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Active particle motion in Poiseuille flow through rectangular channels
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We investigate the dynamics of a pointlike active particle suspended in fluid flow through a straight channel.
For this particle-fluid system, we derive a constant of motion for a general unidirectional fluid flow and apply it to
an approximation of Poiseuille flow through channels with rectangular cross- sections. We obtain a 4D nonlinear
conservative dynamical system with one constant of motion and a dimensionless parameter describing the ratio
of maximum flow speed to intrinsic active particle speed. Applied to square channels, we observe a diverse set
of active particle trajectories with variations in system parameters and initial conditions which we classify into
different types of swinging, trapping, tumbling, and wandering motion. Regular (periodic and quasiperiodic)
motion as well as chaotic active particle motion are observed for these trajectories and quantified using largest
Lyapunov exponents. We explore the transition to chaotic motion using Poincaré maps and show “sticky” chaotic
tumbling trajectories that have long transients near a periodic state. We briefly illustrate how these results extend
to rectangular cross-sections with a width-to-height ratio larger than one. Outcomes of this paper may have
implications for dynamics of natural and artificial microswimmers in experimental microfluidic channels that
typically have rectangular cross sections.
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I. INTRODUCTION

Active particles are entities that take energy from the en-
vironment and convert it into persistent motion. Examples
include macroscopic living organisms, such as birds, fish, and
mammals, which consume energy from food and self-propel
via various modes of locomotion. Active particles are also
ubiquitous in the microscopic living world such as bacteria,
cells, algae, and other microorganisms [1]. Although persis-
tent motion is a visible feature that is commonly associated
with life, active particles also emerge in several nonequilib-
rium inanimate physical and chemical systems [2–6].

Active particles immersed in a fluid medium at the mi-
croscale, also known as microswimmers, are a commonly
studied class of active particles [7]. These microswimmers
ubiquitously interact with external fluid flows in various sit-
uations. For example, microswimmers routinely experience
unidirectional flows in confined channels such as sperm cells
swimming in fallopian tubes [8,9], pathogens moving through
blood vessels [10], and microrobots programed for targeted
drug delivery applications [11]. In these scenarios, the cou-
pling between external flow fields and intrinsic velocity of
the active particle can lead to rich dynamical behaviors [12].
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Understanding the active particle dynamics arising from cou-
pling with external fluid flows is not only interesting from
a biological perspective, but is also crucial for design of
artificial microswimmers for biomedical applications of cell
manipulation, targeted drug delivery and cargo transport [13].
Further, it can aid design of industrial and biomedical mi-
crofluidic devices aimed at focusing, sorting, and filtering of
microorganisms in a fluid suspension [14,15].

Zöttl and Stark [16] studied the motion of a microswimmer
in unidirectional confined flows by modeling the active parti-
cle as a spherically symmetric point with constant intrinsic
velocity. For 2D planar Poiseuille flow, they showed that the
equation of motion for the active particle can be mapped
onto the mathematical equation of a simple pendulum, where
the oscillating and circling solutions of the pendulum motion
correspond to two different types of active particle motion,
swinging and tumbling, respectively. In swinging motion, the
upstream-oriented active particle performs oscillations about
the channel centerline, whereas in tumbling motion, the active
particle oscillates near the edges of the channel with fluctu-
ating orientation and does not cross the channel centerline.
Variations of this model that include additional attributes to
the active particle and/or fluid flow have been investigated
in detail for 2D channel flows [17–22]. For 3D cylindrical
Poiseuille flow, Zöttl and Stark [16] showed that the particle-
fluid dynamical system is Hamiltonian with enough conserved
quantities to make the system integrable. In this case, they
showed that the active particle exhibits periodic motion with
3D generalizations of swinging and tumbling trajectories. The
effect of flow anisotropy was also studied by Zöttl and Stark
[22] who showed, for an elliptical channel cross section,
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that the active particle motion is much more complex with,
typically, quasiperiodic trajectories. Using Poincaré maps,
a few examples of chaotic motion were also reported by
Zöttl [23].

Although the axisymmetric fluid flow profile in a cylin-
drical channel results in simplified equations for the active
particle motion, in many microfluidic applications concerned
with natural and artificial microswimmers, microchannels
with rectangular cross sections are more commonly used since
they are relatively easy to fabricate [24]. Motivated by this,
herein we apply the model of Zöttl and Stark [16] to ex-
plore the dynamics of a simple active particle suspended in
Poiseuille flow through a straight channel having a square
or rectangular cross section. The introduction of a square or
rectangular cross section introduces anisotropy, by breaking
the continuous rotational symmetry of fluid flow that exists in
a circular cross section, and makes the system nonintegrable.
We observe a rich variety of active particle motion with both
quasiperiodic and chaotic trajectories. These motions are ex-
plored in detail as a function of system parameters and initial
conditions.

The paper is organized as follows. In Sec. II, we present
the equations of motion for the particle-fluid system and
derive general constants of motion for an active particle in
unidirectional fluid flow. We then, in Sec. III, identify equilib-
rium states for an active particle suspended in Poiseuille-like
flow through a rectangular cross section and determine their
stability. After briefly reviewing the special case of active
particle motion in a channel with a circular cross section in
Sec. IV, we present a detailed exploration of active particle
dynamics in a channel with a square cross section in Sec. V.
This includes a classification of trajectories, comparison with
dynamics in a circular cross section, a detailed parameter
space exploration of cross-sectional active particle dynamics,
as well as an investigation of the transport of an active par-
ticle along the channel. In Sec. VI, we briefly explore the
effect of the width-to-height ratio of the rectangular cross
section on active particle motion. We provide our conclusions
in Sec. VII.

II. EQUATIONS OF MOTION

Consider the pointlike active particle model of a spherical
microswimmer illustrated in Fig. 1. The active particle has
a constant intrinsic swimming speed v0 in the direction of
its orientation ê = ex î + ey ĵ + ezk̂, is located at r = xî + yĵ +
zk̂, and is suspended in a steady unidirectional flow u(x, y)k̂
through a straight 3D channel. The equations of motion for
the active particle are given by [16]

dr
dt

= v0ê + u(x, y)k̂, (1a)

dê
dt

= 1

2
(∇ × u(x, y)k̂) × ê. (1b)

Equation (1a) describes the translational motion of the
active particle as a combination of its intrinsic velocity v0ê
and the local velocity of the background fluid flow u(x, y)k̂,
whereas Eq. (1b) describes the evolution of the active parti-
cle’s orientation based on the local flow vorticity. We assume
that the active particle is small compared to the cross-sectional

FIG. 1. Schematic of the particle-fluid system. A simple point-
like active particle located at r = (x, y, z) and having a constant
intrinsic speed in the direction of its orientation ê is suspended in a
unidirectional channel flow u(x, y) through a straight 3D rectangular
channel with width-to-height aspect ratio A. The particle’s orien-
tation is represented using spherical coordinates with polar angle
θ ∈ (−π/2, π/2) measuring the orientation relative to the x − z
plane, and azimuthal angle φ ∈ (−π, π ] measuring the angle within
the x − z plane relative to the (negative) z axis. The left panel shows
the top view of the channel in the x − z plane while the right panel
shows the cross-sectional view of the channel in the y − x plane.

dimensions of the channel, and hence the particle does not
disturb the fluid flow. Further, we assume that the active
particle stays away from bounding walls, so we can neglect
interactions and collisions between the active particle and the
walls.

