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Surface-directed dynamics in living liquid crystals
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We study living liquid crystals (LLCs), which are an amalgam of nematic liquid crystals (LCs) and active
matter (AM). These LLCs are placed in contact with surfaces which impose planar/homeotropic boundary
conditions on the director field of the LC and the polarization field of the AM. The interplay of LC-AM
interactions and the surface-directed conditions yield controlled pattern dynamics in the LLC, which has
important technological implications. We discuss two representative examples of this pattern dynamics.
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I. INTRODUCTION

Active matter (AM) is an important example of an
inherently nonequilibrium system which exhibits coherent
dynamics on a much larger scale than the constituent units.
These units can be biological or synthetic, ranging from mi-
crometers to meters, e.g., polar gels, bacterial suspensions,
micro-tubule bundles, cytoplasmic streaming, bird flocks, fish
shoals, vibrating granular rods, etc. [1,2]. Active particles
continuously consume energy from the surroundings and con-
vert it to motion. They hold promise for creating miniature
machines. For example, a bacterial bath can generate persis-
tent motion in tiny gears utilized as devices for harvesting
energy [3–6]. Although apparently coordinated, AM can ex-
hibit irregular behavior on larger scales as collisions with
the medium particles cause random tumblings. The utility of
AM can be greatly enhanced with the possibility of organized
or tailored flows. For example, directed trajectories can be
utilized in cargo transport or targeted drug delivery [7–9].

A contemporary system of relevance in the above context
is living liquid crystals (LLCs), or a suspension of active
particles such as bacteria in nematic liquid crystals (LCs)
[10–15]. The latter, composed of rod-shaped molecules or
nematogens, are classic examples of anisotropic fluids having
long-range orientational order below a critical temperature Tc.
In this nematic phase, the nematogens align along a preferred
direction called the director, while maintaining positional flu-
idity [16,17]. It should be stressed that the LLCs are distinct
from the much-studied active nematics [18,19]. The latter sys-
tem consists of rod-shaped active particles that spontaneously
organize in large-scale structures with orientational order and
self-sustained flows. On the other hand, in LLCs, the nematic
properties and the activity are characteristics of two distinct
subsystems. The strong LC-AM coupling substantially alters
the collective behavior of the two-component system. An im-
portant experimental fact in LLCs is the co-alignment of the
active particles and the nematogens [10,12,20]. Consequently,
the active particles swim parallel to the director, and topo-
logical defects in LCs play a significant role in transporting
these swimmers. Experiments have reported a preferential
movement of bacteria from defects with −1/2 charge towards

defects with +1/2 charge [12,13]. The active particles also
perturb the director field at macroscopic length scales, and
reveal important information about the visco-elastic properties
of the LC medium. Further, the self-propulsion energy gets
stored in director perturbations that can be harnessed into
useful work [21,22]. Clearly, LLCs offer many pathways for
the control of one component (AM or LC) by the other (LC
or AM). This opens up the possibility of diverse scientific and
technological applications.

Many experiments have shown that boundary conditions
imposed at container surfaces can significantly impact pat-
tern formation and dynamics in active systems [23–32]. The
surface-directed dynamics differs substantially from the bulk
dynamics, and often exhibits novel features. It has been
reported that boundaries can act as sources or sinks of ori-
entational order, leading to patterns such as stripes, vortices,
and clusters [26,33–36]. They are also known to self-organize
and stabilize patterns that would otherwise be unstable in the
bulk. In an important experiment, Peng et al. [11] generated
a predetermined bulk configuration by appropriate surface
treatment of the bounding plates in LLCs.

The effect of confinement has also been well-studied in
the context of pure LCs in the square well geometry [37–44].
An interesting aspect of the square well geometry, in contrast
to thin films and cylindrical geometries, is the frustration at
sharp corners. Boundary anchoring in nematic-filled square
wells has been exploited to control topological defects and
obtain tailored morphologies. In particular, LC square wells
were found to be bistable without any external field [38,39].
A natural extension is to study confinement in LCs with in-
clusions. In this system, we can expect rich pattern formation
due to the possibility of distinct boundary conditions for the
two components, and their interplay due to coupling. In an
earlier work, we performed extensive numerical studies to
obtain equilibrium states of LCs with magnetic inclusions
or ferronematics confined to (i) one-dimensional channels,
and (ii) two-dimensional wells [45,46]. In (i), we observed
an unexpected polydomain structure in the weak coupling
limit without the application of magnetic fields. However,
the one-dimensional nature of the problem limits the solution
landscape for both the nematic and magnetic order parameters
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[45]. In (ii), exotic stable nematic and associated magneti-
zation morphologies were observed, induced purely by the
geometry, the boundary conditions, and the coupling between
the magnetic nanoparticles and the host nematic medium [46].

