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Ab initio uncertainty quantification in scattering analysis of microscopy
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Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a
loss function between a model and observed statistics. In scattering-based analysis, it is common to work
in the reciprocal space. Researchers often employ their domain expertise to select a specific range of wave
vectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that
defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty
for parameter estimation, termed the ab initio uncertainty quantification (AIUQ). As an illustrative example,
we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information
through minimizing a loss function for the squared differences of the Fourier-transformed intensities, at a selected
range of wave vectors. We first show that the conventional way of estimation in DDM is equivalent to fitting
a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we
derive the maximum marginal likelihood estimator, which optimally weighs the information at all wave vectors,
therefore eliminating the need to select the range of wave vectors. Furthermore, we substantially reduce the
computational cost of computing the likelihood function without approximation, by utilizing the generalized
Schur algorithm for Toeplitz covariances. Simulated studies of a wide range of dynamical systems validate that
the AIUQ method improves estimation accuracy and enables model selection with automated analysis. The
utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid,
pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a
sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning
anisotropic diffusive behavior of colloids in a liquid crystal. These studies demonstrate that the new approach
does not require manually selecting the wave vector range and enables automated analysis.
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I. INTRODUCTION

Physical experiments play a crucial role in driving the
advancement of basic science and technology. However, in re-
cent years, the associated expenses and the laborious nature of
data processing and analysis have also increased dramatically,
posing obstacles to progress [1]. One of the core challenges
in this context is parameter estimation from data, convention-
ally performed by minimizing a loss function that quantifies
the difference between the modeled and observed statistics.
Notably, the estimation can depend critically on the choice
of both the statistics and loss function applied to the fit,
especially for spatiotemporally correlated measurements. In
the scattering analysis of dynamics, for instance, the range of
wave vectors in the reciprocal space sometimes needs to be
chosen in a case-by-case manner [2–8], which prohibits its
use in high-throughput experiments.

In this work, we first introduce a new paradigm that defines
a probabilistic generative model from the beginning of data
processing. Then we propagate the uncertainty throughout
the analysis by integrating out the random quantities, to de-
rive an optimal statistical estimator, such as the maximum
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marginal likelihood estimator, and subsequently implement it
in fast algorithms. Through the scattering analysis, we illus-
trate that the new estimator automatically weighs information
from data at different bases, such as different wave vectors in
Fourier-based analysis, thus lifting the barriers for selecting
the wave-vector range.

We apply our automated and scalable analysis to video
microscopy, one of the most ubiquitous tools to access the
microscopic realm, including cells, bacteria, and colloids.
Contemporary video microscopy offers not only visual insight
but also versatility and power, supporting multiplexing imag-
ing and capturing time sequences of dynamical processes.
Approaches to process video microscopy can be broadly
defined in two classes: particle tracking and basis decom-
position tools. Particle tracking tools start with separating
particle intensity profiles from the background for various
techniques including fluorescence microscopy [9], total in-
ternal reflection fluorescence microscopy [10], and dark field
microscopy [11,12]. Once the particle profiles have been iden-
tified in individual frames, the trajectories of particles between
consecutive time frames are linked using multiple-particle
tracking (MPT) algorithms, such as the Crocker-Grier Algo-
rithm [13], also available in MATLAB [14] and Python [15].
ImageJ [16] and Trackmate [17] have been extensively used
for analyzing biophysical and cellular processes. Machine
learning tools have also been developed for static cellular

2470-0045/2024/110(3)/034601(22) 034601-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3959-8965
https://orcid.org/0000-0002-1358-0687
https://orcid.org/0000-0002-9845-9180
https://orcid.org/0000-0002-9627-8722
https://ror.org/02t274463
https://ror.org/03v76x132
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.034601&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1103/PhysRevE.110.034601


GU, HE, LIU, AND LUO PHYSICAL REVIEW E 110, 034601 (2024)

images, such as the cell profiling tools (e.g., CellProfiler
[18]) and segmentation tools (e.g., CellPose [19]). While
there are well-established frameworks that explain static and
dynamic errors, such as those proposed by [20,21], MPT
algorithms still depend on several user-specified parame-
ters for localization and selection, e.g., the search radius
for linking particle trajectories. As a result, particle-based
tools can yield unsatisfactory results owing to factors such
as irregular shapes, optically dense environments, fluctua-
tions in the size, shape, and fluorescent intensity of moving
objects.

However, basis decomposition tools reconstruct mi-
croscopy images through basis functions. A class of basis
decomposition methods termed digital Fourier microscopy
(DFM) performs temporal analysis of the Fourier-transformed
microscopy image sequences to extract process dynamics
[22]. This approach originates from scattering, which collects
signals in the far field and computes the ensemble averages
over many scatterers. It has been shown that near-field mi-
croscopy images encode the information on the correlation
properties of dynamical processes analogous to scattering
[23,24]. Among them, a representative method is differential
dynamic microscopy, which was introduced in Refs. [23,24].
These seminal works innovatively treat each pixel in the
Fourier space transformed from a microscopy video as probes
in dynamic light scattering [25], as such, they can extract
dynamical information of the system by correlating photon
counts at distinct time points. In DDM, the squared difference
of Fourier-transformed intensity at any pairs of frames, often
referred to as the image structure function, is related to the
intermediate scattering function [9]. DDM analysis of video
microscopy does not require localizing the particles and link-
ing their trajectory, provides access to high-quality analysis
of the dynamics and requires no specialized imaging source
or setup. Thus, it serves as a complement to tracking-based
tools such as MPT. DDM has been applied to a broad range
of soft materials and biological systems, including, for in-
stance, bacteria motility [4,26], colloidal gels [8], viscoelastic
processes [27], active filament dynamics [28], and protein
gelation dynamics [29].

On the other hand, obstacles remain, preventing DDM
from achieving full automation in high-throughput settings.
In DDM, one fits the image structure function, which often
varies by several orders of magnitude across different wave
vectors and, furthermore, the data are correlated over differ-
ent lag time for the same wave vector. As such, it requires
specifying the wave-vector range or weighing information
at wave vectors in a case-by-case manner. The difficulty in
selecting wave vector to analyze is common for other scat-
tering approaches, such as dynamic light scattering [25,30].
Thus, solving it inspires new approaches for a wide range of
characterization techniques. Here, we develop a probabilistic
latent factor model, which encodes the physics-informed in-
termediate scattering function as the covariance function of
latent factors, and derive the maximum marginal likelihood
estimator, therefore removing the need for selecting wave
vectors and weighing information in fitting the image struc-
ture function. Utilizing fast computational algorithms, such as
the generalized Schur algorithm, we also reduce the cost for
computing the likelihood function without approximation.

Our contributions are threefold. First, we introduce a new
probabilistic generative model of scattering analysis of mi-
croscopy in Sec. III A. We show that conventional estimation
of the parameters in DDM is equivalent to fitting a temporal
variogram in the Fourier space using the generative model
in Sec. III B. This connection enhances our understanding
of the existing estimator in DDM by integrating interme-
diate scattering function into the temporal covariance of a
latent factor model at each wave vector. We show the con-
ventional practice by fitting the image structure function in
DDM is equivalent to minimizing the average of the temporal
variogram from our latent factor model. To achieve better
efficiency of estimation and remove the need to select wave
vectors, we derive the maximum marginal likelihood estima-
tor (MMLE) after integrating out the latent factor processes
introduced in Sec. III C. As information on each wave vector
is weighed appropriately by the likelihood, one can utilize all
wave vectors instead of tailoring the range for different sys-
tems for estimation. Second, directly computing the MMLE is
prohibitively slow due to computing inversion and log deter-
minants of a large number of covariance matrices. By evoking
the Toeplitz structure of the covariances in the Fourier space,
we apply the generalized Schur algorithm [31] to accelerate
the computation of the marginal likelihood function without
approximation in Sec. IV A, reducing the computational order
from cubic to pseudolinear (or linear with respective to a log
multiplicative constant) scaling to the number of time points,
without approximating the likelihood. We show in Sec. IV B
that computational cost can be further reduced with a prin-
cipled way of data reduction. Taken together, for a typical
microscopy video with 500 × 500 pixels and 500 time frames,
our approach is more than 105 times faster than the direct
computation of the likelihood function. Third, the generative
model and fast algorithm enable a wide range of applications,
such as automated determination of gelation point, discussed
in Sec. III E. Finally, the new probabilistic approach provides
uncertainty quantification of the estimation, and the likeli-
hood can be utilized to select physical models by data. We
demonstrate the approach by simulation studies and three dis-
tinct types of experiments, including optically dense particles,
high-throughput determinant of gelling point, and estimation
of anisotropic processes, where the estimation is automated
for these applications.

We refer to this approach, which provides a probabilistic
generative model and propagates the uncertainty from the
beginning of the data analysis, the ab initio uncertainty quan-
tification approach. The phrase ab initio used herein should
not be confused with the first principles calculation in quan-
tum physics [32], though the philosophy of the computation
may share some commonalities. Physical or machine learning
approaches that minimize a loss function for parameter es-
timation can motivate the development of the corresponding
generative model, and the generative model enables us to
scrutinize the underlying model assumptions made in esti-
mation, and to build a more efficient estimator for different
techniques. We have developed publicly available software
packages in both R [33] and MATLAB [34] for automated
scattering analysis of microscopy videos, where users can
either call a built-in model or supply their models for inverse
estimation.
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II. BACKGROUND FOR SCATTERING
ANALYSIS OF MICROSCOPY

We first introduce the background and analysis for differ-
ential dynamic microscopy (DDM) [23,24], which converts
real-space coordinates into wave vectors in reciprocal space,
and computes image correlations akin to dynamic light scat-
tering (DLS), leading to its characterization as “scattering
analysis of microscopy.” Notable advantages of DDM include
its compatibility with particles of different shapes [35], fast-
moving particles [36], the ability to track particles and fluctu-
ations at high optical density below the diffraction limit [2].

To start, we consider a system of M particles in a two-
dimensional (2D) space with xm(t ) = (xm,1(t ), xm,2(t ))T being
the 2D particle location of particle m at time t , for m =
1, ..., M. The normalized Fourier-transformed intensity can be
written as the sum of the particle positions in the reciprocal
space

ψ (q, t ) = 1√
M

M∑
m=1

exp[−iq · xm(t )], (1)

where i denotes the imaginary unit and q is a 2D Fourier basis
set or a wave vector. Assume the particles do not interact with
each other [9]. The intermediate scattering function (ISF), an
important function encapsulating the time evolution of parti-
cle self-correlation, is characterized by a vector of parameters
θ, below,

fθ (q,�t ) = Cov[ψ (q, t ), ψ∗(q, t + �t )]

=
〈

1

M

M∑
m=1

exp [iq · �xm(t,�t )]

〉
, (2)

where Cov(·, ·) denotes the covariance operator, ψ∗ is the
complex conjugate of ψ , �xm(t,�t ) = xm(t + �t ) − xm(t ),
and 〈·〉 = E[·] is the ensemble or expectation over time t .
Here we use the notation 〈·〉 and E[·] interchangeably, to make
it understandable to both physics and statistics communities.
The derivation of Eq. (2) is given in Appendix A.

Various processes have a closed-form expression of ISF. A
few examples of closed-form ISF are derived in Appendix A
and summarized in Table III. For instance, for Brownian
motion (BM) or diffusive processes, the intermediate scat-
tering function is fBM(q,�t ) = exp(−q2θ�t ), where q =
||q|| and here the only parameter θ of ISF is the diffusion
coefficient. By the cumulant theorem [37], the ISF can be
approximately characterized by the mean-squared displace-
ment (MSD), discussed in Appendix A. Our new approach
is generally applicable to all ISFs with a vector of parameters
θ, and the ISFs are not necessarily approximated by the MSD.
We intend to estimate both the parameters θ and system prop-
erties such as MSD, which can be related to viscosity, storage
and loss modulus through the generalized Stokes–Einstein
equation (GSER) [38].