Nondimensionalizing Eqs. (1) with a characteristic length
scale H of the cross section and timescale H/v0, we obtain the
following dimensionless equations:

dr̄
dt̄

= ê + ū(x̄, ȳ)k̂, (2a)

dê
dt̄

= 1

2
(∇̄ × ū(x̄, ȳ)k̂) × ê. (2b)

Here, the dimensionless variables are denoted with an overbar
and the dimensionless flow field ū(x̄, ȳ) is scaled with the
active particle speed v0. We now drop the overbars on dimen-
sionless variables for convenience. In component form, we
get a system of six nonlinear ordinary differential equations
(ODEs) as follows:

ẋ = ex, ėx = −1

2
ez

∂u

∂x
,

ẏ = ey, ėy = −1

2
ez

∂u

∂y
,

ż = ez + u(x, y), ėz = 1

2
ex

∂u

∂x
+ 1

2
ey

∂u

∂y
.

We note from the component form that the dynamical flow is
divergence-free, that is,

∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
+ ∂ ėx

∂ex
+ ∂ ėy

∂ey
+ ∂ ėz

∂ez
= 0.

Hence, the dynamical system is conservative and phase-space
volumes are preserved under the dynamical flow. We further
note that the z variable can be decoupled, i.e., the ż equation
can be integrated separately, thus reducing our dynamical
system to five differential equations. The effective dimension
of our dynamical system is further reduced by identifying con-
stants of motion, i.e., quantities that remain constant during
the evolution of the system. A trivial constant of motion for
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our system is

|ê|2 = e2
x + e2

y + e2
z = 1, (3)

since the orientation vector maintains unit magnitude. We
have also identified a second constant of motion as (see Ap-
pendix A for a proof)

Hg = − 1
2 u(x, y) + ez. (4)

With these two constants of motion, our five-dimensional
dynamical system reduces to three effective dimensions. We
can implicitly use the constant of motion in Eq. (3) and re-
duce our system to four nonlinear ODEs by parametrizing
the Euler axis using spherical coordinate angles θ and φ

as follows:

ex = − cos θ sin φ,

ey = sin θ,

ez = − cos θ cos φ.

Here, θ ∈ (−π/2, π/2) is the polar angle measuring the ori-
entation relative to the x − z plane, while φ ∈ (−π, π ] is the
azimuthal angle measuring the orientation component within
the x − z plane relative to the negative z axis (see Fig. 1). This
parametrization gives us the following four coupled nonlinear
ODEs:

ẋ = − cos θ sin φ, (5a)

ẏ = sin θ, (5b)

θ̇ = 1

2

∂u

∂y
cos φ, (5c)

φ̇ = 1

2

∂u

∂y
tan θ sin φ − 1

2

∂u

∂x
, (5d)

along with the constant of motion in Eq. (4), which is rewritten
in the above parametrization as

Hg = − 1
2 u(x, y) − cos φ cos θ. (6)

We note that up to this point, our consideration of the fluid
flow field u(x, y) has been general and hence the constant
of motion in Eq. (4) exists independent of the specific flow
profile.

We now consider the specific fluid flow profile of Poiseuille
flow in a 3D straight channel having a rectangular cross sec-
tion with width W and height H . With H as the length scale
and defining the aspect ratio A = W/H , we approximate the
dimensionless flow profile by

u(x, y) = U

(
1 −

( x

A
)2

)
(1 − y2), (7)

where U = u(0, 0) is the maximum velocity in the channel
scaled with the intrinsic particle speed v0. This expression
provides a good approximation to the exact solution of
Poiseuille flow in rectangular channels expressed as an infi-
nite series (see Appendix B). Substituting this flow field in
Eqs. (5), we get the following 4D dynamical system [along

with the constant of motion in Eq. (6)]:

ẋ = − cos θ sin φ, (8a)

ẏ = sin θ, (8b)

θ̇ = −Uy cos φ

(
1 − x2

A2

)
, (8c)

φ̇ = −Uy tan θ sin φ

(
1 − x2

A2

)
+ U

x(1 − y2)

A2
, (8d)

where −A < x < A, −1 < y < 1, −π/2 < θ < π/2 and
−π < φ � π .

We solve the dynamical system in Eqs. (8) up to t = 1000
(unless stated otherwise) using the ode45 solver in MATLAB
with relative and absolute tolerance of 10−10. These very small
tolerances ensure that numerical variations in the constants of
motion are less than 10−8 for the duration of simulations.

III. EQUILIBRIUM STATES AND STABILITY

We start by finding equilibrium states of the dynamical
system that would correspond to an active particle with a fixed
cross-sectional location and a fixed orientation. This is done
by making the time derivatives zero in Eqs. (8) and solving the
resulting nonlinear algebraic equations. We find the following
two equilibrium states:

(x∗, y∗, θ∗, φ∗) = (0, 0, 0, 0) and (0, 0, 0, π ).

The first equilibrium (with φ∗ = 0) corresponds to an active
particle oriented upstream at the center of the channel, while
the second (with φ∗ = π ) corresponds to an active particle
oriented downstream, also at the center of the channel.

To understand the stability of these equilibrium states, we
perform a linear stability analysis, thus perturbing the equilib-
rium states: (x, y, θ, φ) = (x∗, y∗, θ∗, φ∗) + ε(x1, y1, θ1, φ1),
where 0 < ε � 1 is a perturbation parameter. Substituting
this in Eqs. (8) and comparing O(ε) terms, we get a ma-
trix equation for the evolution of the perturbation variables
(x1, y1, θ1, φ1).

A. Upstream-oriented equilibrium state

For the upstream-oriented equilibrium state
(x∗, y∗, θ∗, φ∗) = (0, 0, 0, 0), we obtain the following linear
equation that governs the evolution of perturbations:

⎡
⎢⎢⎢⎣

ẋ1

ẏ1

θ̇1

φ̇1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 0 −1

0 0 1 0

0 −U 0 0

U/A2 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

y1

θ1

φ1

⎤
⎥⎥⎥⎥⎦.

The stability of the equilibrium state is determined by the
nature of the eigenvalues of the right-hand-side matrix [25].
We obtain the following characteristic polynomial equation
for eigenvalues λ:

λ4 + U

(
1 + 1

A2

)
λ2 + U 2

A2
= 0.
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The roots of this quartic polynomial give the eigenvalues

λ = ±i
√

U , ±i

√
U

A .

All the eigenvalues being purely imaginary, this upstream-
oriented active particle equilibrium may correspond to a
center, a stable spiral or an unstable spiral [25]. However, the
conservative nature of our dynamical system makes this equi-
librium a center. We will revisit this numerically in Sec. V C.
Furthermore, for nonsquare cross sections having an aspect
ratio differing from A = 1, the oscillation frequency differs
along the two eigenvector pairs corresponding to the two
conjugate eigenvalue pairs.

1. Downstream-oriented equilibrium state

For the downstream-oriented equilibrium state
(x∗, y∗, θ∗, φ∗) = (0, 0, 0, π ), we obtain the following
linear equation describing the evolution of perturbations:

⎡
⎢⎢⎢⎣

ẋ1

ẏ1

θ̇1

φ̇1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 U 0 0

U/A2 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

y1

θ1

φ1

⎤
⎥⎥⎥⎥⎦,

with the characteristic equation

λ4 − U

(
1 + 1

A2

)
λ2 + U 2

A2
= 0.

