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Entropy of strongly coupled Yukawa fluids
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The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated
that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate
estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value
of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a
remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid
can be described by a simple linear function. Third, a scaling of the excess entropy with the freezing temperature
is examined, a modified form of the Rosenfeld-Tarazona scaling is put forward, and some consequences are
briefly discussed. Fourth, the location of the Frenkel line on the phase diagram of Yukawa systems is discussed
in terms of the excess entropy and compared with some predictions made in the literature. Fifth, the excess
entropy scaling of the transport coefficients (self-diffusion, viscosity, and thermal conductivity) is reexamined
using the contemporary datasets for the transport properties of Yukawa fluids. The results could be of particular
interest in the context of complex (dusty) plasmas, colloidal suspensions, electrolytes, and other related systems
with soft pairwise interactions.
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I. INTRODUCTION

Entropy is a central concept in thermodynamics and statis-
tical mechanics. In statistical physics it is defined as a measure
of the number of possible microscopic states (microstates) of a
system in thermodynamic equilibrium for given macroscopic
thermodynamic properties [1,2]. This connection between
macroscopic and microscopic behavior is vital for understand-
ing the structural and dynamical properties of gases, liquids,
and solids. While in gases and solids the entropy can be
readily evaluated, that is not the case in liquids. An accu-
rate equation of state is required to evaluate the entropy by
conventional thermodynamic integration. An accurate equa-
tion of state is not always available, and other methods can
sometimes be useful.

The main purpose of this paper is to apply a vibrational
paradigm of atomic dynamics in dense liquids to the strongly
coupled Yukawa fluid. The vibrational picture [3] has been
rather successful in describing certain transport properties of
various simple fluids, such as the Stokes-Einstein relation
between the self-diffusion and viscosity coefficients [4–6], as
well as the thermal conductivity coefficient [7–11]. Within
this paradigm, the solid-like oscillations of atoms around their
temporary equilibrium positions dominate the dynamical pic-
ture. The temporary equilibrium positions of atoms do not
form any regular structure and are not fixed, unlike in solids.
Instead, they are allowed to diffuse, and this is why liquids
can flow. However, this diffusive motion is characterized by
much longer timescales compared to the period of solid-like
oscillations. These long timescales are irrelevant from the
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point of view of the system entropy. Hence, the vibrational
model has been demonstrated to describe relatively well the
excess entropy of inverse-power-law fluids with ∝ r−n re-
pulsive interactions, including the extremely soft Coulomb
(n = 1) case, intermediately soft n = 6 and n = 12 cases, and
the opposite hard-sphere interaction limit (n = ∞) [12]. It is
reasonable to expect that the same method would work when
applied to a Yukawa fluid, and we verify this conjecture below.

The vibrational model is applied to the Yukawa fluid using
the dispersion relations of collective modes from the quasilo-
calized charge approximation (QLCA) [13–15] combined
with a simple model of the radial distribution function [16].
The results are compared with those from extensive molecular
dynamics (MD) simulation in Refs. [17,18], and good agree-
ment is documented. Application of the Rosenfeld-Tarazona
scaling to estimate the excess entropy is discussed, and a
modified expression is put forward. This modified expression
is used to discuss the location of the Frenkel line on the phase
diagram of Yukawa fluids in terms of the excess entropy.
The excess entropy scaling of transport coefficients proposed
by Rosenfeld [19] is a very important corresponding state
principle for the transport properties of fluids [20]. We use this
opportunity to demonstrate how it applies to Yukawa fluids
using contemporary transport data from extensive numerical
simulations. A complete and intrinsically consistent picture
of how the phase state, dynamical, and transport properties
of Yukawa fluids are interrelated via the excess entropy thus
emerges.