We denote the light intensity of pixel x at time t to be
y(x, t ). In Eq. (2), the ISF is the ensemble average of the
2D spatial Fourier representation of the displacements of
the particles from time t to t + �t . To relate the ISF to
pixel intensity in the Cartesian space, the Fourier-transformed
difference in image intensity is studied in DDM [23,24]:

�ŷ(q, t,�t ) = F[y(x, t + �t ) − y(x, t )], with F[·] denoting
the 2D discrete Fourier transformation computed by fast
Fourier transformation (FFT) [39]. The time ensemble of this
quantity, often referred to as the image structure function,
D(q,�t ) = 〈�ŷ(q, t,�t )2〉, is often modeled as follows:

D(q,�t ) = A(q)[1 − fθ (q,�t )] + B̄, (3)

where A(q) is the real-valued scalar of amplitude parameter
for wave vector q, fθ is the ISF defined in Eq. (2), B̄ de-
notes with mean value of the noise term. For an isotropic
process in a square field of view with N pixels, we de-
note an index set S j = {( j′1, j′2) : q2

j′1,1
+ q2

j′2,2
= q2

j } for j =
1, ..., J , which contains the indices of the jth “ring” of the
Fourier-transformed quantity with amplitude qj = 2π j

�xmin
√

N
,

with �xmin being the pixel size, i.e., the length of a pixel in
one coordinate, and N is the number of pixels in one frame.
In total, there are J rings of Fourier-transformed intensities,
leading to J distinct ISFs for isotropic processes. Further-
more, assuming we have n time frames, denote D as the
J × (n − 1) matrix with ( j, k)th term being the observed im-
age structure function D(qj,�tk ) = 〈�ŷ(qj′ , t,�tk )2〉, where
now the ensemble is over both time t and indices within each
ring j′ = ( j′1, j′2) ∈ S j . Let Dm denote the model output of
D, where the ( j, k)th entry of Dm is Dm(q j,�tk ) = Aj (1 −
fθ (q j,�tk )) + B̄ with B̄ denoting the mean for the random
quantity B. In DDM, the parameters are often estimated by
minimizing a loss function between the observed and modeled
image structure functions

(θest, Aest, B̄est ) = argmin
θ,A1:J ,B̄

Loss(Dm, D), (4)

with Aest = [Aest,1, ..., Aest,J ]T being a J-vector of amplitudes.
A typical choice of the loss function is either the L2 or
L1 loss. As the parameter space has a high dimension, one
often fits the model separately for each wave vector from
a selected range, distinct in each application [4,23,40,41],
and then estimators at different wave vectors are averaged
to obtain θ. Some variants of DDM [42–44] use different
pre-specified estimators for B̄est and an unbiased estimator
of Aest, j = 2〈ŷ(qj′ , t )2〉j′∈S j ,t − B̄est to estimate Aj , leaving θ

in the ISF the only parameters to be numerically optimized.
A summary of the estimators B̄est is introduced in Ref. [45].
In Refs. [27,45], the ISF is approximated by MSD, i.e.,
fθ (q,�t ) ≈ exp(−q2〈�x2(�t )〉/4), and Eq. (3) is directly in-
verted at each �t to obtain the estimator of MSD 〈x2(�t )〉. In
Ref. [46], the MSD is obtained through iterative optimization
to reduce numerical instability.

However, estimation by directly fitting or inverting the im-
age structure function can depend on the range of wave vector
selected. This is illustrated by simulating a simple diffusion
process, shown in Fig. 9 in Appendix B. Almost all existing
approaches in DDM fit the image structure function in Eq. (3),
relying on selecting a subset of wave vectors to analyze,
whereas selecting and reweighing the information at different
wave vectors can be hard for a new system. This difficulty
arises from the substantial variations in amplitudes Aj and
the correlation of the image structure function at different lag
times. A principled way to properly aggregate information at
different wave vectors can unlock the tremendous potential
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for DDM to attain complete automation in this process, yet
this has not been fully realized so far.

To solve the challenge of optimally weighing information
at different wave vector, a key question must be answered:
What is the probabilistic model implicitly assumed for the
real-space image intensity in DDM? We bridge the physical
approach and a probabilistic model to answer this question in
Sec. III.

III. LATENT FACTOR PROCESSES
OF VIDEO MICROSCOPY

A. A latent factor model of isotropic processes

We initially direct our attention to isotropic processes,
where the ISF is the same at each ring of pixels in the
reciprocal space. Extension to anisotropic processes will be
discussed in Sec. III E. Consider a latent factor model of
an N = N1 × N2 pixels of real-valued image intensity y(t ) =
[y(x1, t ), ..., y(xN , t )]T at time t below,

y(t ) = 1√
N

W∗z(t ) + ε(t ), (5)

where ε(t ) ∼ MN (0, B̄
2 IN ) is an N-dimensional Gaussian

white noise vector with variance B̄
2 and IN being the iden-

tity matrix of N dimensions, the N × N matrix W∗ is a 2D
inverse Fourier basis (or complex conjugate of the Fourier
basis), which relates the N observations of an image at time
t from Cartesian space x = (x1, x2)T to a set of random
factor processes z(t ) in the reciprocal space q = (q1, q2)T .
The latent factor z(t ) is an N-dimensional complex random
vector: z(t ) = zre(t ) + izim(t ), with each random factor at n
time points independently following a zero-mean multivari-
ate normal distribution: z j′,re ∼ MN (0,

Aj

4 R j ) and z j′,im ∼
MN (0,

Aj

4 R j ) for j = 1, ..., J and for any index j′ ∈ S j . The
(k1, k2)th entry of R j is characterized by ISF: Rj (k1, k2) =
fθ (q j,�tk ) with �tk = |k2 − k1|�tmin with �tmin being the
interval between two consecutive time frames. The corre-
lation matrix R j encodes the two-time correlation function
in the Fourier space [47], with the (k1, k2) term of the co-
variance being Aj

4 Rj (k1, k2) = Cov(ŷq j′ (tk1 ), ŷq j′ (tk2 )) and for
a time-invariant process, the quantity reduces to the image
correlation function with �t = |tk2 − tk1 | in Ref. [24]. The
key is that the correlation matrix R j of the latent factor is
formed by the ISF from the physical process. This means each
entry of the real and imaginary random factors corresponds
to one Fourier-transformed quantity, where the covariance
is parameterized by the amplitude and intermediate scat-
tering function: E[zq,re(t )zq,re(t + �t )] = E[zq,im(t )zq,im(t +
�t )] = A(q)

4 fθ (q,�t ). Without loss of generality, we as-
sume that N1 = N2 = √

N , i.e., square image at each time
frame.

B. DDM is fitting the temporal variogram of the latent factor
model in the reciprocal space

Here, we draw the connection between DDM in fitting the
image structure function and the latent factor model in Eq. (5).
Note that the normalized discrete Fourier basis W/

√
N is a

unitary matrix, i.e., WW∗ = NIN . By multiplying W/
√

N on

both sides of Eq. (5) and splitting the transformed vector into
the real and imaginary parts ŷ(t ) = Wy(t )√

N
= ŷre(t ) + iŷim(t ),

we have

ŷre(t ) = zre(t ) + ε̂re(t ), (6)

ŷim(t ) = zim(t ) + ε̂im(t ), (7)

where ε̂re(t ) ∼ MN (0, B̄
4 IN ) and ε̂im(t ) ∼ MN (0, B̄

4 IN ) are
both multivariate normal distribution with a diagonal covari-
ance B̄

4 IN ; zre(t ) and zim(t ) are both N-dimensional random
vectors, where each entry corresponds to one wave vector q in
the reciprocal space at time t .

We denote ŷq(t ) and ŷq(t + �t ) to be the Fourier-
transformed quantities at time frame t and t + �t , re-
spectively, both on the wave vector q. Then, we decom-
pose their difference into the real and imaginary parts:
ŷq(t + �t ) − ŷq(t ) = �ŷre,q(t,�t ) + i�ŷim,q(t,�t ). Based
on the sampling model in Eq. (5), both �ŷre,q(t,�t )
and �ŷim,q(t,�t ) follow the same normal distribution:
N (0,

A(q)
2 (1 − fθ (q,�t )) + B̄

2 ), as derived in Appendix C.
Based on this result, one can compute the expectation of
the squared difference of the Fourier-transformed inten-
sity between two frames, at any wave vector q and time
difference �t :

E[(ŷq(t + �t ) − ŷq(t ))(ŷ∗
q(t + �t ) − ŷ∗

q(t ))]

= A(q)(1 − fθ (q,�t )) + B̄, (8)

which is the mean of the image structure function in
Eq. (3), the statistics used for estimating parameters in
DDM. Equation (8) means that if we assume the prob-
abilistic model in Eq. (5), the expected value of the
image structure function in Eq. (3) is the expected value
of [ŷq(t + �t ) − ŷq(t )][ŷ∗

q(t + �t ) − ŷ∗
q(t )], equivalent to a

temporal variagram in the reciprocal space. Fitting a spatial
variogram in the real space was extensively studied by the
statistics community [48–50]. However, it can be strenuous
to fit the temporal variogram at each wave vector q in the
reciprocal space and optimally aggregate the estimators, since
the variogram is correlated at each lag time and the am-
plitude parameter can be drastically different at distinct q.
Thus, directly fitting the temporal variogram in the reciprocal
space and aggregating the estimators could lead to unstable
estimation. Next, we will introduce the maximum marginal
likelihood estimator of the parameters, which provides a nat-
ural and optimal way to aggregate information on each wave
vector.

C. Maximum marginal likelihood estimator

We denote two n vectors ŷre, j′ = [yre, j′ (t1), ..., yre, j′ (tn)]T

and ŷim, j′ = [yim, j′ (t1), ..., yim, j′ (tn)]T to be the Fourier-
transformed quantity at wave vector j′ over all n time frames.
Denote the total observations and latent factors by Y and Z,
respectively. We integrate out the random factors to obtain
the marginal distribution of observations: p(Y | θ, A1:J , B̄) =∫

p(Y | Z, θ, A1:J , B̄)p(Z | θ, A1:J , B̄)dZ. The marginal like-
lihood of J rings of Fourier-transformed quantity in the
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reciprocal space follows:

L(θ, A1:J , B̄)

=
J∏

j=1

∏
j′∈S j

pMN(ŷre, j′ ; 0, � j ) × pMN(ŷim, j′ ; 0, � j ), (9)

where � j = Aj

4 R j + B̄
4 In. Here S j denotes the index set of

the jth ring of isotropic processes, for j = 1, ..., J , and
pMN(s; μ,�) denotes the density of an n-vector multivariate
normal distribution at a real-valued vector s with mean and
covariance being μ and �, respectively:

pMN(s; μ,�) = (2π )−
n
2 |�|− 1

2

× exp
{ − 1

2 (s − μ)T �−1(s − μ)
}
.

The derivation of Eq. (9) is given in Appendix C.
We denote S j = #S j , the number of transformed pixels

within the index set S j , and let the total number of pixels
within J rings be Ñ = ∑J

j=1 S j . Note that we do not include
the transformed output outside of the J rings in the likelihood
function, consistent with DDM, and hence Ñ < N . In prin-
ciple, one can compute the likelihood of all quantities inside
or outside the J rings. However, as the transformed quantities
at large wave vectors become similar to noise, we may only
need to include a small number of wave vectors, which is
much smaller than J . Based on this feature, we will introduce
feasible ways to further reduce the computation and storage
cost in Sec. IV B. Using all wave vectors for estimation is
implemented as the default version of our software packages
[33,34]; a reduction of the wave-vector range can be executed
to decrease computational cost.

Here one can maximize the marginal likelihood function
in Eq. (9) to estimate parameters θ, A1:J , and B̄. However,
direct maximization can become unstable as A1:J contains J
parameters which can be large. The connection between the
latent factor model in Eq. (5) enables us to understand the
properties of some estimators of the parameters A1:J and B̄.
For any B̄, an unbiased estimator of the amplitude parameter
Aj follows

Aest, j = 2

S jn

∑
j′∈S j

n∑
k=1

|ŷ j′ (tk )|2 − B̄ (10)

for j = 1, ..., J . The unbiasedness of the estimator Aest, j is
derived in Appendix C. In practice, we may take the absolute
value of Aest, j to keep it nonnegative. Another way is to set
those negative Aest, j to 0. As Aest, j is rarely negative and the
absolute value of the negative Aest, j is typically very small,
they almost have no impact on the likelihood function. Thus,
these two estimations do not change the parameter estimation
significantly, as shown in Table S4 in the Supplemental Ma-
terial [51]. In our package, we offer users the option to use
absolute values or setting Aest, j to 0. Then we estimate the
model parameter θ and noise parameter B̄ by maximizing the
marginal likelihood with the estimated Aest,1:J from Eq. (10):

(θest, B̄est ) = argmax
θ,B̄

log [L(θ, Aest,1:J , B̄)]. (11)

The plug-in estimator Aest,1:J reduces the dimension of the
parameter space and makes numerical optimization in Eq. (11)

much more stable than optimizing in a large parameter space.
We use the low-storage quasi-Newton optimization method
[52] for estimation θ and B̄ by maximizing the logarithm of the
marginal likelihood function log(L(θ, Aest,1:J , B̄)) in Eq. (11).

Equation (5) defines a generative model for the untrans-
formed data from the beginning of the analysis, and the latent
factor processes are integrated out to propagate the uncertainty
to derive the marginal likelihood in Eq. (9) for parameter
estimation. Thus, we call the method ab initio uncertainty
quantification (AIUQ) for scattering analysis of microscopy.
Note here we do not need to compute the difference of image
pairs as in the image structure function in Eq. (3); instead,
we will apply the generalized Schur algorithm [53–55] for
accelerating the computation of Toeplitz covariances from
the marginal likelihood in Eq. (9) summarized in Sec. IV A
and Sec. S1 in the Supplemental Material [51]. The AIUQ
approach provides a global fit of the entire data at the un-
transformed real space and time {x, t} based on the model in
Eq. (5). In comparison, DDM fits the image structure function
in the Fourier space in Eq. (3) at the lag time {q,�t}, and se-
lecting suitable wave-vector ranges may be required to obtain
an accurate estimation of the ISF.

