Dimensionless factors ᾱα ∈ [0,∞) and ααk ∈ [0,∞) allow

independent cohesive energies and gradient regularization
lengths [80]. For cavitation of a fluid, gradient terms can be
dropped [33] (i.e., ᾱα → 0); cohesion energy Ēα

C will capture
fracture of the fluid for tensile pressure. Isotropic surface
energies are assumed for gradient terms of (145). These could
be extended to anisotropic contributions [23] if data exist.
However, {Dα

k } furnish stress-damage anisotropy regardless.
When Ĝα → 1, corresponding to a classical Euclidean

material metric, (145) is justified as a standard model of
phase-field fracture mechanics [31,32,80]. In the classical
case (ᾱα → 1), only two parameters are needed for matrix
and each fiber family, with physical meaning (i.e., cohesive
energy and surface energy). Noteworthy is scaling of energy
by |Ĝα|1/2. Physically, as justified by studies of hard [57,63]
and soft [52] solids, this scaling accounts for increases in
internal free surface area of the material with microstructure
as cavities enlarge or cracks slide and open. This in turn in-
creases the material’s resistance to fracture. Given the metric
tensors of Sec. III C, Ĝα � 1 for the physically rational case
of positive remnant strain. The increase in toughness due to
remnant strain or collagen fiber sliding and remodeling [10] is
akin to toughening of an elastic-plastic solid from plasticity at
a crack tip.

C. Finsler metrics

Coordinate forms of metric splits in (B1) and (B2) are

g(x, t ) = ḡik (x) ĝk
j ({ξα (x, t )})gi ⊗ g j, (146)

Gα (Xα, t ) = (Ḡα )IK (Xα )(Ĝα )K
J ({�α (Xα, t )})(Gα )I ⊗ (Gα )J .

(147)

Canonical transformations [52,57,63] between representa-
tions of state variables on m and Mα are used for (72):

{�α (Xα, t )} = {ξα (x, t )} ◦ χα (Xα, t ). (148)

Though other relationships are admissible, the analogous
transformation law [52] between components of Ĝα and ĝ is
prescribed here, with δi

J Kronecker’s delta symbols:

(Ĝα )I
J (Xα, t ) = δI

i δ
j
J ĝi

j (χ
α (Xα, t ), t ). (149)

Only {ξα} and ĝi
j ({ξα}) are defined constitutively, with (148)

and (149) yielding {�α} and (Ĝα )I
J ({�α}), or vice versa if

referential versions are defined instead.
Dependence of ĝ on {ξα} is henceforth restricted to

dependence on damage parameters ({D̄α}, {Dα
k }); (148) is

D̄α (Xα, t ) = D̄α (χα (Xα, t ), t ) ◦ χαt and so on for {Dα
k }. If

the geometric framework is extended to describe biologic
growth [54,55] and remodeling [107], then {ξα} can be ex-
panded with internal state variable(s) associated with such
processes, for which kinetics of (77) are needed. For theories
like Refs. [54,55], Ĝα should depend on some additional (e.g.,
growth) function(s), ĝi

j → δi
j , but (149) is not enforced, so m

is Euclidean but Mα need not be.
In the current application, as tears and commensurate

fiber rearrangements arise in constituents of the mixture, the
body manifold can expand and shear [52]. In applications of
Sec. IV, the present specialization is restricted to a mixture
having a single solid constituent. Fluids are devoid of mi-
crostructure that would affect metric tensors; any effects of
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fluid cavitation, irrelevant in later calculations, are omitted.
Metric forms can be expanded with additional products to al-
low for contributions from more constituents as shown below.
Mixed-variant tensor ĝ is a product of matrix and fiber terms:

ĝi
j

({D̄α}, {Dα
k

}) = γ̄ i
k ({D̄α})γ̃ k

j

({
Dα

k

})
. (150)

Contributions from isotropic matrix damage {D̄α} in γ̄ i
j are

assumed spherical (e.g., Weyl-type scaling [56]), measured by
determinants γ̄ α = γ̄ α (D̄α ). Spherical contributions of phases
α = 1, . . . ,N are merged multiplicatively in ĝ since their
sequence is irrelevant. Forms are

γ̄ i
j = δi

j

∏
α

(γ̄ α )1/3, γ̄ α = exp

[
2nα0 κ̄

α

r̄α
(D̄α )r̄α

]
. (151)

Recall nα0 (Xα ) ∈ [0, 1] is a reference volume fraction of phase
α, and r̄α > 0 and κ̄α are constants, the latter positive for
dilatant damage. Remnant volumetric strain [52] at D̄α = 1
is the ratio of constants ε̄α = nα0 κ̄

α/r̄α .
Fiber contributions from constituents α and families k

are merged additively into ĝ since these terms are gener-
ally anisotropic [52,57]. Defining (Hα

k )i
j = δi

Iδ
J
j (Hα

k )I
J with

(Hα
k )I

J = καk δ
I
J + (1 − 3καk )(ιαk )I (ιαk )J from (117),

γ̃ i
j = δi

j +
∑
α

∑
k

(
Hα

k

)i

j

{
exp

[
2nα0 κ̃

α
k

r̃αk

(
Dα

k

)r̃αk

]
− 1

}
.

(152)

Constants r̃αk > 0 and κ̃αk measure the logarithmic remnant
strain contributions ε̃αk = nα0 κ̃

α
k /r̃αk at Dα

k = 1.
Noting Ĝα = det Ĝα = det ĝ = ĝ are related through

(149), derivatives in conjugate forces (165) and (170) are
found from (151) and (152) as

∂ (ln
√

Ĝα )/∂D̄α = nα0 κ̄
α (D̄α )r̄α−1, (153)

∂ (ln
√

Ĝα )

∂Dα
k

= exp

[
2nα0 κ̃

α
k

r̃αk

(
Dα

k

)r̃αk

]

× (γ̃−1)i
j

(
Hα

k

) j

i
nα0 κ̃

α
k

(
Dα

k

)r̃αk −1
. (154)

Values r̄α ∈ (0, 1) and r̃αk ∈ (0, 1) produce nonsingular ĝ and
admit solutions to some equilibrium problems [52]. However,
these ranges can result in singularities at D̄α = 0 and Dα

k = 0
in (153) and (154). Such singularities can be avoided by
choosing r̄α � 1 and r̃αk � 1. Stronger conditions r̄α > 1 and
r̃αk > 1 usefully ensure (153), (154) vanish at (e.g., initial)
states having D̄α = 0, Dα

k = 0. Partitions in (146) and (147)
and exponential forms in (151) and (152) are chosen based on
successful use in prior work [52,54]. The latter are convenient
for deriving analytical solutions to problems since Christoffel
symbols (i.e., derivatives) are of relatively simple form. Only a
few parameters are required to fit data [52], physically related
to measurable remnant strains in the case of degradation.

D. Kinetics

1. Viscous stress

Isotropic Newtonian behavior is usually adequate for each
constituent α, with B̂α (θα ) � 0 and μ̂α (θα ) � 0 possibly

temperature-dependent bulk and shear viscosities. Viscous
stresses and dissipation are

σ̂α = nα0
[
B̂α − 2

3 μ̂
α
]
tr(dα )1 + 2nα0 μ̂

αdα, (155)

D̂α = σ̂α : dα = nα0 B̂α|tr(dα )|2

+ 2nα0 μ̂
α
∣∣dα − 1

3 tr(dα )1
∣∣2 � 0. (156)

Viscous pressure and shear are p̂α = −nα0 B̂α∇ · υα and σ̂αS ,
whereby σ̂α = −p̂α1 + σ̂αS . Relations (155) and (156) are
standard, simple models used for relevant viscous fluids in-
cluding air, water, and blood plasma [2,41,108], requiring
only two measurable parameters. Another viscosity model
obeying (71) and D̂α � 0 could be used (e.g., for whole
blood) if justified by rheology [2].

2. Viscoelasticity

Viscoelastic internal state variables are the subset of {ξα}
consisting of {�α

V l ,�
α
Sm,�

α
�k,n}. Conjugate forces entering

(93) are a subset of {πα}:

πα
V l = −ςαS

ρα

ραR0

Qα
V l , πα

Sm = −ςαS
ρα

ραR0

Qα
Sm,

πα
�k,n = −ςαFk

ρα

ραR0

Qα
�k,n. (157)

Kinetic laws for internal variables [91,92,100] are

Dα
t �α

V l = Qα
V l

βαV lB
α
θ τ

α
V l

, Dα
t �α

Sm = Qα
Sm

βαSmμ
α
Sτ

α
Sm

,

Dα
t �α

�k,n = Qα
�k,n

βα
�k,nμ

α
k τ

α
�k,n

. (158)

Dissipation from viscoelasticity is non-negative in (93):

Dα
� = ρα

ραR0

∑
l

ςαS Qα
V l : Qα

V l

βαV lB
α
θ τ

α
V l

+ ρα

ραR0

∑
m

ςαS Qα
Sm : Qα

Sm

βαSmμ
α
Sτ

α
Sm

+ ρα

ραR0

∑
k

∑
n

ςαFkQα
�k,n : Qα

�k,n

βα
�k,nμ

α
k τ

α
�k,n

� 0. (159)

Initial conditions for state variables are �α
V l0 = 0, �α

Sm =
0, and �α

�k,n = 0. For energies, �α
V l (0,Cα ) = �̂α

V l (C
α ),

�α
Sm(0,Cα ) = �̂α

Sm(Cα ), �α
�k,n(0,Cα ) = �̂α

�k,n(Cα ). Config-
urational energies are integrated over time as

�α
� =

∑
l

[
�̂α

V l −
∫ t

0
Qα

V l : Dα
s �α

V l ds

]

+
∑

m

[
�̂α

Sm −
∫ t

0
Qα

Sm : Dα
s �α

Sm ds

]
, (160)

�α
� =

∑
k

∑
n

[
�̂α
�k,n −

∫ t

0
Qα
�k,n : Dα

s �α
�k,nds

]
. (161)

Viscoelastic kinetics are consistent with (121)–(139) and
Refs. [91,92,100]. This theory is further justified by its need
for only two parameters for each mode (·)αk,n: glassy factor β
and relaxation time τ . In Sec. IV B, this framework depicts
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compression and tension data well on liver and muscle across
a wide range of loading rates.

3. Active tension

Internal state variables in {ξα} are the scalar functions {�α
k }

with k the fiber family number. Kinetic equations with initial
conditions are imposed directly [20,105,106] rather than by
more sophisticated electrochemical physics [104] outside the
present scope:

Dα
t

{
Dα

t �
α
k

} = {
Dα

t �
α
k

}
(Xα, t ),{

�α
k

}
(Xα, 0) = {

�α
k0

}
(Xα ). (162)

Evolution equations (162) should implicitly be affected by
local states; for example, the history of fiber damage {Dα

k },
if severe, should limit maximum contractile stress. Conjugate
forces in (93) are the following parts of {πα}:{

πα
Ak

}(
λαk ,

{
�α

k

})
= ςαFk

ρα

ραR0

∂

∂
{
�α

k

}[
�α

k

(
λαk ,

{
�α

k

}) + χα
k

({
�α

k

})]
. (163)

Dissipation from activation or passivation should be non-
negative, to be ensured by storage-release functions χα

k :

Dα
A = −

∑
k

{
πα

Ak

} · {
Dα

t �
α
k

}
� 0. (164)

The framework (162)–(164) is justified by compatibility with
(100), (140), and (141), and non-negative dissipation. A spe-
cialization in Sec. IV B provides validation in the context of
experimental data [20,109].

4. Damage

From (100) and (145), conjugate forces to damage mea-
sures for the matrix in {πα} and {ζα} are

π̄α
D = ρα

∂ψα

∂D̄α
= ρα

ραR0

∂

∂D̄α

[√
Ĝα�̂α

D

+ ςαV�
α
V + ςαS

(
�α

S +�α
�

)]
= ρα

ραR0

[
2
√

ĜαĒα
C D̄α +�α

D

∂

∂D̄α
ln

√
Ĝα

]

− ρα

ραR0

ϑ̄α[1 − D̄αH (ln Jα )]ϑ̄
α−1H (ln Jα )�α

V

− ρα

ραR0

ϑ̄α[1 − D̄α]ϑ̄
α−1

(
�α

S +�α
�

)
, (165)

ζ̄
α

D = ραFα ∂ψα

∂∇α
0 D̄α

= ρα

ραR0

√
ĜαFα ∂�̂α

D

∂∇0D̄α

= 2
ρα

ραR0

√
Ĝαϒ̄α l̄αR Fα[(∇D̄α )Fα]. (166)

Define total conjugate force to damage in the matrix:

�̄
α
D = −π̄α

D + ∇ · ζ̄
α

D. (167)

Define viscosity ν̄αD � 0. A Ginzburg-Landau kinetic law and
non-negative dissipation for the matrix in (93) are

nα0 ν̄
α
DDα

t D̄α = �̄
α
D, (168)

D̄α
D = �̄

α
DDα

t D̄α = nα0 ν̄
α
D

∣∣Dα
t D̄α

∣∣2 � 0. (169)

To render the damage rate always non-negative, (168) can
be modified to nα0 ν̄

α
DDα

t D̄α = �̄
α
DH (�̄α

D). Damage kinetics are
suppressed for ν̄αD → ∞ and rate independent for ν̄αD → 0
with equilibrium condition �̄

α
D = 0. For rate insensitivity, ir-

reversibility is enforced by setting D̄α (t ) to the maximum of
the argument of �̄

α
D(D̄α; ·)(t ) = 0 and D̄α (s) ∀ s < t , where

the latter renders Dα
t D̄α (t−) → 0. Usual, but inessential, ini-

tial conditions are D̄α
0 = 0.

When Ĝα → 1, this theory reduces to Ginzburg-Landau or
Allen-Cahn kinetics [77], justified as standard for phase-field
modeling of fracture [32,80]. The nondissipative simpli-
fication ν̄αD → 0 is popular for quasistatics [23,31]. The
formulation has been used elsewhere for arterial rupture
[22,23]. As remarked following (145), noteworthy is the
factor Ĝα > 1, which increases fracture resistance due to
microstructure changes associated with remnant strain, for ex-
ample nonaffine collagen fiber deformations and fibril-matrix
sliding [10]. This feature was instrumental for modeling skin
tearing [52]. Factors proportional to �α

D in (165) and later
(170) contribute to dissipation in a similar way as the spherical
part of the Eshelby stress, proportional to Helmholtz free
energy, in finite plasticity theory [110] and growth mechanics
[111].

Damage in fiber families k is treated analogously. Vis-
cosities are ναDk � 0. Conjugate thermodynamic forces and
dissipative Ginzburg-Landau kinetics are

πα
Dk = ρα

∂ψα

∂Dα
k

= ρα

ραR0

∂

∂Dα
k

[√
Ĝα�̂α

D + ςαFk

(
�α

Fk +�α
�k

)]

= ρα

ραR0

[
2
√

ĜαEα
CkDα

k +�α
D

∂

∂Dα
k

ln
√

Ĝα

]

− ρα

ραR0

ϑα
k

[
1 − Dα

k

]ϑαk −1(
�α

Fk +�α
�k

)
, (170)

ζαDk = ραFα ∂ψα

∂∇α
0 Dα

k

= ρα

ραR0

√
ĜαFα ∂�̂α

D

∂∇0Dα
k

= 2
ρα

ραR0

√
Ĝαϒα

k lαRkFα
[(∇Dα

k

)
Fα

]
, (171)

�
α
Dk = −πα

Dk + ∇ · ζαDk, (172)

nα0ν
α
DkDα

t Dα
k = �

α
Dk, (173)

Dα
DF =

∑
k

Dα
Dk =

∑
k

�
α
DkDα

t Dα
k

= nα0
∑

k

ναDk

∣∣Dα
t Dα

k

∣∣2 � 0. (174)

To forbid healing, nα0ν
α
DkDα

t Dα
k = �

α
DkH (�α

Dk ) in lieu of (173).
For rate insensitivity, ναDk → 0 ⇒ �

α
Dk = 0 with possible ir-

reversibility constraints analogous to those for D̄α (t ). Usual
initial conditions are Dα

k0 = 0.