In this paper, we perform similar investigations for LLCs
which (in contrast to ferronematics) are an out-of-equilibrium
system due to the perpetual activity of the inclusions. For ex-
ample, can tailored structures in LC square wells be exploited
for directed transport of AM? Alternatively, can tailored flows
dictated by boundary conditions on AM be used to create
novel configurations in LCs? Finally, and perhaps most im-
portant, can the symbiotic interplay of these components plus
boundary conditions yield hitherto unknown states of AM and
LCs? The dual possibility of (a) tailoring active trajectories
around novel defect configurations in LCs, and (b) the erasure
of topological defects in LCs by active flows offers intriguing
design concepts for microfluidic devices. We will address
these and related questions from a theoretical perspective in
the present paper.

An earlier study on pattern formation in LLCs used circular
confinement to mimic the natural geometry in the experiments
[14]. In this work, we consider LLCs confined in square
wells. As discussed above, this is a well-studied geometry
both in experiments and theoretical studies of LCs, thereby
providing useful benchmarks. We use the phenomenological
kinetic model for LLCs developed in our recent work [47].
This model consists of the Toner-Tu (TT) model for AM
[48,49], the time-dependent Ginzburg-Landau (TDGL) model
for the LC [50,51], and an experimentally motivated cou-
pling term which favors co-alignment of the two components.
Our theoretical studies of this model in the bulk demonstrated
two novel steady states: chimeras and solitons, which sweep
through the coupled system in synchrony. Further, the symbi-
otic dynamics of the AM and LC can be exploited to induce
and manipulate order in a component which is intrinsically
(i.e., in the absence of coupling) disordered. Some of the
natural questions to address in the context of confinement
are as follows: Will the equilibrium nematic morphologies
remain stable in the presence of active entities? Can we con-
trol the active particle trajectories by tailoring the topological
defects in the nematic component? How do different boundary
conditions affect the emergent structures from this coupling
between nematic order and activity?

The rest of our paper is organized as follows. In Sec. II,
we describe our coarse-grained modeling of LLCs. We also
discuss typical boundary conditions which are imposed on the
order parameters. In Sec. III, we present detailed numerical
results from our simulations of these models. We conclude
this paper with a summary and discussion in Sec. IV.

II. MODELING OF LIVING LIQUID CRYSTALS

We employ an order-parameter-based description for the
LLCs. This phenomenological approach uses free energy
functionals based on the symmetries of the order parame-
ters describing the system. For the nematic component, the
order parameter is the Q-tensor, which is a symmetric, trace-
less matrix whose leading eigenvector is the director n. The
components of Q can be written as Qi j = S (nin j − δi j/d ),
where d is the dimensionality. The scalar order parameter S

measures the degree of orientational order about n. For ex-
ample, S = 1 describes a fully aligned nematic state, and a
disordered state corresponds to low order with S � 0. The
Landau-de Gennes (LdG) free energy for the LC can be writ-
ten as [16,52–54]

FQ[Q]

=
∫

dr
{

A

2
Tr(Q2) + B

3
Tr(Q3) + C

4
[Tr(Q2)]2 + L

2
|∇Q|2

}
,

(1)

where A, B, C, and L are phenomenological parameters.
We have A = A0(T − Tc), where A0 is a material-dependent
coefficient and Tc is the critical temperature for LC ordering.
The gradient term in Eq. (1) penalizes local variations in the
order parameter.

Although AM is inherently nonequilibrium, one can for-
mulate the TT model via a suitable “free energy”. This is
defined as a functional of the two “order parameters”: local
density ρ(r, t ) (which is conserved) and the polarization field
P(r, t ) (which is nonconserved). The quantity P(r, t ) mea-
sures the local orientation of AM. The free energy in terms
of these order parameters is given by [2]

Fa[ρ, P] =
∫

dr
[
α(ρ)

2
|P|2 + β

4
|P|4 + κ

2
|∇P|2 + w

2
|P|2∇

· P − v1

2
(∇ · P)