Solving this quartic polynomial gives us the eigenvalues

λ = ±
√

U , ±
√

U

A .

Since the eigenvalues are all real, with two positive and
two negative, this equilibrium state is an unstable saddle
point having both stable and unstable manifolds which are
two-dimensional. Again, due to the different magnitudes of
eigenvalues for nonsquare cross sections, the rate of insta-
bility from the saddle point differs in the directions of the
corresponding eigenvectors. We will numerically revisit the
dynamics of an active particle starting near this equilibrium
state in Sec. V C.

IV. DYNAMICS IN A CYLINDRICAL CHANNEL

Zöttl and Stark [16] studied the nonlinear dynamics of an
active particle suspended in fluid flow through a cylindrical
channel. For a circular cross section, the flow field is axisym-
metric and takes the dimensionless form

uc(x, y) = U (1 − (x2 + y2)), (9)

(with length variables scaled with the duct radius). For this
special case, they identified two constants of motion:

Hc = 1
2U (x2 + y2) + 1 − cos φ cos θ, (10a)

Lz = x sin θ + y cos θ sin φ. (10b)

Here Hc is a linear transform of the general constant of
motion identified in Eq. (6). The new constant of motion Lz

arises from the continuous rotational symmetry of the circular
cross section and is proportional to the angular momentum of

the active particle in the z direction. This additional constant
of motion further reduces the effective dimension of the dy-
namical system in Eqs. (5) from three to two dimensions. By
making a change of coordinates, Zöttl and Stark [16] obtained
three nonlinear ODEs with the two constants of motion Hc and
Lz, and showed that the active particle motion in a cylindrical
channel results in an integrable Hamiltonian system where the
motion in the three-dimensional phase space is restricted to a
curve formed by the intersection of two surfaces correspond-
ing to Hc and Lz.

V. DYNAMICS IN A SQUARE CHANNEL

We now explore in detail the dynamics of an active particle
suspended in fluid flow through a 3D straight channel with a
square cross section, i.e., A = 1. We explore the active par-
ticle dynamics as a function of the dimensionless parameter
U as well as the initial conditions, i.e., the initial position in
the cross section (x(0), y(0)) and the initial orientation angles
(θ (0), φ(0)).

A. Classification of active particle trajectories

A large diversity of trajectories are observed for the active
particle in a square channel by varying the system parameter
U as well as the initial conditions. Some typical trajectories
and the corresponding orientations are shown in Fig. 2 for
U = 10. We choose to classify the trajectories into the fol-
lowing six types based on the region they occupy (shown in
gray in Fig. 2) at long times within the square cross section:
(i) Central swinging motion (green) with trajectories under-
going swinging motion about the channel centerline (similar
to swinging motion in cylindrical channel [16]) and confined
near the center of the channel to the cross-sectional domain
−0.25 < x, y < 0.25. (ii) Vertical swinging motion (cyan)
with trajectories undergoing swinging motion in the vertical
y direction and confined in the x direction to the vertical band
−0.25 < x < 0.25. (iii) Horizontal swinging motion (blue)
with trajectories undergoing swinging motion in the horizon-
tal x direction and confined in the y direction to the horizontal
band −0.25 < y < 0.25. (iv) Off-centered trapping (yellow)
with trajectories confined within a rectangular region of the
cross section having an area less than half the area of the
cross section; this region may cross at most one centerline of
the cross section (x = 0 or y = 0 or neither) but not both. (v)
Tumbling motion (purple) with trajectories that stay outside
the central region of the cross section as defined for central
swinging, and wander near the channel walls. (vi) Wandering
motion (red) with trajectories not in classes (i)–(v) and which,
therefore, visit both the central region defined for central
swinging motion, as well as the outer region defined for tum-
bling motion. Numerically, the classification is implemented
by only analyzing the latter half of the trajectory to remove
any transient dynamical behaviors at short times.

B. Comparison with cylindrical channel

For a square cross section (A = 1), we have the approxi-
mate dimensionless fluid velocity from Eq. (7):

us(x, y) = U (1 − x2)(1 − y2) = U
(
1 − (x2 + y2) + x2y2

)
.
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FIG. 2. Classification of active particle motion. Different trajectories of the active particle in a straight channel with square cross section are
shown in the (z, y) plane and (x, y) plane based on different initial positions for (a) (x(0), y(0)) = (0.15, 0.15), (b) (x(0), y(0)) = (0.05, 0.30),
(c) (x(0), y(0)) = (0.30, 0.05), (d) (x(0), y(0)) = (0.58, 0.70), (e) (x(0), y(0)) = (0.75, 0.75), and (f) (x(0), y(0)) = (0.55, 0.40). At right,
the shaded region of the spherical surface shows the time evolution of the particle’s orientation. Different colors denote the classification
of trajectories based on the region occupied in the cross section (gray shading with dashed boundaries). (a) Central swinging motion (green);
trajectories that stay near the center of the channel −0.25 < x, y < 0.25. (b) Vertical swinging motion (cyan); trajectories that are confined in
the x direction, i.e., inside the vertical band −0.25 < x < 0.25. (c) Horizontal swinging motion (blue); trajectories that are confined in the y
direction, i.e., inside the horizontal band −0.25 < y < 0.25. (d) Off-centered trapping (yellow); trajectories that are confined in a rectangular
region of the cross section having an area less than half the area of the cross section and which may cross either centerline (x = 0, y = 0),
or neither, but not both. (e) Tumbling motion (purple); trajectories that stay near the walls of the channel, i.e., outside the region of central
swinging motion. (f) Wandering motion (red); trajectories that explore both the central as well as outer regions of the cross section. Other
parameters were fixed to U = 10, z(0) = 0, θ (0) = 0, and φ(0) = 0. See also Supplemental Material Videos S1–S6 [26] for videos of particle
trajectories and orientations corresponding to (a)–(f), respectively.

By introducing the following velocity field:

ucs(x, y) = U
(
1 − (x2 + y2) + αx2y2

)
, α ∈ [0, 1],

we can continuously transform from the Poiseuille flow of a
circular cross section as in Eq. (9) (α = 0) to the approximate
Poiseuille flow of a square cross section us(x, y) (α = 1). The
corresponding nonlinear ODEs for an active particle within

the flow field ucs(x, y) are

ẋ = − cos θ sin φ, (11a)

ẏ = sin θ, (11b)

θ̇ = −Uy cos φ + αUx2y cos φ, (11c)

φ̇ = U (−y tan θ sin φ + x)

+αUxy(x tan θ sin φ − y). (11d)
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It can be seen from Eqs. (11) that the equilibrium states and
their linear stability are the same for a square cross section
(refer to Sec. III for A = 1) and a circular cross section [16].
Specifically, since the α terms present in the θ̇ and φ̇ compo-
nents of (11) contribute at an order O(ε3) near the equilibrium
points, their effects are not felt at order O(ε).

For our square channel, we only have the constant of mo-
tion Hg in Eq. (6) [i.e., having implicitly utilised Eq. (3)]. For
ease of comparison with the quantity used by Zöttl and Stark
[16] for a circular cross section, Hc of Eq. (10a), we define
Hs = 1 + 1

2U + Hg � 0, and express the constant of motion
here as

Hs = 1
2U (x2 + y2 − x2y2) + 1 − cos φ cos θ.