II. SCREENED COULOMB (YUKAWA) FLUID

The pairwise screened Coulomb repulsive potential (also
referred to as the Debye-Hückel or Yukawa potential) is
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usually used as a first approximation to describe interac-
tions between charged particles in neutralizing media, such as
plasmas, complex (dusty) plasmas, electrolytes, and colloidal
suspensions [21–27]. The potential is

φ(r) = Q2

r
exp

(
− r

λ

)
, (1)

where Q is the electrical charge and λ is the screening length.
The properties of Yukawa systems are described by two
dimensionless parameters. They are the Coulomb coupling
parameter � = Q2/aT and the screening parameter κ = a/λ,
where T is the temperature in energy units, a = (4πρ/3)−1/3

is the Wigner-Seitz radius, and ρ is the number density. The
screening parameter κ determines the softness of the Yukawa
potential. It varies from the extremely soft and long-range
Coulomb potential ∝ 1/r at κ → 0, which corresponds to the
one-component plasma limit, to the hard-sphere-like interac-
tion limit at κ → ∞. In the context of complex plasmas and
colloidal suspensions the relatively “soft” regime, κ ∼ O(1),
is of particular interest. Most of the attention in the literature
has focused on this regime, and we follow that tradition here.

The properties of the phase diagram of Yukawa systems
are relatively well understood. Since the Yukawa potential
is purely repulsive, there are no gas-liquid phase transition,
gas-liquid coexistence, or critical and gas-liquid-solid triple
points. There is a fluid-solid phase transition at sufficiently
strong coupling. The location of the freezing line �fr (κ ) for
κ < 5 was tabulated in Ref. [18], and simple practical fits are
available [28,29]. There is also a crossover between gas-like
and liquid-like dynamics, known as Frenkel line on the phase
diagram [30–33]. The Frenkel line appears to be parallel to
the freezing line and is located at �/�fr � 0.05, as identified
recently [34,35]. We will elaborate on this topic below. At a
very high coupling, the possibility of the glass transition has
been predicted. The traditional mode coupling theory results
from Refs. [36,37] show that the glass transition line is also
parallel to the freezing line and is predicted at �/�fr � 2 − 3,
depending on the chosen closure to the integral equation the-
ory used to obtain the structural information.

The transport phenomena and thermodynamics of three-
dimensional Yukawa fluids have been investigated in dozens
of publications; see, e.g., Ref. [3] for a recent overview. The
main reference sources for this paper are Refs. [17,18] with re-
gard to the fluid-solid phase transition and thermodynamics of
Yukawa fluids. Regarding the transport coefficients discussed
later in the context of the excess entropy scaling, for the self-
diffusion coefficient we use numerical data from Ref. [38], for
the shear viscosity coefficient we use data from Refs. [39,40],
and for the thermal conductivity coefficient we use data from
Refs. [41,42]. Collective mode properties are derived from
the quasicrystalline approximation [13], which is more well
known as the QLCA in the plasma-related context [14,15,43].

Dealing with thermodynamic quantities, we work only
with their “excess” components, which comprise the ac-
tual quantity minus the ideal gas contribution at the same
temperature and density [44]. Additionally, we work with
dimensionless units. In particular, the reduced energy is u =
U/NT , the reduced entropy is s = S/NkB, and cV = CV/NkB

is the specific heat at constant volume.

To conclude this section we briefly discuss another
important aspect related to excess entropy and Yukawa flu-
ids. Excess entropy plays a central role in the theory of
“isomorphs” [45,46]. Isomorphs are defined as lines in a
thermodynamic phase diagram along which structure and
dynamics in properly reduced units are invariant to a good
approximation [46]. Constancy of excess entropy often serves
as an identification of isomorphs. It can be rigorously proven
that systems that have strong correlations between the equi-
librium virial and potential energy fluctuations exhibit good
isomorphs in their phase diagrams [45–47]. Such systems are
usually referred to as “Roskilde-simple” or just “R-simple”
systems [47]. It has been demonstrated that the Yukawa sys-
tem has rather strong correlations between the virial and
potential energies and thus belongs to the class of R-simple
systems [48,49]. Therefore, the excess entropy plays a partic-
ularly important role in Yukawa fluids.