5. Heat conduction

Fourier conduction is usually sufficient for each bulk con-
stituent α, with isotropic conductivity καθ (θ, {ξα}) � 0, often
temperature and internal-state dependent. It could degrade
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with damage via, e.g., καθ ≈ ςαV κ
α
θ0. Heat flux and entropy

production are

qα = −nα0κ
α
θ ∇θα, Dα

q = −(qα · ∇θα )/θα

= (
nα0κ

α
θ /θ

α
)|∇θα|2 � 0. (175)

Such textbook isotropic Fourier conduction has been used
elsewhere for soft tissue [112]. Realism may improve with
anisotropic conductivity, if measured. Any other model obey-
ing (73) and Dα

q � 0 could be substituted.

6. Momentum transfer

Momentum exchange includes Darcy-like contributions
from velocity differences υα − υβ = μα − μβ [48,50] and
mass exchange to satisfy (51):

hα = −
∑
β

[λαβ (μα − μβ )] − ĉαμα. (176)

The inverse hydraulic-type conductivity matrix is λαβ = λβα .
Summing (176) over α, total contributions to linear momen-
tum from the first sum on the right of (176) vanish, producing
(51), consistent with Ref. [37] and the mixture momentum
balance in the second of (53). Forces hα do not necessarily
sum to zero if mass supplies ĉα are nonzero. Entries λαβ � 0
can depend on temperature and volume of each phase (e.g., to
account for changes in interphase viscosity with temperature
and in permeability with porosity [41]) and degrade with
damage [42]:

λαβ (Jα, Jβ, θα, θβ, D̄α, D̄β )

= λ̄αβ (Jα, Jβ, θα, θβ )
√
ςαV ς

β
V . (177)

Relation (176) is justified as follows. As discussed by Bowen
[37,66], hα must be an odd function of phase velocity dif-
ferences and conserve total momentum per (51). The first
sum, linear in velocity differences, is a simple expression that
fulfills the first requirement. The second sum in (176) is the
simplest that can enforce the second requirement. Higher-
order (e.g., cubic) terms could be added at the expense of more
parameters. Only the linear terms affect weak-shock solutions
derived in Sec. IV C. In the absence of mass supplies, (176) is
standard for poromechanics, including biology [41,50,97].

7. Energy transfer

Energy exchange includes heat transfer from temperature
differences θα − θβ as well as momentum and mass exchange
terms to satisfy (52):

εα = −
∑
β

[ωαβ (θα − θβ )] − mα
∑
β

hβ · μβ

− mα
∑
β

ĉβ
(

uβ + 1

2
|μβ |2

)
, (178)

recalling mass concentration mα = ρα/ρ from (68). The ma-
trix of heat transfer coefficients ωαβ = ωβα � 0 can depend
on state variables and damage [42] like (177):

ωαβ (Jα, Jβ, θα, θβ, D̄α, D̄β )

= ω̄αβ (Jα, Jβ, θα, θβ )
√
ςαV ς

β
V . (179)

In compression, contact among fully broken constituents per-
mits momentum and heat transfer in respective (177) and
(179) even if D̄α → 1 or D̄β → 1. Damage dependence dif-
fering from basic illustrations (177) and (179) (e.g., Ref. [42])
could be substituted. The form of (178) is motivated as fol-
lows. The linear term in temperature differences is standard
for heat exchange in soft tissues [112,113]. The second and
third sums are simple additions that can be used to satisfy
mixture energy conservation in (52) and (54). These are even
functions of velocities per known thermodynamic restrictions
[37,66].

8. Mass transfer

Terms ĉα sum to zero in (51); they account for mass sup-
ply and transfer rates between constituents. In biology, these
could relate to growth, for example, nutrients dissolved in a
fluid to support growth of new solid tissue. Thermodynamic
constraints emerge from (86) with (176) and stipulation that
the rightmost two sums in (86) should be non-negative in
concert:∑

α

[
εα

θα
+ cαηα

]
=

∑
α

∑
β

ωαβ (θα − θβ )2

2θαθβ

+
∑
α

mα

2θα
∑
β

λαβ |μα − μβ |2

+
∑
α

mα

θα

∑
β

ĉβ
[ |μβ |2

2
− uβ

]

+
∑
α

ĉαηα + ρη ∂t ln
√

g � 0. (180)

The first two double sums in (180) are always non-negative.
When all εα = 0 and ĉα = 0 (i.e., no energy exchanges or net
mass supplies), (180) becomes, with (B1), η ∂t ĝ � 0. Then
when ρη = ∑

α ρ
αηα > 0, the non-Euclidean part of the met-

ric tensor ĝ should only be dilating, which is consistent with
non-negative remnant strains from matrix and fiber degrada-
tion in Sec. III C.

Differentiating mα of (68) and using (15), (43), (44), and
(51), mass concentration rates ṁα relate to ĉα [37]:

ĉα = ρṁα + ∇ · (ραμα ),
∑
α

ṁα = 0. (181)

Kinetic equations for ṁα or Dα
t mα could be prescribed in

lieu of ĉα . Detailed constitutive equations for growth and
remodeling are beyond the present scope. Example functions
such as ĉα pertinent to reactive tissues, respecting total mass
conservation, are found in Refs. [75,114,115].

The Allen-Cahn equation has been used for kinetics of
remodeling processes that do not affect mass density [49].
This equation, in bare form, is likely unsuitable for ṁα and
ĉα since it need not respect (51), (180), and (181). A variation
on the Cahn-Hilliard equation with source term ĉα might be
admitted for ṁα by allowing energy density to depend on
mass concentration and concentration gradients and account-
ing for work of the latter in the energy balance [77]. The
Cahn-Hilliard equation is classically used to simulate spinodal
decomposition [116]. The current theory is unable to predict
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spinodal decomposition; aforementioned adaptations could
permit this, but spontaneous agglomeration of phases might
not be realistic for tissues, depending on their microstructures.

E. Summary

Total stress σα for constituent α is the sum of (144) and
(155). Total stress for the mixture σ is (46). Total constituent
dissipation Dα entering (93) is the sum of (156), (159), (164),
(169), (174), and (175), each individually non-negative:

Dα − (qα · ∇θα )/θα = D̂α + Dα
� + Dα

A

+ D̄α
D + Dα

DF + Dα
q � 0. (182)

The total dissipation inequality of (86) is then

∑
α

[
Dα + Dα

q

θα

]
+

∑
α

[
εα

θα
+ cαηα

]
� 0. (183)

From (14), boundary conditions are required for each con-
stituent α = 1, . . . ,N . Mechanical conditions are prescribed
histories of traction tα or velocity υα on ∂�. Thermal con-
ditions are histories of flux qαn or temperature θα on ∂�.
For internal variables {ξα} with gradient energetic dependence
(e.g., order parameters for damage), histories of fluxes {zα} =
(ρα∂ψα/∂{∇ξ}α ) · n or conjugate rates Dα

t ξα are needed on
∂�. Histories of body force bα and heat source rα are pre-
scribed over �.

The constitutive framework of Sec. III is now summarized.
The mixture consists of one or more coexisting phases α =
1, . . . ,N . The total free and internal energies of each α are
(100) and (101). A single phase can include any or all of
the following features: EOS (ideal gas or condensed matter),
matrix elasticity, fiber elasticity, matrix viscoelasticity, fiber
viscoelasticity, active fiber tension, damage (fluid cavitation,
matrix and/or fiber fractures), non-Euclidean (e.g., Finsler or
Riemannian) metric tensor contribution, Newtonian viscosity,
and Fourier conduction. When N > 1, the material is fur-
ther described by momentum, energy, and mass exchanges
among (all) phases. Typically, as is in Sec. IV, a subset of
features is sufficient to describe a real material over a given
loading regime. For example, an EOS is all that is needed
for modeling the shock Hugoniot of isolated fluids. Active
tension is intended for muscle contraction and is not rele-
vant for passive constituents. In all applications of Sec. IV,
ĉα = 0 ∀α = 1, . . . ,N is imposed since growth and remodel-
ing usually require much longer timescales than prescribed
loading durations [93]. Governing equations of Sec. II and
constitutive theory of Sec. III are used for all applications in
Sec. IV. No new theories or models are introduced, only ma-
terial parameters and specialized forms of some equations of
Secs. II and III.

IV. SOFT-TISSUE PHYSICS

A. Shock Hugoniot response

1. Fluids

The theory is first exercised for three fluids that comprise
the majority of soft tissues: water, extracellular fluid (ECF,
representative of blood plasma [2] and interstitial fluid in
skeletal muscle and skin), and whole blood, the latter with

TABLE I. Physical properties or model parameters for water,
ECF, human blood, and porcine skeletal muscle (cells and matrix,
α = k = 1, vol. fract. n1

0 = 0.9).

Property Water ECF Human blood Porcine muscle

ραR0 (g/cm3) 1.00 1.03 1.06 1.10
Bα
η (GPa) 2.10 2.20 2.64 3.28

cαε (J/g K) 4.15 3.96 3.58 3.25
γ α

0 (–) 0.120 0.132 0.160 0.313
Bα
ηp (–) 6.96 6.96 12.0 8.0

kαV (–) 7.0 7.0 0.0 6.0
B̂α (mPa s) 2.1 . . . . . . . . .

μ̂α (mPa s) 0.8 1.2 5.0 . . .

μα
S (kPa) . . . . . . . . . 1.0

μα
k (kPa) . . . . . . . . . 1.0

kαk (–) . . . . . . . . . 10.0
βαS (–) . . . . . . . . . 1.0 × 105

βα�k (–) . . . . . . . . . 1.0 × 105

JC (kJ/m2) . . . . . . . . . 0.84
lα (mm) . . . . . . . . . 0.88
ϑα (–) . . . . . . . . . 2.0
εαr (–) . . . . . . . . . 0.2
r̄α = r̃αk (–) . . . . . . . . . 2.0

a realistic hematocrit of 0.4. Shock responses are modeled
via theory of Sec. II B with each fluid a single-phase mate-
rial (α = N = 1, superscript henceforth suppressed). Planar
(1D) impact is along the x = x1 direction. Fluid is quiescent
upstream, at density ρ0, temperature θ0, and ambient pressure
p0 = pR0 = 1 atm. Eulerian and Lagrangian shock speeds are
identical, labeled U . Particle velocity in Hugoniot states is
υ− = υ. In Hugoniot (i.e., downstream shocked) (·)− states,

ρ = ρ0/J, J = F 1
1 = F = ∂χ/∂X, (184)

u = U/ρ0, t1 = σ 1
1 = −P = −p, (185)

where U is energy per unit reference volume and P is longi-
tudinal Cauchy stress, positive in compression. Since volume
fraction n1

0 = n1 = 1, ρR0 = ρ0, and ρR = ρ.
To calculate the material response, J is decremented from

unity. At each decrement, the constitutive model, here the
condensed matter EOS for UV and pV in (109)–(111), is
solved concurrently with Hugoniot energy equation (41) for
P and η. With macroscopically adiabatic conditions assumed
and {z} = 0, the latter reduces to

U = 1
2 (P + p0)(1 − J ) (186)

since U0 = 0 and J = 1 upstream. Then υ, U , and θ are
found from (39) and (112). For single-phase materials, μα =
0, hα = 0, εα = 0, and here ĉα = 0. For compression, fluid
cavitation is omitted, so no damage is modeled. Hence, all
metrics are Euclidean: g = G = ĝ = Ĝ = 1.

Properties entering the EOS are listed in Table I. All are ob-
tained or estimated from experimental literature [2,108,117–
120] with the exception of nonlinear bulk stiffening param-
eters Bηp and kV that are fit to the experimental Hugoniot
data. The ambient bulk modulus is related to the bulk sound
velocity cB = √

(Bη + p0)/ρ0. For water, the usual relation-
ship Bηp = 4S − 1 is used, where S is the slope of a linear
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FIG. 1. Model results and shock data [118,122] for (a) Hugoniot
stress vs mass density and (b) shock velocity vs particle velocity in
water, ECF, and human blood.

fit to the U -υ Hugoniot [69]. Since shock compression data
are apparently unavailable for ECF, Bηp and kV for water
are assigned. Newtonian viscosities B̂, μ̂ are listed for com-
pleteness [2,108], where μ̂ for blood is for high rates [2]
and bulk viscosity is supplied only for water [108]. These do
not enter the present analysis. Newtonian viscosity (155) and
Fourier conduction (175) are omitted; both are incompatible
with treatment of shocks as singular surfaces [121].

Compared in Fig. 1(a) are P-ρ Hugoniot predictions and
experimental data on water (θ0 = 297 K) [118] and human
blood (θ0 ≈ 310 K) [122]. Shock data on ECF do not seem to
exist; predictions are for θ0 = 310 K. Compared in Fig. 1(b)
are U -υ data for water [118] and predictions for all three
fluids; shock velocity data were not reported for blood in
Ref. [122]. The cB value for blood, U → cB as υ → 0, is from
Ref. [120].

Only two EOS parameters need be fitted. Results in Fig. 1
confirm validity of the EOS of Sec. III B for water and human
blood. The latter is stiffer than ECF, which is stiffer than water.
Neither vaporization nor solidification is modeled here; the
EOS would need modification to account for latent heats and
differing properties of solid, liquid, and gas phases. Tempera-
ture rise predicted at 20% compression is on the order of 20 K,
by which water should remain in its liquid phase according to
the P-θ phase diagram in Ref. [118]. Solid-liquid-gas phase
diagrams of ECF and blood appear to be unknown at high
pressures, but neither experiments nor the EOS in Ref. [122]
indicate any phase transition occurs.

2. Skeletal muscle

Planar shock response of skeletal muscle is predicted next.
Properties and loading conditions replicate impact experi-
ments of Wilgeroth et al. [4,51] on porcine muscle tissue.
The material is modeled as a mixture of two coexisting phases
(α = 1, 2): a “solid” tissue of initial volume fraction n1

0 = 0.9
[123] and an interstitial fluid depicted by the ECF, comprising
remaining fraction n2

0 = 0.1. The first phase consists of the
muscle cells (i.e., fibers), collagenous connective tissues, and
ground substance between and encasing the cells (i.e., the
extracellular matrix). Muscle cells contain significant internal
fluid whose physical properties are included implicitly in the
constitutive model for the first phase.

Experiments [51] show a single-wave structure with steep
shock front (rise time on the order ofμs or smaller) rather than
multiple waveforms that would be expected if shock and parti-
cle velocities among the phases differed significantly [50,66].
This suggests inverse hydraulic conductivity is very large
(e.g., λαβ→̃∞) at these high-pressure dynamic conditions,
and diffusion velocities μα are negligible. It is thus assumed
particle velocity histories match in each phase: υα (x, t ) =
υ1(x, t ) = υ2(x, t ) = υ(x, t ). Therefore, J (x, t ) = F (x, t ) =
∂χ/∂X is identical in each constituent. Microsecond scales
are too brief for biologic mass exchange: ĉα = 0. Shock com-
pression is adiabatic: qα → 0. Heat transfer in εα of (178) is
likewise assumed null in Hugoniot states: θα = θ1 = θ2 = θ .
Coincident velocities and temperatures have been used else-
where in constrained mixture theories [74,75,114,115].

The solution procedure is similar to that for single fluids,
but the constitutive model is now much more complex. The
shock response is that of the mixture, where governing and
jump equations are in (57)–(65). Both phases are quiescent
and at reference θ0 = 310 K and pR0 = 1 atm upstream; θ0

was unreported in Ref. [51], but model results are insensitive
to θ0. From (46) and (47) with μα = 0, mixture stress and
internal energy are

σ =
∑
α

σα, U =
∑
α

nα0ρ
α
R0uα =

∑
α

nα0U α. (187)

Because all phases deform equally without mass supplies,
the mixture density is ρ = ρ0/J . As explained later in the
context of (191), {zα} → {zα} = 0. The analog of (41) for the
mixture reduces to (186) with U0 = 0 and p0 = ∑

α nα0 pαR0.
In calculations, J is reduced incrementally from unity. In
each decrement, energy equation (186) and constitutive equa-
tions for each phase are solved simultaneously and summed,
if appropriate, to give mixture values P, U , and θ . Given θ

and J , entropy ηα of each phase is found by inversion of
(112). Particle and shock velocities are found from mixture
analogs of (39). The response of the fluid phase (ECF, α = 2)
is calculated as before; its energy and pressure contributions
are given fully by U α

V and pαV .
The tissue phase (including intracellular fluids), α = 1, has

a total internal energy per unit reference volume U α:

U 1 = U 1
V + ς1

S · (
U 1

S + U 1
�

) + ς1
F ◦ (

U 1
F + U 1

�

) + U 1
D.