Furthermore, the time derivative of the second constant of
motion Lz for the cylindrical channel in Eq. (10b) has the
following form for a square cross section (α = 1):

dLz

dt
= Uxy cos θ cos φ(x2 − y2). (12)

We see that this quantity will not vary significantly when
either x or y (or both) are small or when y ≈ ±x. Thus, for mo-
tion in a square cross section confined near the channel center,
along x or y axis or along diagonals, we expect the dynamics
of the system to be regular (periodic or quasiperiodic) since
the system is close to the cylindrical channel system which
is both Hamiltonian and integrable. The central, vertical, and
horizontal swinging motions shown in Fig. 2 are examples of
this type of motion. Conversely, for general motion that is not
restricted to these above regions such that the particle explores
regions away from the center of the channel cross section,
the system deviates from a Hamiltonian integrable system and
chaotic motion may arise. Tumbling and wandering motions
(see Fig. 2) are examples of this. A comparison of active par-
ticle dynamics between circular and square cross sections for
a typical tumbling motion with the same initial conditions
(x(0), y(0), θ (0), φ(0)) = (0.55, 0.58, π/24, π/24) is shown
in Supplemental Material Video S7 [26].

C. Motion near equilibrium states

Since the equilibrium states of the particle-fluid system are
located at the center of the cross section (x = 0, y = 0) and
the additional nonlinear x2y2 term in the square channel flow
field is small near these equilibrium points, we expect the
motion near the equilibrium states to be similar to that of the
circular cross section [16].

The eigenvectors corresponding to eigenvalues λ1,2 =
±i

√
U for the upstream-oriented particle equilibrium are

v1 = a1

⎡
⎢⎢⎢⎢⎣

1

0

0

−i
√

U

⎤
⎥⎥⎥⎥⎦ + b1

⎡
⎢⎢⎢⎢⎣

0

1

i
√

U

0

⎤
⎥⎥⎥⎥⎦

and

v2 = a2

⎡
⎢⎢⎢⎢⎣

1

0

0

i
√

U

⎤
⎥⎥⎥⎥⎦ + b2

⎡
⎢⎢⎣

0
1

−i
√

U
0

⎤
⎥⎥⎦,

respectively. Here, a1, b1, a2, and b2 are complex constants
with ā1 = a2 and b̄1 = b2, where the overbar denotes the
complex conjugate. For small perturbations around this equi-
librium point, we numerically observe periodic and quasiperi-
odic active particle motion confined near the center of the
channel [e.g., see Fig. 2(a) and Supplemental Material Video
S1]. We further find that the motion decouples in the (x, φ)
and (y, θ ) variables near this equilibrium point and we obtain
the following system for the linearized equations of motion:

θ̈1 + Uθ1 = 0,

ẏ1 = θ1,

φ̈1 + Uφ1 = 0,

ẋ1 = −φ1.

Thus, the evolution of active particle orientations θ and φ

follow simple harmonic motion with oscillating frequency√
U and these oscillating orientations drive the translational

motion of the active particle near this equilibrium point.
Hence, the response to general small perturbations around
this equilibrium point is a superposition of the above two
decoupled oscillatory motions.

The eigenvectors corresponding to eigenvalues λ3,4 =
±√

U for the downstream-oriented equilibrium point are

v3 = a3

⎡
⎢⎢⎣

1
0
0√
U

⎤
⎥⎥⎦ + b3

⎡
⎢⎢⎣

0
1√
U
0

⎤
⎥⎥⎦

and

v4 = a4

⎡
⎢⎢⎢⎢⎣

1

0

0

−√
U

⎤
⎥⎥⎥⎥⎦ + b4

⎡
⎢⎢⎢⎢⎣

0

1

−√
U

0

⎤
⎥⎥⎥⎥⎦,

respectively, with real constants a3, b3, a4, and b4. This equi-
librium is a saddle point with its unstable manifold tangent
to the hyperplane spanned by the two basis vectors defin-
ing v3 while its stable manifold is tangent to the hyperplane
spanned by the two basis vectors defining v4. To understand
the nature of trajectories with small perturbations around this
equilibrium point, we simulated motion with different initial
perturbations. Some typical trajectories starting near this un-
stable equilibrium are shown in Fig. 3 for perturbations in
the directions of the stable and unstable manifolds as well as
a general perturbation. We see that for a perturbation in the
direction of the unstable manifold of the saddle, Fig. 3(a) and
Supplemental Material Video S8, we obtain a cross-shaped
trajectory in the channel cross section that switches aperiod-
ically between the four diagonals. The chaos here appears to
be low-dimensional since the trajectory traces a well-defined
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FIG. 3. Active particle motion for small perturbations near the unstable saddle equilibrium. Different trajectories are shown in
the (z, y) plane and (x, y) plane for small perturbations (a) in the direction of the unstable manifold (x(0), y(0), θ (0), φ(0)) =
(0, 0, 0, π ) + (0.02, 0.02, 0.02

√
U , 0.02

√
U ), (b) in the direction of the stable manifold (x(0), y(0), θ (0), φ(0)) = (0, 0, 0, π ) +

(0.02, 0.02, −0.02
√

U , −0.02
√

U ), and (c) a small general perturbation (x(0), y(0), θ (0), φ(0)) = (0, 0, 0, π ) + (0.01, 0.02, 0.015, −0.005).
The parameter U = 10 was fixed and z(0) = 0. See also Supplemental Material Videos S8–S10 [26] for videos of (a)–(c), respectively.

path on the cross shape with unpredictability only in the se-
lection of the branches it traverses. For a perturbation in the
direction of the stable manifold, Fig. 3(b) and Supplemental
Material Video S9 [26], we obtain a fan-shaped apparently
quasiperiodic trajectory, while for a general perturbation as
shown in Fig. 3(c) and Supplemental Material Video S10 [26],
we obtain a chaotic trajectory with no clear structure. In all
cases, we find that a small perturbation from this unstable
saddle equilibrium leads to wandering-type trajectories that
move away from the equilibrium and explore both the inner
and outer regions of the square cross section.

D. Exploration of the parameter space

We have observed that both the initial conditions and the
system parameters can greatly influence the type of active
particle trajectory that is realized, and have classified these
in Fig. 2. In this section, we explore the effects of the initial
position and orientation, as well as the parameter U on the
active particle motion.

The active particle dynamics are described by the 4D
nonlinear dynamical system in Eqs. (8), which requires four
initial conditions: two position coordinates x(0) and y(0), and
two orientation angles θ (0) and φ(0). To explore the solution
space across the four initial conditions, we fix two of them and
examine the types of active particle trajectories realized in the
initial-condition plane formed by the remaining two.

1. Effect of initial position

We first fix the initial orientation of the active particle
to point upstream, i.e., θ (0) = φ(0) = 0, and explore the

variation in active particle trajectories across different ini-
tial positions (x(0), y(0)). We restrict the domain of initial
positions to x, y ∈ [−0.8, 0.8]. This is done to exclude trajec-
tories that get too close to the wall where interactions of the
active particle with the wall may become important. A plot
depicting the classification of trajectories realized for different
initial positions in the cross section when U = 10 is shown in
Fig. 4(a). We find that for an initial position near the center
of the channel, the motion remains confined near the center
of the channel as indicated by the green region of Fig. 4(a),
and that central swinging motion occurs [see Fig. 2(a)]. An
active particle starting out farther away from the center of the
channel but near an axis remains confined near the same axis
as indicated by the cyan and blue regions of of Fig. 4(a), which
corresponds to vertical and horizontal swinging motions as in
Figs. 2(b) and 2(c). Along the diagonals and/or beyond the
central region, Fig. 4(a) shows a red region corresponding to
wandering trajectories [see Fig. 2(f)]. Near the edges of the
square cross section of Fig. 4(a), we have a purple region
corresponding to tumbling trajectories [as in Fig. 2(e)]. Lastly,
near the corners, Fig. 4(a) shows islands of yellow in the sea
of purple corresponding to off-centered confined motion [as
in Fig. 2(d)].