There are two ingredients of the AIUQ approach for
scattering analysis of microscopy. The first key part is to
model the untransformed intensity by a probabilistic model,
where the temporal correlation of each latent factor process
is parameterized by an intermediate scattering function at
each wave vector. Equivalently, this is to assume a Bayesian
prior encoded physics information of the process. The second
key ingredient is to integrate (or marginalize) out random
factor processes and estimate the governing physical param-
eters by an asymptotically optimal estimator–the maximum
marginal likelihood estimator. Integrating out random quan-
tities in the model is the foundation of Bayesian analysis,
which inherently avoids overfitting the data and provides un-
certainty quantification. Readers are referred to [56–59] for
more discussion and applications of the marginal likelihood
in machine learning and Bayesian analysis.

D. Comparison between estimation by maximum marginal
likelihood estimator and fitting image structure function

We illustrate the estimation accuracy of AIUQ using a slow
diffusive process in Fig. 1. When dealing with slow dynamics,
where the standard deviation of the displacement is smaller
than 1/10 of a pixel in each timestep, MPT sometimes fails to
accurately capture the underlying dynamics at small lag times,
due to the similarity between noise and signal. We compare
AIUQ with two DDM approaches both based on all wave
vectors. In the first DDM approach, termed D(q,�t ) fit 1, the
noise parameter is estimated by B̄est = D(qmin,�tmin), and the
amplitude parameter Aj is estimated by the unbiased estimator
specified in Eq. (10). Then these parameters are substituted
into Eq. (4), so that the parameters in ISF θ are numerically
optimized by minimizing the L2 loss between the recon-
structed and observed image structure functions by summing
up the loss at all wave vectors. In the second DDM approach,
termed D(q,�t ) fit 2, parameters are separately estimated for
wave vectors by numerically minimizing the L2 loss function
of the image structure function in Eq. (4) for each q j to obtain
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FIG. 1. (a) For a simulated image stack, B, θ estimates using different methods: AIUQ (x), AIUQ with all q (o), D(q,�t ) fit 1 (
),
D(q, �t ) fit 2 (�), whereas the solid dot denotes the truth. The colormap represents the log marginal likelihood by the AIUQ approach with
reduced q. (b) The estimated diffusion coefficient θ using different methods with the fraction of q used in estimation. The axes are plotted on
logarithmic scales.

θ(q j ), and then the average of the estimation of θ j (q j ) is used
to estimate the parameters θ. In both approaches, we find
that the estimation of noise parameter B̄ is reasonably good
[Fig 1(a)]. Furthermore, B̄ is also reasonably good compared
with the truth in a wide range of simulation studies shown
in Table S3 in the Supplemental Material [51]. However, the
estimation of diffusion coefficient by two DDM approaches
is not satisfying when the entire wave-vector range is used
in estimation. AIUQ approaches, with all wave vectors or
with a reduced set of wave vectors, use the first J0 sets
that explain 99% of the variability: (

∑J0
j=1 Aj )/(

∑J
j=1 Aj ) �

99%, are compared. As demonstrated in Fig. 1(a), AIUQ
is more accurate in estimating the diffusion coefficient than
two approaches that fit the image structure function, while
performing similarly well in estimating the noise parameter.
Figure 1(b) shows fitting the image structure function in DDM
can lead to q-dependent estimation. We further show another
example when we directly invert the image structure function
in Fig. 9 for estimation, which demonstrated the q-dependence
for estimation. In comparison, the estimated parameter is not
dependent on q using AIUQ, when a sufficient number of
wave vectors is used, shown in Fig. 1(b), as the information
is naturally weighed by the marginal likelihood in Eq. (9).
Selecting a suitable wave-vector range for estimation can im-
prove the estimation by DDM, whereas a principled way of
selecting such range was not found.

E. Extension to anisotropic processes

DDM has facilitated the analysis of anisotropic fluctuations
in liquid crystals [60], estimation of directional motions in
flow [7], and in response to a magnetic field [61]. To address
angle-specific or anisotropic motion, previous works select a
limited angle range centered around the desired direction. For
instance, in Ref. [35], a specific range of q values is aver-
aged to extract distinct translational Brownian diffusion along
perpendicular axes of ellipsoids. Another example is liquid
crystal, explored in Ref. [60], where a bowtie-shaped q-space
region along both parallel and perpendicular directions to

the director is averaged to extract viscoelastic properties and
isolate polarized light contribution. However, constraining q
in a certain angle range could discard useful information on
other wave vectors outside this range.

The AIUQ approach of scattering analysis of microscopy
can be extended to anisotropic processes. Let us consider a
2D anisotropic process, we can split the intermediate func-
tion to two coordinates: fθ (q,�t ) = fθ1 (q1,�t ) fθ2 (q2,�t ),
where fθl (ql ,�t ) is an intermediate scattering function for the
lth coordinate, and the parameters can be split to θ = {θ1, θ2}
with θ1 and θ2 being the parameters of fθl (ql ,�t ) for l = 1, 2.
From the cumulant approximation in Eq. (A2) discussed in
Appendix A, one derives the anisotropic ISF,

fθ (q,�t ) ≈ exp

[
−q2

1

〈
�x2

1 (�t )
〉 + q2

2

〈
�x2

2 (�t )
〉

2

]
,

where 〈�x2
1 (�t )〉 and 〈�x2

2 (�t )〉 are MSD at �t along the
two coordinates, respectively. As the process is anisotropic,
the ISF is different for each wave vector in general. Then
one can compute the maximum marginal likelihood estimator
in Eq. (11) with the anisotropic ISF. Since the amplitude Aj

depends on the transformed intensity at zero lag time and
image noise [24,62]. Thus, Aj can be calculated similarly
regardless of isotropic or anisotropic processes. The projected
intensity on all wave vector can be used in an AIUQ approach,
which makes the analysis more stable and accurate.

IV. FAST ESTIMATION, UNCERTAINTY ASSESSMENT,
AND MODEL SELECTION

A. Generalized Schur method of accelerating
computation for Toeplitz covariances

Directly computing the marginal likelihood in Eq. (9)
is slow as computing each of n-vector multivariate normal
density requires O(n3) computational operations, from com-
puting the matrix inversion and determinant of the covariance
matrix. Assuming we have J rings of Fourier-transformed
intensity, and the number of indices in each ring is Sj , the total
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computational operations scales as O(Jn3) + O(Ñn2) oper-
ations for isotropic processes, and O(Ñn3) for anisotropic
processes. As the likelihood function needs to be computed
tens of times for numerically optimizing the parameters, the
computational operations can be up to 1015 for a regular video
with 500 × 500 pixels and 500 time frames, which is too com-
putationally expensive. Here, we introduce a fast approach
that can substantially reduce the computational cost without
any approximation to the likelihood function.

Note that as video microscopy is often taken equally
spaced in time, which means the covariance matrix � j is a
Toeplitz matrix [63] for each j, parameterized by the ISF:

� j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̃ j,0 f̃ j,1 f̃ j,2 . . . f̃ j,n−1

f̃ j,1
. . . f̃ j,1 . . . f̃ j,n−2

f̃ j,2 f̃ j,1
. . .

. . .
...

...
...

. . .
. . . f̃ j,1

f̃ j,n−1 f̃ j,n−2 . . . f̃ j,1 f̃ j,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where f̃ j,k = Aj

4 f j,k + B̄
4 1k=0 with f j,k = fθ (q j,�tk ) being the

intermediate scattering function at ring j and �tk , and 1k=0

being a � function at k = 0. Consequently, the covariance
matrix � j is a Toeplitz matrix. The generalized Schur al-
gorithm was developed in Ref. [31,54] for accelerating the
computation, reducing the computational cost of inversion
and log determinant of Toeplitz covariance from O(n3) to
O(n(log(n))2) operations for an n × n Toeplitz covariance
matrix. Thus, to compute the marginal likelihood function
in Eq. (9), one only needs O(Jn(log(n))2) + O(Ñn log(n))
operations for isotropic processes, where the first term is from
computing determinant and matrix inversion of J Toeplitz
covariances, and the second term is from computing the
Ñ Toeplitz matrix-vector multiplication, through FFT. For
anisotropic processes, one only needs O(Ñn(log(n))2) oper-
ations for computing the likelihood. The generalized Schur
method of computing inversion, log determinant, and matrix-
vector multiplication for Toeplitz matrices was implemented
in the “SuperGauss” algorithm in R platform [55,64]. The
generalized Schur algorithm is a “superfast” algorithm as its
complexity is pseudolinear to the number of observations for
decomposing a Toeplitz covariance [54], and other algorithms,
such as the Levinson-Durbin algorithm [65] that take O(n2)
operations for decomposing a Toeplitz covariance, are gener-
ally called fast algorithms. Details of the generalized Schur al-
gorithm are discussed in Supplemental Material Sec. S1 [51].

B. Data reduction

As the marginal likelihood function in Eq. (9) often needs
to be computed tens of times to iteratively find the maximum
value, it is of interest to further reduce the computational com-
plexity for large videos in addition to using the generalized
Schur algorithm.

For processes with an increased MSD with respect to the
increase of lag time, such as subdiffusion or superdiffusion,
the transformed intensity rapidly decorrelates at large wave
vectors, making it indistinguishable from noise. A typical
way for dimension reduction is to choose the first J0 rings of

Fourier-transformed intensity that explains the most variabil-
ity of the data: (

∑J0
j=1 Aj )/(

∑J
j=1 Aj ) � 1 − ε, where ε is a

small number, similar to the probabilistic principal component
analysis [66]. For instance, choosing ε = 0.001 means we
have 99.9% of the variability from the transformed inten-
sity explained. As Aj becomes close to 0 at large j and the
‘ring’ gets larger for large j, such a choice can substantially
reduce the storage and computational requirements by avoid-
ing computing a large number of transformed intensities at
high-frequency wave vectors. Another way is to ensure that
we select a relatively large proportion (J0/J � β) to retain
enough information from the signal. For some confined pro-
cesses, such as the Ornstein–Uhlenbeck (OU) process, where
the MSD approaches a plateau at large lag time, using a large
fraction of wave vectors is a safer choice, as the temporal
correlation of transformed intensities does not decrease at
large wave vectors. Having a more conservative threshold that
selects a larger J0, e.g., ε = 0.001 and β = 0.5, is also better
for estimating the noise parameter. Here, we emphasize that
the selection of J0 is mainly for further reducing the storage
and computational cost, which is different from selecting the
range of wave vectors to analyze in minimizing the loss func-
tion in Eq. (4) in DDM. The default setting of our software
packages [33,34] uses all wave vectors.

C. Confidence interval

The uncertainty of parameter estimation can be quantified
with the availability of the probabilistic generative model
in Eq. (5). Here, estimation errors stem from two sources:
discretization of pixels and parameter estimation. First, the
dynamical processes are continuous, whereas analysis is per-
formed on discretized pixels. The pixel-related uncertainty
can be big when we have a small number of pixels, and the
error becomes small when we have a finer pixel size. Second,
similar to all statistical inferences, the stochastic nature of
observations introduces uncertainty in parameter estimation.
Given a generative model, the uncertainty from statistical
analysis can be assessed by either the frequentist or Bayesian
analysis. When distributions of the pivotal quantities have
no closed-form expressions, the confidence interval from fre-
quentist analysis is often approximated by the central limit
theorem [67] or bootstrap [68]. The posterior credible interval
from Bayesian analysis is by specifying the prior of the pa-
rameters and then computing the posterior distribution, often
evaluated by the Markov chain Monte Carlo algorithm [69],
such as Gibbs sampling and metropolis algorithm [70,71]. The
parameter uncertainty of Bayesian and frequentist analysis
typically agrees when the sample size approaches infinity.

We quantify both the pixel and estimation uncertainty
to construct the confidence interval with the scalable algo-
rithm by the generalized Schur method. To integrate the pixel
uncertainty, we compute the maximum marginal likelihood
estimator of (θ, B̄) by letting the associated amplitude of the
wave vector q j to be q j − �qmin and q j − �qmax for j =
1, ..., J separately. Then we follow Ref. [67] to approximate
the parameter estimation uncertainty through an asymptoti-
cally normal distribution. Notably, the scattering information
comes from M trajectories (M ≈ 50–200) of individual par-
ticles instead of

∑J0
j=1 S j Fourier-transformed time series,

034601-7



GU, HE, LIU, AND LUO PHYSICAL REVIEW E 110, 034601 (2024)

and typically M � N (N ≈ 2.5 × 105). Thus, one needs to
discount the likelihood by a power of M/N when computing
the uncertainty in asymptotic normality approximation. We
integrate both sources of the uncertainty to construct the con-
fidence interval of estimated parameters. As will be shown in
the simulated studies, the 95% confidence intervals are narrow
when the size of the image is not too small, and they cover the
truth most of the time.

