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Scale-independent model based on fractal theory for calculating the adhesion force
between a particle and rough surfaces
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The elimination of the scale-dependent statistical parameters is a challenge in the estimation of the van der
Waals force between a particle and rough surfaces. Herein, a scale-independent parameter, the fractal dimension,
was introduced into the Rabinovich model to calculate the microadhesion force. First, a Weierstrass-Mandelbrot
function is proposed to generate a random 2D contour, which has a simplified form and is more reasonable
for spectrum analysis. And then, the roughness scale extraction method was employed to calculate the fractal-
dimension value of the real aluminum (Al) surface. And last, the proposed scale-independent Rabinovich-Fractal
model was used to calculate the adhesion forces, which are consistent with the results of the atomic force
microscopy adhesion test. Aside from providing a more accurate estimation of the van der Waals forces, the
proposed model is not influenced by the sampling scale of the surface roughness measurement, which eliminates
the related error in van der Waals force estimation.
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I. INTRODUCTION

At the micro- and nanoscale, weak interaction is crucial. It
facilitates bonding between micro- and nanodevices and en-
ables the manipulation of micro- and nanorobots. Therefore,
analyzing the microscopic forces on microscale interfaces
and surfaces is particularly important [1–5]. In the field of
surface and interface analysis, an accurate assessment of to-
pography is critical, in particular because the surface quality
is often evaluated using parameters such as surface rough-
ness. However, traditional metrics such as roughness are
subject to variations caused by the measurement scale and
instrument resolution, resulting in inconsistent estimation of
van der Waals force at different scales [6–8]. This inconsis-
tency highlights the need for a scale-independent parameter
to characterize rough surfaces effectively. Fractal theory ad-
dresses this need by providing a more accurate analysis than
roughness at the microscale. It is less affected by the measure-
ment resolution and provides a more objective and reliable
assessment of surface characteristics such as complexity, ir-
regularity, and space-filling capacity [9,10]. The essence of
the fractal theory is the fractal dimension (D), a key parameter
that captures the complex inherent in fractal objects. The value
of D, which typically ranges between 1 and 2 for line profiles
and 2 and 3 for 3D surface topography, indicates the irregu-
larity and degree of fragmentation of the surface. Crucially,
the value of D is independent of the measuring scale within
certain limits.
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Assessing the fractal dimension accurately is key to re-
alizing a scale-independent evaluation of the surface and
interface. Various methods have been developed to calcu-
late the value of D, each with its unique principles and
applications. These methods can be broadly classified as
scale and spectrum methods. As a typical representative scale
method, the box-counting method is widely used for sur-
face evaluation even with its low accuracy [11–13]. The
spectrum method consists of many specific ways, such as
the power spectral density (PSD) method [14,15], structure
function (SF) method [16,17], and roughness scaling ex-
traction (RSE) method [18,19]. These are all based on the
spectrum analysis or closely related spectrum. Each method
exhibits different accuracies and is suitable for specific
applications.

Combining fractal theory with the contact mechanism is
a method that can simplify surface statistical measurements.
As early as 1990, Majumdar and Bhushan [20] introduced
fractal theory into contact mechanism to predict elastic and
plastic contacts. At the same time, the contact theory based on
fractal theory suggests that it is a scale-independent method
[21]. With the development of micro-(nano) technology, mi-
croscale contacts have attracted increasing attention, and the
contact between microrough surfaces has become an impor-
tant topic of study. However, the scale-dependent parameter
still limits the application of rough surface contacts, such as
the Greenwood-Williamson [22], Greenwood-Tripp [23], and
Rabinovich [24] models. All of these predict the contact force
through statistical parameters that are sensitive to scale of the
measurement.

In this study, to realize the scale-independent rough sur-
faces adhesion force measurements, the fractal dimension was
introduced into the Rabinovich [25] model to propose a model
where the adhesion force only depends on the value of D
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and scaling length L. First, a more reasonable form of the
Weierstrass-Mandelbrot function was proposed to simulate
the true 2D contours. Then, the roughness scaling extraction
(RSE) method was chosen as the way to calculate fractal
dimension, which has the best accuracy among the three meth-
ods. Finally, the fractional dimension D was introduced into
the Rabinovich model to replace the original rms and obtain
the Rabinovich fractal (RF) model, which is validated by the
atomic force microscope (AFM) adhesion force experiment.
In addition, the dynamic contact process was observed by
an in situ scanning electron microscope (SEM) observation
system [26,27].