δρ

ρ0
+ Dρ

2
(δρ)2

]
, (2)

where α, β, κ,w, v1, Dρ are material-dependent parameters
whose values can be related to the microscopic properties of
the active particles [55]. In Eq. (2), δρ = ρ − ρ0, where ρ0

is the average density of the system. The parameter α(ρ) =
α0(1 − ρ/ρc), where α0 is a positive constant and ρc is the
critical density. This free energy yields a continuous phase
transition from a disordered state (with ρ = ρ0 and P = 0
for ρ0 < ρc) to an ordered state (with ρ = ρ0 and |P| ∼√

(ρ0/ρc − 1) for ρ0 > ρc). The TT model is written in terms
of Fa [2], as will be discussed shortly. For the TT model with
densities just above the transition point (ρ � ρ+

0 ), the ordered
phase is unstable, and the system relaxes to a banded state
that sweeps the system with speed v0 (which is the same as
the speed of active particles).

In recent work [47], we have proposed that the “free
energy” of LLCs can be written as the sum of FQ and
Fa, along with a suitable coupling term Fc: F [Q, ρ, P] =
FQ[Q] + Fa[ρ, P] + Fc[Q, ρ, P]. Experimental observations
on LLCs dictate that active particles tend to align along the
nematic director, i.e., P ‖ n [10,12]. The dyadic product of the
Q-tensor and the polarization vector P is the lowest order term
that ensures this co-alignment and the n → −n symmetry.
With these considerations, the free energy contribution from
the coupling can be written as

Fc[Q, P] = −c0

∑
i, j

Qi jPiPj, (3)

where c0 is the strength of the AM-LC interaction. The cou-
pling term is equivalent to −c0(n · P)2, which manifestly
promotes co-alignment if c0 > 0. The phenomenological pa-
rameter c0 represents the anchoring strength on the surface
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of active matter, and yields elastic torques which ensure that
active particles swim parallel to the local director. This term
is included to mimic the experimental observations in LLCs
that report co-alignment of bacteria with the LC molecules
[11,12,14,27]. For c0 < 0, the preferred orientation is P ⊥ n.
It is also possible to model the situation where P and n are
aligned at an arbitrary angle, though the corresponding Fc is
more complicated than Eq. (3).

The dissipative dynamics of LCs is studied via the TDGL
equation for nonconserved kinetics [56]:

∂Q
∂t

= −�Q
δFQ

δQ
, (4)

where �Q is the kinetic coefficient. For simplicity, we present
the corresponding LLC equations in d = 2 here. In that case,
Q is a 2 × 2 matrix:

Q =
(

Q11 Q12

Q12 −Q11

)
. (5)

This form of the Q-tensor respects the up-down symmetry of
the nematic components, and ensures that the director remains
in two dimensions [40–43]. For the nematic components in
LLCs, the corresponding TDGL equations are as follows [47]:

∂Q11

∂t
= −�Q

δFQ[Q]

δQ11
+ �Qc0

(
P2

1 − P2
2

)
, (6)

∂Q12

∂t
= −�Q

δFQ[Q]

δQ12
+ �Qc0(2P1P2). (7)

Here, the damping parameter �Q sets the relaxation time
scale for the system. The first term on the right-hand-side of
Eqs. (6)–(7) relaxes the pure LC to its free energy minimum.
The second term represents the correction due to the coupling
with AM. The model excludes the velocity fields of the ne-
matic components, and is appropriate in the high-density limit
where hydrodynamic flows are rapidly dissipated. In such a
scenario, the relaxation dynamics is primarily governed by
intermolecular interactions rather than fluid flow in nematic
liquid crystals. Further, the free energy formulation can be
generalized to incorporate spatially anisotropic elastic con-
stants which are experimentally relevant. At present, we do
not incorporate this anisotropy. Our isotropic model already
shows rich dynamics, as we show in Ref. [47] as well as in this
paper. We expect much of this pattern dynamics to survive for
moderate anisotropy.

The AM dynamics is governed by the TT equations for the
density and polarization fields [48,49]. As mentioned earlier,
the TT model for pure AM can be formulated using a “free
energy” Fa [2]. The incorporation of the coupling term Fc in
Fa yields the relevant d = 2 equations for AM in LLCs as
follows [47]:

∂ρ

∂t
= −v0∇ · (Pρ) − ∇ ·

(
−�ρ∇ δFa

δρ

)
, (8)

∂P1

∂t
= λ1(P · ∇ )P1 − �P

δFa

δP1
+ �Pc0(Q11P1 + Q12P2), (9)

∂P2

∂t
= λ1(P · ∇ )P2 − �P

δFa

δP2
+ �Pc0(Q12P1 − Q11P2).