D. Model selection and diagnostics

Given a few plausible models of ISF, how do we know
which one shall be used? The conventional way in DDM is to
evaluate the “fit” of the image structure function. However,
as each transformed datum in the image structure function
exhibits different variances and is correlated, it may be
hard to select a metric to evaluate the fit. Instead, one may
focus on the “fit” in the original Cartesian space. Statistical
information criteria, such as Akaike information criterion
(AIC) [72], may be computed to evaluate the fit in original
space with the maximum likelihood estimator: AIC =
2p − log[L(θest, A1:J,est, B̄est )], where L(θest, A1:J,est, B̄est )
denotes the maximum likelihood value and p is the number
of parameters to be estimated. AIC quantifies the predictive
error, and hence one selects a model with a small AIC. In
practice, models with a larger set of parameters are often
selected by AIC, when the number of observations is large.
One can compensate by using the Bayesian information
criterion (BIC) [73], which also penalizes for the number of
observations for model selection.

Alternatively, we can compute the one-step predictive error
to evaluate the fit for model selection. To do so, we first
divide the microscopy video into two groups, and the first n0

time frames are used for estimating parameters. Then we
make predictions sequentially on each n∗ = n0 + 1, ..., n us-
ing the one-step-ahead prediction

ypred(tn∗ ) = W∗zpred(tn∗ ), (13)

where for isotropic processes, the j′ ∈ S j column
of zpred(tn∗ ) is

zpred, j′ (tn∗ ) = rT (tn∗ )(R j + ηestIn∗−1)−1ŷ j′ (t1:(n∗−1)),

with r(tn∗ ) = ( fθest (q j, tn∗ − t1), ..., fθest (q j, tn∗ − tn∗−1))T is
an n∗ − 1 vector of ISF, and R j is a (n∗ − 1) × (n∗ − 1)
matrix with the (k, k′)th entry of being fθest (q j, tk − tk′ ), and
ηest = B̄est, jA

−1
est, j . The generalized Schur algorithm is used for

accelerating the computation of predictive mean in Eq. (13)
to avoid the direct inversion of the covariance matrices. Then
we select the model that minimizes the predictive loss, such as
the average root mean-squared error. When predictive errors
are similar, a model with a smaller number of parameters is
preferred.

V. SIMULATED STUDIES

A. Isotropic processes

We first compare the estimation accuracy of ISF for
isotropic processes through simulations. We simulated videos
from six different processes: Brownian motion (BM) with
two diffusion coefficients, fractional Brownian motion (FBM)

with two power parameters corresponding to subdiffusive and
superdiffusive processes, respectively, Ornstein–Uhlenbeck
(OU) processes, and a mixture of the OU process and FBM
(OU + FBM). The ISFs of these processes are provided in
Table III in Appendix A. For each process, we test the per-
formance of each approach using both a small-sized video
with 100 × 100 pixels and 100 time frames, and a regular-
sized video with 500 × 500 pixels and 500 time frames. The
algorithms are applicable to videos with different spatial and
temporal lengths. The smaller videos contain fewer frames but
retain the same dynamics.

We include the AIUQ approaches with all wave vectors,
reduced wave vectors, two DDM approaches with all wave
vectors, and MPT. The first AIUQ approach uses all wave
vectors, which is the default setting in our package. The
second AIUQ approach accelerates the computation by re-
ducing the first J0 sets (or rings) of wave vectors such that∑J0

j=1 Aj/
∑J

j=1 Aj � 1 − ε and J0/J > β with ε = 0.001
and β = 0.5, which leads to at least first 50% of rings of
wave vectors being selected. The same choice is applied to
all simulations discussed in Secs. V A–V C. We found that
using a less conservative threshold ε = 0.01 and β = 0 leads
to around the first 25% of the wave vectors being selected,
nonetheless, doing so yields the same estimation for physical
parameters in the intermediate scattering function. However,
the estimation of the noise parameter may not be as good for
small videos. Here, we reduce the number of wave vectors
as an approximation to AIUQ with all wave vectors only to
accelerate computation, which is distinct to other approaches
that require specifying the wave-vector range for estimation.
The default setting of our packages is to use all wave-vector
ranges. The two routinely used DDM approaches have been
described in Sec. III D. Finally, in MPT, we input the known
particle radius which enables the algorithm to effectively
choose the optimal band-pass filter, whereas other parameters
such as search radius and brightness of the center pixel need
to be tuned depending on the specific case.

In Table I, the true parameters, the estimated parameters
by two DDM approaches, and AIUQ with reduced and all
wave vectors are provided. The AIUQ approaches yield ac-
curate estimations for regular videos, outperforming the two
DDM approaches. AIUQ also yields excellent results even
when applied to significantly smaller images. Despite a 125×
reduction in image size, the method yields estimations with an
almost indiscernible error. Furthermore, the 95% confidence
intervals of each parameter are given in the brackets, which
cover the true parameters. The significant improvement of
the performance by the AIUQ approaches is attributed to its
appropriately weighing of information from each wave vector
by the marginal likelihood function in Eq. (9). Consequently,
there is no need to choose a specific range of wave vectors
for estimation, other than for the purposes of reducing the
computational cost.

We report estimation of the noise parameter and the truth
in Table S3 in the Supplemental Material [51]. DDM fit 1
produces a reasonably good estimate of the noise parameter,
yet the performance in estimating the physical parameters in
ISFs is not satisfying. The estimation of DDM methods can be
improved by selecting a wave-vector range in a case-by-case
manner, and a principled way to select the wave-vector range
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TABLE I. Parameter estimation for simulation of isotropic processes using different methods. The one closest to the truth is highlighted in
bold. Regular videos have 500 × 500 × 500, while small videos have size 100 × 100 × 100. The brackets give 95% confidence intervals by
AIUQ approaches and different types of brackets are due to rounding error. All intervals by AIUQ approaches cover the true parameters given
in the first column.

Small video Regular video

Processes, D(q,�t ) D(q, �t ) AIUQ AIUQ D(q, �t ) D(q,�t ) AIUQ AIUQ
true parameters fit 1 fit 2 reduced q all q fit 1 fit 2 reduced q all q

BM, σ 2
BM = .020 8.3 0.36 0.020 (0.017,0.024] 0.020 (0.017,0.024] 2.8 0.56 0.019 [0.019,0.020] 0.020 [0.019,0.020]

BM, σ 2
BM = 2.0 3.8 1.7 2.0 [1.8, 2.4] 2.1 [1.8, 2.4] 3.6 2.8 2.0 [2.0, 2.1] 2.0 [2.0, 2.1]

FBM, σ 2
FBM = 8.0 7.5 4.2 8.0 (7,10] 8.0 (7,10] 6.7 3.8 8.1 [7.8,8.5) 8.1 [7.8,8.5)

α = .60 0.75 1.0 0.59 [0.35,0.67) 0.59 [0.35,0.67) 0.87 0.88 0.59 [0.58,0.61) 0.59 [0.58,0.61)
FBM, σ 2

FBM = .50 2.3 0.49 0.52 (0.42,0.52] 0.52 (0.41,0.52] 3.0 0.74 0.50 [0.47,0.54] 0.50 [0.46,0.55]
α = 1.4 1.3 1.3 1.4 [1.4,1.5] 1.4[1.4,1.6] 1.3 1.0 1.4 [1.4,1.4] 1.4 [1.3,1.4]
OU, σ 2

OU = 64 5.7 × 105 3.1 61 (24,191] 61 (13,353] 7.0 × 104 22 61 (44,86) 61 [35,110)
ρ = .95 0.64 0.52 0.95 [0.89,0.98) 0.95 [0.82,0.99) 0.71 0.57 0.95 (0.93,0.96] 0.95 (0.91,0.97)
OU + FBM, σ 2

1 = 2.0 2.2 1.5 1.8 [1.0,3.2] 1.8 [0.75,0.4.4] 1.9 2.5 2.0 (1.6,2.4) 2.0 (1.4,2.7)
α = .45 1.3 1.1 0.41 [0.31,0.55) 0.40 (0.24,0.68) 1.2 0.76 0.44 (0.41,0.48] 0.44 (0.38,0.51)
σ 2

2 = 9.0 5.6 3.2 9.8 [4.0,28] 9.9 (2.1,54) 7.6 2.1 9.7 (7.1,13] 9.7(5.4,17]
ρ = .85 0.55 0.43 0.85 (0.74,0.93) 0.85 (0.61,0.96) 0.62 0.50 0.85 (0.81,0.89) 0.85 (0.77,0.91]

is yet to be found. We found that even in the diffusive case,
identifying an appropriate q range is nontrivial, as shown
in Fig 1 in Sec. III C and Fig. 9 in Appendix B. Avoiding
selecting the range of wave vector can automate the scattering
analysis of video microscopy, a key feature for such analysis
to be integrated into any high-throughput experiments. This
has been achieved by the AIUQ approach, where utilizing
information in the entire q range leads to good performance.

The true MSD, estimated MSD by MPT, two DDM, and
AIUQ approaches of six simulated processes with a regular
video size are plotted in Fig. 2. Estimation from the two AIUQ
approaches and the true MSD curves overlap for all cases, in-
dicating precise estimation of MSD by the AIUQ approaches.
Furthermore, the 95% confidence interval by AIUQ (shown
as the blue shaded area) is relatively short, in particular for
the two BMs, but they cover most of the underlying truth for

FIG. 2. Estimated mean-squared displacements versus lag time plotted in log-log space for simulated videos containing the trajectories of
M = 50 simulated particles by AIUQ with reduced wave vectors (blue crosses), AIUQ all q (cyan crosses), D(q,�t ) fit 1 (purple diamonds),
and D(q, �t ) fit 2 (yellow triangle). The analysis is for (a) slow Brownian motion, (b) fast Brownian motion, (c) fractional Brownian motion
with subdiffusive dynamics, (d) fractional Brownian motion with superdiffusive motion, (e) Ornstein–Uhlenbeck process, and (f) a mixture of
the OU process and FBM. The solid lines denote the truth. The shaded area denotes the 95% interval for AIUQ with reduced wave vectors.
The truth overlaps with both AIUQ approaches.

034601-9



GU, HE, LIU, AND LUO PHYSICAL REVIEW E 110, 034601 (2024)

MSD. Lastly, MPT is reasonably accurate for most scenarios
with case-specific tuning parameters. However, it has a notice-
able discrepancy at small �t for BM with slower dynamics
[Fig. 2(a)], and at large �t for almost all processes, whereas
AIUQ approaches are robust at small �t . Furthermore, we
record the root-mean-squared error (RMSE) between the true
MSD and estimated MSD by different approaches in Table S1
in the Supplemental Material [51], and the AIUQ approaches
have the smallest estimation error than other approaches in
all scenarios and, in particular, the RMSE by two AIUQ
approaches are both 5–10 times smaller than the ones by MPT.
This means that if the model is properly selected, the AIUQ
approach can be more accurate than MPT in terms of estimat-
ing the MSD, and they do not require tuning parameters. For
all methods, estimates for A(q) are presented in Fig. S1 in the
Supplemental Material [51]. Here, we must assume a certain
form of the ISF, similar to most studies in DDM. In MPT, it
is not necessary to prescribe such a form, though eventually
one must connect the estimations derived from MPT to a
physical model. Therefore, extending the AIUQ approach to
encompass nonparametric estimation of ISFs [27,45] repre-
sents a promising avenue for further exploration.

The small estimation error by the scattering analysis of
microscopy video for the wide range of simulated processes
has not been seen before, which is achieved without the need
to select wave vectors or tune any parameters. The new ap-
proach allows for a smaller image sequence with a shorter
time interval to be employed, leading to savings in both time
and storage, and yields more accurate estimation when videos
with a regular size are used.

B. Model selection

Conventionally, physical models of intermediate scattering
function are selected based on preexisting knowledge of the
dynamical process. Here we introduce two ways for model
selection among a few candidate choices for microscopy video
from data because of the availability of the probabilistic gen-
erative model in Eq. (5).

We first perform the model selection by minimizing the
predictive error introduced in Sec. IV D. We simulate mi-
croscopy videos of BM, FBM, and OU processes with the
regular size (500 × 500 × 500). Then we fit three candidate
models of ISF for each video using the first 70% of the
time frames, and save the other 30% of the time frames
for computing one-step-ahead RMSEs for the subsequent
time frames, and the average of the RMSEs: AvgRMSE =

1
(n−n0 )

∑n
t=n0+1( 1

N

∑N
j=1(y j (t ) − ypred, j (t ))2)

1
2 , where ypred, j is

the prediction at the jth pixel from Eq. (13), where n0 = 350
is the number of time frames used in training the model.