III. VIBRATIONAL MODEL OF THE EXCESS ENTROPY
AT WORK

Within the vibrational model, the reduced excess entropy
of a liquid is obtained as an appropriate averaging over the
frequencies of normal modes [12]:

sex = 3

2
− 3

2

〈
ln

m�2ω2

2πT

〉
, (2)

where m is the mass, � = ρ−1/3 is the structure independent
mean interparticle separation, and ω is the vibrational fre-
quency. Although this resembles an expression for the excess
entropy of a crystalline solid, there is an important differ-
ence. The reduced liquid excess entropy contains an additional
+1.0 term compared to the solid entropy, which is sometimes
referred to as “communal entropy” [50]. In the vibrational
model, this term naturally occurs from the assumption of
single-cell occupancy; see Ref. [12] for further detail.

The second term in Eq. (2) can be rewritten as〈
ln

m�2ω2

2πT

〉
=

〈
ln

ω2

ω2
p

〉
+ ln � + ln

2

(4π/3)1/3
, (3)

where ωp =
√

4πQ2ρ/m is the plasma frequency. Following
the standard practice, we express averaging over frequencies
as an integral over the wave numbers [1],〈

ln
ω2

ω2
p

〉
= 2

9π

∫ qmax

0
q2dq

(
ln

ω2
l

ω2
p

+ 2 ln
ω2

t

ω2
p

)
. (4)

Here q = ka is the reduced wave number, and ωl,t (q) are the
dispersion relations of the longitudinal and transverse modes,
respectively. It is assumed that dense liquids support one lon-
gitudinal (compressional) and two transverse (shear) modes.
The cutoff wave number qmax = (9π/2)1/3 � 2.418 ensures
that the identity 〈X 〉 = X is satisfied, where X is any quantity
that does not depend on the wave number.

We perform averaging using the dispersion relations de-
rived within the framework of the QLCA model. Moreover,
since the long-wavelength range of the dispersion relations
is mostly involved (due to the cutoff), it is practical to em-
ploy the simplified version of the QLCA in which the radial
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FIG. 1. Negative reduced excess entropy of the Yukawa fluid as a function of the reduced coupling parameter �/�fr . The results for four
screening parameters are presented: (a) κ = 1.0, (b) κ = 2.0, (c) κ = 3.0, and (d) κ = 4.0. The symbols correspond to the calculation using
the vibrational model reported here. The solid curves are plotted using the results from MD simulations in Refs. [17,18] (see the Appendix for
details).

distribution function (RDF) is modeled with a simple step
function (excluded volume approximation). This results in
simple analytical expressions which demonstrate high ac-
curacy at long wavelengths [16,51,52]. These dispersion
relations are

ω2
l

ω2
p

= q2

�
+ e−Rκ

[
(1 + Rκ )

(
1

3
− 2 cos Rq

R2q2
+ 2 sin Rq

R3q3

)

− κ2

κ2 + q2

(
cos Rq + κ

q
sin Rq

)]
, (5)

ω2
t

ω2
p

= q2

3�
+ e−Rκ (1 + Rκ )

(
1

3
+ cos Rq

R2q2
− sin Rq

R3q3

)
. (6)

Here R is the excluded volume radius expressed in units
of a. The excluded volume radius is chosen in such a way
that the model RDF g(r) = θ (r − aR) yields accurate results
via energy or pressure equations [16]. The simple practical
expression proposed in Ref. [51] is

R(κ ) � 1 + 1

κ
ln

[
3 cosh(κ )

κ2
− 3 sinh(κ )

κ3

]
. (7)

Each of Eqs. (5) and (6) contains two terms. The first is
the kinetic contribution. The second is the potential energy
contribution, associated with the interaction between the parti-
cles. In the strongly coupled regime the potential contribution
dominates, and kinetic terms are often omitted. We keep
both contributions, which provides slightly better accuracy in
estimating the excess entropy.