(10)

Active matter
(P)

Liquid crystal 
(n)

Planar (BP)

Planar (BP) Homeotropic (BH)

x

y

Homeotropic (BH)

Liquid crystal 
(n)

Active matter
(P)

FIG. 1. Schematic depicting planar (BP) and homeotropic (BH )
boundary conditions for nematic (upper frames) and active (lower
frames) components.

Here, �ρ and �P set the relaxation time scales for the
density and polarization fields. The first term on the RHS of
Eqs. (9)–(10) describes the effect of advection on the flow
alignment. Its prefactor λ1 has the dimensions of speed. The
terms with c0 in Eqs. (9)–(10) model the effect of the AM-
LC coupling. The dimensionless versions of Eqs. (6)–(10)
are provided in Appendix. We use these coupled equa-
tions as a model for LLCs in this paper. According to the
Mermin-Wagner theorem, continuous symmetries cannot be
spontaneously broken in d � 2 at nonzero temperature in
equilibrium systems with short-range interactions. Perhaps
the most interesting aspect of AM is that this intrinsically
nonequilibrium system does exhibit long-range order even in
d = 2 [48,49]. Thus, the d = 2 results presented here may be
expected to foreshadow d = 3 results.

In our previous work [47], we focused on symbiotic dy-
namics of this model in the bulk. Our focus in the present
work is the opposite, viz., whether we can control the dy-
namics of the AM and LCs by placing them in contact with
a surface which exerts specific boundary conditions. We are
motivated by the possibility of regulating pattern dynamics in
the context of technological applications. Some quantitative
statements about the nature of boundary conditions and the
corresponding solutions in pure LCs and AM are in order. In
the present work, we have studied all possible combinations
of planar (BP) and homeotropic (BH ) conditions for both
components (see the schematic in Fig. 1). The vector order
parameter (n or P) is anchored parallel (perpendicular) to
the walls in planar (homeotropic) conditions. There are also
additional possibilities for boundary conditions. These arise
by (a) mixing BP and BH for n and P on different surfaces in
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Fig. 1; and (b) by flipping P → −P on ore or more surfaces
in the lower frames of Fig. 1. For simplicity, we will restrict
ourselves to the conditions depicted in Fig. 1.

These conditions are well-established in the literature for
LC square wells [37,39,40,45,46], and can be readily imple-
mented in a physical setting. For example, the surface can
be treated chemically to favor specific anchoring conditions
on the nematic director. Other mechanisms to achieve the de-
sired director orientation for LCs include lithography, surface
anchoring, flow alignment and coupling to an external field
[16,57]. In the context of AM, planar boundary conditions are
most commonly used. The presence of geometric constraints
is enough to implement these in experiments. For homeotropic
conditions, experiments suggest that the confining walls can
comprise different particles, and the potential between the
active and wall particles can be tuned to achieve the desired
boundaries [24]. Setting up physical barriers or optical traps,
predefined surface patterning and chemical modification are
other commonly used techniques employed to set boundary
conditions in AM [58].

III. NUMERICAL RESULTS

A. Computational Details

We have used the Euler discretization method [59] to nu-
merically solve Eqs. (A2)–(A6) and determine the evolution
of the nematic and active components. The discretization
mesh sizes used in our simulations are 
x = 
y = 1 and

t = 0.01. These mesh sizes satisfy the stability criteria of
the uncoupled system, i.e., the TDGL equation for the ne-
matic, and the Toner-Tu equations for active matter. The initial
fields Q(r, 0) and P(r, 0) consist of small random fluctua-
tions about 0, corresponding to the disordered state. Similarly,
the initial density field ρ(r, 0) consists of small fluctuations
about ρ0. Thus, we study coarsening of the system from a
disordered state at t = 0. Notice that all the coupling terms
in Eqs. (A2)–(A5) are quadratic. Therefore, the growth of
linear fluctuations about the disordered state is the same as
for the uncoupled system (c0 = 0). The effect of the coupling
is manifested only when the fields enter a nonlinear growth
regime. The equations are solved using the different boundary
conditions in Fig. 1 for n and P. We use periodic boundary
conditions for ρ. The parameters are such that T < Tc (+ sign
in Eqs. (A2)–(A3)) and ρ = ρ+

c = 0.52. In the bulk (mim-
icked by periodic boundary conditions for all fields), these
parameters yield a uniform ordered phase for the nematic,
and a banded state for the AM [47]. We have confirmed the
stability of the steady states presented subsequently by trying
10 independent initial conditions, and arriving at the same
states. Further, although we will show evolution snapshots for
different boundary conditions at t = 104, we have verified that
the system maintains the corresponding states till t = 2 × 105.