(188)

The first term on the right is the EOS (noting ςV = 1
for compression), second and third are deviatoric matrix
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elasticity and viscoelasticity, third and fourth are deviatoric
fiber elasticity and viscoelasticity, and the last is surface en-
ergy of soft-tissue degradation (i.e., damage). Only passive
states are modeled: U 1

A = 0. Thermal variables θ1 and η1

only enter U 1
V , which fully specifies the partial pressure p1.

Notation U and � is interchangeable for remaining terms that
only affect deviatoric response.

Matrix viscoelasticity is limited to the shear response,
following typical assumptions for nearly incompressible soft
materials [16,91,92]. For very rapid loading modeled here,
viscous relaxation for all (m) configurational variables �1

Sm is
assumed negligible with t/τ 1

Sm → 0, so

U 1
S + U 1

� → U 1
S +

∑
m

�̂1
Sm = U 1

S

(
1 +

∑
m

β1
Sm

)
. (189)

Thus, μ̌1
S = μ1

S (1 + ∑
m β

1
Sm) is the glassy shear modulus of

the matrix, with static energy and modulus in (115).
Muscle fibers comprise one family, k = 1, of direction

ιαk = ι with κ1
1 = 0 in (117). Viscous relaxation for all (n)

configurational variables �1
�k,n is assumed negligible:

U 1
F + U 1

� → U 1
F +

∑
n

�̂1
�1,n = U 1

F

(
1 +

∑
n

β1
�1,n

)
. (190)

Static strain energy of fibers U 1
F is (119) with μα

k = μ1
1 and

H (·) omitted, supporting compressive stress. A dynamic fiber
modulus is μ̌1

1 = μ1
1(1 + ∑

n β
1
�1,n). Fiber directions relative

to x = x1 are ambiguous in Ref. [51]. Calculations apply
loading parallel or transverse to ι, both pure mode directions.
In the former, the longitudinal sound speed C obeys ρ0C2 =
Bη + p0 + 4

3 n1
0(μ̌1

S + 2
3 μ̌

1
1). In the latter, ρ0C2 = Bη + p0 +

4
3 n1

0(μ̌1
S − 1

3 μ̌
1
1).

Damage order parameters for the matrix, D̄α = D̄1 = D̄ ∈
[0, 1], and fibers, Dα

k = D1
1 = D1 ∈ [0, 1], degrade respective

deviatoric stress contributions from matrix and fibers in (144).
They also supply surface energy U 1

D = �1
D in (145). Jumps in

D̄ and Dk are allowed across the shock front. This necessi-
tates ᾱα = ααk = 0 ⇒ l̄αR = lαRk = 0 in (145) to avoid infinite
energy in the front. Gradient energies and conjugate forces
ζ̄
α

D, ζ
α
Dk vanish identically, as do {zα}. Treatment of shocks

as singular surfaces mandates viscosities ν̄αD = ναDk = 0 for
fracture to avoid infinite dissipation in the shock front if D̄ and
Dk are discontinuous across the front. Kinetic equations (168)
and (173) therefore reduce as follows, with π̄α

D, πα
Dk in (165),

(170):

π̄1
D = 0, π1

D1 = 0. (191)

For each decrement of J , (191) are solved simultaneously
for D̄ and D1, affecting P and U in Hugoniot equation (186).
Damage can be nonzero, so the generalized Finsler metrics
of Sec. III C are nontrivial. Here, ḡi j = δi j, Ḡα

IJ = δIJ , with
ĝi

j and (Ĝα )I
J in (149)–(152). Isotropic matrix damage gives

(151), anisotropic fiber damage (152). Determinants and their
derivatives, (153) and (154), enter (145) and (191). For the
present loading and material symmetries, with (149), ĝi

j and
(Ĝα )I

J do not affect J or tr C̃. Finsler or osculating Riemannian
metrics enter the analysis only through (145) and (191).

Properties for the ECF and tissue phase used in calculations
are in Table I. Experimental data on hydrated muscle (e.g.,
Ref. [51]) furnish properties of the mixture as a whole, not the
isolated α = 1 phase. Given (187), the mixture density, isen-
tropic bulk modulus, bulk sound speed, volumetric thermal
expansion coefficient, specific heat, and Grüneisen parameter
are, respectively,

ρ0 =
∑
α

nα0ρ
α
R0, Bη =

∑
α

nα0 Bα
η , (192)

cB = √
(Bη + p0)/ρ0, A =

∑
α

nα0 Aα, (193)

ρ0cp =
∑
α

nα0ρ
α
R0cαp = ρ0cε (1 + Aγ0θ0), (194)

γ0 = ABη/(ρ0cp) = ABθ /(ρ0cε ), (195)

where cαp is specific heat at constant pressure of phase α.
Given properties of the mixture [51,120] and ECF (α = 2),
(192)–(195) are inverted and solved for thermoelastic prop-
erties of the tissue phase (α = 1). Ultimately, experimental
values [51] of ρ0 and cB yield tissue density and bulk modulus.
Nonlinear bulk stiffening parameters B1

ηp and k1
V are fit to the

shock Hugoniot data [51].
Not all static and dynamic shear properties are fully es-

tablished from Ref. [51], so order-of-magnitude estimates
are used based on literature values [8,16,20,105,124,125] for
skeletal, and in some cases cardiac, muscle. A standard scalar
measure [69] of shear stress τ of the mixture for uniaxial
shock compression is the first of

τ = 3

4
(P − p); τ = −3

4

∑
α

[
(σα )1

1 + pα
]
. (196)

If a material is isotropic, then τ is half the von Mises stress
under uniaxial strain. The second expression in (196) special-
izes the first. Both phases α = 1, 2 contribute to p via each
EOS; only the tissue phase contributes to τ via deviatoric
matrix and fiber, elastic and viscoelastic, stresses. Low-rate
data [8,16,20,105,124,125] suggestμ1

S andμ1
1 should be in the

kPa range, with fiber exponential stiffening k1
1 on the order of

10. Define the sums of glassy viscoelastic stiffening factors
β1

S = ∑
m β

1
Sm and β1

�1 = ∑
n β

1
�1,n. Low- to moderate-rate

data on cardiac tissue [16] suggest values up to the order
of 103. Dynamic compression data on porcine muscle [124]
show von Mises stresses in the MPa range for strain rates
on the order of 103/s. Extrapolating, τ is anticipated up to
order of 10 MPa for strong shock loading, wherein strain
rates appear on the order of 105/s given rise times under
1 µs [51]. As such, β1

S and β1
�1 are estimated for strong shock

compression as 105, probing very high-frequency modes.
For fracture cohesive energy in (145), the usual phase-field

description is invoked for matrix and fibers: Ē1
C = ϒ̄1/l̄1 =

J̄1
C/(2l̄1) and E1

C1 = ϒ1
1/l1 = J1

C1/(2l1
1 ). Toughness JC of

muscle is known only for the whole tissue [126], so here
the simplest physical choice n1

0J̄1
C = n1

0J1
C1 = 1

2 JC is used.
Similarly, length constants for each mechanism are both set
equal to a value calibrated later for modeling tensile damage:
l̄1 = l1

1 = l1, on the order of 10–15 single-fiber diameters
[51]. Values are about 20× those used elsewhere for modeling
skin [52]. Standard phase-field choices ϑ̄1 = ϑ1

1 = ϑ1 = 2
[23,52] are used for degradation functions (142) and (143).
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Regarding generalized Finsler metrics, r̄1 = r̃1
1 = 2 is adopted

from prior work on skin [52], and remanent microstructure
strain factors are set equal: ε̄1 = n1

0κ̄
1/r̄1 = ε̃1

1 = n1
0κ̃

1
1/r̃1

1 =
ε1

r . Experimental data on vascular tissue [127] furnish ε1
r =

0.2, set positive (dilative) here, as in other soft tissues [15,52].
Under uniaxial-stress compression [127], axial shortening is
overcompensated by radial and circumferential expansion: the
arterial wall tissue is residually stretched. Arterial data [127]
suggest ε1

r is higher (lower) for tissues with more collagen
(less elastin), but experimental data on skeletal muscle com-
ponents do not exist to justify different choices of ε1

r for
matrix and fibers.

Shown in Fig. 2(a) for skeletal muscle is mixture Hugoniot
stress P versus mixture density ratio ρ/ρ0. Experimental data
on muscle [51], blood [122], and water [118] are shown for
comparison, along with model predictions for the ECF in
isolation. The mixture theory captures most of the shock data
well, exceptions being several anomalous points in the domain
ρ0/ρ ∈ [0.82, 0.87]. Similar statements apply for mixture U
versus υ data [51] and model results in Fig. 2(b). Muscle is
stiffer than blood, ECF, and water. Hugoniot θ predictions
in Fig. 2(c) show a substantial temperature rise, with higher
temperatures in muscle than ECF in isolation. This could
cause burn damage or other structural changes, not modeled
here. Crystal structure and properties of collagen immersed in
water exhibit changes at temperatures above 335 K [128], far
exceeded in predictions of Fig. 2(c) for muscle.

Results in Fig. 2 are for shock compression parallel to the
fiber direction ι. Shear stress of the mixture (supplied only
by the tissue phase) τ is predicted in Fig. 3(a) for tissue
shocked parallel and transverse to the fiber direction. Contri-
butions of matrix and fiber deviatoric stresses are delineated;
these simply sum to give τ . For parallel compression, matrix
and fibers contribute similarly in magnitude. For transverse
compression, fibers support less load, and τ is lower. In both
arrangements, τ is at most on the order of 10−2P, so orienta-
tion does not discernibly influence the Hugoniot stress that
is dominated by p = P − 4

3τ . For ρ0/ρ � 0.95, damage in
matrix and fibers causes a reduction in strength, leading to
reduced shear stress τ at high compressions.

Order parameters D̄ (matrix) and D1 (muscle fibers) at
Hugoniot states are shown in Fig. 3(b), notably resolved
by the present framework. For parallel loading, degradation
occurs similarly for matrix and fibers. For transverse load-
ing, less degradation occurs in the fibers; their strain energy
is lower in this arrangement, giving smaller elastic driving
force in π1

D1. Shock-recovered samples [4] show microstruc-
ture changes indicative of damage in fibers (myofibrils)
and slippage at cellular interfaces, implying matrix dam-
age. Other experiments, including microscopy and histology
after static crushing of muscle, show shear-induced dam-
age in fibers, interfaces, and extracellular matrix [129,130].
The current model can reflect these trends. Other phase-field
approaches that do not delineate between fiber and matrix
fractures [22,23] would be unable to give such insight into
microstructure.

Model results for muscle in Figs. 2, 3(a), and 3(b) use
the generalized Finsler metric with remnant strain ε1

r = 0.2
(Table I). Predictions in Figs. 3(c) and 3(d) compare afore-
mentioned results for damage and τ with those obtained
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FIG. 2. Model results and/or shock compression data for
(a) Hugoniot stress vs mass density, (b) shock velocity vs particle
velocity, and (c) temperature. Data in (a) and (b) are for water [118]
human blood [122], and porcine skeletal muscle [51].

when ε1
r = 0, producing Euclidean metrics. Recall ε1

r > 0 de-
picts dilatation of the material manifold Mα = M1 as tearing
commences and internal surfaces enlarge. Under shock com-
pression, shear-induced dilatation can occur in solid phases
as fracture surfaces slide and open [69]. As a result, area of
free surfaces increases, leading to an increase in total fracture
surface energy in the model at fixed damage order parame-
ters. As corroborated by Fig. 3(c), damage is suppressed (i.e.,
more diffuse tearing and rupture) at large deformation when a
Finsler metric is used relative to a Euclidean metric. Higher
energetic cost of fracture in (145) for the former (Ĝα > 1)
explains this. Conversely, with higher values of D̄ and D1, τ
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FIG. 3. Predictions for parallel and transverse fiber orientations
and Finsler metrics: (a) shear stress vs mass density and (b) damage.
Model results for Finsler and Euclidean metrics and parallel orienta-
tion: (c) damage and (d) shear stress.

decays more rapidly with increasing compression in Fig. 3(d)
when a Euclidean metric (Ĝα = 1) is used.

More experimental information (e.g., lateral stress readings
of τ [69]) is needed to better validate the choice of metric.
Past modeling and experiments on skin tissue [10,52] suggest
results from a Finsler metric may generally be more realistic:
nonaffine fiber rearrangements and fiber-matrix sliding em-
bodied by Ĝα > 1 lead to diffusion of damage, crack blunting,
and gradual softening.

For shock stability, P > 0, dP/dJ < 0, and d2P/dJ2 > 0
[65]. These, and complementary conditions along isentropes
plus ∂P/∂η > 0 [64], were verified for J ∈ [0.7, 1] for all
cases in Fig. 3. Damage reduces the tangent shear modulus,
but this is more than offset by increasing tangent elastic bulk
and shear moduli under compression.

B. Static and dynamic uniaxial stress response

1. Liver

The theory is implemented to model uniaxial-stress com-
pression of bovine liver across a wide range of strain rates
as studied experimentally [131], demonstrating efficacy of the
model’s viscoelastic and damage kinetics. Liver parenchyma
is comprised of cells (hepatocytes), blood vessels (sinusoids),
lymphatic vessels, bile ducts, and fibrous extracellular matrix
(ECM). The organ is encased in a membrane (peritoneum)
and connective tissue (Glisson’s capsule). In vivo, the liver
is internally pressurized, expanded, and perfused with blood,
with a fluid volume fraction on the order of 0.5 [7]. Most
experimental characterizations, including those modeled here
[131], consider excised samples of the parenchyma, initially
at ambient pressure (i.e., not perfused), excluding the peri-
toneum, Glisson’s capsule, and major vessels and ligaments.
In these cases, initial blood volume is substantially lower, and
the response is usually isotropic.

The material is depicted as a mixture of two phases (N =
2): a solid tissue phase (α = 1) and a fluid phase (α = 2)
consisting of blood. The EOS used in Sec. IV A is reinvoked,
with properties in Table I, any differences between bovine and
human blood ignored. In the nonperfused state, the initial fluid
fraction is n2

0 = 0.12 [132], the solid fraction n1
0 = 0.88. Ef-

fects of intracellular and extracellular fluids other than blood
are encompassed by the EOS of the first phase, with free
energy of (105) and (106). In addition, free energy of the solid
phase (α = 1) consists of matrix deviatoric elastic (�1

S ) and
viscoelastic (�1

�) terms, fiber elastic (�1
F1) and viscoelastic

(�1
�1) terms, and damage to matrix and fibers (�1

D).
A single fiber family is sufficient (k = 1), fully dispersed

with καk → κ1
1 = 1

3 in (117) for isotropy. Damage order pa-
rameters for matrix and fibers, D̄α → D̄1 = D̄ and Dα

k →
D1

1 = D1, reduce deviatoric stress in (144) and furnish surface
energy in (145). For loading rates up to the order of 103/s
and viscosities B̂α, μ̂α in Table I, viscous stress from blood
should not exceed tens of Pa. This is negligible relative to total
stresses in the kPa to MPa range [131], and thus ignored. For
compression, cavitation damage in the fluid is irrelevant.

The sample is a cylindrical annulus [131], deformed uni-
formly in the longitudinal (i.e., axial) direction to a stretch of
F 1

1 (t ) = λ(t ) = 1 − ε̇t � 1 at constant “engineering strain”
rate of ε̇. A Cartesian coordinate frame defines the axial
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one-direction and orthogonal (radial) two- and three-
directions. Longitudinal velocity history (υα )1(t ) and axial
deformation gradient (Fα )1

1(t ) are identical in each phase. In
the initial state, partial pressure in each phase is equilibrated
to reference ambient pressure: pα0 = nα0 pαR0 with pαR0 = 1 atm.
At low rates (ε̇ � 102/s), isothermal conditions apply: θα =
θ0 = 310 K. For high rates (ε̇ � 102/s), macroscopically adi-
abatic conditions apply: qα = 0. Interphase mass transfer is
excluded: ĉα = 0.