II. MATERIALS AND METHODS

A. Surface type

Two surface types were used in this study: an artificial
surface profile and an actual etched-aluminum (Al) rough
surface. The artificial surface profile was generated by the
WM function.

The WM function is a mathematical example of a con-
tinuous yet nowhere differentiable real-valued function. This
function exhibits fractal characteristics and is commonly em-
ployed in the simulation of fractal contours. The original form
of the WM [28] function is given by Eq. (1):

W (t ) =
∞∑

n=−∞

(1 − e jγ nt )e jφn

γ (2−D)n
(1 < D < 2, γ > 1, φn: arbitrary phases), (1)

where D is the fractal dimension. γ is a parameter related to frequency, and φn represent a series of random phases to make W(t)
exhibit stochastic behavior. Because of the φn, W(t) is a random process.

The physical significance of the WM function lies in its ability to model complex, irregular shapes that are prevalent in nature.
By adjusting parameters γ and D, the function can accurately mimic the statistical properties of various natural fractals.

To ensure confidence in the profile description, the profile height must be a real number. The real part of a complex random
process was selected to generate the profile data. To make the analysis easier, it was assumed that φn obeys a uniform distribution
in [0,2π ]. To simplify the understanding, variable t was replaced with x as shown in the following equation, which represents
the location of the coordinates of the height data:

Z (x) = ReW (x) =
∞∑

n=−∞

cos φn − cos(γ nx+φn)

γ (2−D)n
[1 < D < 2, γ > 1, φn ∼ U (0, 2π )]. (2)

To examine the stationarity of the random process Z(x), the expectation (E[*]) and the autocorrelation function (ACF) are
calculated by Eqs. (3) and (4) as follows:

E [Z (x)] =
∞∑

n=−∞
E

[
cos φn − cos(γ nx + φn)

γ (2−D)n

]
= 0 (3)

E [Z (x + τ )Z (x)] =
∞∑

n=−∞

1 + cos γ nτ − cos γ nx − cos γ n(τ + x)

2γ (4−2D)n
(4)

From Eqs. (3) and (4), ACF is not only related to the distance τ between two locations, but also to the starting location xs of
the state, even though the expectation is a constant of 0, so Z(x) is not a wide stationary stochastic process. Therefore, it is more
appropriate to use it to model the fractal contours in nature, because most of the surface profiles in nature are a nonstationary
stochastic process [29].

To use a function to simulate an actual fractal profile, it must have fractal characteristics and describe a stochastic process. As
mentioned previously, it is most reasonable to use Eq. (2); however, for nonstationary stochastic processes, very few analytical
tools exist to achieve a deep analysis of the function. Therefore, to be able to analyze it better in the frequency domain, we
restrict that the function be a wide stationary stochastic process, which may decrease accuracy in simulating the real surface,
but still retains the stochasticity of the process and the fractal characteristics. Thus, using wide stationary stochastic processes to
simulate the true surface profiles is acceptable to some extent. Therefore, Eq. (2) is simplified as Eq. (5):

h(x) =
∞∑

n=−∞

cos(γ nx + φn)

γ (2−D)n
[1 < D < 2, γ > 1, φn ∼ U (0, 2π )], (5)

E [h(x)] =
∞∑

n=−∞
E

[
cos(γ nx + φn)

γ (2−D)n

]
= 0, (6)

E [h(x + τ )h(x)] = E

[ ∞∑
m=−∞

∞∑
n=−∞

cos(γ m(x + τ ) + φm)

γ (2−D)m

cos(γ nx + φn)

γ (2−D)n

]
=

∞∑
n=−∞

cos γ nτ

γ (4−2D)n
(7)
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FIG. 1. Artificial 2D contour generated by WM function h(x) with ideal fractal-dimension values ranging from 1.1 to 1.9.

Equations (6) and (7) shows that the expectation of h(x)is
a constant of 0, and the ACF is related only to the distance τ

between the two locations, and is not related to the starting lo-
cation. Therefore, h(x) represents a wide stationary stochastic
process. The calculation of the fractal dimension (Dc) of the
simulated contours was performed in this study on the basis
of h(x).