Substituting Eqs. (5) and (6) in formula (4) and performing
a numerical integration, we obtain an estimation of the excess
entropy within the vibrational model. The results of our the-
oretical calculation along with a comparison with numerical
results is presented in Fig. 1. The agreement is remarkable,
especially taking into account the simplicity of the model and
the absence of any adjustable parameters.

It should be pointed out that the present approach neglects
the so-called q-gap—the zero-frequency portion of the disper-
sion relation at low q also known as the propagation gap in the
dispersion relation of the transverse collective mode [44,53–
62]. Given the good agreement between the present theory and
the actual results for the excess entropy, there does not seem
to be a need to further complicate the model by taking the q
gap into consideration. This is a major difference from the
so-called phonon theory of liquid thermodynamics [58,63],
where the q gap and the disappearance of the transverse modes
when approaching the gaseous state play a major role. On the
other hand, the vibrational model discussed here focuses on
dense liquid states, in which the vibrational motion dominates,
transverse modes are present, and the q gap is relatively nar-
row. The limits of the applicability of the vibrational model
are discussed later in this paper.

Given the fundamental significance of the excess entropy
in R-simple fluids such as Yukawa fluids, it will be very
important in the future to obtain accurate MD or Monte Carlo
(MC) simulation data for the excess entropy. The calculations
based on the equation of state do not suffice, given the thermo-
dynamic integration of the excess free energy that introduces
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FIG. 2. The coupling parameter (left axis) and the excess entropy
(right axis) at freezing of the Yukawa fluid as a function of the
screening parameter κ . The solid curves are plotted using the MD
results of Ref. [18]. The squares are excess entropies evaluated from
the vibrational model. The dashed line is a linear fit of the data points
from Ref. [18].

uncontrolled errors. Such indirect evaluation is possible based
on the fundamental thermodynamic Euler equation combined
with separate extractions of the excess internal energy, the
excess pressure from the virial equation [64], and the excess
chemical potential via the Widom insertion method [65,66].
Note that isomorph theory allows the exact tracking of isen-
tropic lines via numerical simulations but does not allow the
calculation of the excess entropy value along these lines. Nev-
ertheless, it can be employed for rigorous cross-checking.

IV. EXCESS ENTROPY AT FREEZING

The excess entropy at freezing is a quasiuniversal quan-
tity for many simple fluids such as the inverse-power-law
fluid [67], Lennard-Jones fluid [68,69], and the Yukawa fluid
considered here (see Fig. 1). In all cases sex � −4 applies (a
somewhat smaller value for Yukawa fluids was reported in
Ref. [70]; the reason for this deviation is unclear). Let us look
in more detail at whether any systematic trend is present.

The coupling parameter and the excess entropy depen-
dence on κ at freezing of the Yukawa fluid are shown in Fig. 2.
Note that the excess entropy at freezing calculated with the
help of the vibrational model is in excellent agreement with
accurate results from numerical simulations [18]. While the
freezing coupling parameter varies by more than 20 times as
κ increases from 0 to 4, the excess entropy varies only very
weakly, systematically increasing with κ . This increase can
be very well described by the linear function

sfr
ex � −4.109 + 0.096κ, (8)

which is shown in Fig. 2 by the dashed line. This fit applies
for κ � 4.

There is a simple instructive explanation for why a qua-
siuniversal value sex � −4 should be expected at the freezing
point. Consider Eq. (2) for the excess entropy within the vibra-
tional model. Assuming for simplicity that all atoms vibrate
with the same frequency (this is the Einstein approximation in
solid state physics), we get

sex � 3

2
− 3

2
ln

m�2�2
E

2πT
, (9)

where �E is the Einstein frequency. The average vibrational
amplitude of an atom around its equilibrium position in a solid
phase can be estimated within the framework of the Einstein
model via

1
2 m�2

E〈δr2〉 = 3
2 T, (10)

which just reflects the energy equipartition. The Einstein fre-
quency in this harmonic approximation is thus related to the
average vibrational amplitude as

�2
E = 3T

m〈δr2〉 . (11)