Two different boundary conditions are considered for
transverse (i.e., radial) stress and deformation. First is a
“drained” condition, whereby each phase expands or contracts
independently to maintain equilibrium with external atmo-
sphere: (σα )2

2 = (σα )3
3 = pα0 . Transverse velocities (υ1)2 =

(υ1)3 and (υ2)2 = (υ2)3 are not necessarily equal in each
phase, so transverse diffusion velocities (μα )2, (μα )3 need
not vanish. Hydraulic conductivity is assumed infinite as a
limiting case, so λαβ → 0 and hα → 0 in (176). For the
drained case, each α likewise maintains its own temperature
θα (t ), with ωαβ → 0 in (178) as a similarly limiting case, so
εα → 0. Temperatures are updated by solving (96) separately
for α = 1, 2.

Second is an “undrained” or “tied” condition, whereby
each phase expands or contracts radially with the same trans-
verse velocity history. All diffusion velocities vanish: μα = 0.
Transverse deformation is obtained by equilibrating the to-
tal transverse stress of (46) to atmospheric pressure: σ 2

2 =∑
α=1,2(σα )2

2 = pαR0 = 1 atm. Consistently, for high-rate load-
ing, each phase has the same temperature: θ1(t ) = θ2(t ) =
θ (t ), updated by integrating the sum of (96) over α = 1, 2.
Undrained conditions are consistent with limiting very high,
yet still finite, λαβ→̃∞ and ωαβ→̃∞, so hα → 0 and εα →
0. The tied condition is used elsewhere for biologic solids in
“constrained reactive mixture theory” [74,75,114,115].

Axial deformation λ(t ) is imposed over small time steps
�t . Thermomechanical responses of each phase and the mix-
ture as a whole are obtained by solution and integration of the
constitutive (i.e., stress-deformation-temperature) equations,
(96) if high-rate loading, and kinetic laws for viscoelasticity
and damage. For viscoelasticity, two relaxation modes are
sufficient for the deviatoric matrix [m = 1, 2 in (121)] and one
for fiber [n = 1 in (132)] contributions to stress, with volu-
metric (pressure) contributions omitted for reasons explained
in Sec. IV A. The algorithm of Refs. [16,92] is used to solve
(124) and (134). Damage is absent in the fluid and spatially
homogeneous in the solid: ∇D̄ = ∇D1 = 0, ensuring stress
fields are homogeneous within each phase, consistent with
momentum conservation in the absence of acceleration waves.
Gradient energies in (145) and conjugate forces ζ̄

α

D, ζ
α
Dk in

(166) and (171) vanish. Order parameters and dissipated ener-
gies are obtained by integrating (168), (169), (173), and (174)
over the load history with nonzero fracture viscosities ν̄1

D and
ν1

D1.
Properties for the isolated solid tissue phase (α = 1) of

bovine liver are given in Table II. EOS properties, namely
ραR0, Bα

η , γ α0 , and cαε , are calculated from mixture rules in
(192)–(195) using known values for the fluid (α = 2) phase
(i.e., blood in Table I), n1

0 = 0.88 [132], and available prop-
erties for the liver as a whole (solid + fluid) [120,133,134].
Bulk nonlinear stiffening coefficients kαV and Bα

ηp = Bα
θ p are

TABLE II. Physical properties or model parameters (α = k = 1)
for bovine liver (n1

0 = 0.88) and rabbit muscle (n1
0 = 0.9).

Property Bovine liver Rabbit muscle

ραR0 (g/cm3) 1.06 1.10
Bα
η (GPa) 2.67 3.28

cαε (J/g K) 3.51 3.25
γ α

0 (–) 0.114 0.313
Bα
ηp (–) 8.0 8.0

kαV (–) 6.0 6.0
μα

S (kPa) 1.0 1.0
μα

k (kPa) 100 600
kαk (–) 1.0 × 10−6 2.1
βαS1 (–) 20 900
βαS2 (–) 150 . . .

βα�k,1 (–) 1.0 0.1
ταS1 (s) 0.05 0.05
ταS2 (s) 1.0 × 10−3 . . .

τ α�k,1 (s) 1.0 × 10−3 0.05
ν̂αD (s) 0.05 0
JC (kJ/m2) 0.08 0.84
lα (mm) 1.00 0.88
ϑα (–) 2.0 2.0
εαr (–) 0.2 0.2
r̄α = r̃αk (–) 2.0 2.0

assumed identical to those of skeletal muscle in Table I since
high-pressure data are not available for their determination.
Values are inconsequential for pressures obtained here under
uniaxial-stress compression, wherein |Jα − 1| < 10−4.

Total first Piola-Kirchhoff or “engineering” stress magni-
tude for this purpose, noting J1 ≈ 1 and (σα )1

1 � −nα0 pαR0, is
measured relative to ambient pressure pαR0:

P = J1
∣∣(σ 1

1 + p1
R0

)∣∣
(F 1)1

1

= J1

λ

∣∣∣∣∣
∑
α

[
(σα )1

1 + nα0 pαR0

]∣∣∣∣∣. (197)

Shear moduli μα
S and μα

k , stiffening kαk , viscoelastic factors
βαSm and βα�k,n, and relaxation times ταSm and τα�k,n for α = k =
1, m = 1, 2 and n = 1 are fit to data [131] in Figs. 4(a) and
4(b) at rates ε̇ = 0.01/s, ε̇ = 10/s, and ε̇ = 2000/s.

Fracture toughness of the mixture, JC , is obtained from
Ref. [135], presumed similar for porcine and bovine liver.
Procedures of Sec. IV A give n1

0J̄1
C = n1

0J1
C1 = 1

2 JC . Length
constants for matrix and fibers are set equal to the value
in Table II to best represent data in Figs. 4(a) and 4(b):
l̄1 = l1

1 = l1 = 1 mm. Recalling Ē1
C = ϒ̄1/l̄1 = J̄1

C/(2l̄1) and
E1

C1 = ϒ1
1/l1 = J1

C1/(2l1
1 ), for homogeneous damage, (145)

and evolution of order parameters depend only on the ratio of
toughness to length (i.e., cohesive energies Ē1

C , E1
C1) and not

toughness and length independently. If gradient regularization
lengths l̄1

R, l1
R1 must be chosen in (145) based on mesh size

constraints rather than physical observations (e.g., the smaller
value of 0.1 mm used for arterial rupture in Ref. [23]), then
ᾱ1 = l̄1

R/l̄1 and α1
1 = l1

R1/l1
1 can be invoked independently

without affecting the cohesive energy. Standard values ϑ̄1 =
ϑ1

1 = ϑ1 = 2 [23,52] enter (142) and (143). The same rate
dependence of damage, ν̂αD, normalized by cohesive energy
Eα

C = Ēα
C = Eα

Ck and with units of time, is used for matrix
and fibers (α = k = 1): nα0 ν̄

α
D = nα0ν

α
Dk = Eα

C ν̂
α
D. The value in
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FIG. 4. Model results and experimental data [131] for bovine
liver compressed to stretch λ: (a) axial stress P at strain rate ε̇ =
2000/s, (b) P at ε̇ = 0.01/s and ε̇ = 10/s, and (c) predicted matrix
and fiber damage D̄ and D1 at all three rates.

Table II produces credible results in the context of Fig. 4(c).
The same parameters for generalized Finsler metrics Gα are
used for liver and muscle, explained in Sec. IV A.

The high-rate response of compressed liver is shown in
Fig. 4(a). Model results assume adiabatic conditions, but
predicted temperature change is negligible. Damage order
parameters attained small maxima at high rates [i.e., D̄ �
0.03 and D1 � 0.003 in Fig. 4(c)] due to the viscosity ν̂αD
preventing notable degradation over the brief time period of
deformation. This is consistent with data [131] that show
continuously increasing stiffness at this loading rate, with no

evidence of material failure. Differences between drained and
undrained conditions are indiscernible because the solid tissue
is nearly incompressible.

Low- and moderate-rate stress histories are reported in
Fig. 4(b). Model results are isothermal and for drained con-
ditions only; results for undrained, not shown, are nearly
identical. This theory captures the mechanical response of
liver spanning five decades in strain rate. Previous viscoelastic
modeling has been limited to much lower rates [136]. Fits
to data are reasonable but not as close as those for high-rate
loading in Fig. 4(a).

At low rates, data show reduction in the degree of stiffen-
ing at large compression, indicative of strength degradation
[2,10]. This phenomenon is captured by damage kinetics,
Fig. 4(c). Strength deterioration increases monotonically with
compressive strain 1 − λ, and at moderate to high rates is
more severe in matrix than fibers. Histological analysis af-
ter dynamic blunt impact [137] showed fractures in liver
parenchyma avoid fibers and interlobular septa and more often
propagate along interfaces, consistent with higher levels of
“matrix” damage D̄ relative to fiber damage D1 in Fig. 4(c).
Conversely, at the lowest strain rate (0.01/s), fiber damage
overtakes matrix damage at large compression (λ � 0.77) and
is more pronounced due to longer load times for relaxation
to ensue. The present theory notably addresses liver tissue
damage, resolving that in cellular matrix and collagen fiber
network seen experimentally [137]. Models for liver damage
at high strain rates appear scarce; one study applies a cohesive
zone model for relatively slow extension and tearing [138].

2. Skeletal muscle

The theory is now implemented to study uniaxial-stress
tensile behavior of rabbit skeletal muscle at low and moderate
strain rates, with and without activation from electrical stim-
ulation. Model results seek to depict experiments reported in
Refs. [20,109].

Calculations proceed in the same manner as just described
for modeling liver, with a few exceptions. First, tension is
modeled rather than compression, with stretch ratio F 1

1 (t ) =
λ(t ) = 1 + ε̇t � 1 at two rates [109]: ε̇ = 0.17/s and ε̇ =
15/s. Engineering tensile stress is P of (197), where now
(σα )1

1 � −nα0 pαR0. Both drained and undrained conditions are
considered, all isothermal. Second, the data do not indicate
any consistent rate sensitivity of damage or failure stretch
[20], so equilibrium equations (191) used in Sec. IV A for
porcine muscle still apply. These correspond to (168) and
(173) with null viscosities ν̄αD = ναDk → 0, giving zero dissi-
pation in (169) and (174). Last, active tension, irrelevant for
liver, is considered for muscle. The form of free energy �α

A
and Cauchy stress term σαA in (140) and (141) are adapted
directly from Ref. [20] since they reproduce the overstress
from activation recorded in isometric experiments [109]:

�1
A = 2

3
�AμA(λA1 − λA0)[�̄pA/pA − �̄rA/rA], (198)

σ1
A = 2

3

ρα

ραR0

�AμA

λ1
1

�̄pA−1
[
1 − �̄qA−1

]
h̃1

1, (199)

�̄ =
{

λ1
1−λA0

λA1−λA0
∀ λ1

1 ∈ (λA0, λA1),

0 (otherwise).
(200)
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Active tension vanishes for �̄ outside domain [0,1]. Re-
call fiber stretch obeys (λαk )2 = Iαk = C̃α : Hα

k with α = k =
1. Parameters are μA (stress units) and dimensionless set
(λA0, λA1, pA, qA), with rA = pA + qA − 1. A dimensionless
internal variable for activation is {�α

k (t )} → �1
1(t ) = �A.

Only discrete states are considered: �A = 1 in the fully active
state and �A = 0 in the fully passive state. Transient switch-
ing between states and partial activation are not addressed
here or in the experiments [20,109]. Energy χα

k in (140) and
kinetic law (162) need not be prescribed; no contribution to
dissipation arises since D1

t �A = 0 in (164). The 2
3 in (198) is

omitted in Ref. [20] where compressibility is ignored.
As prescribed in Sec. IV A for porcine muscle, rabbit mus-

cle consists of solid tissue α = 1 and ECF (α = 2), where
parameters for ECF are in Table I. The initial solid vol-
ume fraction remains n1

0 = 0.9. Parameters for rabbit skeletal
muscle are compiled in Table II. Thermophysical properties
entering the EOS are identical to those for porcine tissue
in Table I. Shear properties μα

S , μα
k , and kαk are calibrated

to the data [20,109], with k = 1 sufficient. Fibers are fully
aligned, καk → κ1

1 = 0 in (117), giving anisotropic response.
The glassy viscoelastic assumption used for modeling shocks
in Sec. IV A is inappropriate for low and moderate strain rates.
Instead, viscoelastic strength factors βαSm and βα�k,n and relax-
ation times ταSm and τα�k,n are fit to experimental data; here, a
single mode suffices: m = n = 1. The activation parameters in
(198) are verbatim from Ref. [20]: μA = 962 kPa, λA0 = 0.9,
λA1 = 1.32, pA = 1.65, and qA = 2.0. Assumptions for prop-
erties modulating matrix and fiber damage are the same as
those explained for porcine tissue in Sec. IV A, with matching
toughness JC [126]. Length l1 = l̄1 = l1

1 provides cohesive
energies EC = ĒC = EC1 in (145). The value in Table II best
fits softening and failure in test data [20,109] at the lowest
loading rate. Finsler metric parameters in Table II match those
of porcine muscle in Table I; none are adjusted when fitting
the data.

For tensile loading, cavitation of the fluid (α = 2) is not
impossible. Calibration of the theory for water under isen-
tropic expansion to its 8.7 MPa cavitation stress [139] gives
Ēα

C = 0.1818 MPa. Using the same cohesive energy for ECF
gives a cavitation stress of 8.9 MPa, and Jα � 1.001 (α = 2)
is needed to initiate discernible damage D̄α . Such fluid ex-
pansion is never reached in the present modeling of muscle:
damage in ECF is negligible here.

Model outcomes and experimental stress-stretch data are
compared in Fig. 5(a) for active states and Fig. 5(b) for passive
states, at engineering strain rates of ε̇ = 0.17/s and ε̇ = 15/s.
The fiber direction ι = ι1

1 is aligned with the direction of
elongation. Model results in Fig. 5 are for drained lateral
boundaries; predictions for undrained conditions are nearly
indiscernible from drained and thus not shown. For active and
passive states, the material is stiffer at the higher rate, with
larger peak (failure) stress. Predicted failure stretch is similar
at both strain rates. The material supports larger P in the active
state over domain 1 � λ � 1.32, including an initial stress of
P = 0.192 MPa at λ(t = 0) = 1 that matches experiments.

The model closely depicts the majority of data points
[20,109], an exception under-prediction of large P-λ data at
ε̇ = 15/s for the passive state in Fig. 5(b). An overprediction
of peak stress for active loading at the higher rate was obtained
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FIG. 5. Model results and experimental data [20,109] for rabbit
skeletal muscle to tensile stretch λ at rates of ε̇ = 0.17/s and ε̇ =
15/s: (a) axial stress P in active state (�A = 1), (b) P in passive state
(�A = 0), and (c) predicted matrix and fiber damage D̄ and D1, active
state (passive nearly identical).

from a phenomenological model [20]. That model, however,
contained five adjustable parameters, whereas only length pa-
rameter l1 was adjusted for damage modeling in application
of the present theory.

More elaborate coupling among viscoelastic and dam-
age kinetics, albeit with more parameters, could improve
agreement, but such an exercise is unjustified for closer fitting
of relatively few data points. Unlike results for compression
in Sec. IV A where the matrix and fibers supported similar
stress, here, under tensile loading, the fibers bear the majority
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of the load P, with the ratio of fiber to matrix stress increasing
as stretch increases and rate decreases. The correspondingly
larger strain energy in the fibers provides a larger driving force
for fiber damage D1 than matrix damage D̄, which is nearly
negligible at ε̇ = 0.17/s, as shown in Fig. 5(c).

The model of Ref. [20], which contains more calibrated pa-
rameters, does not specifically delineate between matrix and
fiber fractures, though it does feature a transversely isotropic
representation for fiber failure versus fiber detachment. As
discussed in Ref. [140], under tensile loading at low rates,
damage to muscle fibers is prominently observed over de-
lamination and damage to the endomysium (i.e., the matrix
including connective tissue in which fibers are embedded).
The current predictions concur with these observations. At
the higher rate of ε̇ = 15/s, viscoelastic energy of the matrix
is sufficient to induce matrix damage, though it remains less
severe than fiber damage for λ � 1.23, which is nearly the
same at both rates. The damage model is decoupled from �A,
so order parameters D̄ and D1 have indistinguishable histories
for active versus passive states.