The above trajectory classification in the initial-condition
space is based on the region occupied by the trajectory in
the cross section and does not necessarily capture information
about the regular (periodic and quasiperiodic) or chaotic na-
ture of trajectories. However, we typically find that trajectories
which are confined near the center of the channel exhibit reg-
ular motion whereas active particles that travel near the edges
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FIG. 4. (a) Classification of active particle trajectories for the
types of trajectories shown in Fig. 2, and (b) largest Lyapunov
exponent (LLE), each in the initial position (x(0), y(0)) plane with
fixed U = 10, θ (0) = 0 and φ(0) = 0. For trajectory classification,
green (•) is central swinging motion, cyan (•) is vertical swinging
motion, blue (•) is horizontal swinging motion, yellow (•) is off-
centered trapping motion, purple (•) is tumbling motion, and red (•)
is wandering motion.

of the cross section show aperiodic motion and hints of chaos.
Furthermore, the trajectories that travel near the edges can
flip direction of motion around the origin between clockwise
and counterclockwise (e.g., see tumbling trajectory in Sup-
plemental Material Videos S5 and S7 [26]). The presence of
chaos in these trajectories can be quantified by calculating the
largest Lyapunov exponent (LLE) of the underlying nonlinear
dynamical system [25,27]. If the LLE is zero, then the active
particle motion is either periodic or quasiperiodic, whereas a
positive LLE indicates chaos (with the degree of sensitivity
to initial conditions given by the magnitude of the LLE). To
numerically calculate the LLE, we used the algorithm given
in Wolf et al. [28]. The magnitude of the LLE in the plane
of initial conditions (x(0), y(0)) is shown in Fig. 4(b) for the
same domain of parameter values as Fig 4(a). We typically
find that particles starting in the central region of the square

cross section have regular motion, whereas particles starting
near the walls of the channel [outer red and purple regions of
Fig. 4(a)] are chaotic. However, we also find anomalous pe-
riodic regions near corners (within the chaotic sea); a particle
starting in these small regions shows regular dynamics. These
anomalous periodic regions correspond to the yellow region
in Fig. 4(a) of off-centered trapping motion.

2. Effect of initial orientation

We now explore how the classification of trajectories in the
(x(0), y(0)) initial-position plane varies with small changes in
the (fixed) initial orientation angles θ (0) and φ(0) from the
upstream orientation.

First, we explore the effect of variations in φ(0) for fixed
θ (0) = 0. For a small positive value of φ(0) = π/24, we find
that the blue and cyan regions shrink marginally from those
shown in Fig. 4(a) (where φ(0) = 0) to those of the top panel
of Fig. 5(a). Further increasing to φ(0) = π/12, we find that
the cyan region corresponding to vertically swinging motion
vanishes as shown in Fig. 5(b). This is because the value of
φ(0) is large enough that, regardless of initial position, the ac-
tive particle cannot remain confined to the vertical strip which
classifies vertical swinging motion. Further increasing φ(0)
to π/6 and π/3 leads to the shrinkage and disappearance,
respectively, of the green region of central swinging motion
[see Figs. 5(c) and 5(d)]. Again, with a large value of φ(0), the
active particle is unable to remain confined near the channel
center. Further, we see that parts of the red region of wander-
ing motion are increasingly replaced by purple tumbling mo-
tion with trajectories largely confined near the channel walls.
In terms of the chaotic nature of the trajectories, the bottom
panels of Figs. 5(a)–5(d) show a progressive vertical stretch-
ing of the regular region as φ(0) increases. However, structure
indicating chaotic motion also persists within this vertical
band of regular motion. The black regions near the corners
of Fig. 5(d) correspond to trajectories that came too close to
the channel walls, i.e., trajectories that went outside the square
domain (x, y) ∈ [−0.95, 0.95] × [−0.95, 0.95]. We note that
although initial nonzero values of φ break symmetry in the x
direction, we do largely see a persistent left-right symmetry
in Fig. 5. This is probably due to fact that only long-time
behavior is captured in the classification of trajectories.

We see a similar trend as θ (0) is increased for fixed φ(0) =
0, but with the blue regions vanishing instead of the cyan
regions, see Figs. 5(e)–5(h). The green region also disappears
for large θ (0). Even reasonably small but nonzero values of
θ (0) cannot give rise to a horizontally swinging motion and
large θ (0) also precludes trajectories confined to the central
region. Again the presence of up-down symmetry for initial
nonzero values of θ is probably due to fact that only long-time
behavior is captured in the classification of trajectories.

We note that the yellow periodic islands present near the
corner of the square cross section in Fig. 4(a) are not seen
in Fig. 5 when one of the orientation angles is nonzero.
Nevertheless, such islands do persist for sufficiently small
nonzero values of both orientation angle.

3. Effect of U

We now examine the variations in active particle dynamics
with respect to the dimensionless parameter U , the ratio of
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FIG. 5. Trajectory classification (top panels) and LLE (bottom panels) in the initial position (x(0), y(0)) plane for fixed U = 10 and
varying initial orientations θ (0) and φ(0). For fixed θ (0) = 0 and (a) φ(0) = π/24, (b) φ(0) = π/12, (c) φ(0) = π/6, and (d) φ(0) = π/3.
For fixed φ(0) = 0 and (e) θ (0) = π/24, (f) θ (0) = π/12, (g) θ (0) = π/6, and (h) θ (0) = π/3. For trajectory classification, green (•) is
central swinging motion, cyan (•) is vertical swinging motion, blue (•) is horizontal swinging motion, purple (•) is tumbling motion, and red
(•) is wandering motion. Black regions in (d) and (h) correspond to trajectories that came too close to the channel walls, i.e., trajectories that
went outside a square of [−0.95, 0.95] × [−0.95, 0.95].

the maximum flow speed to the intrinsic active particle speed.
For U � 1, the active particle intrinsic velocity dominates
the flow field and, hence, the particle will readily encounter
the walls. Moreover, the active particle’s self-generated flow
fields would need to be captured to understand its dynamics.
Since the simple model used in this paper does not capture
these two effects, we do not explore this regime of active
particle motion in a quiescent fluid within a rectangular duct.
For a recent detailed numerical exploration of this regime, see
Radhakrishnan et al. [29].