We can now estimate the Einstein frequency invoking Linde-
mann’s melting criterion arguments. The famous Lindemann
criterion [71] states that a three-dimensional (3D) solid melts
when the square root of the particle mean-square displacement
from the equilibrium position reaches a threshold value, which
is roughly ∼0.1 of the interparticle distance. The Einstein
frequency does not change much upon the fluid-solid phase
transition. This is a quite general statement, but for Yukawa
systems (dusty plasma) it has been carefully verified exper-
imentally [72] and theoretically [73] [although those works
refer to two-dimensional (2D) systems, the situation in 3D
geometry is fully analogous]. Substituting the Einstein fre-
quency into Eq. (9), we get

sex � 3

2
− 3

2
ln

(
3

2π

�2

〈δr2〉
)

� −4.3, (12)

where it is assumed that �2/〈δr2〉 � 100 at melting. This
rough estimate is in very good agreement with the actual
results presented in Fig. 2. Our simple arguments are not
limited to the Yukawa fluid and apply equally well to other
simple fluids [74], thus explaining quasiuniversal values of the
excess entropy at freezing.

V. MODIFIED ROSENFELD-TARAZONA SCALING

Rosenfeld and Tarazona (RT) proposed a simple mathe-
matical expression for the freezing temperature scaling of the
thermal component of the excess internal energy of simple flu-
ids [75]. Their derivation, based on the fundamental-measure
free energy functional for hard spheres and thermodynamic
perturbation theory, yields a quasiuniversal high density
expansion, featuring a fluid Madelung energy with a ther-
mal correction ∝ T 3/5. In reduced units their result can be
presented as

uex = ust + uth � Mfl� + δ

(
�

�fr

)2/5

, (13)

where ust is the static component of the excess energy, uth is
the thermal component, Mfl is the analog of the Madelung
energy for the fluid state, and δ is a numerical coefficient.
Rosenfeld further demonstrated that the numerical coefficient
is also quasiuniversal for different simple fluids and that the
thermal correction can be represented as [67]

uth � 3.0

(
�

�fr

)2/5

. (14)
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FIG. 3. The ratio sex/sfr
ex as a function of the reduced coupling

strength �/�fr . The color curves correspond to the results of a MD
simulation from Ref. [18]. The dashed curve is the fit using Eq. (18).
The two dotted curves corresponding to the exponents 0.4 and 0.6
are plotted for comparison.

This RT scaling, sometimes with minor modifications, has
been successfully used to develop simple practical methods to
calculate thermodynamic functions of Yukawa fluids as well
as some related properties [76–81]. The thermal component of
the excess energy uth gives direct access to the excess entropy
by virtue of

�
∂sex

∂�
= −uth + �

∂uth

∂�
. (15)

Combining Eq. (14) with (15) and integrating, Rosenfeld
obtained [67]

sex � sfr
ex − 9

2

[(
�

�fr

)2/5

− 1

]
, (16)

where sfr
ex is the excess entropy at the freezing point. Equa-

tion (16) delivers the correct value of sex at � = �fr but does
not generally reduce to sex = 0 at � = 0 as desired. As we
discussed in relation to Fig. 2, the excess entropy at freezing
of the Yukawa fluid is almost invariant, sfr

ex � −4. This means
we will not make a big mistake by substituting the numer-
ical coefficient − 9

2 by sfr
ex in Eq. (16). This modification of

Eq. (16) provides us with a reasonable interpolation between
the weakly coupled and strongly coupled limits:

sex � sfr
ex

(
�

�fr

)2/5

. (17)

Our important observation is that Eq. (17) is not the best
option to describe the actual dependence of the excess entropy
on the reduced coupling strength. This is illustrated in Fig. 3.
There the five colored curves correspond to the excess entropy
calculated using the fits of excess energy provided in Ref. [18]
for fluids with κ = 0 (one-component plasma limit), κ = 1,
κ = 2, κ = 3, and κ = 4. The first important observation is
that the curves almost overlap with each other, thereby con-
firming the universal character of the dependence of sex/sfr

ex
on �/�fr. The second observation is that a simple fit of the
form

sex � sfr
ex

(
�

�fr

)1/2

(18)

excellently describes this universal dependence. We plot two
additional dotted curves corresponding to the dependence
sex = sfr

ex(�/�fr )γ for γ = 0.4 (the original RT scaling) and
γ = 0.6. They highlight the accuracy of the exponent 1/2 in
Eq. (18).