C. Shock evolution

1. Analytical solution

Growth and decay of planar shock waves are studied,
with shock fronts treated as singular surfaces per theory of
Sec. II B. An analytical solution is derived for solid-fluid mix-
tures with viscoelastic and damage mechanisms, extending
Ref. [50] that considered nonlinear elastic solid-fluid mixtures
without internal variables and Ref. [65] that considered fluids
with internal state variables. To streamline notation, let inter-
nal variables {ξα} → (aα,bα ). Generic internal variable class
aα obeys kinetic laws of form (77) specialized to

Dα
t aα = Dα

t aα (Fα, ηα (Fα, θα,aα,bα ),aα,bα ). (201)

Generic class bα obeys equilibrium conditions of form

πα
b = ρα∂uα/∂bα = 0. (202)

Type aα include dissipative variables for viscoelasticity and
order parameters for rate-dependent fracture; bα include
rate-insensitive order parameter(s). Now excluding gradient
regularization and explicit Xα dependence,

uα = uα (Fα, ηα,aα,bα ), θα = θα (Fα, ηα,aα,bα ) (203)

are internal energy and temperature of (87) and (88). Unless�ξα� = 0, gradient regularization yields infinite energy den-
sity in the shock front as its width approaches zero. It also
introduces complexity in Rankine-Hugoniot equations via ζα ,
precluding analytical solutions without undue assumptions on
shock structure [86] not used here.

From (149), ĝ = Ĝα ⇒ g/Gα = 1. Then 1D kinematics,
continuum balance laws, and entropy production are, with
ĉα = 0, qα = 0, rα = 0, hα = hα · n, and Pα = −tα ,

Fα = ∂χα/∂X α = Jα, Dα
t Jα = ∂υα/∂X α, (204)

ρα0 = Jαρα, ρα0 Dα
t υ

α = −(∂Pα/∂X α ) + Jαhα, (205)

ρα0 Dα
t uα = −Pα (∂υα/∂X α ) + Jαεα, (206)

ρα0 θ
αDα

t η
α = Jα

(
εα − πα

a · Dα
t aα

)
, (207)∑

α

(Jα/θα )
(
εα − πα

a · Dα
t aα + cαθαηα

)
� 0. (208)

A single shock propagates in the (x,X α)-direction at La-
grangian speed Uα . Ahead of the shock front 
α , each phase
α obeys equilibrium and uniformity conditions:

Jα+ = 1, υα+ = 0, θα+ = θ0, ηα+ = constant

⇒ ρα+ = ρα0 , hα+ = 0, εα+ = 0, Uα = U ;
(209)

aα+ = aα0 = const, bα+ = bα
0 = const. (210)

Rankine-Hugoniot equations (Pα > 0 ⇔ compression) are

�υα� = −U�Jα�, �Pα� = −ρα0 U2�Jα�, (211)

ρα0 �uα� = −〈Pα〉�J�, ∑
α

ρα0 �ηα� � 0. (212)

To avoid infinite dissipation in the shock front [65,121],

�aα� = 0 ⇒ aα− = aα0 . (213)

Jumps �bα� in nondissipative variables can be nonzero
across 
α so long as (202) holds. However, it is assumed that
(202) can be solved, at least implicitly, at any (X α, t ) with the
first of each of (203), (205), and then via (213),

bα = b̄
α

(Jα, ηα,aα ), bα− = b̄
α−(

Jα−, ηα−,aα0
)
. (214)

Now with (213) and (214) at a given (·)+ state, the first
of (212) can be written H (Jα−, ηα−, b̄α−

(Jα−, ηα−)) = 0.
Again, at least implicitly, this can be solved for entropy along
the Hugoniot and then the other state variables:

�ηα� = ηαH (�Jα�), �bα� = bα
H (�Jα�), (215)

�Pα� = Pα
H (�Jα�), �uα� = uαH (�Jα�). (216)

Hugoniot states do not depend explicitly on hα− or εα−. From
(89) with Fα = diag(Jα, 1, 1), note, then define

Pα = −ρα0 ∂uα/∂Jα, θα = ∂uα/∂ηα; (217)

Cα = −∂Pα/∂Jα = ρα0 ∂
2uα/∂ (Jα )2, (218)

Gα = −∂Pα/∂ηα = −ρα0 Jαθα (γ α )1
1, (219)

Aα = −∂Pα/∂aα, Bα = −∂Pα/∂bα
, (220)

b′α = ∂b̄
α
/∂Jα, b′′α = ∂2b̄

α
/(∂Jα )2, (221)

Ĉα = Cα + Bα · b′α
, B′α = ∂Bα

/∂Jα, (222)

C′α = ∂Cα/∂Jα = ρα0 ∂
3uα/∂ (Jα )3, (223)

Ĉ′α = C′α + B′α · b′α + Bα · b′′α
, (224)

Ĝα = Gα + Bα · bα
η . (225)
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Weak shocks are analyzed in the limit �Jα� → 0. Applying
theorems [64] relating isentropic and tangent moduli, (215)
and (216) are expanded from a (·)+ state:

�Pα� = −Ĉα+�Jα� − 1

2
Ĉ′α+�Jα�2 + O(�Jα�3), (226)

�
ρα0 uα

� = −Pα+�Jα� + 1

2
Ĉα+�Jα�2 + O(�Jα�3), (227)

�
ρα0 θ

α
� = Ĝα+�Jα� + 1

2

(
∂Ĝ
∂J

)α+�Jα�2 + O(�Jα�3),

(228)

�bα� = b′α+�Jα� + 1

2
b′′α+�Jα�2 + O(�Jα�3), (229)

�ηα� = 1

12

{
Ĉ′α+/

(
ρα0 θ0

)}�Jα�3 + O(�Jα�4). (230)

From (230), �ηα� is of order three in �Jα�, and �Jα� � 0
when Ĉ′α+ < 0 to satisfy the second of (212) for a single α.
Interactions hα and εα are respectively odd and even functions
of υβ [50,66], so from (209), (211), and (228),

hα− = −U
∑
β

(∂hα/∂υβ )+�Jβ� + O(�Jβ�2), (231)

εα− =
∑
β

(∂εα/∂θβ )+
(
Ĝβ

/
ρ
β

0

)+�Jβ� + O(�Jβ�2). (232)

From (212) and (226), Uβ approaches the sound speed:

(Uβ )2 = (Cβ )2 + 1

2

(
Ĉ′β/ρβ0 )+�Jβ� + O(�Jβ�2),

Cβ =
√

Ĉβ+/
ρ
β

0 . (233)

Considering α �= β and Cα �= Cβ , (233) implies [50,66]

{(Cα )2 − (Cβ )2}�Jβ� + O(�Jα��Jβ�) + O(�Jβ�2) = 0

⇒ U2 = (Cα )2 + O(�Jα�) (for one �Jα� �= 0),

�Jβ� = 0 (∀β = 1, 2, . . . , α − 1, α + 1, . . . ,N ). (234)

Each distinct wave speed Cα corresponds to isolated jump�Jα�. From (226)–(230), a weak shock in phase α does not
induce jumps �Pβ�, �uβ�, �θβ�, etc. in other phases β. Since�Jβ� = 0 for β �= α, (231) and (232) become

hα− = −Cα (∂hα/∂υα )+�Jα� + O(�Jα�2), (235)

εα− = (∂εα/∂θα )+
(
Ĝα

/
ρα0

)+�Jα� + O(�Jα�2), (236)

that also apply for hβ−, εβ−, β �= α with (∂hα/∂υα )+ →
(∂hβ/∂υα )+ and (∂εα/∂θα )+ → (∂εβ/∂θα )+ [66].

Resuming analysis of the nonlinear (i.e., strong-shock)
regime, denote by f α any of (Jα , Pα , ηα , θα , ρα , υα , uα ,
bα). Recall that across surface 
α , f α , Dα

t f α , and ∇α
0 f α =

∂ f α/∂X α can be discontinuous. From (213), aα is continuous;
however, Dα

t aα and ∇α
0 aα need not be so. Recall (9) in 1D is

Dα
t Jα = ∇α

0υ
α via (204). Applying (42) with the last of (209)

gives [65]

δt� f α� = �
Dα

t f α
� + U

�∇α
0 f α

�
, (237)�

Dα
t aα

� = −U
�∇α

0 aα
�
. (238)

Intermediate steps of the derivation of the nonlinear solu-
tion are given in Appendix C, equations (C1)–(C13). Solving
(C11) and (C13) for δtU and δt�ηα�, then insertion in (C6)
with (209) and (C10) yields the fully nonlinear shock evolu-
tion equations for δt�Jα� and δt�Pα�:

δtU = U (1 − ξ̂ α )

(2 − ζ̂ α )ξ̂ α�Jα�δt�Jα�, (239)

δt�ηα� = Ĉα−

Ĝα−
ζ̂ α (1 − ξ̂ α )

(2 − ζ̂ α )
δt�Jα�, (240)

δt�Jα� = U
(1 − ξ̂ α )(2 − ζ̂ α )

{
�α − (∇α

0 Jα
)−}

(3ξ̂ α + 1) − ζ̂ α (3ξ̂ α − 1)
, (241)

δt�Pα� = −Ĉα−U
{3 − ξ̂ α (1 + ζ̂ α )}{�α − (∇α

0 Jα
)−}

(3ξ̂ α + 1) − ζ̂ α (3ξ̂ α − 1)
,

(242)

�α = 1 + �Jα�
(1 − ξ̂ α )Ĉα−

{
ρα0

Jα−
[
Lα− · (

Dα
t aα

)−]

− hα− + [
Ĝα−/(

ρα0 Uθα−)]
εα−

}
. (243)

When (∇α
0 Jα )− equals a critical strain gradient �α (a function

of (·)− conditions immediately behind the wave front), (239)–
(242) vanish so the shock is steady.

Preceding derivations are for phase α. Now let U for phase
α be imposed simultaneously on β �= α. The trivial solution
to (211) is �Jβ� = 0. Noting (C13) and (240) still apply with
α → β, substitution of (239) into the former gives a nontrivial
solution (i.e., a shock interaction law) for the strain jump
amplitude in other constituent(s) β:

δt�Jβ� = (2 − ζ̂ β )ξ̂ β (1 − ξ̂ α )

(2 − ζ̂ α )ξ̂ α (1 − ξ̂ β )

�Jβ��Jα�δt�Jα�. (244)

In the weak limit, U = Uα → Cα = const and shock evo-
lution depends only on (·)+ states. As �Jα� → 0, from (211),
(212), (226), (228), (231), (232), (241), and (243),

ξ̂ α = 1 − 1

2
(Ĉ′α+/Ĉα+)�Jα� + O(�Jα�2), (245)

ζ̂ α = {
Ĝα+/(

ρα0 θ0
)}�Jα� + O(�Jα�2), (246)

�α = −4 Cαρα0ωα/Ĉ′α+ + O(�Jα�), (247)

ωα = − 1

2ρα0

{
1

(Cα )2

[
Aα+ + Bα+ · bα+

a − Ĝα+

ρα0 θ0
πα+

a

]

·
[(

∂ (Dα
t aα )

∂Jα

)+
+

(
∂ (Dα

t aα )

∂bα · b′α
)+]

+
(
∂hα

∂υα

)+
+ 1

θ0

(
Ĝα+

ρα0 Cα

)2(
∂εα

∂θα

)+}
, (248)

δt�Jα� = −ωα�Jα� + O
(�Jα��∇α

0 Jα
�

; �Jα�2
)
. (249)

Omitting higher-order products on the right of (249) [66],

�Jα�(t ) = �Jα0 exp(−ωαt ), �Jα0 = �Jα�(t = 0). (250)

For small �Jα�, if ∇α
0 Jα remains negligible behind wave front


α , then shock amplitude evolves at a rate determined by
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ωα = const. Jumps �Pα�, �uα�, �θα�, and �bα� evolve propor-
tionally via (226)–(229); �ηα� → 0 by (230).

Derivations of Sec. IV C apply trivially for a single-phase
material (α = N = 1, hα → 0, εα → 0). They can also de-
scribe a shock moving with velocity U through the mixture
as a whole per Sec. II C. Assuming υα = υ and θα = θ for
all constituents, then Jα = J , diffusion velocities μα = 0, and
thus hα = 0 and εα = 0. Then from Sec. II C, mixture quanti-
ties include ψ = u − θη and

P =
∑
α

Pα, ρ0 =
∑
α

nα0ρ
α
R0, ρ0u =

∑
α

ρα0 uα,

Ĉ =
∑
α

Ĉα, Ĝ =
∑
α

∂Pα

∂η
, η = −∂ψ

∂θ
. (251)

Since uα is independent of (aβ,bβ ) ∀β �= α per (203),

L · �ȧ� =
∑
α

Lα · �
Dα

t aα
�
. (252)

2. Biologic tissue

Quantities entering �α and ωα of (247) and (248) are
now evaluated for constitutive frameworks of Sec. III. First,
consider an ideal gas. Variables (aα,bα) are irrelevant, ρα0 =
nα0ρ

α
R0, and (102) and (104) give

Pα+ = nα0 pαR0, Ĉα+ = nα0 pαR0

(
1 + γ α0

)
, (253)

Ĉ′α+ = −nα0 pαR0

(
1 + γ α0

)(
2 + γ α0

)
, (254)

Ĝα+ = −ρα0 θ0γ
α
0 , Cα = [

nα0 pαR0

(
1 + γ α0

)/
ρα0

]1/2
, (255)

(∂Ĝα/∂Jα )+ = −Ĝα+(
1 + γ α0

)
. (256)

Next, consider a compressible fluid obeying the EOS in
(109)–(112). With null cavitation for compression, (aα , bα)
are again irrelevant, ρα0 = nα0ρ

α
R0, (256) holds, and

Pα+ = nα0 pαR0, Ĉα+ = nα0
(
pαR0 + Bα

η

)
, (257)

Ĉ′α+ = −nα0
{
2pαR0 + Bα

η

(
1 + Bα

ηp

)}
, (258)

Ĝα+ = −ρα0 θ0γ
α
0 , Cα = [

nα0
(
pαR0 + Bα

η

)/
ρα0

]1/2
. (259)

Last, a solid constituent with EOS (109)–(112), viscoelas-
tic matrix, viscoelastic fibers, matrix- and fiber-damage is
addressed. Bulk and shear viscoelasticity and fiber family
k = 1 furnish internal variables aα → {�α

V l ,�
α
Sm,�

α
�k,n} with

initial conditions {�α+
V l = �α+

Sm = �α+
�k,n = 0}. Rate-insensitive

damage supplies order parameters bα → {D̄α,Dα
k } with ini-

tial conditions {D̄α+ = Dα+
k = 0}. Fibers are either aligned,

καk = 0 parallel to (x,X α), or isotropic, καk = 1
3 . Constant

active tension is permitted, affecting energy, stress (σA)1
1, and

stiffness via (140) and (141); since �α
k = const, this does not

affect dissipation nor need enter aα . As usual, ρα0 = nα0ρ
α
R0 and

(Cα )2 = Ĉα+/ρα0 . Lengthy, yet routine, derivations yield the
material response coefficients listed in Appendix D.

For rate-insensitive damage, from π̄α
D = 0 and πα

Dk = 0 via
(202) and using (229) and (D17) with ϑ̄α = ϑα

k = 2,

D̄α− = 1

nα0 Ēα
C

(
Cα+

S + Cα+
�

)�Jα�2 + O(�Jα�3), (260)

Dα−
k = 1

nα0 Eα
Ck

(
Cα+

F + Cα+
�

)�Jα�2 + O(�Jα�3). (261)

Notice Dα−
k → 0 in (261) if καk = 1

3 . To at least O(�Jα�2),
(260) and (261) are unaffected by Finsler versus Euclidean
metrics (g,Gα ) for current prescriptions r̄α � 2 and r̃αk � 2.
From bα+ → 0 and (D17), rate-insensitive fractures do not
affect weak-shock evolution (247)–(250).

If fractures are rate dependent, then bα → 0 and aα →
{�α

V l ,�
α
Sm,�

α
�k,n, D̄α,Dα

k }. Then (213) yields D̄α− = 0 and
Dα−

k = 0 in lieu of (260) and (261). From (168) and (173),
damage kinetics do not contribute to Aα+ or πα+

a nor �α or
ωα in (247), (248); (D18)–(D20) are unchanged. Importantly,
damage, regardless of rate (in)dependence, can still affect
strong-shock evolution in (239)–(243) even if its effects on
weak shock decay are negligible.