As shown in Fig. 1, a group of 2D contours with different
fractal dimensions using h(x) has been generated. One thou-
sand data points were generated over a distance of 1 mm. The
complexity of the 2D contours increased as the ideal fractal
dimension (Di) increased.

The etched Al surface was prepared using chemical and
electrochemical methods, as described in our previous study
[30]. The topographic data were obtained using AFM (MFP-
3D, AR) with an AC240TS tip. The curvature of the tip was
approximately 10 nm, the scanning model was set as ac air,
and two types of regions (20×20 and 5×5 µm2) were selected
for the data acquisition.

B. Fractal-dimension calculation methods

1. Power spectrum density

According to the Wiener-Khinchin theorem [31], the power
spectrum is the Fourier transform of the ACF of a wide

stationary stochastic process. The power spectrum can be
obtained by

Gh(ω) =
∫ ∞

−∞
Rh(τ )e− jωτ dτ =

∞∑
n=0

πδ(ω − γ n)

2γ (4−2D)n
, (8)

where δ represents the Dirichlet function. According to
Berry’s method [28], Eq. (8) has a continuous form:

Gh(ω) = π

2 ln γ

1

ω(5−2D)
. (9)

Equation (9) shows that Gh(ω) ∝ ω2D−5; thus, the value of
D can be easily obtained from the log-log fitting results.

2. Structure function

The SF method is an improved version of ACF, which is
proposed as shown as F (τ ) in Eq. (11):

Rh(τ ) = E [h(x + τ )h(x)]=
∞∑

n=−∞

cos γ nτ

γ (4−2D)n
, (10)

F (τ ) = E{[h(x + τ ) − h(x)]2} = 2[Rh(0) − Rh(τ )], (11)

where Rh(τ ) represents the ACF of h(x). According to the
Wiener-Khinchin theorem, the exact form of Eq. (11) can
be obtained using the inverse Fourier transform of power
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FIG. 2. Flowchart of the RSE method to calculate fractal dimension.

spectrum:

F (τ ) ≈ �(2D − 3)

(4 − 2D) ln γ
τ (4−2D), (12)

where Г represents Gamma function. From Eq. (12) it can be
learned that if the value of D is deterministic, F (τ ) ∝ τ 4−2D.

3. Roughness scaling extract

The RSE method was proposed to calculate the value of D
through the relationship between the root-mean-square rough-
ness (rms) with different sampling length [18,19]. The exact
procedure is shown in Fig. 2.
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FIG. 3. Fractal-dimension calculation results of artificial 2D contours with the (a) PSD, (b) SF, and (c) RSE methods for fraction value D
of 1.1 (black square), 1.2 (green circle), 1.3 (blue upward triangle), 1.4 (cyan diamond), 1.5 (magenta left triangle), 1.6 (yellow star), 1.7 (dark
yellow star), 1.8(navy sphere), 1.9 (purple half-down diamond), and (d) calculation accuracy comparison among PSD (green diamond line),
SF (blue circle line) and RSE (red triangle line).

For a data sequence of length L, X = x(1), x(2), . . . x(L),
where x(n) is the nth data point. Then, the subsequence
number M and the scaling factor μ are selected. The length of
the subsequence Li is determined by the initial subsequence
length L0 and scaling factor μ. After generating M subse-
quences of length Li, the flattening is performed. Specifically,
the flattening process is original subsequence, subtracting the
fitting results with orders of 0, 1, and 2. In this study, 1-order
fitting was selected. According to the study of Wang [32], M
and μ were set to 50 and 0.85, respectively.

Because rms is equal to the square root of the variance, the
relationship between rms and frequency can be obtained from
Eqs. (13) and (14):

rms =
√

E [(h(x) − E [h(x)])2] =
√

E [h2(x)], (13)

rms =
√

Rh(τ )|τ=0 =
√

1

2π

∫ ωh

ωl

Gh(ω)e jωτ dω|τ=0

= C
√∣∣ω(2D−4)

h − ω
(2D−4)
l

∣∣. (14)

In Eq. (14), C =
√

1
8 ln γ

1
D−2 . It should be noted that the

low-frequency limit ωl corresponds to the length of the sam-
ple, while the high-frequency limit ωh corresponds to the
Nyquist frequency, which is related to the resolution of the
instrument [20].