The predictive RMSEs of three models on held-out time
frames are plotted as histograms for simulated BM, FBM,
and OU processes in Figs. 3(a)–3(c), where each histogram of
RMSE is averaged every 10 lag times. The overall AvgRMSEs
are shown as the horizontal lines. First, when the underlying
process is BM [Fig. 3(a)], the three models have almost the
same RMSE at all different frames. This is because BM is
a special case of FBM with α = 1. The estimated power
parameter yields αest ≈ 0.97, meaning the FBM model ap-
proximately reduces to the BM model in this case. For the OU

FIG. 3. Predictive accuracy as demonstrated by the root-
mean-squared error (RMSE) for (a) Brownian Motion (σ 2

BM =
0.02) (b) Fractional Brownian Motion (σ 2

FBM = 8, α = 0.6), and
(c) Ornstein–Uhlenbeck process (σ 2

OU = 64, ρ = 0.5) trained on the
first 350 lag times. The horizontal lines are the average of the RMSEs
of each method. The RMSEs are averaged every 10 lag times to
improve the readability of the graph.

process, using the binomial approximation, one has σ 2
OU(1 −

ρ�t ) ≈ σ 2
OU(1 − ρ)�t , when 1 − ρ is close to zero. Thus, OU

can also approximate BM relatively well when σ 2
OU(1 − ρ) ≈

σ 2
BM. Indeed, we found σ 2

est,OU(1 − ρest ) ≈ 0.0196, a value
close to the true sampling model from BM with the parameter
σ 2

BM = 0.020. When the predictive error of these three models
is similar, the preferred model is BM due to its simplicity, as
it contains fewer fitting parameters in its ISF. Second, when
the true process is FBM [Fig. 3(b)], the fitted FBM model
consistently yields a smaller predictive RMSE compared to
the other two models across most held-out time frames. The
AvgRMSE indicated by the pink solid line for FBM remains
identifiably lower than the other misspecified models. Third,
when the true process is OU [Fig. 3(c)], the AvgRMSE of
fitting an OU, plotted as the red solid line, is the smallest
among the three models. Thus, we correctly select the true
sampling models for all three cases using the predictive error.

Performing model selection with one-step-ahead predictive
error requires sequentially predicting intensities on n − n0

time frames, which is time-consuming. Instead, we can com-
pute AIC based on the maximum marginal likelihood value. A
model with a smaller AIC is preferred as it indicates a smaller
prediction error. In Table II, we show AIC by different models
in each column. We notice that the AIC of the three models
is almost identical when the underlying dynamics follow a
BM, as FBM and OU approximate BM with the estimated
parameter. The BM is preferred when AIC is similar, as it
has a smaller number of parameters. Similar to the findings in
Fig. 3, we found that the correct model has the smallest AIC,
corresponding to the best fit, for FBM and OU. Hence, all true
models are correctly selected by the model selection criterion.
Automated model selection is not well-studied in scatter-
ing analysis of microscopy videos. Therefore, improving the
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TABLE II. AIC of the fitted model is shown in each column.
Each row gives one simulation. The smaller the number indicates
a better fit and the smallest value in each row is highlighted in bold.
The values are multiplied by 108.

Simulation/fitting BM FBM OU

BM 2.2320 2.2320 2.2320
FBM 2.6195 2.6173 2.6189
OU 2.6464 2.6455 2.6445

robustness of the methods in complex experimental conditions
is of great interest in practice.

C. Anisotropic processes

Here we test the performance of AIUQ approaches for
anisotropic processes. We simulate small and regular-sized
videos for anisotropic processes from one BM, and two
FBMs with different parameter sets for motions along each
coordinate. The parameters used for simulating these three
anisotropic processes are plotted by the color bars in Fig. 4.
For BM, the variance of the displacement in the x direction of
the process is four times as large as the one in the y direction.
For the first FBM, the motion in the x direction has a larger
variance parameter, but the power parameter is smaller than
that in the y direction. For the second FBM, both the variance

FIG. 4. Parameter estimation for anisotropic processes where the
truth is plotted as bars. The top row shows small videos (100 ×
100 × 100), and the bottom row shows regular videos (500 × 500 ×
500). Panels (a), (d) show the analysis of particles diffusing with two
distinct diffusion coefficients along x and y, whereas panels (b), (c),
(e), (f) show fractional Brownian motion with distinct coefficients
and exponents.

and power parameters of the motion in the x direction are
smaller than the ones in y direction.

In Fig. 4, we plot the estimated parameters and the 95%
confidence interval by two AIUQ approaches for small and
regular-sized videos of anisotropic processes. The estimated
parameters are reasonably accurate even for most of the small
videos, and the estimation error is indiscernible for videos
with a regular size. Furthermore, the small 95% confidence in-
terval covers all the true parameters and the interval becomes
narrower when the size of the video increases. The lengths of
the interval quantify whether the precision of the estimation is
satisfied, allowing one to strike a balance between the size of
the microscopy video and the precision of the analysis.

We plot estimated MSD from the AIUQ and MPT in Fig. 5.
In Fig. 5(a), our approach correctly identifies that the diffu-
sion coefficient along x is four times larger than that along
y. Figure 5(b) shows a subdiffusive case, where the motion
along y has both a higher exponent and prefactor, causing
the difference of MSD along x and y to grow with lag time.
Figure 5(c) shows another subdiffusive scenario along both
axes, where the motion along y has a smaller prefactor yet a
larger exponent, causing the MSD along y to grow faster and
eventually approach that along x. The estimated MSDs are
shown for two AIUQ approaches and MPT. Across all cases,
AIUQ accurately replicates MSDs of the simulated dynamics,
even when the MSDs in both directions approach one another
in the third scenario. Routinely used MPT algorithms [13]
typically link particles between two time frames within a
pre-specified radius, which may not be optimal for anisotropic
processes. Indeed, we found that identifying a suitable set of
tuning parameters for MPT is harder for anisotropic processes.
In comparison, one does not need to tune parameters in AIUQ
approaches, and the estimated MSD from AIUQ all overlap
with the truth shown in Fig. 5. Furthermore, for Figs. 5(a)
and 5(b), MPT has a noticeable discrepancy in estimating the
MSD at small �t due to the difficulty in separating small
signal from noise, whereas AIUQ approaches are accurate.
For all processes, the RMSE of estimating MSD by the AIUQ
approaches is a few times smaller than the ones by MPT
shown in Table S2 in the Supplemental Material [51].

DDM approaches were used for analyzing the anisotropic
processes [7,60,61], but existing approaches only use a frac-
tion of the transformed data along the x and y coordinates,
selected by researchers, and existing DDM packages do
not support estimating anisotropic processes. Estimation of
anisotropic processes has been implemented in our AIUQ
packages [33,34]. We utilize information from all wave vec-
tors, yielding better accuracy in estimation and enabling
appropriate uncertainty assessment without the need for se-
lecting and additional weighing of the information from
different wave vectors.

We expect that this algorithm will have broad applicabil-
ity to analyzing a plethora of biological scenarios involving
collective cell motion under various conditions such as
chemotaxis [74], durotaxis [75], and haptotaxis [76], espe-
cially for dense settings, typically seen in a confluent cell
monolayer. In Sec. VI D, for instance, we will introduce the
feasibility of analyzing the anisotropic motion for probes em-
bedded in a lyotropic liquid crystal.
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FIG. 5. Analyzing simulated studies with anisotropic dynamics. The estimated mean-squared displacements versus lag time are plotted in
log-log space based on simulation with M = 50 simulated particles, by AIUQ (blue crosses), AIUQ all q (cyan circles and triangles), MPT
(pink solid lines). The analysis is for (a) Brownian motion, (b), (c) fractional Brownian motion. The shaded area represents the 95% interval
of AIUQ reduced q. The truth overlaps with both AIUQ approaches.

VI. REAL EXPERIMENTAL ANALYSIS

A. Materials and methods

Polyvinyl alcohol (PVA, Mw 85,000–124,000, 87–89%
hydrolyzed), dimethylsulfoxide (DMSO), Triton X-100, and
disodium cromoglycate (DSCG) salt were purchased from
Sigma-Aldrich, and used without further purification. The
solutions were weighed and dispersed in ultra-pure water
(18.2 M� cm). Four-arm polyethylene glycol (PEG) poly-
mers, terminated with primary amide (NH2) and succinimidyl
glutarate (SG) groups were purchased from JenKem Technol-
ogy USA.

Probes (FluoSpheres, yellow-green, carboxylate-modified
microspheres) of different sizes (2rp = 100 nm, 200 nm, and
1 µm) were purchased from Thermo Fisher. All samples
were prepared by filling a square capillary (0.10 mm ×
1.0 mm × 0.09 mm, Friedrich & Dimmock Inc.), sealing on
two ends, and securing onto a glass slide with UV curable
glue (Norland Optical Adhesive), to minimize convection due
to leaking and evaporation.

The samples are imaged using a Zeiss Axio Observer
7 microscope in fluorescence mode using a Colibri 7 light
source, and standard GFP filter sets. The images are cap-
tured with a 20× objective, with a numerical aperture of 0.8.
A typical image size is 512 × 512 pixels with a pixel size
of 0.29 µm/pixel and n = 500 time steps with a step size
of 0.0309 s.

We have simulated 2D motion for simplicity, but the probe
movements are intrinsically 3D in real experiments. For these
analyses, the motion of the particle is projected onto the
plane of the focus and only 2D trajectories are obtained and
analyzed [77]. There are cases for which this simplification
does not work and the observed dynamics are affected by axial
motion, such as shown in Ref. [5]. Nonetheless, in all the cases
shown here, the axial displacement is either negligible, or the
motion is isotropic in all three dimensions so a 2D treatment
of the 3D scenario is warranted.

B. Diffusive motion with different particle size
and number density

Polyvinyl alcohol (PVA) finds extensive use in spinning
applications, making its rheological properties pivotal for

efficient processing. In this context, we measure the viscosity
of a 4 (w/v)(%) of PVA in water, which is in the dilute regime.
The solution behaves as a Newtonian fluid with a viscosity
of η ≈ 25 mPa s per manufacturer information. Here, we aim
to demonstrate that the scattering analysis of microscopy by
the AIUQ approach can overcome potentially challenging
scenarios for MPT, such as optically dense samples due to
large particle numbers or fast dynamics leading to unidentifi-
able switching of particle positions. The standard DDM was
shown to outperform MPT in an optically dense system [27].
However, this was only possible when a specific wave-vector
range was selected. A method using all wave vector (i.e., not
selecting q) has not been demonstrated before.

The MSD of a diffusive process can be related to viscosity
η by the Stokes-Einstein equation [78]:

〈�x2(�t )〉 = 2kBTa

3πηrp
�t, (14)

where kB = 1.38 × 10−23J/K is the Boltzmann constant, Ta

is the absolute temperature, rp is the radius of the particle.
Keeping Ta, η constant, the slope of 〈�x2(�t )〉 versus �t
decreases proportionally to increasing particle radius rp. We
prepare several samples of the same composition but adding
particles of different sizes 2rp = 1 µm, 200 nm, and 100 nm
in each one. All fluorescent image sequences were captured
at particle volume fraction φ = 1 × 10−4, but the number
densities of the 200 and 100 nm particles are much higher, as
shown in the insets in Fig. 6. The bright field image sequence
was captured at particle volume fraction φ = 2 × 10−3.

We compare MPT, AIUQ approaches and two fitting ap-
proaches based on image structure functions. For AIUQ
approaches, we show the performance based on all q or
reduced q to accelerate the computation. For all real ex-
periments in Secs. VI B–VI D, the smallest J0 such that∑J0

j=1 Aj/
∑J

j=1 Aj � 1 − ε with ε = 0.99 is used as a default
choice of the wave vectors for reducing the computational cost
in the AIUQ with reduced q approach. Such choice leads to
J0 ≈ 0.25J , which reduces the computational cost by more
than 10 times compared to AIUQ on all q, suitable for scalably
computing a large number of experimental data, especially for
those discussed in Sec. VI C. For the three sets of experiments
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FIG. 6. The diagram shows the mean-squared displacement of probes in a 4 wt% PVA solution, and the molecular structure is also shown
in the inset in panel (a). Panels (a)–(c) consist of fluorescent images whereas panel (d) consists of bright field images. (a)–(d) Mean-squared
displacement against the lag time is plotted in log-log space for different embedded particle sizes: (a) 2rp = 1 µm, (b) 2rp = 200 nm, (c), (d)
2rp = 100 nm, where the image sequence was captured in bright field mode in panel (d). The inserts contain snapshots illustrating the typical
probe size and concentration. Each image is 150 µm × 150 µm. The scale bars are 50 µm. AIUQ with all q is shown in cyan circles, AIUQ is
shown in blue crosses, D(q, �t ) fit 1 and 2 are shown in yellow triangles and green diamonds, respectively. The solid pink line denotes tracking
by MPT. The solid black line denotes literature values, where viscosity η ≈ 0.025 Pa s. The blue, shaded region denotes the confidence interval
using AIUQ reduced q.

discussed here, we assume the FBM model to parametrize
ISF in AIUQ approaches and fitting image structure function
approaches instead of BM to test whether the model can iden-
tify the Newtonian behavior of the fluids, as well as validate
that other potential factors, such as drifts, do not have a large
impact on the results.