Figure 6 shows the different types of trajectories (left pan-
els) and LLE (right panels) in the initial position space for
various values of U and fixed initial upstream orientation

θ (0) = 0 and φ(0) = 0. For U � 1, and as shown in Fig. 6(a)
for U = 0.5, we observe regular swinging motion of the ac-
tive particle about the channel center. Moreover, at these low
values of U there is a net upstream migration of the particle,
i.e., against the flow. For U � 1, and as shown in Fig. 6(b) for
U = 2.5, we again observe regular swinging motion but now
U is sufficiently large that the net migration of the particle is
downstream in the direction of the flow. Increasing to U = 5,
Fig. 6(c), the classification of trajectories does not change
qualitatively from that seen at lower values of U , but the plot
of the LLE shows the emergence of chaotic motion for initial
particle positions near the corners of the channel cross section.
Further increasing U to 7.5, Fig. 6(d), we see the emergence of
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FIG. 6. Trajectory classification (left panels) and LLE (right
panels) in the initial position (x(0), y(0)) plane for the types of
trajectories shown in Fig. 2 and different values of U : (a) U = 0.5,
(b) U = 2.5, (c) U = 5, (d) U = 7.5, and (e) U = 15. Initial ori-
entation angles are fixed to θ (0) = 0 and φ(0) = 0. For trajectory
classification, green (•) is central swinging motion, cyan (•) is
vertical swinging motion, blue (•) is horizontal swinging motion,
yellow (•) is off-centered trapping motion, purple (•) is tumbling
motion, and red (•) is wandering motion.

purple regions of tumbling-motion trajectories near the walls
of the channel where we also see an increase in the extent of
chaotic regions. For a large value of U = 15, Fig. 6(e), we see

the appearance of regular trajectories near the corners of the
channel cross section (yellow regions of the trajectory plot).

To summarize, for the parameter values and the range of
U values shown in Fig. 6, we find that as U increases, the
green region corresponding to central swinging motion does
not change significantly while the cyan and blue regions of
vertical and horizontal swinging shrink progressively. Further,
with increasing U , the red region of wandering motion also
shrinks with the appearance of tumbling and off-centered trap-
ping motion near the edges and corners of the cross section.
In terms of the chaotic nature, we see a progressive increase
in chaotic trajectories up to U = 7.5, but further increase in U
leads to the appearance of regions of regular motion near the
corners.

4. Poincaré map and sticky trajectories

Since one constant of motion Hs remains for our 4D dy-
namical system in Eqs. (8), the effective dynamics of the
system take place in 3D. We can further explore the nature of
the system dynamics and transition to chaos by using Poincaré
sections to visualize regular and chaotic regions of the system
on a 2D plot. We construct a Poincaré map by sampling the
active particle trajectory at times tn that correspond to a cross-
ing of the phase-space trajectory with the θ = 0 (equivalently,
ey = 0) hyperplane in the positive direction, i.e., θn = θ (tn) =
0 with θ̇n = θ̇ (tn) > 0. At these times tn, we store the values
φn = φ(tn) and xn = x(tn) and plot them against each other,
giving us a Poincaré map. We repeat this for many active
particle trajectories having different initial conditions but a
common fixed value of the constant of motion Hs, i.e., the
initial conditions satisfy

Hs = 1
2U (x(0)2 + y(0)2 − x2(0)y2(0)) + 1

− cos(φ(0)) cos(θ (0)). (13)

Several such Poincaré maps are shown in Fig. 7 for different
values of the constant of motion Hs. We find that for small
values of Hs, we observe regular behavior with ubiquitous
quasiperiodic trajectories that correspond to closed curves on
the Poincaré map [see Figs. 7(a) and 7(b)]. As Hs is increased,
we observe that, due to nonlinear resonances, some of these
orbits break into a chain of smaller orbits [see Fig. 7(c)].
Further increase in Hs gives rise to chaos as evident by the
apparently random scatter of points in the Poincaré map [see
Figs. 7(d) and 7(e)]. At these large values of Hs, we have a
mixture of order and chaos where small islands of regular
behaviors exist within the chaotic sea. Increase in the value
of Hs can also be interpreted as initial positions going away
from the center of the channel. For example, with fixed initial
upstream orientation θ (0) = φ(0) = 0, Eq. (13) describes a
closed curve:

x(0)2 + y(0)2 − x2(0)y2(0) = 2Hs/U .

These closed curves are the same shape as the level sets of the
flow field u(x, y). Small values of Hs correspond to circlelike
closed curves near the center of the channel while increasing
Hs leads to squarelike closed curves away from the center of
the channel. Since near the center of the channel, the dynamics
of the system are similar to a circular cross section and are
hence integrable, this transition to chaos with increasing Hs
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FIG. 7. Poincaré maps in the (xn, φn) plane for θ (tn) = 0 (θ̇ (tn) > 0) and (a) Hs = 1, (b) Hs = 1.5, (c) Hs = 2, (d) Hs = 2.05, (e) Hs = 2.5,
and (f) Hs = 3. The parameter U = 10 was fixed and many different initial conditions were chosen based on Eq. (13) while keeping Hs fixed.
Cyan (•) is vertical swinging motion, blue (•) is horizontal swinging motion, purple (•) is tumbling motion, and red (•) is wandering motion.

may be understood in terms of the theory of nearly integrable
Hamiltonian systems and KAM theory [30].

When islands of regular behaviors exist within the chaotic
sea of a Poincaré map, sticky trajectories can arise where a
long time is spend in the vicinity of these periodic islands [31].
An example of such a sticky tumbling trajectory is shown in
Fig. 8 and Supplemental Material Video S11 [26]. Figures 8(a)
and 8(b) show the trajectory in different planes while Fig. 8(c)
shows a Poincaré map with the light green colored part in all

three panels representing the sticky behavior. On the Poincaré
map, such trajectories spend a very long time near the bound-
aries of the periodic islands compared to the time spent in a
domain of the chaotic sea of the same phase-space volume.

5. Dynamics in the large U limit

In the limit of large U � 1, Eqs. (8) approaches a singular
limit for the evolution of θ and φ. Hence, to understand this

FIG. 8. Sticky trajectory for an active particle in a square cross section. Particle trajectory in the (a) (z, y) plane and (b) (x, y) plane, as
well as (c) Poincaré map in the (xn, φn) plane for θn = 0 (θ̇n > 0). Purple shows the entire trajectory of the particle while light green shows
a typical sticky region for the trajectory. The parameter U = 10 and initial conditions were chosen such that Hs = 3.5 with x(0) ≈ 0.6861,
y(0) ≈ 0.6582, z(0) = 0, θ (0) = 0, and φ(0) = 0. See also Supplemental Material Video S11 [26] for a video of the trajectory.
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FIG. 9. Active particle dynamics for large U = 50 starting at z(0) = 0 with fixed initial upstream orientation angles θ (0) = 0 and φ(0) = 0.
(a) A typical confined trajectory in the (z, y) (left) and (x, y) (middle) planes, as well as the orientation evolution (right) for initial position
x(0) = 0.6, y(0) = 0.1. (b) Classification of behaviors in the (x(0), y(0)) initial-position plane using the color scheme of Fig. 2(c), (d) Poincaré
maps in the (xn, φn) plane for θn = 0 with θ̇n > 0 for the constants of motion (c) Hs = 1.75 and (d) Hs = 3. These values of the constant
of motion are indicated by black curves in (b). The trajectory in (a) was simulated for t = 100, using the time scaling of Eqs. (8), which
corresponds to t = 100U using the timescaling of Eq. (14). See also Supplemental Material Video S12 [26] for a video of the active particle
trajectory in (a).

regime, we rescale the dimensionless time in Eqs. (8) (with
A = 1) by U to obtain the following system:

ẋ = − 1

U
cos θ sin φ,

ẏ = 1

U
sin θ,

θ̇ = −y cos φ(1 − x2),

φ̇ = −y tan θ sin φ(1 − x2) + x(1 − y2). (14)