Phase interactions affect �α and ωα , from (176)–(179),(
∂hα

∂υα

)+
= −

∑
β �=α

λ̄αβ+,
(
∂εα

∂θα

)+
= −

∑
β �=α

ω̄αβ+. (262)

Consider now a two-phase mixture of solid (α = 1 → s) and
fluid (α = 2 → f ). Adopting physics in Refs. [41,42],

λ̄12+ = (
n f

0

)2
μ̂ f /#, ω̄12+ = αvκ

fs, (263)

with fluid viscosity μ̂ f , system permeability #, interfacial
area per unit volume αv, and heat transfer coefficient κ fs.
Although macroscopic Newtonian viscosity and Fourier con-
duction are excluded for singular shocks [121], microscopic
hα and εα include viscosity and heat transfer.

Recall from (234) that the weak-shock solution (250) for
a multi-phase material corresponds to strain jump �Jα0 and
resulting discontinuities in Pα and θα applied as a loading con-
dition for one phase α, with all other phase β = 1, 2, . . . α −
1, α + 1, . . . ,N witnessing no discontinuities in Jβ , Pβ , or
θβ . This shock moves through all phases at speed Cα; phase
interactions hα and εα induce decay in amplitude �Jα�(t ) so
long as λ̄αβ > 0 and ω̄αβ > 0. Velocities υβ and temperatures
θβ (β �= α) can evolve continuously in space-time behind the
wave front from such interactions, their values indeterminate.

In contrast, if the mixture is idealized as homogeneous
with matching υα and θα , then hα and εα do not explicitly
affect shock evolution. In this “tied” case, �Jα0 is applied
simultaneously at t = 0 to all phases α = 1, . . . ,N as a load-
ing condition. Speed C = (Ĉ/ρ0)1/2 results from stiffness and
density of the whole mixture in (251), and

Ĉ′+ =
∑
α

Ĉ′α+, Ĝ+ = −ρ0θ0

∑
α γ

α
0 ρ

α
0 cαε∑

α ρ
α
0 cαε

. (264)

3. Predictions

The analytical solution for weak shock evolution, namely
(247)–(250), is applied to three biologic systems at θ0 =
310 K, each comprised of one solid tissue phase and one
fluid: skeletal muscle with interstitial fluid, liver with blood,
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TABLE III. Shock evolution parameters for rabbit muscle (ECF and solid, n1
0 = 0.9), bovine liver (blood and solid, n1

0 = 0.88), and canine
lung (air and solid, n1

0 = 0.336). “Mixture” invokes same shock simultaneously to each phase. (�P)α0 , (�θ )α0 , (�D̄)α0 , and (�D1)α0 are initial
stress, temperature, and matrix and fiber damage jumps for initial strain change �Jα0 = �Jα�(t = 0) = −0.1.

Property or Muscle Liver Lung

model prediction ECF Solid Mixture Blood Solid Mixture Air Solid Mixture

ρα0 (g/cm3) 0.103 0.990 1.093 0.127 0.933 1.060 7.56 × 10−4 0.337 0.338
Ĉα+ (GPa) 0.220 2.954 3.174 0.317 2.350 2.667 9.42 × 10−5 9.26 × 10−5 1.87 × 10−4

Ĉ′α+ (GPa) −1.751 −26.57 −28.32 −4.118 −21.15 −25.27 −2.26 × 10−4 −2.42 × 10−4 −4.68 × 10−4

Cα (km/s) 1.462 1.727 1.704 1.578 1.587 1.586 0.353 1.66 × 10−2 2.35 × 10−2

Ĝα+ (g · K/cm3) −4.215 −96.06 −99.15 −6.309 −32.97 −39.31 −9.38 × 10−2 −11.91 −11.95
ωα (1/s) 8.69 × 109 9.05 × 108 7.01 × 10−3 1.89 × 107 2.57 × 106 6.62 × 10−2 2.97 × 104 1.13 × 102 2.95 × 10−2

�α (1/m) 2.99 × 106 2.33 × 105 1.84 × 10−6 3.68 × 103 7.21 × 102 1.76 × 10−5 1.40 × 102 1.04 × 101 2.01 × 10−3

(�P)α0 (MPa) 30.8 428 459 52.3 341 393 1.06 × 10−2 1.05 × 10−2 2.10 × 10−2

(�θ )α0 (K) 4.32 10.3 9.66 5.25 3.73 3.92 13.3 3.73 3.74
(�D̄)α0 (–) matrix . . . 0.045 0.045 . . . 0.100 0.100 . . . 5.03 × 10−3 5.03 × 10−3

(�D1)α0 (–) fibers . . . 0.022 0.022 . . . 0 0 . . . 0 0

and lung with air. Physical properties or parameters, ωα , and
�α are given in Table III for each component, and for the
homogeneous idealization of (251), (252), and (264) labeled
“Mixture.”

Constitutive and metric-tensor parameters are those for
rabbit skeletal muscle and bovine lung of Sec. IV B, Table I
(ECF, blood) and Table II (solids). For muscle, active ten-
sion from (199) affects initial stress but does not appreciably
change tabulated results (not shown).

Air is modeled as an ideal gas [50] with Rα = 287 J/kg · K
and γ α0 = 0.4. Viscosity for air in (263) is μ̂ f = 18.3μPa s
[41]. Solid properties are for canine lung [6,50,100] with
bulk and shear viscoelasticity (l = m = 1), isotropic fibers
(καk = 1

3 ), solid fraction n1
0 = 0.336, Bα

η = 164 kPa, μα
S =

2.98 kPa, βαV l = 0.009, βαSm = 1.5, ταV l = ταSm = 0.5 s. Val-
ues γ α0 = 0.114 and Ēα

C = 22.7 kPa, unmeasured for lung
parenchyma, are borrowed from liver parenchyma. This value
of γ α0 for lung is approximately twice that of Ref. [50], with
the latter estimate 103× that of classical thermodynamics
[141] using the low Bα

θ of the highly porous structure.
In (263),# = 6.7 × 10−18m2 for muscle [142],# = 1.5 ×

10−14m2 for liver [43], and # = 1.83 × 10−10m2 for lung
[41]. For heat transfer, κ fs = 6 W/m2 · K in muscle and liver
[113], and κ fs = 41.2 W/m2 · K in lung [143]. From ideal-
ized microstructure geometries [1,132,142], a contact area
estimate for muscle is αv = π/R0 with R0 = 30 µm the fiber
radius [51], for liver αv = 2n f

0/R0 with R0 = 4 µm the cap-
illary radius [113], and for lung αv = π/(2R0) with R0 =
30 µm the alveolar radius [100].

The lower four rows of Table III contain initial jumps in
stress of (226), temperature of (228), matrix damage of (260),
and fiber fracture of (261), each to O(�Jα�2) for initial strain
jump �Jα0 = −0.1. If damage is modeled as rate dependent,
then its jumps must vanish instead in the infinitesimal-width
shock approximation of (213).

Normalized exponential decay of �Pα� and �θα� arising
from (250) is shown for both components of each two-phase
system in Fig. 6. In each system, a shock applied to the fluid
decays over a much shorter distance than one applied to the
solid. From Fig. 6, decay distance is shortest in muscle and
longest in lung. When mixtures are shocked uniformly, decay

from viscoelastic dissipation alone manifests over much larger
distances (not shown).

From Table III and Fig. 6, when �Jα0 is applied to one
constituent alone, then |�α| and |ωα| are relatively large, with
ωα > 0 for transient decay. For dPα

H/d�Jα� ≈ −Ĉα− < 0 and
since �α > 0, a negative stress gradient ∇0Pα− is needed for
a steady shock (i.e, no decay). In a steady shock, Pα should
decrease steeply as 
α is approached from the (·)− side. For
muscle and liver, (∂hα/∂υα )+ is the dominant contribution
to ωα due to relatively small # and large μ̂ f in (263). For
lung, both (∂hα/∂υα )+ and (∂εα/∂θα )+ have significant in-
fluence on shock decay, the latter due to a comparatively low
Cα . Viscoelastic dissipation embodied in A�V , A�S , and A�

has relatively small effects, negligible compared to interphase
drag and heat exchange. Nearly incompressible viscoelastic
responses of these soft biologic tissues, also typical of soft
polymers at high rates [144], leads to small glassy shear
moduli relative to bulk moduli, the latter (bulk) modeled here
having little or no viscoelastic relaxation. From Table III,
stress rises (�P)α0 are greatest in solid phases of muscle and
liver having largest tangent moduli. Temperature (�θ )α0 is
highest in air in the lung.

Table IV compares decay distances for shocks applied
to isolated solid constituents (albeit with nonzero fluid-solid
interactions hα and εα) in skeletal muscle, liver, and lung. De-
note by ϕα (t ) the normalized shock amplitude in constituent α
with speed Cα and decay constant ωα . Inverting (250), decay
distance X α = Cαt from a shock applied at t = 0 is

X α = −(Cα/ωα ) ln ϕα. (265)

TABLE IV. Decay distance X α to attain fraction of initial shock
strength ϕα for weak shocks in solid tissue phase (α = 1).

Soft Decay distance X α (units)

tissue ϕα = 0.9 ϕα = 0.5 ϕα = 0.1

Muscle 0.20 µm 1.32 µm 4.40 µm
Liver 0.07 mm 0.43 mm 1.42 mm
Lung 1.55 cm 10.18 cm 33.81 cm
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FIG. 6. Predicted ratio of jump in shock stress (�P)α or tem-
perature (�θ )α normalized by initial magnitude (�P)α0 or (�θ )α0 , for
shock amplitude�Jα0 applied individually to phase α, vs propagation
distance X α in the weak shock limit: (a) rabbit muscle, (b) bovine
liver, and (c) canine lung. Wave speed is Cα; different scales (i.e.,
μm, mm, or m) used for X α .

Substantial decay requires distances on the order of μm in
solid tissue of skeletal muscle. Decay takes place over dis-
tances of mm in liver. Significant shock evolution requires
the largest distances in lung, on the order of cm. If isolated
shocks degenerate over distances small relative to microstruc-
ture dimensions, then a physically rational assumption is that
macroscopic shock propagation can be modeled using the ho-
mogenized mixture approximation (i.e., a constrained mixture
theory [74,75,114,115]). From results in Table IV, this “lo-
cally undrained” assumption, wherein fluid and solid phases

move in concert with the same local velocity (i.e., fluid is
entrapped or immobile with respect to the solid) and tempera-
ture, appears most-to-least appropriate in the following order:
skeletal muscle, liver parenchyma, and lung parenchyma.

V. CONCLUDING REMARKS

A theoretical framework is posited for modeling multi-
phase soft biologic materials over wide ranges of loading rate
and pressure. Classical continuum mixture theory of Bowen
and Truesdell is augmented with internal variables that can
address viscoelasticity, activation, growth and remodeling,
and tissue degradation (e.g., the opposite of growth and re-
modeling). Dependence of free energy and external working
on state variable gradients leads to Ginzburg-Landau type
kinetics for these state variables. The phase-field fracture
theory distinguishes among order parameters associated with
matrix and fiber damage, providing more physical insight than
prior models that used only single damage order parameter.
Permitting non-Euclidean metric tensors to depend on internal
state can resolve residual (i.e., remnant) strain from growth,
remodeling, or degradation. Fracture resistance increases in
concert with remnant strain, similar to toughening seen in
structural materials in concert with plastic strain.

Results for uniaxial-stress and shock loading agree with
experimental data on biologic fluids and soft tissues. Fluids
include water, ECF, and blood. Soft tissues in include skele-
tal muscle infused with ECF, liver infused with blood, and
lung permeated with air. Usual incompressibility assumptions
of soft-tissue mechanics and poromechanics are abandoned
to permit modeling of shock waves and large (volumetric)
compressions, the latter unrestricted by initial porosity of the
drained solid medium.

Uniaxial-stress calculations confirm that damage, repre-
sented by order parameters for matrix rupture and fiber
fractures, is strain-rate insensitive in muscle fibers but rate
dependent in liver. Stress results closely match most experi-
mental data on these fluid-rich tissues. Since solids and fluids
have similar bulk compressibility, with null or small ratios
of shear to bulk modulus, uniaxial stresses supported by the
mixture are nearly indistinguishable whether the fluids are
equilibrated to partial atmospheric pressures or tied to deform
laterally with the solid.

An analytical solution has been derived for shock evolution
including phase interactions, viscoelasticity, and tissue dam-
age. Previous derivations have not considered all phenomena
simultaneously, so are unable to quantify relative effects of
each mechanism on shock decay. Closed-form results are
obtained in the weak-shock limit. Calculations consider one
or the other phase shock-compressed independently (albeit
still interacting with the other initially quiescent phase) or a
single shock wave applied simultaneously to a homogenized
material system. Predictions reveal dominance of interphase
momentum and energy exchange over viscoelastic dissipation
and effects of matrix and fiber damage for all two-phase ma-
terials. For muscle and liver, effects of interphase heat transfer
on shock decay are small versus interphase viscous drag. For
lung, thermal effects are not insignificant.

Decay distances for shocks in solid constituents are around
one order of magnitude larger than for fluid constituents.
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Weak shock decay in isolated constituents occurs over μm
in muscle, mm in liver, and cm in lung. An assumption that
the mixture can be idealized as a single-phase material with
homogenized properties appears to be most valid for dynamic
shock-wave responses of skeletal muscle, less valid for liver,
and least valid for lung.

APPENDIX A: STEADY WAVES

Jump equations are derived for mass, momentum, and en-
ergy between two points in a structured steady wave [69,80].
In a 1D Lagrangian setting, let Dα be a constant wave speed;
for a differentiable function f (X α, t ),

f (X α, t ) = f (X α − Dαt ) = f (Y α ), (A1)

∂ f /∂X α = df /dY α, Dα
t f = −Dαdf /dY α. (A2)

Applying (A2) to 1D equations Dα
t Fα = ∂υα/∂X α and

ρα0 Dα
t υ

α = ∂tα/∂X α + ρα0 bα + (∂χα/∂X α )hα, (A3)

which is the first of (16), gives

dυα/dY = −DαdFα/dY, (A4)

dtα/dY = −ρα0 Dαdυα/dY − ρα0 bα − Fαhα. (A5)

Select two points at steady-wave coordinates Y ±, and de-
fine the jump in a quantity between these points as in (23):� f (Y )� = f (Y −) − f (Y +). Direct integration of (A4) over
Y − → Y + and substitution into (A5) gives

�υα� = −Dα�Fα�, (A6)

�tα� = ρα0 (Dα )2�Fα� +
∫ +

−

(
ρα0 bα + Fαhα

)
dY. (A7)

Using the same procedure for 1D continuum laws of energy
conservation and entropy production, (17) and (19),

ρα0 Dα
t uα = tα∂υα/∂X α + ∂

({z}α}{Dα
t ξ

α
})
/∂X α

− ∂qα/∂X α + ρα0 rα + (∂χα/∂X α )εα, (A8)∑
α

[
ρα0 Dα

t η
α + ∂ (qα/θα )/∂X α − ρα0 rα/θα

+ (∂χα/∂X α )cαηα
]

� 0; (A9)

ρα0 Dα

�
uα + 1

2
|υα|2

�
= −�

tαυα + {zα}{Dα
t ξ

α
} − qα

�
+

∫ +

−

{
ρα0 (rα + bαυα ) + Fα (εα + hαυα )

}
dY, (A10)∑

α

(
ρα0 Dα�ηα� − �qα/θα�)

−
∫ +

−

(
ρα0 rα/θα − Fαcαηα

)
dY

}
� 0. (A11)

Relation (A6) is identical to the mass conservation law for a
singular surface in the first of (40) when Dα → Uα . Relation
(A7) is identical to the momentum conservation law in the
second of (40) when the integral on the right of (A7) vanishes

(e.g., constant body force and null drag). Relation (A10) is
identical to the energy conservation law in (37) when its inte-
gral terms vanish, and (A11) is identical to entropy inequality
(38) when its integral terms involving heat and mass supplies
vanish. In such cases, Eulerian jump conditions in (28) and
(29) can be recovered for a steady wave of Eulerian speed D
where f (x, t ) = f (x − Dt ) when D = FαDα + υα = const.