As shown in Fig. 6, parameter estimation by fitting
D(q,�t ) is less accurate than the by AIUQ approaches, based
on either all q or reduced q, compared to the reference value
(black curves). This result highlights that the wave-vector
range needs to be carefully selected when fitting image struc-
ture function with conventional DDM, but this problem is
resolved using AIUQ, which uses the maximum marginal
likelihood estimator. For nanoparticles with 2rp = 100 and
200 nm in Figs. 6(b)–6(d), which are all below the diffraction
limit, MPT systematically underestimates the particle move-
ments compared to the truth, due to higher concentrations
and faster dynamics. MPT computes the ensemble MSD by
linking the trajectories and averaging the displacements from
all particles. When dealing with an optically dense sample,
the probability of erroneously linking two nearby particles
increases. Furthermore, the progressively worsening perfor-
mance of MPT is attributed to averaging fewer particle steps
toward the larger �t’s. We note that quite often, MPT only
utilizes the first 10–20% of the �t’s, requiring substantially
larger time range to be measured. Furthermore, Fourier-based
algorithms are better for MPT at analyzing data sets with a
low signal-to-noise ratio, such as the brightfield image shown
in Fig. 6(d), where particles are unresolvable by the eye.
As further verifications, estimates for A(q) are presented in
Fig. S2 in the Supplemental Material [51], and observed im-
age structure function D(q,�t ) and the estimated D(q,�t )
using either AIUQ or DDM are shown in Figs. S3 and S4 in
the Supplemental Material [51].

The estimated MSDs by AIUQ approaches are closer to
the reference values than MPT for scenarios in Figs. 6(b)–
6(d), as AIUQ overcomes the difficulty of separating and
linking a large number of particles. Optically dense systems
are not uncommon in experiments. In some experiments, for

instance, larger particles are incompatible with the system,
when the density and viscosity of the continuous phase are
both low-probe particles tend to sediment unless they are
small enough to be dispersed by Brownian forces [45]. The
second scenario is when higher moduli are expected and thus
using small probe particles is necessary to produce detectable
displacements. A third scenario is when the system already
contains probes, such as tracking phase-separated regions in-
side organelles [79], where the size of the particles cannot
be adjusted. AIUQ approaches are well-suited for analyzing
optically dense samples without the need for introducing flu-
orescent particles, specifying wave-vector ranges, or tuning
parameters.

Finally, all approaches seem to slightly overestimate MSD
at a large �t for the experiment with 2rp = 1 µm particles
shown in Fig. 6(a). This is because small drift disproportion-
ally impacts the larger probes, which move more slowly under
the thermal fluctuation. Using smaller particles such as those
in Figs. 6(b) and 6(c) can mitigate these impacts. Another
way is to model the drift from ISF and integrate it into AIUQ
estimation.

C. Automated estimation of gelling point of a perfect network

A sol-gel transition is one where a solution is gradually
transformed into a viscoelastic network, with progressively
more solidlike characteristics. This phenomenon is observed
in many naturally occurring polymers, such as collagen
[80], protein solution [29], peptides [81] and silk fibrin
[82]. Probing the timescale of the viscoelastic properties
of the biopolymers can facilitate their use in reconstituted
bioscaffolds.

Similarly, synthetic hydrogel materials with customized ar-
chitecture can assemble into networks mimicking the mechan-
ical properties and structure of their biological counterparts.
Because of polyethylene glycol (PEG)’s inert properties, they
are widely used as cell substrates [83], tissue scaffolds [84],
and for cell encapsulation applications [85]. Time-cure or
time-concentration superposition analysis of microrheology
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FIG. 7. (a) Schematics showing the reaction between tetraPEG-SG and tetraPEG-NH2. (b) Multiple particle tracking of the time series
ensemble mean-squared displacement of the probes embedded in the mixed tetrafunctional PEG plotted against lag time �t in log-log space.
(c) AIUQ analysis of the same data as panel (b), denoted by the same color but with dotted lines. (d) Superposition of the data in panel (b) using
MPT data. (e) Shift factors a (red) and b (blue) for pregel (circles) and postgel (triangles). (f) Estimated ρ parameters in the OU process from
a sequence of videos at different times denoted by black circles. The black solid line denotes the fit from a generalized logistic curve where
R2

adjusted > 0.99.

experiments was introduced by Larsen and Furst [81]. To
date, the tried-and-true method to determine gelling time from
microrheology data is mostly done by manually shifting the
MSD curves [82,86,87].

The shifting is carried out by multiplying the MSD curves
and the �t by coefficients a and b, determined by visual
inspection. Once done, the MSD curves are collapsed into two
distinct branches, one pregel and one postgel. Each dataset
(for a particular gelling time) should exhibit some overlap
with the subsequent one. The MSD at the gelling point is
a critical curve between these two branches, which exhibits
power-law-like behavior. The critical gelling exponent is de-
fined as α = d log〈�x2(�t )〉

d log �t [9,81], where α is constant over all
�t , identical to the FBM model. Different systems experience
gelation with distinct critical power-law exponents, as noted in
Ref. [88]. These exponents can span from as high as α = 0.88
[89] to as low as α = 0.16 [86].

A recent approach [90] aimed to automate the process, us-
ing MSD versus �t curves estimated by MPT. However, these
MSD curves are nonsmooth and therefore extra efforts are
required to smooth the MSD curves before implementing the
superposition. DDM has also been utilized to explore gelation
behaviors, though manually superposing the MSD curves is
still needed. In Ref. [82], DDM is used as an initial screening

step and the authors identify gelation when displacement falls
below a threshold, at which point it is challenging to analyze
subtle displacements using DDM, whereas the pre-specified
wave-vector range can affect the estimation. In Ref. [29], the
authors conducted MSD fitting using both MPT and DDM.
Then they extracted the log-slope of MSD curves from MPT
and subsequently fit a logit function to these slopes to identify
gelation.

Here, we study the gelation of SG:NH2 = 1:1 tetraPEG
mixtures. These functional groups react stoichiometrically
to form highly regular networks [Fig. 7(a)]. Stock solutions
for both four-arm PEG polymers (100 mg/ml) were prepared
to ensure that the sample was well-mixed. Due to the
spontaneous nature of the SG-NH2 reaction, the reaction rate
is entirely controlled by solution concentration, hence, we
choose this system to benchmark the gelation time, which can
be compared to previous study [91] with a reported gelation
time of ∼44 min for a concentration of 20 mg/ml polymer.
To counter hydrolysis, which is known to occur for SG groups
dispersed in water, the four-arm PEG-SG stock solution was
prepared in DMSO. We first plot the estimated MSD by
MPT in Fig. 7(b), which shows that the probe movements are
initially diffusive, but at longer T , the probe motion becomes
subdiffusive and the onset of a solid plateau begins to appear
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at longer �t’s, meaning the particle becomes caged within
the developing network.

We superpose the MPT results by multiplying �t by a set
of time shift factors a, and MSDs by shift factor b to construct
the master pre- and postgel curves in Fig. 7(d). By plotting a
and b against time in Fig. 7(e), we approximate the gelation
time to be ≈42 min, in good agreement with the reported
gelling time Tgel = 44 min [91]. However, it becomes difficult
to classify which branch the shifted MSD curve should fall
close to the critical gelling curves, so the curves corresponding
to the smallest shift factors are typically chosen, as shown in
Fig. 7(e). Then the gelling point is defined as the time point
when shift factors of the pregel and postgel classes diverge,
leading to the largest shift or changes between the curves.

Next, we demonstrate using AIUQ to automate the gelling
point determination. The viscoelastic solid can be modeled by
an OU process, with MSD(�t ) = σ 2

OU(1 − ρ�t ), which can
capture the plateau and the reducing gradient of the MSD
curve at large �t’s. As the number of experiments is large,
we use AIUQ with reduced q for estimating the ISF. The
estimated MSDs from the AIUQ approach with an OU model
are shown in Fig. 7(c), which resemble curves from MPT
curves from Fig. 7(b). The two parameters from the OU
models, ρ and σ 2

OU, determine the shape of the MSDs. These
estimated parameters can be further processed to deduce the
gel point of the material. In Fig. 7(e), we plot the estimated
parameter ρ from the OU model for each experiment. The
estimated ρ gradually decreases, due to the caging effect from
the network that traps particles at longer �t’s. Before gelling,
the absolute change of estimated ρ increases, and the absolute
change decreases after gelling. The rapid drop of ρ from 1 to
0 indicates the sol-to-gel transition. To find the gelling point,
we fit a generalized logistic function, ρ(t ) = exp(−c1(t −
c2))/[1 + exp(−c1(t − c2))], where c1 and c2 are determined
by minimizing a L1 loss with respect to ρ. The L1 loss is more
robust than the L2 loss, and here both give similar estimations.
The fit is shown by the black solid line, which characterizes
the change of ρ, and defines the gelling time to be the time
point with the largest intermediate change in ρ. The inflection
point is found to be 43.4 min using this fit, which is similar to
the estimate 44 min in the previous study [91].

To extract the critical gelling exponent, we again compare
two approaches. First, we plot the log shift factors log a, log b
against log of the extent of reaction c, defined as c = |t−tgel|

tgel
,

where tgel is the gelling time by MPT, hence c determines
distance to the gelling point [92]. Given a ∝ c−αa , and b ∝
c−αb , the scaling exponent is the ratio of these two exponents
α = αa/αb. This way, we obtain the scaling exponent for
the four-arm PEG-NH2 and four-arm PEG-SG system to be
α = 0.739. The slope is plotted in Fig. 7(d) for reference. A
second way is similar to what has been described in Ref. [29],
the authors fit a logistic function to the relaxation exponent
of the MSD. The same information can be obtained using
AIUQ by fitting the fractional Brownian motion to the MSD
curve closest to tgel, and we found that the critical exponent
of α = 0.74 at gel point t = 43.4 min. Thus, the scattering
analysis of microscopy by the AIUQ approach can be used to
automatically extract the critical quantities of gelling systems.

The AIUQ approach extends the boundary of previous
techniques in the postgel branch of the MSD for systems un-

dergoing gelation. Compared to MPT and conventional curve
shifting for superposition by hand, AIUQ lifts the hurdles of
strenuous analysis for a large number of videos by providing
an automated estimation of gelling time, without the need of
specifying wave-vector range or superposing the curves. Thus,
the new tool can be deployed for automatically estimating
the gelation time by a sequences of microscopy videos, at a
given formulation and experiment condition (e.g., tempera-
ture, pH, etc.). Along with high-throughput experiments, this
data-processing technique can be integrated with Bayesian op-
timization and active learning approaches [93,94] to optimize
the compositions or material designs to achieve ideal gelling
time and properties.

D. Anisotropic diffusion in lyotropic LC

Anisotropic motion is common in soft and biological sys-
tems containing passive particles or active agents, often due
to the presence of anisotropic microstructures. An example
can be seen in particles within an LC continuous phase.
This leads to anisotropic particle motion, aligned either par-
allel or perpendicular to the orientation of the liquid crystal
molecules, which is also called the “director” field. Here, we
study particles dispersed in lyotropic LC disodium cromogly-
cate (DSCG), one of the most common lyotropic chromonic
liquid crystals, where the molecules self-assemble into rod-
like structures [Fig. 8(a)]. While previous work extracted
anisotropic MSD by particle tracking [96,97] and two-point
microrheology [95], no method has yet demonstrated suc-
cessful extraction of these quantities using Fourier-based
approaches.

We disperse probes 2rp = 200 nm at volume density φ =
8 × 10−5 in 16 wt% DSCG solution. This concentration is
chosen as its isonematic transition temperature is above room
temperature so no isotropic to nematic transition occurred, as
the isonematic fronts have been found to trap particles and
cause aggregation. Given a density of 1.55 g/cm3 for pure
DSCG [98], the solution density is 1.088 g/cm3 which is simi-
lar to that of polystyrene particles at 1.055 g/cm3 according to
the manufacturer, hence these particles are neutrally buoyant.
A small amount of surfactant (Triton X-100, 0.015 wt%) is
added to prevent aggregation of the probes [97]. The capillary
force upon filling is sufficient to ensure good alignment of
the DSCG solution [95]. Uniform nematic alignment was ob-
tained this way, as shown by the polarized optical microscopy
images in Figs. 8(b) and 8(c). In these images, regions aligned
parallel or perpendicular to the polarizer or analyzer direction
(denoted by double-sided arrows) appear dark, while other
orientations appear bright.

An example of the anisotropic particle trajectory is shown
in Fig. 8(d) inset. A probe particle moves predominantly along
the x direction (sky blue) compared to y (purple). The previous
MSD by particle tracking results from previous work [95]
is plotted by open circle andtriangle symbols in Fig. 8. The
authors also determined the viscosities parallel and perpendic-
ular to the alignment direction, which are plotted as solid and
dashed lines in Fig. 8. Since the log-slope α= d log〈�x2(�t )〉

d log �t < 1,
we use the FBM model in the AIUQ approach.
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FIG. 8. Anisotropic diffusion in DSCG. (a) Schematics of a probe particle moving amongst assembled stacks of DSCG, not drawn to scale.
(b), (c) Crossed-polarizer images when the channel is aligned either 45◦ in panel (b) or parallel to the alignment direction of the channel in
panel (c). The double-sided arrows denote the direction of the polarizer and analyzer. (d), (e) Method comparisons between AIUQ fitting (filled
symbols) and MPT tracking (solid lines) of the image stack are presented in (d) lin-lin plot and (e) log-log plot. Open circles and triangles
denote data reported in Ref. [95]. Black solid and dashed lines denote diffusive trends plotted from viscosity values reported from the same
paper. The inset in panel (d) shows an example particle trajectory. The shaded region denotes 95% confidence interval estimated using AIUQ
reduced q.