C. Rabinovich fractal model

Rumpf’s theory proposes a method for calculating the van
der Waals force between a sphere and a rough surface [33].
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FIG. 4. Morphology of etched-Al surface in the area of (a) 20×20 µm2, (b) 5×5 µm2, and (c) RSE fitting results of (a), and (d) RSE fitting
results of (b); the fitting lines correspond to contours 1–5 are solid, dashed, dotted, dashed-dotted-dotted, and short dotted, respectively.

Rabinovich improved the model to obtain a formula for calcu-
lating the adhesion force [24,25]:

Fad = AR

6H2
0

[
1

1 + R/(1.48 rms)
+ 1

(1 + 1.48 rms/H0)2

]
,

(15)

where A is the Hamaker constant, R is the radius of the
sphere, and H0 is the balance distance. If the surface is a
fractal surface, Eq. (15) can be introduced to replace rms with
Eq. (14). Thus, a method for calculating adhesion force can be
obtained:

Fad = AR

6H2
0

⎡
⎢⎣ 1

1 + R/
(
1.48C

√
ω2D−4

h − ω2D−4
l

)

+ 1(
1 + 1.48C

√
ω2D−4

h − ω2D−4
l /H0

)2

⎤
⎥⎦. (16)

When ωh � ωl , Eq. (16) can be simplified as Eq. (17):

Fad = AR

6H2
0

[
1

1 + R/
(
1.48CωD−2

h

)
+ 1(

1 + 1.48CωD−2
h /H0

)2

]
, (17)

For convenience, Eq. (17) is referred to as the RF model.

III. RESULTS

A. Artificial surface analysis with different methods

The Dc results obtained using the PSD, SF, and RSE meth-
ods for the contours in Fig. 1 are shown in Figs. 3(a)–3(c),
respectively.

From Fig. 3(a), the accuracy of the traditional PSD method
is limited, and accurate calculation cannot be realized when
the theoretical fractal dimension is too large or too small.
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FIG. 5. AFM adhesion test between (a) the lab-made tip and the etched surface, and (b) comparison of the calculation results (Rabinovich-
model fill pattern with dotted grid, and RF-model fill pattern with wave) with the AFM adhesion result (fill pattern with horizontal brick).

However, the SF and RSE methods have higher calculation
accuracy and can be realized in the full range of theoretical
fractal dimensions. To show the accuracy of the calculation
methods more clearly, five sets of 2D contours of the full range
of Di similar to Fig. 2 were generated using h(x), and then the
Dc were calculated using different methods; the correspond-
ing relative calculation errors of the three methods are shown
in Fig. 3(d).

The dashed black line in Fig. 3(d) has a slope of 1, indicat-
ing an accuracy of 100%. The fractal dimension calculated
using the RSE method was closest to the ideal fractal di-
mension. For values of Di less than 1.7, the red line (RSE
method) almost coincides with the dashed black line. When Di

is greater than 1.7, the calculated results are small compared
with the Di, owing to the nature of the RSE method. The rea-
son for this result is that when Di is too large, the RSE method
may eliminate some details during the flattening operation,
thereby affected the accuracy of the calculated results. The
average relative error of the three methods calculated using
|Dc − Di|/Di were 13.88, 2.16, and 1.17% for the PSD, SF
and RSE methods, respectively, indicating that the contour
fractal dimensions can be evaluated most efficiently using the
RSE method.

B. Real surface analysis with RSE method

An etched-Al surface was used to clarify the accuracy
of the RSE method and apply the calculation results to the
fractional contact theory. From this approach, the adhesion
force on the basis of fractal theory can be obtained. As shown
in Fig. 4, the topography of Al surface was measured using
AFM. Five contours were extracted from each image, and
the average D was calculated using the RSE method. The Dc

calculated from 20 µm was 1.157 and that from 5 µm was
1.074, which is attributed to the morphology of fine asperities
and voids which could be recognized in AFM images with L
smaller than 10 µm [19].

C. Adhesion force measurement and calculation

Once the fractal dimension D of the true contour is ob-
tained, the adhesion force can be calculated using Eq. (16),
which shows that the adhesion force depends on the value
of D and the number of sampling points N. When N
is bigger, more details of the morphology are captured,
and then the Dc results are affected, similar to the result
of Ref. [34].