What is essentially proposed is to use the scaling of sex

with the freezing temperature instead of uth in the original
formulation of the RT scaling. This simplifies some thermo-
dynamic derivations. For instance, for the excess specific heat
at constant volume we get

cex
V = −�

∂sex

∂�
= −1

2
sfr

ex

(
�

�fr

)1/2

. (19)

For the thermal component of excess energy we get, in this
approach,

uth = (
ufr

th + sfr
ex

)( �

�fr

)
− sfr

ex

(
�

�fr

)1/2

. (20)

This expression can be further simplified by taking into ac-
count sfr

ex � −4 and ufr
th � 3.

VI. FRENKEL LINE ON THE PHASE DIAGRAM

The existence and location of the Frenkel line, which
marks the crossover between gas-like and liquid-like dynam-
ics, are of considerable current interest (see, e.g., Refs. [3,30–
33,82,83] and references therein). Various indicators of the
crossover have been proposed over the years. Huang et al.
performed extensive MD simulations of 3D and 2D Yukawa
fluids and applied several diagnostics tools to locate the dy-
namical crossover [34]. They demonstrated that the specific
heat at constant volume cV reaches the threshold value, os-
cillations in the velocity autocorrelation function emerge,
the local atomic connectivity and the shear relaxation times
become equal to the inverse Einstein frequency, and the
shear viscosity and the thermal conductivity coefficients have
minima, all at the same relative coupling strength �/�fr �
0.05. They also found that at the crossover the transverse
(shear) sound velocity reaches a quasiuniversal value of ct �√

2T/m, which was then explained in Ref. [35].
We believe that one of the most convenient ways to distin-

guish between different dynamical regimes in simple fluids
is by means of the excess entropy. A one-dimensional di-
agram of dynamical regimes sketched in Ref. [3] features
three distinct regimes. For −1 � sex � 0 the system is in
a gas-like state, and the gas-like to liquid-like dynamical
crossover occurs at around sex = −1. The region where −2 �
sex � −1 corresponds to the transitional regime where liquid-
like properties start to prevail. For sex � −2 the vibrational
paradigm of atomic dynamics applies. This corresponds to the
dense fluid regime, and this is where the vibrational model
of transport coefficients and of excess entropy operates. The
vibrational model is applicable up to the crystallization point,
which roughly occurs at sex � −4, as discussed above.

Adopting the value �/�fr � 0.05 and using the scal-
ing (18) with sfr

ex � −4, we get sex � −0.89 at the location of
the gas-like to liquid-like dynamical crossover in the Yukawa
fluid. This is remarkably close to the value sex � −0.9 ± 0.1
derived from the careful analysis of the Stokes-Einstein
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FIG. 4. Reduced self-diffusion coefficient of the Yukawa fluid as
a function of the negative excess entropy. Symbols correspond to the
numerical results from Ref. [38]. The dashed line is an exponential
fit of Eq. (22).

relation in several simple fluids [4,33]. Using the scaling (19),
we also estimate cex

V � 0.45 at the crossover, which is close to
the threshold value cex

V � 0.5 [34].