MSDs by MPT and AIUQ are shown in the lin-lin plot in
Fig. 8(d) and then again in log-log in Fig. 8(e). As the com-
putation cost for anisotropic processes is higher than isotropic
processes, due to the larger number of parameters, and distinct
ISFs at each wave vectors, we explore this kind of behavior
with a reduced number of q’s, but the estimation from AIUQ
with all q is similar. Both MPT and AIUQ effectively capture
large distinctions in diffusion along with direction, and the
results are similar to the values reported in Ref. [95], as shown
in Fig. 8(d).

When examining the log-log plot of MSD, the MSD
by MPT suggests a subdiffusive region at a small �t . In
a similar system, a subdiffusive-to-diffusive transition was
observed at the timescale of twist relaxation, which is on
the order of �t ≈ 100s [97], but with much larger particles
(2a ≈ 7 µm). The authors postulate that subdiffusive behav-
ior can be attributed to the restoring forces on the particle
from incurred elastic free energy costs, partially offsetting
the displacement from thermally driven fluctuations. Given
that the model used in AIUQ for our case is FBM, we con-
strain the log-log plot of the MSD to be linear. As noted in
Ref. [95], physical models that can explain anistropic sub-
diffusive behaviors in nematic liquid crystal has yet to be
constructed. This indicates that a model-free or nonparam-
eteric of ISF is appealing when the physical model of ISF
is unavailable, whereas these approaches typically require a
specified wave-vector range for inverting the image structure
function in DDM [27,45,46]. Whereas utilizing the plateau
or variability of the image structure curves can be helpful
for identifying the wave-vector range, it is of interest to in-
tegrate the model-free ISF in AIUQ approaches for inverse
estimation.

VII. DISCUSSION

Minimizing a loss function is often required for estimat-
ing parameters in physical and machine-learning approaches.
Selecting the loss function and data regime or transformation

of parameters implicitly reflects one’s assumptions of data.
To mitigate bias, we introduce a principled way to find a
generative model for approaches that minimize a loss func-
tion in two steps. First, we construct a probabilistic model
of the untransformed data from the beginning and show that
a loss-minimization approach is equivalent to a common
statistical estimator of the generative model. Second, we in-
tegrate out the random component of the model to derive
a more efficient estimator, such as the maximum marginal
likelihood estimator herein, which naturally aggregates the
information from different regimes of the transformed data.
A generative model offers a probabilistic mechanism that
allows for the derivation of the asymptotically optimal es-
timator, and the propagation of uncertainty from the initial
stages of data analysis, which we term ab initio uncertainty
quantification (AIUQ).

Here, we use DDM [23,24] as an example to illustrate
how building a probabilistic model can connect the original
estimator from standard DDM and to improve conventional
loss-minimization methods through the maximum marginal
likelihood estimator. We show that the estimation in DDM
analysis is equivalent to minimizing the temporal variogram
of the projected intensity in the reciprocal space based on
our probabilistic model. Compared to tracking-based algo-
rithms, DDM eliminates the need to track individual features,
but selecting a range of wave vectors is still typically re-
quired to minimize the loss function, which can differ in a
case-by-case manner. With the probabilistic model of data,
we derived the maximum marginal likelihood estimator of
the parameters, which optimally weighs information at each
wave vector, removing the need for selecting a wave-vector
range to analyze. By evoking the generalized Schur algo-
rithm for Toeplitz covariance and further reducing data by
truncating the high-frequency wave vectors, we can acceler-
ate the computation by around 105 times for a microscopy
video of regular size, compared to directly computing the
likelihood function, allowing almost real-time analysis. We
have implemented the AIUQ approaches, and shared them
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as publicly available software packages available in R and
MATLAB [33,34].

Through a variety of simulated and real experiments of
both isotropic and anisotropic processes, imaged in both fluo-
rescent and bright field modes, we found that the tuning-free
AIUQ approach achieves a high estimation accuracy of model
parameters and MSDs which were not seen before, justifying
the efficiency in integrating the information at different wave
vectors by the likelihood function. The 95% confidence inter-
vals of MSDs from the AIUQ estimation are typically narrow
yet they cover the true MSDs for most �t’s, indicating precise
uncertainty quantification. Similar to DDM, our algorithm is
robust even in scenarios with small signals on a bright back-
ground. Furthermore, using either the maximum likelihood
value or predictive error, our method is able to correctly iden-
tify the true model amongst a few possible candidates using
imaging data. This aspect had not been previously explored
within this context. The key aspect of the AIUQ approach is
that it removes the need for selecting wave-vector range and
weighing information on each wave vector in a case by case
manner. This feature is particularly useful to be integrated into
high-throughput experiments for automatically determining
the gelation time at various experimental conditions.

We outline a few future direction that will overcome the
limitation of the AIUQ approaches in the implemented pack-
ages. First, we assume that a physical model of the process
and equivalently the parametric form of the ISF is known.
However, this can be restrictive for scenarios where the un-
derlying model governing the dynamic process is unknown.
DDM is also used without fitting [27,46] by inverting the im-
age structure function separately to estimate the mean-squared
displacement at each q, but it still requires the selection of a
range of admissible q’s. In particular, model-free approaches
in DDM proceed by directly inverting the ISF at a selected
wave-vector range separately at each lag time [45], inevitably
truncating the lag time range that cannot be reliably analyzed.
A robust way for estimating the model-free ISF is of great
interest. Rather, by adopting the AIUQ framework, the ISF
approximated by MSD can be optimized using the likelihood
function in Eq. (9) to efficiently weigh all information at
different wave vectors and lag time. Using the likelihood
function in Eq. (9) can substantially improve the efficiency
of a similar approach in Ref. [45] by minimizing the loss
based on the image structure function, which will facilitate the
connection of MSD data to frequency-dependent viscoelastic
moduli using the GSER [38]. Second, We find that a small
drift is crucial to model for slow dynamics, such as the motion
close to the gelation point. The AIUQ framework allows one
to include the effect of drifts in modeling ISF, and jointly esti-
mate the intrinsic thermal fluctuation and drifts due to external
conditions. Third, the estimation of a mixture or a distribution
of the particles with different sizes can be important for some
scenarios, such as aggregation of probes or during polymer
degradation processes. As the particles with different sizes
may have different thermal fluctuations, the correlation pat-
terns modeled in ISF for these particles is also different. It is
of interest to include a mixture or a distribution of ISFs in the
AIUQ framework for systems with inhomogeneous particle
sizes. Last, certain particles can undergo rapid photobleaching
in some experiments, which can alter the signal-to-noise ratio.

Thus, it is of interest to model time-dependent amplitude,
A(q, t ), and noise parameters B̄(t ) for these scenarios.
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APPENDIX A: DERIVATION FOR SEC. II

The intermediate scattering function (ISF) defined in
Eq. (2) is computed by

fθ (q,�t ) = Cov[ψ (q, t ), ψ∗(q, t + �t )]

= E[ψ (q, t ) · ψ∗(q, t + �t )]

= E

[
1

M

M∑
m=1

exp (iq · (xm(t + �t ) − xm(t )))

]

+ E

⎡
⎣ 1

M

∑
j �= j′

exp(iq · (x j (t + �t ) − x j′ (t )))

⎤
⎦

=
〈

1

M

M∑
m=1

exp (iq · �xm(t,�t ))

〉
.

The last equation holds because there is no interaction be-
tween particles and the long-term expectation of ψ is zero by
assumption [25]. Note that the derivation of ISF assumes the
particle intensity profile is a Dirac δ function, which does not
strictly hold in light microscopy. Consequently, the amplitude
is relevant to various factors, such as the structure factor and
the particle form factor [62] and they typically need to be
estimated.

As all particles have the same displacement distributions,
the ISF of 2D processes can be written as

fθ (q,�t ) = E[exp (iq · �x(t,�t ))]

= E[exp (iq1�x1(t,�t ))]E[exp (iq2�x2(t,�t ))]

:= fθ1 (q1,�t ) fθ2 (q2,�t ). (A1)

Based on the cumulant generating function, for any l = 1, 2,
we have a power series expansion of the ISF [37,99],

log( fθl (ql ,�t )) =
∞∑
j=1

κl, j
(iql ) j

j!
, (A2)
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TABLE III. A list of parametric models of the intermediate
scattering function (ISF) for Brownian motion (BM), fractional
Brownian motion (FBM), Ornstein–Uhlenbeck (OU) process, and a
mixture of the OU process and FBM (OU + FBM). The nonpara-
metric model uses cumulant approximation [37] to construct the ISF
by the mean-squared displacement 〈�x2(�t )〉, which gives a unique
parameter at any lag time �t .

Parametric ISF

BM exp(−q2σ 2
BM�t/4)

FBM exp(−q2σ 2
FBM�tα/4)

OU exp[−q2σ 2
OU(1 − ρ�t )/4]

OU + FBM exp{−q2[σ 2
1 �tα + σ 2

2 (1 − ρ�t )]/4}
Nonparametric ISF

Cumulant approx. exp[−q2〈�x2(�t )〉/4]

where κl, j = f ( j)
θl

(ql , 0) is the jth derivative of the ISF with
respect to the random displacement along the lth coordi-
nate at time �t . Note that κl,1 = E[�xl (t,�t )] and κl,2 =
E[�xl (t,�t )2] are first and second moments, respectively. As
the first moment is zero, approximating the log ISF along the
lth coordinate by the first two moments follows

log( fθl (ql ,�t )) ≈ −q2
l E

[
�x2

l (t,�t )
]

2
. (A3)

When random displacements are Gaussian, there is no approx-
imation. In general, approximation in Eq. (A3) is widely used
in related techniques such as dynamic light scattering [30].
Noting that we only use MSD-parameterized ISF as examples.
The AIUQ approach is applicable to all ISFs that may not be
approximated by MSD.

Substituting fl (ql ,�t ) from Eq. (A3) into Eq. (A1) gives
an approximation of the ISF by the MSD in a 2D space:

fθ (q,�t )

≈ exp

{
−1

2
E

[
q2

1�x2
1 (t,�t ) + q2

2�x2
2 (t,�t )

]}

= exp

{
−1

4
E

[(
q2

1 + q2
2

)(
�x2

1 (t,�t ) + �x2
2 (t,�t )

)]}

= exp

[
−q2〈�x2(�t )〉

4

]
, (A4)

where q2=q2
1+q2

2 and the MSD 〈�x2(�t )〉=E[�x2
1 (t,�t )+

�x2
2 (t,�t )].
ISFs of a few widely used processes are summarized in

Table III, which follows from approximation by MSD. For a
Brownian motion (BM), for instance, the update of the 2D
position of the mth particles follows xm(t + �tmin) = xm(t ) +
σ 2

BM
2 εm(t ) with εm(t ) ∼ MN (0, I2). The MSD of BM follows

MSDBM = σ 2
BM�t [45].

For an OU process, the particle’s successive steps have a
weaker correlation with previous steps than the BM,

xm(t + �tmin) = ρ[xm(t ) − xm(t1)] + xm(t1)

+ σ 2
OU(1 − ρ2)

4
εm(t ), (A5)

where xm(t1) ∼ MN (xm(t0), σ 2
OU
4 I2), for a deterministic po-

sition xm(t0). The MSD of the OU process follows
σ 2

OU(1 − ρ�t ) [45].
We introduce the MSD and derivation for two other pro-

cesses: the fractional Brownian motion (FBM), and a mixture
of the OU process and FBM, which has the same MSD as
the continuous time random walk (CTRW) and the noisy con-
tinuous time random walk (NCTRW), respectively [100,101].
Denote �n = �t/�tmin. First, simulated particles from a 2D
FBM process exhibit long-term dependence, and the self-
similarity is controlled by the Hurst parameter H = α/2
[102,103]:

xm,l (t + �t ) = xm,l (t ) + x̃m,l (�t ), (A6)

where the incremental process x̃m,l (�t ) is known as
the fractional Gaussian noise with E[x̃m,l (�t )] = 0, and

Cov(x̃m,l (�tk ), x̃m,l (�ts)) = σ 2
FBM
4 (|�tk|2H + |�ts|2H − |�tk −

�ts|2H ); the indices representing the mth particle and lth
direction (l = 1, 2) and �tk = k�tmin and �ts = s�tmin for
any integer s and k. The MSD in one coordinate can be
computed as

E[(xm,l (t + �t ) − xm,l (t ))2]

= V [xm,l (t + �t ) − xm,l (t )] + E2[xm,l (t + �t ) − xm,l (t )]

= V [x̃m,l (�t )] = σ 2
FBM

2
�t2H = σ 2

FBM

2
�tα,

for any particle m = 1, . . . , M and coordinate l = 1, 2. Since
particles move isotropically in a 2D space, the MSD for FBM
is E[�x2(�t )] = σ 2

FBM�tα .
We next consider particles undergoing a mixture of the OU

process and FBM. This model presents a generalized form of
FBM and it has the same form of MSD as the NCTRW [101].
This extension is suitable for describing scenarios where the
particles are confined within cages and exhibit waiting times
distributed according to power laws. Here, the process can
be simulated through a summation of a mutually independent
FBM and an OU process. The update of the particles’ position
follows

xm,l (t ) = um,l (t ) + vm,l (t ), (A7)

where um,l (t ) is a FBM process in the lth direction with MSD
σ 2

1 �tα/2, and vi,l (t ) stands for an independent OU process
in the lth direction with MSD σ 2

2 (1 − ρ�t )/2. Since particles
move isotropically in a 2D space, and the two processes are
independent, the MSD is σ 2

1 �tα + σ 2
2 (1 − ρ�t ).