To compare with actual measurement results, a lab-made
AFM tip [Fig. 5(a)] was used in the contact force mode to
measure the adhesion force between the tip and the etched
surface; details of the AFM tip fabrication can be found in our
previous research [30]. As shown in Fig. 5(b), the measured
value was much larger than the calculated value, which is
attributed to the composition of the adhesion force. The AFM
adhesion force is composed of van der Waals-, electrostatic-,
and capillary forces. According to the electrostatic force cal-
culation method of Zhang [35], the total electrostatic force FE

can be written as shown in the following equation, where the
electric field force Fe is 0:

FE = Fes + Fel + Fe = Q2
dust

16πε0(h + z)2 + πε0RU 2
e

2z
. (17)

The particle charge, Qdust, is 1.6473×10−20 C. The equiv-
alent particle charge position, h, is approximately R/2, where
R is the tip curvature radius of 0.3 µm. The permittivity, ε0,
is 8.8541×10−12 F/m. The contact potential difference, Ue,
is 0 ∼ 0.5 V. The distance between the tip and the etched
surface, z, is typically 0.40 nm.

The capillary force was calculated using the method pro-
posed by Willet [36]. More specifically, the tip particle and
etched surface were considered as two spheres, which can be
expressed by

FC = 2πrNζ − πr2
N�P − Vsρg. (18)

The surface tension of water, ζ , is 7.28×10−2 N/m. The
density of water, ρ, is 1 g/cm3. The radius of the capillary
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bridge neck, rN , is equal to R/30. �P is the hydrostatic pres-
sure difference across the air-liquid interface, equal to ζ/r′,
where r′ is the curvature radius of the liquid bridge, equal to
30R. Vs is the volume of the tip particle, 5.6549×10−20 m3,
and g is the gravitational acceleration.

Once the electrostatic and capillary forces have been calcu-
lated, the true van der Waals force from the AFM adhesion test
can be obtained by subtracting these two forces from the total
adhesion force. The electrostatic force FE was 2.61 nN and the
capillary force Fc was 4.57 nN, which is close to the results
of Jang [37]. Therefore, the true van der Waals force was
3.8 nN, which was closer to the RF model result (2.38 nN).
This analysis shows that the RF model calculation results are
consistent with the experimental results with good accuracy.
Moreover, the RF model shows the scale-invariant properties,
i.e., the van der Waals calculation results were consistent with
sampling lengths at different length scales. In contrast, the
original Rabinovich model is sensitive to the sampling length
(1.31 nN at the length of 5 µm, and 1.83 nN at the length of
20 µm), which is attributed to the scale-dependent parameter
rms.

IV. CONCLUSION

In this study, a more reasonable WM function is proposed
to simulate true 2D contours. This WM function h(x) has a
simplified form and satisfies random properties, whose ex-
pectation and ACF elucidate its reasonable use in spectrum
analysis. In addition, the traditional fractal-dimension calcu-
lation method and the RSE method were compared to assess
the calculation accuracy, showing that the RSE method is
an excellent way to calculate the Dc of the contour. Sub-
sequently, the fractal parameter D was introduced into the
Rabinovich model to calculate the van der Waals force be-
tween a dust particle and surfaces. From the calculation and
AFM adhesion test results, we found that the RF model
result is closer to the experimental result and clearly does
not depend on the sampling length, which is attributed to
the fact that rms is not a scale-invariant parameter. Thus,
our proposed method to calculate the van der Waals force
between two solids, based on the fractal theory, is scale
independent and may have potential applications in contact
mechanics.

Data will be made available on request.
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APPENDIX

1. In situ observation of dynamic contact

An in situ SEM system was used to observe the dynamic
contact process. The tip used in this system corresponds to
that used in the AFM adhesion test [Fig. 5(a)]. The particle
adhered to the cantilever exhibited strong adhesion charac-
teristic, enabling clearer observation of the adhesion process.
Before the tip approached the surface, the cantilever remained
horizontal, and as the gap between the tip and surface de-
creased, the cantilever started to bend until they came in
contact with each other. Even if the contact region is small,
it can be considered two semispherical contacts after mag-
nification, which is expressed in the Rabinovich model. In
contrast, when the tip is far away from the surface, the situ-
ation is the opposite. With the gap gradually increasing, the
cantilever bends up to a certain point. It was noted that at
this point the cantilever suddenly detaches from the surface,
which corresponds to the “pull-off force” on the AFM ad-
hesion test (the details of dynamic contact process can be
found in Supplemental Material Video S1 [38]). Regardless
of whether the contact spots are small, the contact region
can be simplified as a geometric model. It is necessary to
use a scale-independent theory to analyze the contact process,
because a magnification system such as SEM is not always
available for characterization.