Given (53), (54), (56), (64), and (65), the treatment of
steady Lagrangian waves can be applied to the mixture as a
whole. Let f (X, t ) = f (X − Dt ) = f (Y ) in a steady wave,
with D the constant speed. Using relations akin to (A1) and
(A2), the local compatibility and linear momentum equa-
tions (64) and (53) (in 1D) are

dυ/dY = −DdFα/dY, (A12)

dσ/dY = −ρ0Ddυ/dY − ρ0b. (A13)

Integrating from Y + → Y − gives conditions like (61):

�υ� = −D�F� = −Dρ0�1/ρ�, (A14)

�σ � = −ρ0D�υ� +
∫ +

−
ρ0b dY. (A15)

APPENDIX B: METRIC PARTITION
AND ALTERNATIVE STRAIN

Decompositions of metrics of (2) and (3) into symmetric
position-dependent (i.e., classical) and dimensionless, invert-
ible, space-time-dependent parts are [52,54,57]

g(x, t ) = ḡ(x) ĝ({ξα (x, t )}), (B1)

Gα (Xα, t ) = Ḡα (Xα ) Ĝα ({�α (Xα, t )}). (B2)

A deformation C̄α and Jacobian J̄α based on (ḡ, Ḡα ) are

(C̄α )K
J = ḠKI (Fα )i

I ḡi j (F
α ) j

J (Gα )K ⊗ (Gα )J , (B3)

J̄α =
√

det C̄α = Jα
√

Ĝα/ĝ, (B4)

with dimensionless ĝ = det ĝ and Ĝα = det Ĝα . Alternative
constitutive equations [52], also energetically objective, are
obtained by positing dependence of ψα , ηα , uα , and θα

through C̄α (Fα ) rather than Cα , whereby

∂ψα/∂Fα = 2Fα∂ψα/∂C̄α

↔ ∂ψα/∂ (Fα )i
J = 2ḡik (Fα )k

L∂ψ
α/∂ (C̄α )JL. (B5)

Derivations in (81)–(96) continue to apply for ψα (C̄α, ·),
ηα (C̄α, ·), etc. with several changes manifested by (B5):

(σ̄ α ) j
i = 2ρα ḡik (Fα )k

L(Fα ) j
J∂ψ

α/∂ (C̄α )JL

= 2ρα ḡik (Fα )k
L(Fα ) j

J∂uα/∂ (C̄α )JL, (B6)

β̄
α = ραcαε γ̄

α = −2ρα ∂2ψα/∂θα∂C̄α, (B7)

ραcαε Dα
t θ

α = Dα − 1
2θ

αβ̄
α

: Dα
t C̄α

+ ραθα
[
(∂2ψ/∂θα∂{ξα}) · {

Dα
t ξα

}
+ (∂2ψ/∂θα∂{∇ξα}) :

{∇(
Dα

t ξα
)}]

− ∇ · qα + ραrα + εα. (B8)
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Mixed-variant σ̄α in (B6) excludes ĝ(x, t ). Contravariant
stress defined as (σ̄ α )i j = 1

2 [gik (σ̄ α ) j
k + gjk (σ̄ α )i

k] or (σ̄ α )i j =
ḡik (σ̄ α ) j

k must be symmetric. The former depends on ĝ(x, t )
implicitly from gik . This choice presumes, a priori, that
skew contributions from (B6) perform no work in the energy
balance so can thus be redefined as zero. The latter prescrip-
tion either redefines raising or lowering indices on Cauchy
stress or presumes that dα is defined in covariant form by
lowering of lα with ḡi j , rather than the typical gi j prior to
symmetrization.

APPENDIX C: DERIVATION OF SHOCK EVOLUTION LAW

Using (237) on �Jα� and �υα�, then (42) on U in (211),

2Uδt�Jα� + �Jα�δtU = U2
�∇α

0 Jα
� − �

Dα
t υ

α
�
. (C1)

From (205), (207), (209), (211), and (217)–(220),

ρα0
�

Dα
t υ

α
� = Cα−�∇α

0 Jα
� + Gα−�∇α

0η
α
� + Jα−�hα�

+ Aα− · �∇α
0 aα

� + Bα− · �∇α
0 bα

�
, (C2)

ρα0 θ
α−�

Dα
t η

α
� = Jα−(�εα� − πα−

a · �
Dα

t aα
�)
, (C3)

where πα
a = ρα∂uα/∂aα . With f α → ηα , putting (C3) into

(237) gives �∇α
0η

α� in terms of δt�ηα� and jumps on the right
of (C3). This �∇α

0η
α� is inserted in (C2). The fourth term on

the right of (C2) is − 1
U Aα− · �Dα

t aα� via (238). From this,
(221), and (C3), the fifth term includes�∇α

0 bα
� = b′α−�∇α

0 Jα
� − (1/U ) bα−

a · �
Dα

t aα
�

+ bα−
η

U

{
δt�ηα� − Jα−(�εα� − πα−

a · �
Dα

t aα
�

)

ρα0 θ
α−

}
,

(C4)

bα
a = ∂b̄

α
/∂aα, bα

η = ∂b̄
α
/∂ηα. (C5)

Putting (C4) into (C2), the latter is inserted into (C1):

δt�Jα� = 1

2U

{(
U2 − Ĉα−

ρα0

)�∇α
0 Jα

� − Ĝα−

ρα0 U
δt�ηα�

− δtU�Jα� − Jα−

ρα0
�hα� + Jα−Ĝα−(

ρα0
)2Uθα−

�εα�
+ Lα− · �

Dα
t aα

�}
, (C6)

Lα = 1

ρα0 U

{
Aα + Bα · bα

a − JαĜα

ρα0 θ
α

πα
a

}
. (C7)

From (202), (211), (212), (217), (222), (238), and (225),

ρα0 δt�uα� = −(
Pα− + ρα0 U2�Jα�)δt�Jα�

− �Jα�δt P
α− − ρα0 U�Jα�2δtU , (C8)

ρα0 δt�uα� = −Pα−δt�Jα� + ρα0 θ
α−δt�ηα�, (C9)

δt P
α− = δt�Pα� = −Ĉα−δt�Jα� − Ĝα−δt�ηα�. (C10)

Eliminating δt�uα� and δt Pα−, then differentiating (211),

ρα0 �Jα�2UδtU = Gα−�Jα�(1 − 1/ζ̂ α )δt�ηα�
+ Ĉα−(1 − ξ̂ α )�Jα�, (C11)

ξ̂ α = ρα0 U2/Ĉα−, ζ̂ α = Ĝα−�Jα�/(
ρα0 θ

α−)
; (C12)

2ρα0 �Jα�UδtU = Ĉα−(1 − ξ̂ α )δt�Jα� + Ĝα−δt�ηα�. (C13)

APPENDIX D: COEFFICIENTS FOR WEAK
SHOCK EVOLUTION

For solid phases, (245)–(250) and Table III utilize

Pα+ = nα0
{

pαR0 − (
σαA

)1+
1

}
, Gα+ = −ρα0 θ0γ

α
0 ; (D1)

(∂Ĝα/∂Jα )+ = −Ĝα+(
1 + γ α0

)
, (D2)

Ĉα+ = Cα+, Ĉ′α+ = C′α+, Ĝα+ = Gα+, (D3)

Cα+ = Cα+
V + Cα+

S + Cα+
� + Cα+

A + Cα+
F + Cα+

� , (D4)

C′α+ = C′α+
V + C′α+

S + C′α+
� + C′α+

A + C′α+
F + C′α+

� ; (D5)

Cα+
V = nα0

(
pαR0 + Bα

η

)
, Cα+

S = 4

3
nα0μ

α
S , (D6)

Cα+
� = nα0

(
Bα
θ

∑
l

βαV l + 4

3
μα

S

∑
m

βαSm

)
, (D7)

Cα+
A = nα0

(
∂2�α

Ak/∂ (Jα )2)+
(k = 1), (D8)

Cα+
F =

{
8
9 nα0μ

α
k

(
καk = 0

)
,

0
(
καk = 1

3

)
,

(D9)

Cα+
� =

{
8
9 nα0μ

α
k

∑
n β

α
�k,n

(
καk = 0

)
,

0
(
καk = 1

3

)
;

(D10)

C′α+
V = −nα0

{
2pαR0 + Bα

η

(
1 + Bα

ηp

)}
, (D11)

C′α+
S = −28

9
nα0μ

α
S , (D12)

C′α+
� = −3nα0

(
Bα
θ

∑
l

βαV l + 28

27
μα

S

∑
m

βαSm

)
, (D13)

C′α+
A = nα0

(
∂3�α

Ak/∂ (Jα )3
)+

(k = 1), (D14)

C′α+
F =

{
24
27 nα0μ

α
k

(
καk = 0

)
,

0
(
καk = 1

3

)
,

(D15)

C′α+
� =

{
24
27 nα0μ

α
k

∑
n β

α
�k,n

(
καk = 0

)
,

0
(
καk = 1

3

)
;

(D16)

Bα+ → 0, bα+
a → 0, b′α+ → 0, bα+

η → 0, (D17)
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Aα+ → −nα0

{
∂Qα

V l

∂Jα
,
∂Qα

Sm

∂Jα
,
∂Qα

�k,n

∂Jα

}+
, (D18)

(
∂
(
Dα

t aα
)

∂Jα

)+
→

{
∂Qα

V l/∂Jα

βαV lB
α
θ τ

α
V l

,
∂Qα

Sm/∂Jα

βαSmμ
α
Sτ

α
Sm

,
(
∂Qα

�k,n/∂Jα
)/(

βα�k,nμ
α
k τ

α
�k,n

)}+
, πα+

a → 0, (D19)

Aα+·(∂(Dα
t aα

)/
∂Jα

)+ → Aα
�V + Aα

�S + Aα
�, (D20)

Aα
�V = −3nα0 Bα

θ

∑
l

βαV l

ταV l

, Aα
�S = −8

3
nα0μ

α
S

∑
m

βαSm

ταSm

,

Aα
� =

{− 32
27 nα0μ

α
k

∑
n β

α
�k,n/τ

α
�k,n

(
καk = 0

)
,

0
(
καk = 1

3

)
.

(D21)

[1] Y.-C. Fung, Biomechanics: Motion, Flow, Stress, and Growth
(Springer, New York, 1990).

[2] Y.-C. Fung, Biomechanics: Mechanical Properties of Living
Tissues, 2nd ed. (Springer, New York, 1993).

[3] H. Saraf, K. T. Ramesh, A. M. Lennon, A. C. Merkle, and J. C.
Roberts, J. Biomech. 40, 1960 (2007).

[4] J. M. Wilgeroth, P. Hazell, and G. J. Appleby-Thomas, in
Shock Compression of Condensed Matter - 2011, edited by
M. L. Elert, W. T. Buttler, J. P. Borg, J. L. Jordan, and T. J.
Vogler, AIP Conf. Proc. Vol. 1426 (AIP, Melville, NY, 2012),
p. 139.

[5] J. D. Clayton, Biomech. Model. Mechanobiol. 19, 2603
(2020).

[6] J. D. Clayton, R. J. Banton, and A. D. Freed, in Shock Com-
pression of Condensed Matter - 2019, edited by J. M. D. Lane,
T. C. Germann, M. R. Armstrong, R. Wixom, D. Damm, and
J. Zaug, AIP Conf. Proc. Vol. 2272 (AIP, Melville, NY, 2020),
p. 040001.

[7] T. Ricken, U. Dahmen, and O. Dirsch, Biomech. Model.
Mechanobiol. 9, 435 (2010).

[8] G. A. Holzapfel and R. W. Ogden, Phil. Trans. R. Soc. A 367,
3445 (2009).

[9] D. Sachs, A. Wahlsten, S. Kozerke, G. Restivo, and E. Mazza,
Biomech. Model. Mechanobiol. 20, 969 (2021).

[10] W. Yang, V. R. Sherman, B. Gludovatz, E. Schaible, P. Stewart,
R. O. Ritchie, and M. A. Meyers, Nat. Commun. 6, 6649
(2015).

[11] A. Zubelewicz, Sci. Rep. 3, 1323 (2013).
[12] P. Van Liedekerke, E. Tijskens, H. Ramon, P. Ghysels, G.

Samaey, and D. Roose, Phys. Rev. E 81, 061906 (2010).
[13] G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, J. Elast. 61,

1 (2000).
[14] G. Chagnon, M. Rebouah, and D. Favier, J. Elast. 120, 129

(2015).
[15] M. B. Rubin and S. R. Bodner, Int. J. Solids Struct. 39, 5081

(2002).
[16] O. Gültekin, G. Sommer, and G. A. Holzapfel, Comp.

Methods Biomech. Biomed. Eng. 19, 1647 (2016).
[17] T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, J. R. Soc.

Interface 3, 15 (2006).
[18] J. Planas, G. V. Guinea, and M. Elices, Phys. Rev. E 76,

041903 (2007).

[19] M. Kalhöfer-Köchling, E. Bodenschatz, and Y. Wang, Phys.
Rev. Appl. 13, 064039 (2020).

[20] D. Ito, E. Tanaka, and S. Yamamoto, J. Mech. Behav. Biomed.
Mater. 3, 85 (2010).

[21] W. Li, J. Med. Biol. Eng. 36, 285 (2016).
[22] A. Raina and C. Miehe, Proc. Appl. Math. Mech. 15, 103

(2015).
[23] O. Gültekin, S. Hager, H. Dal, and G. A. Holzapfel, Biomech.

Model. Mechanobiol. 18, 1607 (2019).
[24] V. I. Levitas, V. A. Levin, K. M. Zingerman, and E. I. Freiman,

Phys. Rev. Lett. 103, 025702 (2009).
[25] L. Yang and K. Dayal, Appl. Phys. Lett. 96, 081916 (2010).
[26] J. D. Clayton and J. Knap, Physica D 240, 841 (2011).
[27] A. Acharya and J. Vinals, Phys. Rev. B 102, 064109 (2020).
[28] A. Karma, D. A. Kessler, and H. Levine, Phys. Rev. Lett. 87,

045501 (2001).
[29] V. I. Marconi and E. A. Jagla, Phys. Rev. E 71, 036110 (2005).
[30] R. Spatschek, C. Muller-Gugenberger, E. Brener, and B.

Nestler, Phys. Rev. E 75, 066111 (2007).
[31] J. D. Clayton and J. Knap, Int. J. Fract. 189, 139 (2014).
[32] V. I. Levitas, J. Mech. Phys. Solids 70, 154 (2014).
[33] V. I. Levitas, A. V. Idesman, and A. K. Palakala, J. Appl. Phys.

110, 033531 (2011).
[34] D. Santillan, J.-C. Mosquera, and L. Cueto-Felgueroso, Phys.

Rev. E 96, 053002 (2017).
[35] M. A. Biot, J. Appl. Phys. 12, 155 (1941).
[36] C. A. Truesdell and R. A. Toupin, The classical field theories,

in Handbuch der Physik, edited by S. Flugge (Springer, Berlin,
1960), Vol. III, pp. 226–793.

[37] R. M. Bowen, Theory of mixtures, in Continuum Physics,
edited by A. C. Eringen (Academic Press, New York, 1976),
Vol. 3, pp. 1–127.

[38] R. M. Bowen, Int. J. Eng. Sci. 20, 697 (1982).
[39] M. Yang and L. A. Taber, J. Biomech. 24, 587 (1991).
[40] J. M. Huyghe, T. Arts, D. H. V. Campen, and R. S. Reneman,

Am. J. Physiol. 262, H1256 (1992).
[41] R. A. Regueiro, B. Zhang, and S. L. Wozniak, Comp. Mod.

Eng. Sci. 98, 1 (2014).
[42] H. S. Suh and W. Sun, Comput. Methods Appl. Mech. Eng.

387, 114182 (2021).
[43] Y. Zheng, Y. Jiang, and Y. Cao, J. Mech. Phys. Solids 150,

104339 (2021).