B. Results for the Uncoupled System (c0 = 0)

We start by discussing the consequences of planar and
homeotropic boundary conditions for uncoupled systems,
i.e., c0 = 0. This will provide a reference point to judge
the effect of the coupling. There have been many studies
of both nematic [37,39–43,45,60] and active components

[23–29,33–36,61,62] in this context. In this limit, both fields
evolve independently. Figures 2(a)–2(b) show nematic mor-
phologies at t = 104 for planar (BP) and homeotropic (BH )
boundary conditions. The color bar indicates the magnitude
of the orientational order parameter S . A topological defect
of charge +1/2 (−1/2) in the nematic medium is identified as
a point around which the orientation of the (apolar) director
changes by +π (−π ) when traversed clockwise. Naturally, the
order parameter S � 0 at the defect. In Figs. 2(a)–2(b), the di-
rector n (denoted by rods) aligns diagonally in the square well
indicating the absence of bulk defects for both BP and BH .
The elastic term penalizes the variation of the director field in
the bulk, whereas the strong anchoring condition is imposed
only at the boundaries. Their competition leads to topological
structures reminiscent of partial defects at the corners. The
director field at the corners rotates by π/2. This morphology
has also been observed experimentally in LCs confined in
square wells with homeotropic boundary conditions [39].

The corresponding P-field for the active component is
shown in Figs. 2(c) and 2(d). The arrows represent the
orientation P. The active medium has +1 (−1) defects, cor-
responding to points where P rotates by 2π (−2π ) when
traversed clockwise. For BP, there is a single +1 defect which
moves around in the system. This is expected as the planar
anchoring at the boundaries yields a singular vortex. Further,
the advection term in the system causes the vortex to circulate
within the bulk inducing the swirling active flow. Similar ob-
servations have also been made in previous studies by Sokolov
et al. [14] in which the AM was confined to circular substrates
with BP BCs. For BH , there are multiple defects in the sys-
tem [as shown in Fig. 2(d)] with a complicated dynamical
interplay. The imposition of homeotropic boundaries leads to
a chaotic state characterized by the spontaneous generation
and annihilation of defects throughout the system. We argue
that the strong anchoring in opposite directions at adjacent
boundary edges prevents the system from adopting singular
defect dynamics, thus resulting in the observed chaotic state.

The Supplemental Material (SM) [63] shows movies (M1)
of the evolution for Figs. 2(c)–2(d). The color bar adjacent
to Figs. 2(c)–2(d) denotes the magnitude |P| – this goes to 0
at the defect cores. As expected, ρ in Figs. 2(e)–2(f) tracks
the ρ-variation due to the ρ-P coupling in the TT equations.
We should stress that the morphologies in Figs. 2(a)–2(b) are
static, i.e., the various fields have settled to fixed-point values.
However, the P field in Figs. 2(c)–2(d) is dynamic.

C. Results for the Coupled System (c0 �= 0)

Next, let us study the effect of the coupling on the
surface-directed dynamics. We have examined all possible
combinations of boundary conditions in this context. Here, we
only show some representative results.

First, we consider the coupled system with BP surfaces.
Figure 3 presents the snapshots (at t = 104) of the nematic and
active components for c0 = 0.1 (upper row) and 1.0 (lower
row). In Figs. 3(a) and 3(d), we show the S-field (see color
bar) along with n (denoted by rods). The corresponding P-
field and its magnitude are depicted in Figs. 3(b) and 3(e).
Notice the co-alignment of n and P due to the coupling.
More importantly, the LC morphologies are no longer static
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BP BH

(a)

(c)

(b)

(d)

(e) (f)

FIG. 2. Snapshots at t = 104 for the n-field (first row), P-field (second row), and ρ-field (third row) for c0 = 0. The frames (a), (c), and
(e) correspond to planar (BP) boundary conditions. The color bars in these frames show the nematic orientational order S in (a); magnitude of
polarization |P| in (c); and density ρ in (e). The rods (arrows) denote the orientation of the director (polarization) field. The defects are denoted
by + or –, according to their signs. The corresponding snapshots for homeotropic (BH ) boundaries are shown in frames (b), (d), and (f).