2. The method for obtaining the expectation values

a. Equation (3):

E [Z (x)] = E

[
lim

n→∞

n∑
i=−n

cos φi − cos(γ ix + φi )

γ (2−D)i

]

= lim
n→∞ E

[
n∑

i=−n

cos φi − cos(γ ix + φi )

γ (2−D)i

]

= lim
n→∞

∫ 2π

0
· · ·

∫ 2π

0︸ ︷︷ ︸
2n+1

n∑
i=−n

cos φi − cos(γ ix + φi )

γ (2−D)i
f(φi)dφ−1dφ−2 · · · dφ−ndφ0dφ1dφ2 · · · dφn, (A1)
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where f(φi ) is the probability density function of φi. Because of φn ∼ U (0, 2π ), f(φi ) = f(φ) = 1
2π

, and Eq. (A1) can be
written as

E [Z (x)] = lim
n→∞

∫ 2π

0
· · ·

∫ 2π

0︸ ︷︷ ︸
2n+1

n∑
i=−n

cos φi − cos(φi + γ ix)

γ (2−D)i
f 2n+1
 (φ)dφ−1dφ−2 · · · dφ−ndφ0dφ1dφ2 · · · dφn

= lim
n→∞

∫ 2π

0
· · ·

∫ 2π

0︸ ︷︷ ︸
2n+1

(
1

2π

)2n+1 n∑
i=−n

cos φi − cos(φi + γ ix)

γ (2−D)i
dφ−1dφ−2 · · · dφ−ndφ0dφ1dφ2 · · · dφn

= lim
n→∞

∫ 2π

0
· · ·

∫ 2π

0︸ ︷︷ ︸
n

(
1

2π

)n n∑
i=1

cos φi − cos(φi + γ ix)

γ (2−D)i
dφ1dφ2dφ3 · · · dφn

= lim
n→∞

∫ 2π

0
· · ·

∫ 2π

0︸ ︷︷ ︸
n−1

(
1

2π

)n−1 n∑
i=2

cos φi − cos(φi + γ ix)

γ (2−D)i
dφ2dφ3 · · · dφn

= lim
n→∞

∫ 2π

0

1

2π

cos φn − cos(φn + γ nx)

γ (2−D)n
dφn = 0. (A2)

b. Equation (4):

E [Z (x + τ )Z (x)]

= E

[ ∞∑
m=−∞

∞∑
n=−∞

cos φn − cos[γ n(x + τ ) + φn]

γ (2−D)n

cos φm − cos(γ mx + φm)

γ (2−D)m

]

= E

[
lim

m→∞ lim
n→∞

m∑
k=−m

n∑
l=−n

cos φl − cos[γ l (x + τ ) + φl ]

γ (2−D)l

cos φk − cos(γ kx + φk )

γ (2−D)k

]

= lim
m→∞ lim

n→∞ E

[
m∑

k=−m

n∑
l=−n

[cos φl − cos(γ l (x + τ ) + φl )][cos φk − cos(γ kx + φk )]

γ (2−D)(l+k)

]

= lim
m→∞ lim

n→∞

m∑
k=−m

n∑
l=−n

E

⎡
⎢⎢⎢⎣

[cos φl cos φk − cos φl cos(γ kx + φk ) − cos φk cos[(γ l (x + τ ) + φl ]
+[cos(γ l (x + τ ) + φl ) cos(γ kx + φk )]

γ (2−D)(l+k)

⎤
⎥⎥⎥⎦

= lim
m→∞ lim

n→∞

m∑
k=−m

n∑
l=−n

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos(φl + φk ) + cos(φl − φk ) − cos(φl + γ kx + φk ) − cos(φl − φk − γ kx)
− cos[φk + φl + γ l (x + τ )] − cos[φk − φl − γ l (x + τ )] + cos[φk + φl + γ l (x + τ ) + γ kx]
+ cos[φl − φk + γ l (x + τ ) − γ kx]

2γ (2−D)(l+k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

E [cos(φl + φk )] =
∫ 2π

0

∫ 2π

0
cos(φl + φk )

(
1

2π

)2

dφl dφk = 0

E [cos(φl − φk )] =
∫ 2π

0

∫ 2π

0
cos(φl − φk )