035001-31

https://doi.org/10.1016/j.jbiomech.2006.09.021
https://doi.org/10.1007/s10237-020-01358-9
https://doi.org/10.1007/s10237-009-0186-x
https://doi.org/10.1098/rsta.2009.0091
https://doi.org/10.1007/s10237-021-01424-w
https://doi.org/10.1038/ncomms7649
https://doi.org/10.1038/srep01323
https://doi.org/10.1103/PhysRevE.81.061906
https://doi.org/10.1023/A:1010835316564
https://doi.org/10.1007/s10659-014-9508-z
https://doi.org/10.1016/S0020-7683(02)00237-8
https://doi.org/10.1080/10255842.2016.1176155
https://doi.org/10.1098/rsif.2005.0073
https://doi.org/10.1103/PhysRevE.76.041903
https://doi.org/10.1103/PhysRevApplied.13.064039
https://doi.org/10.1016/j.jmbbm.2009.05.001
https://doi.org/10.1007/s40846-016-0132-1
https://doi.org/10.1002/pamm.201510042
https://doi.org/10.1007/s10237-019-01164-y
https://doi.org/10.1103/PhysRevLett.103.025702
https://doi.org/10.1063/1.3319503
https://doi.org/10.1016/j.physd.2010.12.012
https://doi.org/10.1103/PhysRevB.102.064109
https://doi.org/10.1103/PhysRevLett.87.045501
https://doi.org/10.1103/PhysRevE.71.036110
https://doi.org/10.1103/PhysRevE.75.066111
https://doi.org/10.1007/s10704-014-9965-1
https://doi.org/10.1016/j.jmps.2014.05.013
https://doi.org/10.1063/1.3619807
https://doi.org/10.1103/PhysRevE.96.053002
https://doi.org/10.1063/1.1712886
https://doi.org/10.1016/0020-7225(82)90082-9
https://doi.org/10.1016/0021-9290(91)90291-T
https://doi.org/10.1016/j.cma.2021.114182
https://doi.org/10.1016/j.jmps.2021.104339


J. D. CLAYTON PHYSICAL REVIEW E 110, 035001 (2024)

[44] K. Terzaghi, Theoretical Soil Mechanics (John Wiley & Sons,
New York, 1943).

[45] S. M. Fielding, J. O. Cochran, J. Huang, D. Bi, and M. C.
Marchetti, Phys. Rev. E 108, L042602 (2023).

[46] Y. Mulla, G. Oliveri, J. T. B. Overvelde, and G. H. Koenderink,
Phys. Rev. Lett. 120, 268002 (2018).

[47] M. R. Baer and J. W. Nunziato, Int. J. Multiphase Flow 12,
861 (1986).

[48] D. Madjarevic and S. Simic, Phys. Rev. E 100, 023119 (2019).
[49] A. Grillo, M. Carfagna, and S. Federico, J. Eng. Math. 109,

139 (2018).
[50] J. D. Clayton, Int. J. Eng. Sci. 175, 103675 (2022).
[51] J. M. Wilgeroth, P. J. Hazell, and G. J. Appleby-Thomas,

Int. J. Impact Eng. 50, 83 (2012).
[52] J. D. Clayton, Symmetry 15, 1828 (2023).
[53] K. Takamizawa and T. Matsuda, J. Appl. Mech. 57, 321

(1990).
[54] A. Yavari, J. Nonlin. Sci. 20, 781 (2010).
[55] S. Sadik, A. Angoshtari, A. Goriely, and A. Yavari, J. Nonlin.

Sci. 26, 929 (2016).
[56] J. D. Clayton, J. Geom. Phys. 112, 118 (2017).
[57] J. D. Clayton, Z. Angew. Math. Phys. 68, 9 (2017).
[58] A. Bejancu, Finsler Geometry and Applications (Ellis

Horwood, New York, 1990).
[59] Y. Takano and H. Koibuchi, Phys. Rev. E 95, 042411 (2017).
[60] S. Ikeda, Tensor, N.S. 27, 361 (1973); J. Math. Phys. 22, 1211

(1981).
[61] V. A. Eremeyev and V. Konopinska-Zmyslowska, Symmetry

12, 1632 (2020).
[62] J. D. Clayton, Int. J. Geom. Methods Mod. Phys. 15, 1850113

(2018).
[63] J. D. Clayton, Math. Mech. Solids 27, 910 (2022).
[64] B. D. Coleman and M. E. Gurtin, Proc. R. Soc. Lond. A 292,

562 (1966).
[65] P. J. Chen and M. E. Gurtin, Phys. Fluids 14, 1091 (1971).
[66] R. M. Bowen and P. J. Chen, Arch. Ration. Mech. Anal. 53,

277 (1974).
[67] H. Rund, The Differential Geometry of Finsler Spaces

(Springer-Verlag, Berlin, 1959).
[68] S. Amari, A theory of deformations and stresses of ferro-

magnetic substances by Finsler geometry, in RAAG Memoirs,
edited by K. Kondo (Gakujutsu Bunken Fukyu-Kai, Tokyo,
Japan, 1962), Vol. 3, pp. 257–278.

[69] J. D. Clayton, Nonlinear Elastic and Inelastic Models for Shock
Compression of Crystalline Solids (Springer, Cham, 2019).

[70] C. A. Truesdell, Rational Thermodynamics, 2nd ed. (Springer-
Verlag, New York, 1984).

[71] K. R. Rajagopal and L. Tao, Mechanics of Mixtures (World
Scientific, Singapore, 1995).

[72] R. Hall and K. Rajagopal, Exp. Mech. 60, 591 (2020).
[73] A. C. Hansen, R. L. Crane, M. H. Damson, R. P. Donovan,

D. T. Horning, and J. L. Walker, Int. J. Eng. Sci. 29, 561
(1991).

[74] J. D. Humphrey and K. R. Rajagopal, Math. Models Methods
Appl. Sci. 12, 407 (2002).

[75] G. A. Ateshian and B. K. Zimmerman, J. Biomech. Eng. 144,
041011 (2022).

[76] T. Ruggeri and S. Simic, Phys. Rev. E 80, 026317 (2009).
[77] M. E. Gurtin, Physica D 92, 178 (1996).

[78] H. Rund, Monatshefte fur Math. 79, 233 (1975).
[79] J. D. Clayton, Differential Geometry and Kinematics of Con-

tinua (World Scientific, Singapore, 2014).
[80] J. D. Clayton, J. Mech. Phys. Solids 157, 104633 (2021).
[81] A. E. Green and R. S. Rivlin, Zeit. Angew. Math. Phys. 15,

290 (1964).
[82] J. E. Marsden and T. J. R. Hughes, Mathematical Foundations

of Elasticity (Prentice-Hall, New Jersey, 1983).
[83] C. A. Truesdell, Rend. Accad. Lincei 44, 381 (1968).
[84] Misprints in Eqs. (2.15), (4.1), (4.19)1, (4.30)3, (4.45), (4.63),

(5.2)2, and (5.13)2 of Ref. [50] are corrected herein.
[85] J. Casey, Int. J. Struct. Changes Solids 3, 61 (2011).
[86] J. D. Clayton, Int. J. Fract. 208, 53 (2017).
[87] E. Kuhl and P. Steinmann, Proc. R. Soc. Lond. A 459, 2547

(2003).
[88] K. Y. Volokh, Acta Biomater. 2, 493 (2006).
[89] J. E. Dunn and J. Serrin, Arch. Ration. Mech. Anal. 88, 95

(1985).
[90] R. M. Bowen and R. L. Rankin, Arch. Ration. Mech. Anal. 51,

261 (1973).
[91] G. A. Holzapfel and J. C. Simo, Int. J. Solids Struct. 33, 3019

(1996).
[92] G. A. Holzapfel, Int. J. Numer. Meth. Eng. 39, 3903 (1996).
[93] A. Menzel, Biomech. Model. Mechanobiol. 3, 147 (2005).
[94] V. A. Lubarda and A. Hoger, Int. J. Solids Struct. 39, 4627

(2002).
[95] B. D. Coleman and W. Noll, Arch. Ration. Mech. Anal. 13,

167 (1963).
[96] B. D. Coleman and M. E. Gurtin, J. Chem. Phys. 47, 597

(1967).
[97] Z. T. Irwin, J. D. Clayton, and R. A. Regueiro, Int. J. Numer.

Meth. Eng. 125, e7411 (2024).
[98] J.-P. Poirier and A. Tarantola, Phys. Earth Planet. Inter. 109, 1

(1998).
[99] J. D. Clayton, Int. J. Eng. Sci. 79, 1 (2014).

[100] J. D. Clayton and A. D. Freed, Mech. Soft Mater. 2, 3 (2020).
[101] D. Balzani, P. Neff, J. Schroder, and G. A. Holzapfel, Int. J.

Solids Struct. 43, 6052 (2006).
[102] G. A. Holzapfel, T. C. Gasser, and M. Stadler, Eur. J. Mech. A

Sol. 21, 441 (2002).
[103] J. D. Clayton and A. D. Freed, Acta Mech. 231, 3319 (2020).
[104] J. Stålhand, R. M. McMeeking, and G. A. Holzapfel, J. Mech.

Phys. Solids 94, 490 (2016).
[105] J. A. C. Martins, E. B. Pires, R. Salvado, and P. B. Dinis,

Comput. Methods Appl. Mech. Eng. 151, 419 (1998).
[106] G. Franchini, I. D. Breslavsky, F. Giovanniello, A. Kassab,

G. A. Holzapfel, and M. Amabili, Proc. Natl. Acad. Sci. USA
119, e2117232119 (2022).

[107] A. Kumar and A. Yavari, J. Mech. Phys. Solids 181, 105449
(2023).

[108] G.-J. Guo and Y.-G. Zhang, Mol. Phys. 99, 283 (2001).
[109] T. Taniguchi, S. Yamamoto, A. Hayakawa, E. Tanaka, H.

Kimpara, and K. Miki, Strain-rate and muscle-tonus depen-
dence of mechanical properties of rabbit tibialis anterior
muscle, in Proceedings of the International Conference on Ad-
vanced Technology in Experimental Mechanics: Second Asian
Conference in Experimental Mechanics, edited by K. Tanaka
(The Japan Society of Mechanical Engineers, Nagoya, Japan,
2003), p. OS07W0228.

035001-32

https://doi.org/10.1103/PhysRevE.108.L042602
https://doi.org/10.1103/PhysRevLett.120.268002
https://doi.org/10.1016/0301-9322(86)90033-9
https://doi.org/10.1103/PhysRevE.100.023119
https://doi.org/10.1007/s10665-017-9940-8
https://doi.org/10.1016/j.ijengsci.2022.103675
https://doi.org/10.1016/j.ijimpeng.2012.07.008
https://doi.org/10.3390/sym15101828
https://doi.org/10.1115/1.2891992
https://doi.org/10.1007/s00332-010-9073-y
https://doi.org/10.1007/s00332-016-9294-9
https://doi.org/10.1016/j.geomphys.2016.11.011
https://doi.org/10.1007/s00033-016-0752-x
https://doi.org/10.1103/PhysRevE.95.042411
https://doi.org/10.1063/1.525031
https://doi.org/10.3390/sym12101632
https://doi.org/10.1142/S021988781850113X
https://doi.org/10.1177/10812865211049468
https://doi.org/10.1098/rspa.1966.0153
https://doi.org/10.1063/1.1693568
https://doi.org/10.1007/BF00251388
https://doi.org/10.1007/s11340-020-00582-9
https://doi.org/10.1016/0020-7225(91)90061-7
https://doi.org/10.1142/S0218202502001714
https://doi.org/10.1115/1.4053084
https://doi.org/10.1103/PhysRevE.80.026317
https://doi.org/10.1016/0167-2789(95)00173-5
https://doi.org/10.1007/BF01304076
https://doi.org/10.1016/j.jmps.2021.104633
https://doi.org/10.1007/BF01607019
https://doi.org/10.1007/s10704-017-0211-5
https://doi.org/10.1098/rspa.2003.1119
https://doi.org/10.1016/j.actbio.2006.04.002
https://doi.org/10.1007/BF00250907
https://doi.org/10.1007/BF00250533
https://doi.org/10.1016/0020-7683(95)00263-4
https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C
https://doi.org/10.1007/s10237-004-0047-6
https://doi.org/10.1016/S0020-7683(02)00352-9
https://doi.org/10.1007/BF01262690
https://doi.org/10.1063/1.1711937
https://doi.org/10.1002/nme.7411
https://doi.org/10.1016/S0031-9201(98)00112-5
https://doi.org/10.1016/j.ijengsci.2014.02.016
https://doi.org/10.1007/s42558-020-0018-9
https://doi.org/10.1016/j.ijsolstr.2005.07.048
https://doi.org/10.1016/S0997-7538(01)01206-2
https://doi.org/10.1007/s00707-020-02689-5
https://doi.org/10.1016/j.jmps.2016.05.018
https://doi.org/10.1016/S0045-7825(97)00162-X
https://doi.org/10.1073/pnas.2117232119
https://doi.org/10.1016/j.jmps.2023.105449
https://doi.org/10.1080/00268970010011762


UNIVERSAL PHASE-FIELD MIXTURE REPRESENTATION … PHYSICAL REVIEW E 110, 035001 (2024)

[110] J. D. Clayton, D. L. McDowell, and D. J. Bammann, Int. J.
Eng. Sci. 42, 427 (2004).

[111] M. Epstein and G. Maugin, Int. J. Plast. 16, 951 (2000).
[112] F. Xu, T. J. Lu, and K. A. Seffen, J. Mech. Phys. Solids 56,

1852 (2008).
[113] J. C. Chato, J. Biomech. Eng. 102, 110 (1980).
[114] R. J. Nims and G. A. Ateshian, J. Elast. 129, 69 (2017).
[115] J. D. Humphrey, J. Elast. 145, 49 (2021).
[116] J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, Phys. Rev. E 60,

3564 (1999).
[117] G. S. Kell, J. Chem. Eng. Data 20, 97 (1975).
[118] K. Nagayama, Y. Mori, K. Shimada, and M. Nakahara, J. Appl.

Phys. 91, 476 (2002).
[119] D.-K. Yao, C. Zhang, K. Maslov, and L. V. Wang, J. Biomed.

Opt 19, 017007 (2014).
[120] K. C. Jones, W. Nie, J. Hu, J. Turian, A. Kassaee, C. Sehgal,

and S. Avery, Phys. Med. Biol. 63, 025018 (2018).
[121] A. Morro, Arch. Mech. 32, 145 (1980); 32, 193 (1980).
[122] H. Nagoya, T. Obara, and K. Takayama, Underwater shock

propagation and focusing in inhomogeneous media, in Shock-
waves at Marseille, edited by R. Brun (Springer-Verlag, Berlin,
1995), Vol. 3, pp. 439–444.

[123] M. Neville and R. Mathias, J. Physio. 288, 45 (1979).
[124] B. Song, W. Chen, Y. Ge, and T. Weerasooriya, J. Biomech.

40, 2999 (2007).
[125] D. A. Morrow, T. Donahue, G. Odegard, and K. Kaufman,

J. Mech. Behav. Biomed. Mater. 3, 124 (2010).
[126] O. J. Aryeetey, M. Frank, A. Lorenz, and D. H. Pahr, J. Mech.

Behav. Biomed. Mater. 135, 105429 (2022).
[127] E. Maher, M. Early, A. Creane, C. Lally, and D. J. Kelly,

J. Biomech. 45, 1393 (2012).
[128] P. J. Flory and O. K. Spurr, J. Am. Chem. Soc. 83, 1308

(1961).
[129] R. A. Sanderson, R. Foley, G. McIvor, and W. Kirkaldy-Willis,

Clin. Ortho. Rel. Res. 113, 27 (1975).

[130] T. Winkler, P. Roth, G. Matziolis, M. Schumann, S. Hahn, P.
Strube, G. Stoltenburg-Didinger, C. Perka, G. Duda, and S.
Tohtz, Acta Orthopaed. 82, 102 (2011).

[131] F. Pervin, W. W. Chen, and T. Weerasooriya, J. Mech. Behav.
Biomed. Mater. 4, 76 (2011).

[132] A. Bonfiglio, K. Leungchavaphongse, R. Repetto, and J. H.
Siggers, J. Biomech. Eng. 132, 111011 (2010).

[133] Z. Gao, K. Lister, and J. P. Desai, Ann. Biomed. Eng. 38, 505
(2010).

[134] B. Soroushian, W. M. Whelan, and M. C. Kolios, J. Biomed.
Opt. 15, 065002 (2010).

[135] T. Azar and V. Hayward, Estimation of the fracture toughness
of soft tissue from needle insertion, in Proceedings of 4th Inter-
national Symposium on Biomedical Simulation - 2008, Lecture
Notes in Computer Science, edited by F. Bello and E. Edwards
(Springer-Verlag, Berlin, 2008), Vol. 5104, pp. 166–175.

[136] E. Roan and K. Vemaganti, Med. Biol. Eng. Comput. 49, 497
(2011).
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