as in Fig. 2(a). Here, the asymptotic LC state consists of two
co-rotating topological defects (at a fixed distance d0) with
the same charge (+1/2) at the center of the square well. This
dynamic steady state in the passive NLCs is unprecedented
and inaccessible in the equilibrium counterpart. These defects
move closer with increasing c0. The corresponding P-field
exhibits a vortex with +1 charge at the center of the square
well. The movies of the evolution for both coupling strengths
can be found in M2 (c0 = 0.1) and M3 (c0 = 1.0) in the

SM [63]. In Figs. 3(c) and 3(f), we show the density field in
the system. There is a large variation of ρ in the strongly cou-
pled (c0 = 1.0) system – the dilute regions coincide with the
vortex core with |P| � 0. Beyond the anchoring effects at the
boundaries, the alignment of nematic molecules is influenced
by their interaction with the active fields via the coupling
constant c0. Thus, the observed steady state arises from the
interplay between these competing factors. Further, the identi-
cal topological charge of both nematic and active components
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(d) (e) (f)

(a) (b) (c)c0=0.1

c0=1.0

FIG. 3. Snapshots at t = 104 for the coupled case with c0 = 0.1 (upper row) and c0 = 1.0 (lower row). BP boundary conditions are imposed
at the surfaces for both n and P. The frames (a) and (d) show the n-field; (b), (e) show the P-field; and (c), (f) show the ρ-field. The meaning
of various symbols and color bars is the same as in Fig. 2.

results in the formation of a structure featuring two +1/2
defects. From an application perspective, such morphologies
can be harnessed to create a pumping effect in microfluidic
devices [6]. The systematic circular motion generates fluid
flow inside the devices, which can be channeled in any desired
direction.

Before proceeding, we wish to quantify how the morpholo-
gies in Fig. 3 change with c0. The co-rotating vortices in
the n-field become more tightly bound as c0 increases. In
Fig. 4(a), we plot the intervortex distance d0 vs. t in the
asymptotic state for c0 = 0.5, 0.75, 1.0. The time-series fluc-
tuates chaotically about an average value. In this context, we
make two remarks. First, as the spatial mesh size is 
x = 1,
there are inaccuracies in determining the precise locations of
the vortex cores. These become more marked at higher c0

as the vortices come closer together. Second, in the square lat-
tice, there is an intrinsic anisotropy depending on the relative
alignment of the line connecting the vortex cores and the diag-
onal of the square well. We attribute the chaotic fluctuations in
d0(t ) vs t to these numerical factors. In Fig. 4(b), we plot the
co-rotation angular velocity ω0 vs t in the asymptotic state for
the same values of c0. In Fig. 4(c), we plot d̄0 vs c0 on a log-log
scale. Here, d̄0 represents the time average of d0(t ) in the
asymptotic state. We expect d̄0 → ∞ as c0 → 0, correspond-
ing to the uncoupled limit. Our numerical data is consistent
with a power-law behavior d̄0 ∼ c−θ

0 with θ � 0.60, though
there is a saturation for c0 > 1. In Fig. 4(d), we plot ω̄0 vs
c0 on a log-log scale. In the uncoupled limit (c0 → 0), we
expect ω̄0 → 0. Our numerical data is again consistent with a
power-law behavior ω̄0 ∼ cα

0 with α � 1.25 for c0 < 1. What
consequences do these observations have on AM? We get a
flavor from Fig. 3 – the swirling is stronger with increasing c0,

and the AM is pushed closer to the periphery of the well. This
is due to the interplay of the inherent linear velocity v0 and
the coupling-induced angular velocity ω0. These prototypical
observations not only demonstrate the symbiotic relationship
between LCs and AM, but also provide a systematic procedure
for manipulating pattern formation via the coupling strength.