(
1

2π

)2

dφl dφk =
{

0, l 	= k
1, l = k

E [cos(φl + γ kx + φk )] =
∫ 2π

0

∫ 2π

0
cos(φl + γ kx + φk )

(
1

2π

)2

dφl dφk = 0

E [cos(φl − φk − γ kx)] =
∫ 2π

0

∫ 2π

0
cos(φl − φk − γ kx)

(
1

2π

)2

dφl dφk =
{

0, l 	= k
cos γ kx, l = k
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E [cos(φk + φl + γ l (x + τ ))] =
∫ 2π

0

∫ 2π

0
cos(φk + φl + γ l (x + τ )]

(
1

2π

)2

dφl dφk = 0

E [cos(φk − φl − γ l (x + τ ))] =
∫ 2π

0

∫ 2π

0
cos[φk − φl − γ l (x + τ )]

(
1

2π

)2

dφl dφk =
{

0, l 	= k
cos γ k (x + τ ), l = k

E [cos(φk + φl + γ l (x + τ ) + γ kx)] =
∫ 2π

0

∫ 2π

0
cos[φk + φl + γ l (x + τ ) + γ kx]

(
1

2π

)2

dφl dφk = 0

E [cos(φl − φk + γ l (x + τ ) − γ kx)] =
∫ 2π

0

∫ 2π

0
cos[φl − φk + γ l (x + τ ) − γ kx]

(
1

2π

)2

dφl dφk =
{

0, l 	= k
cos γ kτ, l = k

(A4)

Only l = k; Eq. (A3) is not 0. Substituting Eq. (A4) into Eq. (A3), which can be simplified as Eq. (4),

E [Z (x + τ )Z (x)] =
∞∑

n=−∞

1 + cos γ nτ − cos γ nx − cos γ n(τ + x)

2γ (4−2D)n
.

c. Equation (6):

E [h(x)] = E

[
lim

n→∞

n∑
i=−n

cos(γ ix + φi )

γ (2−D)i

]
= lim

n→∞ E

[
n∑

i=−n

cos(γ ix + φi )

γ (2−D)i

]

= lim
n→∞

∫ 2π

0
· · ·

∫ 2π

0︸ ︷︷ ︸
2n+1

n∑
i=−n

cos(γ ix + φi )

γ (2−D)i
f(φi )dφ−1dφ−2 · · · dφ−ndφ0dφ1dφ2 · · · dφn

= lim
n→∞

∫ 2π

0

1

2π

cos(φn + γ nx)

γ (2−D)n
dφn = 0 (A5)

d. Equation (7):

E [h(x + τ )h(x)] = E

[ ∞∑
m=−∞

∞∑
n=−∞

cos [γ m(x + τ ) + φm]

γ (2−D)m

cos(γ nx + φn)

γ (2−D)n

]

= E

[
lim

m→∞ lim
n→∞

m∑
k=−m

n∑
l=−n

cos[γ l (x + τ ) + φl ]

γ (2−D)l

cos(γ kx + φk )

γ (2−D)k

]

= lim
m→∞ lim

n→∞

m∑
k=−m

n∑
l=−n

E

[
cos[(γ l (x + τ ) + φl )][cos(γ kx + φk]

γ (2−D)(l+k)

]

= lim
m→∞ lim

n→∞

m∑
k=−m

n∑
l=−n

E

[
cos[γ l (x + τ ) + φl + γ kx + φk] + cos[γ l (x + τ ) + φl − γ kx − φk]

2γ (2−D)(l+k)

]
(A6)

E [cos(γ l (x + τ ) + φl + γ kx + φk )] =
∫ 2π

0

∫ 2π

0
cos(γ l (x + τ ) + φl + γ kx + φk )

(
1

2π

)2

dφl dφk = 0

E [cos(γ l (x + τ ) + φl − γ kx − φk )] =
∫ 2π

0

∫ 2π

0
cos(γ l (x + τ ) + φl − γ kx − φk )

(
1

2π

)2

dφl dφk ==
{

0, l 	= k
cos γ kτ, l = k

(A7)

Only l = k, the Eq. (A6) is not 0. Substituting Eq. (A7) into Eq. (A6), which can be simplified as Eq. (7),

E [h(x + τ )h(x)] =
∞∑

n=−∞

cos γ nτ

γ (4−2D)n
.
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