This form of the system removes the singular terms and al-
lows efficient numerical solution. A typical classification of
trajectories at a large value of U = 50 along with an example
trajectory and Poincaré maps are shown in Fig. 9. In this
regime of large U , we find that chaos ceases and we have
regular behaviors. A typical regular trajectory that confines
itself to a quadrant of the channel is shown in Fig. 9(a).
Simulating many different initial conditions with fixed ini-
tial upstream orientation θ (0) = φ(0) = 0 gives us the
classification in the initial position plane (x(0), y(0)) as shown
in Fig. 9(b). Compared to Fig. 6, we find that the central
green region still exists while the cyan, blue, and red regions
have almost vanished. Outside the central region, the behavior
is dominated by off-centered trapped trajectories (yellow re-
gion). Two different Poincaré maps at Hs = 1.75 and Hs = 3
are shown in Figs. 9(c) and 9(d), respectively. These typically
show closed loops, indicating quasiperiodic behavior of the

system in this regime. With variation in the initial orientation
angles θ (0) and φ(0) from the upstream equilibrium state,
we find that in the initial-position plane, some yellow regions
transition to purple regions corresponding to regular tumbling
trajectories.

Hence, from Figs. 6 and 9 we see that the active parti-
cle motion is regular for small and large U , whereas chaos
emerges for intermediate U .

E. Active particle transport along the channel

The trajectories shown in Fig. 2 started at z = 0 and the
time series is shown for t = 900 to t = 1000. We see that the
transport of the active particle in the z direction, i.e., axially
along with the flow, can vary significantly depending on the
type of active particle motion realized in the channel cross
section. Active particles that perform swinging motion near
the center of the channel (e.g., green, blue, cyan, and some
red trajectories) will travel farther along the channel compared
to active particles whose motion is confined near the walls of
the channel (e.g., purple trajectories). Figure 10 shows, for
different U values, a contour plot of the z (axial) location at
the end of the simulation (t = 1000) in the (x(0), y(0)) plane
for initially upstream-oriented active particles (starting from
z = 0). For a small value of U = 0.5, we see that the final
axial positions are negative indicating that the active particle’s
intrinsic speed dominates the fluid flow speed resulting in a net
upstream migration of the active particle. For a larger value
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FIG. 10. Axial transport of the active particle along the straight channel based on the initial position in the (x(0), y(0)) plane for various
U and fixed θ (0) = 0 and φ(0) = 0. The color bars indicate the final axial coordinate z of the active particle from an initial axial position of
z(0) = 0 for values of (a) U = 0.5, (b) U = 2.5, (c) U = 5, (d) U = 7.5, (e) U = 10, and (f) U = 15.

of U = 2.5, the fluid speed dominates the particle speed and
we obtain a net downstream migration. Further increase to
U = 5 does not qualitatively change the axial transport profile
near the center of the cross section, however, near the corners,
we see fluctuations in this profile due to the appearance of
chaotic wandering motion in this region [see Fig. 6(c)]. For
even larger values of U , the active particle axial transport is
dominated by the background fluid flow profile. We find a
central plug region corresponding to large axial transport of
the active particle undergoing swinging motion near the center
of the channel where flow speed is large, while near the walls
and corners we observe small axial transport corresponding
to off-centered trapping or tumbling trajectories that stay near
the outer regions of the cross section where the flow speed is
small.

VI. DYNAMICS IN WIDER RECTANGULAR CHANNELS

In this section, we briefly explore the effects of the aspect
ratio A of the rectangular cross-section on the active particle
dynamics. In Figs. 11(a) and 11(b), we plot the trajectory clas-
sification and LLE in the initial-position plane (x(0), y(0)),
while keeping θ (0) = 0, φ(0) = 0, and U = 10 fixed, for two
different rectangular cross sections with A = 2 and A = 4,
respectively. We note that the classification criteria presented
for square channels in Sec. V A has been scaled based on
A in the x direction for rectangular channels. So, for ex-
ample, the classification of central swinging motion (green)
has been modified to confinement in a rectangular box of
domain −0.25A < x < 0.25A and −0.25 < y < 0.25. For

the rectangular cross section with A = 2, we find similar
types of active particle trajectories at similar initial positions
compared to the A = 1 square channel (see Fig. 4) with some
minor differences. Near the center of the channel, we obtain
central swinging motion (green) as well as vertical (cyan) and
horizontal (blue) swinging motion, but there is a horizontal
stretching of these regions due to increasing the width of the
channel. Moreover, the relative frequency of oscillations in the
horizontal and vertical directions near the center of the chan-
nel will be scaled by A as per the eigenvalues in Sec. III A.
Beyond the central region, we find wandering motion (red)
and tumbling motion (purple) similar to the square channel.
We find that the yellow islands, corresponding to confined
trajectories away from the channel center, have diminished in
size compared to the square cross section, and these regions
are more scattered. A typical trajectory in the yellow region
is shown in Fig. 11(c), where the motion is trapped in an
off-centered vertical band compared to the motion confined
near the corner for a square cross section [see Fig. 2(d)].
For the A = 2 channel, we also see the emergence of small
horizontal swinging (blue) regions appearing near the left and
right ends of the horizontal centerline that were not present
for square channels. The LLE also shows a similar structure
with regular trajectories near the central region of the chan-
nel and the dominance of chaos near the channel walls. The
A = 4 rectangular cross section shows similar features to the
A = 2 channel with a few noteworthy differences. The yellow
regions for off-centered trapping motion increase in extent
while the small regions for horizontal swinging present for
the A = 2 channel no longer exist. Moreover, the tumbling
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FIG. 11. (a), (b) Active particle trajectory classification (top) and LLE (bottom) in the initial position plane (x(0), y(0)) for motion in
rectangular channels with (a) A = 2 and (b) A = 4. (c) A typical trajectory of a particle starting in the yellow region with x(0) = 0.75 and
y(0) = 0.55 for the case A = 2. Other parameters are fixed to U = 10, z(0) = 0, θ (0) = 0, and φ(0) = 0. See Supplemental Material Video
S13 [26] for a video of the active particle trajectory in (c).

motion (purple) region penetrates the wandering motion (red)
region near the left and right edges of the cross section. We
also note that our simple flow field approximation in Eq. (7)
will become poor near the left and right edges of the cross
section as A increases, and hence a more accurate flow field
for Poiseuille flow in rectangular channels may be needed
to accurately capture the active particle dynamics in these
regions.

VII. CONCLUSIONS

We have studied in detail, theoretically and numerically,
the motion of a pointlike active particle in a steady unidirec-
tional fluid flow, specifically through a straight channel with
rectangular cross section. We identified a general constant of
motion that enabled the six equations of motion to be reduced
to a 4D nonlinear dynamical system with one constant of mo-
tion. We identified two equilibrium states for this particle-fluid
system located at the center of the rectangular cross section:
(i) an upstream-oriented marginally stable equilibrium where
small perturbations lead to oscillatory motion about this equi-
librium point and (ii) a downstream-oriented unstable saddle
equilibrium. By numerically solving the system, we observed
a variety of active particle trajectories for different values of
the maximum flow speed U and the channel width-to-height
aspect ratio A, as well as different initial particle positions
and orientations. The trajectories were classified based on the
regions they occupy in the channel cross section. Swinging
trajectories, such as central swinging, vertical swinging, and
horizontal swinging, were typical quasiperiodic motions near

the centerlines of the channel, whereas off-centered trapping
motion was the typical form of confined quasiperiodic mo-
tion away from the channel centerlines. Tumbling trajectories
stayed near the walls of the channel while wandering trajecto-
ries visited both the central and the outer regions of the cross
section. By calculating the largest Lyapunov exponents, many
of the tumbling and wandering trajectories were shown to be
chaotic. Poincaré maps with increasing value of the constant
of motion showed the transition to chaotic behavior and the
persistence of small islands of regular behavior in the chaotic
sea. The latter resulted in sticky chaotic tumbling trajectories
due to the chaotic trajectory becoming trapped near a periodic
state for a long time.