Our second example of coupled kinetics is the case where
the LC and AM have BP and BH boundary conditions, re-
spectively. The resultant morphologies from our coarsening
experiments for c0 = 1.0 are shown in Fig. 5. The snapshots
are shown at t = 104, by which time the dynamics has settled
to a fixed point (FP). In Fig. 5(a), we show the S-field with di-
rector orientations for the nematogens. No defects are seen in
the nematic field. The corresponding P-field and its magnitude
are shown in Fig. 5(b). The ρ-field is depicted in Fig. 5(c).
In the uncoupled limit, the relevant configurations are shown
in Figs. 2(a), 2(d), and 2(f). Figure 2(a) shows FP behavior,
whereas Figs. 2(d) and 2(f) show complex dynamical states
with multiple defects. In Fig. 5, the coupling controls the
dynamics of AM and harnesses it to the FP behavior. This
state is reminiscent of the experimental observation in [12]
where the active particles have higher density in the vicinity
of +1/2 defects in the nematic field.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of our results. We have focused on the effect of boundary
conditions (BCs) on the dynamics of living liquid crystals
(LLCs). They are modeled by the simplest framework that
includes a hydrodynamic description for the active flows, but
assumes a static LC matrix that acquires a dynamic nematic
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FIG. 4. (a) Plot of the intervortex distance d0 vs t in the asymptotic state for c0 = 0.5, 0.75, 1.0. (b) Plot of the co-rotation angular velocity
ω0 vs t for the same c0-values. (c) Log-log plot of d̄0 vs. c0. The bar denotes the time-average in the asymptotic state. The dashed line denotes
the best linear fit to the data. (d) Log-log plot of ω̄0 vs c0.

order via an experimentally motivated coupling term. Our
purpose is to examine whether surfaces can be tailored to
inject specific dynamical behaviors into an LLC. This con-
trol is expected to yield a range of possible applications
in science and technology. We consider two types of BC:
(a) planar or BP, where n or P are aligned parallel to the
surfaces; and (b) homeotropic or BH , where n or P point

perpendicular to the surface. As P 
= −P, there are further
subclasses in BP and BH depending on the direction of P.
These BCs can arise naturally due to confinement of the LLC
in a container. Alternatively, specific BCs may be imposed at
surfaces to control the dynamics of the LLC. In this paper, we
have shown two representative examples of LLCs in square
wells.

(a) (b) (c)

FIG. 5. Snapshots at t = 104 for the coupled case with c0 = 1.0. The boundary conditions for LCs and AM are BP and BH , respectively.
The frames show the (a) n-field, (b) P-field, and (c) ρ-field. The color bars denote the magnitude of the relevant field.
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(a) First, we consider the case where n has BP, and P has
BP with the directionality being cyclic along the surfaces. In
the uncoupled limit, the n-field is static, whereas the P-field
has a single vortex wandering in the system. In the coupled
case, the system settles into a controlled dynamics with a co-
rotating pair of defects in the n-field. The spacing and angular
velocity of this co-rotation have a power-law dependence on
the coupling strength.

(b) Second, we consider the case where n and P have BH ,
with P pointing inward from the surfaces. In the uncoupled
limit, the n-field is static, and the P-field has a complex dy-
namics with multiple defects, swirling around. In the coupled
case, this complex dynamics is tamed and both n and P settle
into a steady state.

We have demonstrated that BCs play a crucial role in
pattern dynamics in LLCs. An improved understanding of the
interplay between the LLCs and surfaces can help design ac-
tive systems with specific pattern dynamics. We have studied
defect dynamics in LLCs, and investigated the interplay of
AM-LC interactions and confining surfaces. In this context,
we displayed two important examples from a plethora of dy-
namical possibilities, e.g., (a) harnessing of random motion
into a controlled dynamical trajectory; and (b) taming of a
dynamical state to a static state.

The results presented provide only a flavor of surface-
directed dynamics in LLCs. There can be several possible
extensions of our work. First, the set of parameters in our
model is large, primarily because of the large number of pa-
rameters in the Toner-Tu equations. We have assigned values
to these parameters which are standard for the uncoupled
system in the literature. Clearly, a systematic study of pa-
rameter space is demanding, but offers intriguing possibilities.
Second, it is experimentally more realistic to include spatially
anisotropic elastic constants in the LdG free energy for LCs
in Eq. (1). This generalization is known to alter the defect
dynamics for LCs, and should unfold novel pattern dynam-
ics for LLCs also. Third, an extension of our framework to
confined geometries such as discs or channels, or incorpo-
rating hydrodynamics in the LC component, should provide
unprecedented exotic steady states. Finally, a natural exten-
sion of our framework is to d = 3. We anticipate rewarding
insights, primarily due to the shift from a second-order to
a first-order phase transition in the nematic component. The
additional dimension is expected to introduce intricate defect
structures for both LCs and AM, which should lead to novel
coupled dynamics. However, such a study will be challenging
as the 3D model consists of 9 coupled partial differential
equations.