VII. EXCESS ENTROPY SCALING
OF TRANSPORT COEFFICIENTS

In 1977 Rosenfeld proposed a relation between the
transport coefficients and excess entropy of simple fluid
systems [19]. In particular, he demonstrated that properly
reduced diffusion and shear viscosity coefficients of several
simple model fluids (hard-sphere, soft-sphere, one-component
plasma, and Lennard-Jones fluids) are approximately ex-
ponential functions of the reduced excess entropy sex. A
somewhat different variant of the entropy scaling of atomic
diffusion in condensed matter was independently proposed
by Dzugutov [84]. Later, Rosenfeld successfully applied his
ideas of excess entropy scaling to the transport coefficients
of Yukawa fluids [67,85]. At that time only a rather limited
amount of transport data related to Yukawa fluids was avail-
able. Many more numerical datasets on transport properties
have been published in recent years. Taking into account the
important role the Rosenfeld’s excess entropy scaling plays in
condensed matter nowadays [20], it makes sense to revisit its
application to strongly coupled Yukawa fluids using modern
transport data.

The presented transport coefficients are normalized using
the system-independent normalization adopted by Rosenfeld
in his original work on the excess entropy scaling [19,86]:

DR = D
ρ1/3

vT
, ηR = η

ρ−2/3

mvT
, λR = λ

ρ−2/3

vT
, (21)

where vT = √
T/m is the thermal velocity.

Figure 4 presents results corresponding to the self-
diffusion coefficient DR of the Yukawa fluid. The symbols are
the numerical simulation results from Ref. [38]. They nicely
collapse to a quasiuniversal master curve. In the strongly cou-
pled regime, the self-diffusion coefficient can be reasonably
well described by the exponential function

DR � 1.1 exp(0.9sex). (22)
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-s
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FIG. 5. Reduced shear viscosity coefficient of the Yukawa fluid
as a function of the negative excess entropy. Symbols correspond
to the numerical results from Refs. [39,40]. The dashed line is an
exponential fit of Eq. (23).

Note that the onset of validity of this fit, sex � −1, corre-
sponds to the crossover between the gas-like and liquid-like
dynamics (Frenkel line).

The shear viscosity ηR data are summarized in Fig. 5.
The symbols correspond to the numerical results from
Refs. [39,40]. Similar to the case of self-diffusion, they nicely
collapse to a quasiuniversal curve. In the strongly coupled
regime, the reduced shear viscosity coefficient can be reason-
ably well fitted by the exponential function

ηR � 0.13 exp(−0.9sex). (23)

By construction, Eqs. (22) and (23) satisfy the Stokes-Einstein
relation without the hydrodynamic diameter [87],

DRηR � 0.14, (24)

as they should [4,88]. The onset of this exponential de-
pendence is again at the gas-like to liquid-like dynamical
crossover, at sex � −1. This is roughly where the minimum
in ηR is reached [89].

Note that substituting an approximate scaling
sex � −4(�/�fr )1/2 into Eq. (23), we get ηR �
0.13 exp[3.6(�/�fr )1/2]. This essentially coincides with
an empirical fit for the reduced viscosity coefficient of the
strongly coupled Yukawa fluid proposed in Ref. [90] based
on the ideas from Ref. [91]. Now it becomes evident that this
empirical fit is, in fact, consistent with Rosenfeld’s version of
excess entropy scaling.

The thermal conductivity λR data are summarized in
Fig. 6. The symbols correspond to the numerical results from
Refs. [41,42]. In this case the collapse of the data points is not
as impressive as for the diffusion and viscosity coefficients.
The reason is unclear at this point. In other fluids, such as
Lennard-Jones fluids, the quality of the collapse is apparently
better [92] (if near-critical effects are not considered). More
data on the thermal conductivity coefficient of Yukawa fluids
would be most welcome and would help us to understand
the quality of the excess entropy scaling in this case. The
dashed curve in Fig. 6 corresponds to the estimation using
the vibrational model of heat transfer [9,10] assuming sex �
−4(�/�fr )1/2. The agreement with the numerical results is
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FIG. 6. Reduced thermal conductivity coefficient of the Yukawa
fluid as a function of the negative excess entropy. Symbols corre-
spond to the numerical results from Refs. [41,42]. The dashed line
corresponds to the vibrational model of heat transfer, Eq. (13) from
Ref. [10], under the assumption sex � −4(�/�fr )1/2.

fair. The minimum in λR is reached relatively close to sex �
−1, where the gas-like to liquid-like dynamical crossover
takes place.