We have shown how the active particle motion varies with
the system parameters and initial conditions. We focused
on a square channel cross section (A = 1) and also showed
that qualitatively similar particle trajectories were obtained in
cross sections with larger aspect ratio A. Varying the maxi-
mum flow speed U revealed rich dynamics with nonchaotic
motion at very small and large U and the emergence of chaos
in an intermediate range of U . In this regime of U where
chaos arises, we found that the active particle trajectories are
generally very sensitive to initial conditions with a couple
of robust regimes. The active particle oriented upstream and
starting near the channel center typically undergoes regular
swinging motion that is robust to small variations in the
initial position and orientation. Similarly, the active particle
oriented upstream and starting near the walls of the channel
typically undergoes chaotic tumbling motion, which is again
robust to small variations of the initial conditions. The present
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paper highlights the importance of initial conditions on ac-
tive particle motion. A comparison with careful microfluidic
experiments quantifying the effects of initial conditions on
active particle motion in channel flows would be of great
interest.

The model used in this paper is simple and can be extended
in various ways to more accurately capture the motion of
natural and artificial microswimmers in channel flows. In the
present formalism, the active particle is modeled simply with
a constant self-propulsion whereas natural microswimmers
exhibit more complex locomotion such as run-and-tumble
motion [7]. It would be interesting to explore the dynam-
ics of our particle-fluid system when an intrinsic tumbling
mechanism is added for the active particle so that it reorients
itself at certain times either stochastically or deterministically.
Furthermore, the present model does not capture swimmer-
swimmer interactions and they may become important when
considering the motion and trajectories of multiple active
particles in Poiseuille flow. In addition to swimmer-swimmer
interactions, it would also be useful to explore the effects
of swimmer-wall interactions to (i) understand motion of
active particles in narrow channels and (ii) accurately cap-
ture the active particle trajectories that get very close to the
channel walls. Simulations of microswimmers in 3D rect-
angular confinement with quiescent fluid have demonstrated
that interactions of a microswimmer with channel walls can
significantly influence its trajectory depending on the flow
field generated by the microswimmer i.e., pusher, puller, or
neutral [29]. By considering wall interactions using squirmer
models for the active particle in 2D planar Poiseuille flow,
Zöttl and Stark [16] showed that the conservative nature of
the dynamical system is destroyed. They further showed that,
when this happens, dissipative dynamical features emerge,
such as a stable point attractor and a limit cycle attractor in the
case of the upstream-oriented swinging motion. Choudhary
et al. [20] explored the effects of adding fluid inertia for active
particles in 2D planar Poiseuille flow and reported similar
dynamical features. Our previous work on the dynamics of
passive spheres in 3D channel flows with the presence of
fluid inertia has revealed rich dynamical structure for inertial
particle focusing behaviors [32–34]. In future work, we aim to
use squirmer models of active particles to explore the effects
of inertia, swimmer-wall, and swimmer-swimmer interactions

on the dynamics and focusing of active particles in 3D mi-
crofluidic channel flows.
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APPENDIX A: CALCULATION FOR GENERAL
CONSTANT OF MOTION

For dynamics of the active particle suspended in a unidi-
rectional flow field u(x, y) as given by Eqs. (2), we show that
the following is a constant of motion:

Hg = − 1
2 u(x, y) + ez.

Differentiating the above equation with respect to time, we get

dHg

dt
= ∂Hg

∂x
ẋ + ∂Hg

∂y
ẏ + ∂Hg

∂z
ż + ∂Hg

∂ex
ėx + ∂Hg

∂ey
ėy + ∂Hg

∂ez
ėz.

Calculating the derivatives and using Eqs. (2), we get

dHg

dt
= −1

2

∂u

∂x
ex − 1

2

∂u

∂y
ey + 0 + 0 + 0

+
(

1

2

∂u

∂x
ex + 1

2

∂u

∂y
ey

)
= 0.

Hence, Hg is a constant of motion. If angular variables θ and
φ are used for the particle orientation in place of ex, ey and ez,
then the constant of motion transforms to

Hg = − 1
2 u(x, y) − cos θ cos φ.

APPENDIX B: COMPARISON OF EXACT VERSUS
APPROXIMATE FLOW FIELD FOR POISEUILLE FLOW

IN A SQUARE CROSS SECTION

The dimensionless flow field u(x, y) used in this paper is an
approximation to the following exact flow field for Poiseuille

FIG. 12. Comparison of (a) the flow field u(x, y) as in Eq. (7) used in this paper to approximate Poiseuille flow in a 3D rectangular channel
(here setting A = 1 for a square channel) with (b) the more accurate representation of the flow field ue(x, y) as in Eq. (B1) with n = 100 terms.
The difference ue(x, y) − u(x, y) is shown in (c).
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FIG. 13. Classification of active particle trajectories in the initial
condition (x(0), y(0)) plane using the more accurate flow field in the
square cross section ue(x, y) [as per Eq. (B1) with n = 100 terms].
This compares well with the classification shown in Fig. 4, obtained
using the approximate flow field u(x, y) with A = 1. We note that the
grid resolution here is 50 × 50 compared to the 100 × 100 resolution
in Fig. 4. Other parameters were fixed to θ (0) = 0, φ(0) = 0 and
U = 10.

flow in a straight duct with a square cross section [35]:

ue(x, y) = Ue(1 − y2) + 32Ue

π3

×
∞∑

n=0

(−1)n+1 cosh
(
(2n+1)πx

2

)
cos

(
(2n+1)πy

2

)
(2n + 1)3 cosh

(
(2n + 1)π

2

) .

(B1)

Here Ue = U/ max{ue(x, y)} = U/ue(0, 0), to match the
maximum flow speed of U at the center of the channel. A
comparison of the flow field u and ue for U = 1 is shown
in Fig. 12. We see that the overall qualitative flow field is
captured well by our approximate flow field u and the differ-
ence between the two flow fields is small; at most 6% when
scaled by the maximum flow speed at the center. Further,
we note that the regions in the cross section where the most
significant difference is observed in the flow field are near the
corners of the square. For wider rectangular cross sections,
the approximation becomes poorer with increasing A. For
a 2 × 1 rectangular cross section, the maximum difference
between the two velocity fields is around 15% while for a
4 × 1 rectangular cross section it is around 35%.

Figure 13 shows the different types of active particle tra-
jectories realized for the more accurate flow field ue(x, y) for
Poiseuille flow in a straight channel with square cross section.
Comparing with Fig. 4(a), which used the simpler approxima-
tion of the flow field u(x, y), we find noticeable differences
mainly in the yellow regions. This is to be expected since at
these locations, the difference between the flow fields ue and
u is the largest [see Fig. 12(c)].
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