Generally speaking, AM is ubiquitous in nature. The con-
stituent particles tend to parallelize locally, but can exhibit
complex unstructured dynamics at the macroscopic level,
e.g., turbulent motion. A major research direction in AM
has focused on disciplining and harnessing their motion into
useful work. Consequently, LLCs are emerging as valuable
microfluidic devices with potential applications in sorting and
mixing of materials, biosensing, and targeted drug delivery
in biomedical applications [31]. We have demonstrated in this
work that BCs play a crucial role in pattern dynamics in LLCs.
An improved understanding of the interplay between LLCs
and surfaces can help design active systems with specific

pattern dynamics. We believe that surface-directed behavior
opens up the possibility of several novel applications, e.g.,
active morphologies with persistent motion around a defect
core can be used as microfluidic pumps. We hope our present
theoretical study will guide future experiments on LLCs, and
pave the way for their utilization in devices.
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APPENDIX: DYNAMICAL EQUATIONS FOR LIVING
LIQUID CRYSTALS

The dynamical Eqs. (6)–(10) for d = 2 living liquid crys-
tals (LLCs) are presented in an expanded form in this
Appendix. It is easier to work with the dimensionless form due
to the reduced number of parameters, and the identification of
universal spatial and temporal scales. For the sake of brevity,
we only present the dimensionless forms of Eqs. (6)–(10).
These are obtained by introducing rescaled variables as

Q = cQQ′, P = cPP′, r = crr′, t = ct t
′, where

cQ =
√

|A|
2C

; cP =
√

α0

β
; ct = β

α0�Q

√
|A|
2C

; cr =
√

L

|A| .
(A1)

Dropping the primes, the dimensionless equations can be writ-
ten as

∂Q11

∂t
= ξ1

[±Q11 − (
Q2

11 + Q2
12

)
Q11 + ∇2Q11

]
+ c0

(
P2

1 − P2
2

)
, (A2)

∂Q12

∂t
= ξ1

[±Q12 − (
Q2

11 + Q2
12

)
Q12 + ∇2Q12

] + 2c0P1P2,

(A3)
1

�

∂P1

∂t
= ξ2

[(
ρ

ρc
− 1 − P · P

)
P1 − v′

1

2ρ0
∇xρ + λ′

1(P · ∇ )P1

+ λ′
2∇x(|P|2) + λ′

3P1(∇ · P) + κ ′∇2P1

]

+ c0(Q11P1 + Q12P2), (A4)

1

�

∂P2

∂t
= ξ2

[(
ρ

ρc
− 1 − P · P

)
P2 − v′

1

2ρ0
∇yρ + λ′

1(P · ∇ )P2

+ λ′
2∇y(|P|2) + λ′

3P2(∇ · P) + κ ′∇2P2

]

+ c0(Q12P1 − Q11P2), (A5)

1

�′
∂ρ

∂t
= −v′

0∇ · (Pρ) + D′
ρ∇2ρ. (A6)
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The ± sign in Eqs. (A2)–(A3) determines whether the
nematic component is above (–) or below (+) its critical
temperature Tc. For T < Tc, the nematic is intrinsically (i.e.,
for c0 = 0) ordered. For T > Tc, the nematic is intrinsi-
cally ordered. Similarly, the P-field in Eqs. (A4)–(A5) is
intrinsically disordered if ρ0 < ρc, and intrinsically ordered
for ρ0 > ρc. The rescaled parameters and their numerical
values in our simulations are provided in Table I. These
parameter values are similar to those chosen for the un-
coupled system (AM or LC) in the literature. However, we
emphasize that our simulation results do not change qualita-
tively on changing the above values as long as the solutions
are stable.

TABLE I. Dimensionless parameters in Eqs. (A2)–(A6), and
their numerical values.

Scaled Parameters Numerical Values

ξ1 = 2|A|β
α0

√
|A|
2C , ξ2 = α0

2

√
2C
|A| 1, 1

v′
1 = v1

α0

√
β|A|
α0L , v′

0 = v0
�ρ

√
α0 |A|
βL 0.5, 0.25

� = β|A|�P
α0�QC , �′ = β�ρ

α0�Q

√
|A|
2C 1, 1

κ ′ = κ|A|
α0L , D′

ρ = Dρ |A|
L 1, 1

λ′
1 = λ1

�P

√
|A|

α0βL , λ′
2 = λ2

√
|A|

α0βL , λ′
3 = λ3

√
|A|

α0βL−0.5, −0.5, 0.5
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