VIII. CONCLUSION

The most important results of this study can be formulated
as follows.

The vibrational model of atomic dynamics in dense fluids
appears to be quite successful at describing the excess entropy
of screened Coulomb (Yukawa) fluids. Without any adjustable
parameters the model allows us to estimate the excess entropy
with relatively high accuracy. The model provides a direct link
between the collective properties and thermodynamics and as
such contributes to better understanding of the liquid state.

The excess entropy at freezing of Yukawa fluids is almost
constant, sex � −4. This property apparently applies to many
other simple fluids, and there is a solid explanation for why
this should be approximately so. A weak dependence on the
screening parameter is, nevertheless, still present and can be
accounted for by a simple linear function.

A practical scaling of the excess entropy with the freez-
ing temperature was put forward and can be considered a
modification of the Rosenfeld-Tarazona scaling. It was ob-
served that for Yukawa fluids, the excess entropy scales as
sex � sfr

ex(�/�fr )1/2, instead of the original RT exponent equal
to 2/5. The combination of the weak linear dependence of sfr

ex
on κ with the modified Rosenfeld-Tarazona scaling represents
a simple practical tool to estimate the excess entropy across
the entire phase diagram of Yukawa fluids.

The location of the gas-like to liquid-like dynamical
crossover in Yukawa fluids was discussed. The excess entropy
criterion sex � −1 agrees well with several other measures
proposed in the literature.

Excess entropy scaling of transport coefficients works
rather well for the self-diffusion and shear viscosity coef-
ficients. Approximate formulas based on modern transport

datasets were suggested. The Stokes-Einstein relation without
a hydrodynamic radius between the self-diffusion and shear
viscosity coefficients is satisfied at strong coupling, as ex-
pected. The scaling of the thermal conductivity coefficient
with excess entropy is not as impressive. More data are needed
to resolve this issue, and this might be a reasonable suggestion
for future simulations.

The ideas presented in this work can be straightforwardly
extended to bi-Yukawa systems (relevant for complex plas-
mas) and to any multi-Yukawa system, at least when all
interaction terms are purely repulsive. This is indicative of the
generality of the results. In fact, the RT decomposition and
scaling were already utilized for the construction of a very
accurate bi-Yukawa equation of state for the excess internal
energy [93].

Overall, the present results provide a systematic picture of
the useful interrelations between the properties of collective
modes, thermodynamics, and transport in simple fluids with
soft pairwise repulsive interactions. They could be of partic-
ular interest in the context of complex (dusty) plasma, col-
loidal suspensions, electrolytes, and other related soft matter
systems.

The data that support the findings of this study are available
from the author upon a reasonable request.

The author has no conflicts of interest to disclose.

APPENDIX: REFERENCE DATA
FOR THE EXCESS ENTROPY

In Ref. [18] the excess entropy data are not directly avail-
able. What is presented is the equilibrium excess internal
energy at � � 1, including the interaction with the neutral-
izing background, in the form of fitting expressions:

uex(κ, �) = a(κ )� + b(κ )�1/3 + c(κ ) + d (κ )�−1/3. (A1)

The coefficients a, b, c, and d are tabulated for several values
of κ in the range 1.2 � κ � 5 in Table VIII of Ref. [18].
The regime κ � 1.0 is treated separately in Ref. [17]. From
the excess energy we can calculate the excess Helmholtz free
energy by means of the integration

fex(κ, �) =
∫ �

1
uex(κ, �′)

d�′

�′ + f1(κ ), (A2)

where

f1(κ ) =
∫ 1

0
uex(κ, �′)

d�′

�′ (A3)

is obtained using the actual dependence of uex(κ, �) on � in
the weakly coupled regime � � 1. The numerical values of
f1(κ ) are listed in Table VII of Ref. [18] for 0.0 � κ � 5.0.
The reduced excess entropy is then obtained from

sex(κ, �) = uex(κ, �) − fex(κ, �). (A4)
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