APPENDIX B: Q-DEPENDENT ESTIMATION
WHEN DIRECTLY INVERTING THE IMAGE

STRUCTURE FUNCTION

We show another example to indicate the estimation in
model-free analysis of DDM depends on the choice of wave-
vector range [27,45,46] using a diffusive process or Brownian
motion. Here the MSD 〈�x2(�t )〉 is obtained by directly
inverting the observed image structure function D(q,�t ):

�x2
est(q,�t ) = 4

q2
ln

[
A(q)

A(q) − D(q,�t ) + B(q,�t )

]
. (B1)
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FIG. 9. Parameter estimation by directly inverting D(q, �t ) us-
ing Eq. (B1). Blue circles and red triangles denote estimation of the
parameter at �t = 10 and 50, respectively. The truth (θ = 0.5) is
denoted by the thick black line.

We simulate the diffusive process with 500 × 500 pixels
across 500 frame with diffusion coefficient θ = 0.5 in Fig. 9.
We follow the first approach in fitting D(q,�t ) to estimate
Aj and B̄ discussed in Sec. III D. For purely diffusive motion,
〈�x2(�t )〉 = 4θ�t , containing only one parameter with the
truth θ = 0.5. At �t = 10, roughly one-third of q are close to
the estimate of θ , while at �t = 50, a much narrower range q
produces values close to the true diffusion coefficient. This
highlights the need for selecting a wave-vector range and
weighing the contribution of different q’s even for diffusive
processes.

APPENDIX C: DERIVATION FOR SEC. III

We first derive the distribution of �ŷre,q(t,�t ) for any q,
t , and �t . The distribution of �ŷim,q(t,�t ) can be shown
similarly. Note E[�ŷre,q(t,�t )] = 0. The variance can be
computed by

V [�ŷre,q(t,�t )] = V [ŷre,q(t + �t )] + V [ŷre,q(t )]

− 2Cov[ŷre,q(t ), ŷre,q(t + �t )]

= 2 × A(q)

4
+ 2 × B̄

4
− 2 × A(q)

4
fθ (q,�t )

= A(q)

2
(1 − fθ (q,�t )) + B̄

2
.

As �ŷre,q(t,�t ) follows a Gaussian distribution, we have
�ŷre,q(t,�t ) ∼ N (0,

A(q)
2 (1 − fθ (q,�t )) + B̄

2 ).
We next derive the probability density of J rings of trans-

formed intensity at the Fourier space in Eq. (9). From Eq. (6),
the mean of an n vector ŷre, j′ = [ŷre, j′ (t1), ..., ŷre, j′ (tn)]T for
any j′ ∈ S j can be computed by the law of total expectation

below:

E[ŷre, j′ ] = E[E[ŷre, j′ | zre, j′ ]] = E[zre, j′ ] = 0, (C1)

where zre, j′ = (zre, j′ (t1), ..., zre, j′ (tn))T is a vector of
zero-mean, real-valued random factors. The covariance
of ŷre, j′ can be computed by the law of total covariance:

V [ŷre, j′ ] = V [E[ŷre, j′ | zre, j′ ]] + E[V [ŷre, j′ | zre, j′ ]]

= V [zre, j′ ] + B̄

4
In = Aj

4
R j + B̄

4
In. (C2)

Note that ŷre, j′ is Gaussian since both zre, j′ and
ε j,re = (ε j,re(t1), ..., ε j,re(tn))T are Gaussian. Furthermore, the
random factors zre, j′1 and zre, j′2 are independent when j′1 �= j′2,
and the noise is also independent. Hence the probability
density of Ñ × n matrix ŷre = [ŷre(t1), ..., ŷre(tn)] follows

p(ŷre | θ, A1:J , B̄) =
J∏

j=1

∏
j′∈S j

pMN(ŷre, j′ ; 0, � j ).

As the density of the imaginary part can be similarly derived,
we have the logarithm of the likelihood below

log(L(θ, A1:J , B̄))

= −nÑ log(2π ) −
J∑

j=1

{S j log(|� j |)}

− S j

2

∑
j′∈S j

(
ŷT

re, j′�
−1
j ŷre, j′ + ŷT

im, j′�
−1
j ŷim, j′

)
, (C3)

which is the density of the right-hand side of Eq. (9).
Last, we provide the derivation to prove the unbiasedness

of the estimator Aest, j in Eq. (10). Note that for any j′ ∈ S j

the mean and covariance of ŷre, j′ = [ŷre, j′ (t1), ..., ŷre, j′ (tn)]T

and ŷim, j′ = [ŷim, j′ (t1), ..., ŷim, j′ (tn)]T are the same. Then, by
Eqs. (C1) and (C2), for any j′ ∈ S j and tk with 1 � k � n, we
have

E[|ŷ j′ (tk )|2] = E[ŷre, j′ (tk )2 + ŷim, j′ (tk )2]

= 2 ×
(

Aj

4
+ B̄

4

)

= Aj + B̄

2
. (C4)

Then

E[Aest, j] = 2

S jn

∑
j′∈S j

n∑
k=1

E[|ŷ j′ (tk )|2] − B̄

= 2 ×
(

Aj + B̄

2

)
− B̄ = Aj . (C5)

Since the expected value of the estimator Aest, j is equal to the
underlying true value, the estimator Aest, j is unbiased.

[1] Z. Shang, E. Zgraggen, B. Buratti, F. Kossmann, P. Eichmann,
Y. Chung, C. Binnig, E. Upfal, and T. Kraska, Democratizing
data science through interactive curation of ML pipelines, in
Proceedings of the International Conference on Management
of Data (2019), pp. 1171–1188.

[2] A. V. Bayles, T. M. Squires, and M. E. Helgeson, Dark-field
differential dynamic microscopy, Soft Matter 12, 2440 (2016).

[3] C. Guidolin, C. Heim, N. B. Adams, P. Baaske, V. Rondelli,
R. Cerbino, and F. Giavazzi, Protein sizing with differential
dynamic microscopy, Macromolecules 56, 8290 (2023).

034601-19

https://doi.org/10.1039/C5SM02576A
https://doi.org/10.1021/acs.macromol.3c00782


GU, HE, LIU, AND LUO PHYSICAL REVIEW E 110, 034601 (2024)

[4] V. A. Martinez, R. Besseling, O. A. Croze, J. Tailleur, M.
Reufer, J. Schwarz-Linek, L. G. Wilson, M. A. Bees, and W. C.
Poon, Differential dynamic microscopy: A high-throughput
method for characterizing the motility of microorganisms,
Biophys. J. 103, 1637 (2012).

[5] P. J. Lu, F. Giavazzi, T. E. Angelini, E. Zaccarelli, F. Jargstorff,
A. B. Schofield, J. N. Wilking, M. B. Romanowsky, D. A.
Weitz, and R. Cerbino, Characterizing concentrated, multiply
scattering, and actively driven fluorescent systems with con-
focal differential dynamic microscopy, Phys. Rev. Lett. 108,
218103 (2012).

[6] M. S. Safari, R. Poling-Skutvik, P. G. Vekilov, and J. C.
Conrad, Differential dynamic microscopy of bidisperse col-
loidal suspensions, npj Microgravity 3, 21 (2017).

[7] J. A. Richards, V. A. Martinez, and J. Arlt, Particle sizing for
flowing colloidal suspensions using flow-differential dynamic
microscopy, Soft Matter 17, 3945 (2021).

[8] Y. Gao, J. Kim, and M. E. Helgeson, Microdynamics and
arrest of coarsening during spinodal decomposition in ther-
moreversible colloidal gels, Soft Matter 11, 6360 (2015).

[9] E. M. Furst and T. M. Squires, Microrheology (Oxford Uni-
versity Press, Oxford, UK, 2017).

[10] H. Ewers, A. E. Smith, I. F. Sbalzarini, H. Lilie, P.
Koumoutsakos, and A. Helenius, Single-particle tracking of
murine polyoma viruslike particles on live cells and artificial
membranes, Proc. Natl. Acad. Sci. USA 102, 15110 (2005).

[11] H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara,
T. Yanagida, and H. Noji, Simple dark-field microscopy with
nanometer spatial precision and microsecond temporal resolu-
tion, Biophys. J. 98, 2014 (2010).

[12] X. Meng, A. Sonn-Segev, A. Schumacher, D. Cole, G.
Young, S. Thorpe, R. W. Style, E. R. Dufresne, and P.
Kukura, Micromirror total internal reflection microscopy for
high-performance single particle tracking at interfaces, ACS
Photonics 8, 3111 (2021).

[13] J. C. Crocker and D. G. Grier, Methods of digital video mi-
croscopy for colloidal studies, J. Colloid Interface Sci. 179,
298 (1996).

[14] D. Blair and E. Dufresne, The matlab particle tracking code
repository, particle-tracking code available at http://physics.
georgetown.edu/matlab (2008).

[15] D. Allan, T. Caswell, N. Keim, and C. van der Wel, trackpy:
Trackpy v0. 3.2, Zenodo (2016), https://zenodo.org/records/
10674547.

[16] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH image
to ImageJ: 25 years of image analysis, Nat. Methods 9, 671
(2012).

[17] J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D.
Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and
K. W. Eliceiri, Trackmate: An open and extensible platform
for single-particle tracking, Methods 115, 80 (2017).

[18] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H.
Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist,
J. Moffat et al., Cellprofiler: Image analysis software for iden-
tifying and quantifying cell phenotypes, Genome Biol. 7, R100
(2006).

[19] C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, Cell-
pose: A generalist algorithm for cellular segmentation, Nat.
Methods 18, 100 (2021).

[20] T. Savin and P. S. Doyle, Static and dynamic errors
in particle tracking microrheology, Biophys. J. 88, 623
(2005).

[21] T. Savin and P. S. Doyle, Role of a finite exposure time on
measuring an elastic modulus using microrheology, Phys. Rev.
E 71, 041106 (2005).

[22] F. Giavazzi and R. Cerbino, Digital fourier microscopy for soft
matter dynamics, J. Opt. 16, 083001 (2014).

[23] R. Cerbino and V. Trappe, Differential dynamic microscopy:
Probing wave-vector-dependent dynamics with a microscope,
Phys. Rev. Lett. 100, 188102 (2008).

[24] F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino,
Scattering information obtained by optical microscopy: Dif-
ferential dynamic microscopy and beyond, Phys. Rev. E 80,
031403 (2009).

[25] B. J. Berne and R. Pecora, Dynamic Light Scattering: With
Applications to Chemistry, Biology, and Physics (Courier Cor-
poration, North Chelmsford, MA, 2000).

[26] L. G. Wilson, V. A. Martinez, J. Schwarz-Linek, J. Tailleur,
P. N. Pusey, W. C. K. Poon, and G. Bryant, Differential dy-
namic microscopy of bacterial motility, Phys. Rev. Lett. 106,
018101 (2011).

[27] A. V. Bayles, T. M. Squires, and M. E. Helgeson, Probe mi-
crorheology without particle tracking by differential dynamic
microscopy, Rheol. Acta 56, 863 (2017).

[28] G. Lee, G. Leech, M. J. Rust, M. Das, R. J. McGorty,
J. L. Ross, and R. M. Robertson-Anderson, Myosin-driven
actin-microtubule networks exhibit self-organized contractile
dynamics, Sci. Adv. 7, eabe4334 (2021).

[29] M. Meleties, D. Britton, P. Katyal, B. Lin, R. L. Martineau,
M. K. Gupta, and J. K. Montclare, High-throughput mi-
crorheology for the assessment of protein gelation kinetics,
Macromolecules 55, 1239 (2022).

[30] J. Stetefeld, S. A. McKenna, and T. R. Patel, Dynamic light
scattering: A practical guide and applications in biomedical
sciences, Biophys. Rev. 8, 409 (2016).

[31] G. S. Ammar and W. B. Gragg, The generalized Schur al-
gorithm for the superfast solution of Toeplitz systems, in
Rational Approximation and Its Applications in Mathemat-
ics and Physics: Proceedings, Łańcut 1985 (Springer, Berlin,
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