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In this paper, we are concerned with the crossover between strong disorder (SD) and weak disorder (WD)
behaviors in three well-known problems that involve minimal paths: directed polymers (directed paths with
fixed starting point and length), optimal paths (undirected paths with a fixed end-to-end or spanning distance),
and undirected polymers (undirected paths with a fixed starting point and length). We present a unified theoretical
framework from which we can easily deduce the scaling of the crossover point of each problem in an arbitrary
dimension. Our theory is based on the fact that the SD limit behavior of these systems is closely related to the
corresponding percolation problem. As a result, the properties of those minimal paths are completely controlled
by the so-called red bonds of percolation theory. Our model is first addressed numerically and then approximated
by a two-term approach. This approach provides us with an analytical expression that seems to be reasonably
accurate. The results are in perfect agreement with our simulations and with most of the results reported in
related works. Our research also leads us to propose this crossover point as a universal measure of the disorder
strength in each case. Interestingly, that measure depends on both the statistical properties of the disorder and
the topological properties of the network.
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I. INTRODUCTION

Minimal paths in disordered systems have been inves-
tigated for decades due to their broad spectrum of appli-
cations which include the following: polymer science [1],
transport [2–4], fluid flow through porous media [5,6],
human behavior [7], social networks [8], communication net-
works [9–12], and traffic engineering [4,12–14].

Disordered systems are modeled by regular lattices or ran-
dom networks whose bonds are assigned a positive random
weight w. Bond weights are usually considered as indepen-
dent and identically distributed (i.i.d.) random variables with
common probability density f (w), cumulative distribution
F (w) with F (0) = 0, and support [wA,wB] with wA � 0.

The notion of a minimal path here refers to the path that
minimizes the sum of the weights along it. The minimal sum
is the total weight of the minimal path and is denoted by
Wopt. The optimization is carried out over the ensemble of
paths that are compatible with the geometrical constraints of
the problem. These constraints thus determine the kind of
problem. In this paper, we are interested in the following three
problems:

(i) Directed polymers in random media (DPRM), a
paradigm of the directed problem [15]. The starting point and
the length of the path are fixed, but the ending point is not
fixed. In (D + 1)-dimensional DPRM, the lattice bonds are
directed in a selected direction (the longitudinal direction)
which is usually referred to as time t . By construction, t
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accounts for the length of the polymer. The transverse hyper-
plane with dimension D is usually referred to as space x.

(ii) Optimal paths (OPs) [16,17]. We distinguish between
OPs in regular lattices (OPRLs) and OPs in random networks
(OPRNs). In D-dimensional OPRLs, we have two principal
scenarios. We may consider the optimal path connecting two
opposite sides of a D-dimensional lattice of linear size L. In
that case, there is a single length scale given by the span-
ning distance L. But we may also consider the optimal path
between two fixed sites separated by an end-to-end distance
r in a D-dimensional lattice with arbitrary size L1 × L2 ×
· · · × LD. In that case, we have two relevant length scales:
r and mini{Li} [18]. The scaling of the optimal path in the
first case is the same as that obtained in the second problem
when we consider r = mini{Li} = L [18]. In both cases, the
length of the optimal path is given by the number of bonds
along it (hopcount) and its mean is denoted by �opt. In the
OPRN problem, we consider a random network of size N
(number of nodes) and �opt accounts for the average length
of the optimal path between two nodes in the network. In all
cases, optimal paths are self-avoiding walks (SAWs) with no
length restriction.

(iii) Undirected polymers in random media
(UPRM) [19–22]. They are the undirected analogs of
DPRM. In D-dimensional UPRM, we consider a polymer of
fixed length � that is attached by one end to the center of a
D-dimensional lattice. The configurations of the polymer are
SAWs with a fixed starting point and length and free end point.

There has been much interest in the effect of the disorder
on the geometry of these minimal paths [17–20,23–26]. It
is known that their scaling properties undergo a crossover
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between two regimes: the weak disorder (WD) regime, in
which almost all links contribute to Wopt, and the strong dis-
order (SD) regime, which is obtained from extremely broad
distributions, so we can assume that the total weight of the
path is dominated by the maximum value of w along it,
Wopt = wmax (we call it the max principle). Note that the max
principle is rigorously valid only in the ultrametric limit, also
called the SD limit [27]. While in WD conditions there is no
single bond whose removal yields a significant change in the
minimal path, in the SD case such a bond always exists.

The scaling in the WD regime depends on the kind of
problem. OPRLs in WD belong to the same universality
class as DPRM [23,28,29], which can be mapped to the cele-
brated Kardar-Parisi-Zhang (KPZ) universality class [15,30].
In both cases, the minimal paths are self-affine curves. On
the other hand, UPRM in WD conditions are fractal, and
their fractal dimension is smaller than that of SAWs without
disorder [19,22].

The scaling in SD conditions also depends on the type
of problem. This behavior will be properly discussed later
for each problem, but in all cases the results reveal a
close relationship between the SD limit and the correspond-
ing percolation problem: ordinary (isotropic) percolation
for optimal paths [6,17,27–29,31–33] and undirected poly-
mers [19,20], and directed percolation (DP) for directed
polymers [25,26,34–37].

This paper is concerned with the crossover point be-
tween these two regimes, i.e., with the crossover scale
below which those minimal paths behave as in the SD
limit, and above which they behave as in WD. See, e.g.,
Refs. [28,29,31] for OPRLs, Refs. [17,31–33] for OPRNs,
Refs. [25,26,34–37] for DPRM, and Ref. [20] for UPRM. This
crossover also affects the properties of the global transport
[10–12].

Indeed, as we will discuss more carefully later, much less
is known on the scaling of the crossover point with disorder.
Most of the results are for very specific and simple distribu-
tions and provide scaling laws that miss important information
about the geometry and dimensionality of the network. In
general, the approaches varied with the kind of problem but
in all cases the crossover point was obtained from arguments
based on the percolation theory. A notable exception is the
work of Chen et al. [31]. The authors derived a model for the
crossover length in the OPRL problem and for the crossover
size in the OPRN problem. The models can be applied to any
disorder distribution and they have shown to agree with the
results of numerical simulations [17,18,28,29,31–33].

In this paper, we present a general theory for this crossover
and show that it can be readily adapted to the three problems.
Our argument is also based on the percolation theory, but
we follow a different approach. Concretely, we focus on the
role of the so-called red bonds of critical percolation in the
behavior of those minimal paths in the SD limit. We recall that
a red bond [38] is an open bond of a percolation lattice such
that when it is removed, the connectivity inside the backbone
of the percolation cluster to which it belongs is destroyed. Our
results will also lead us to propose a universal measure of the
disorder strength in these systems. That measure depends on
both the disorder distribution and the percolation properties of
the medium at criticality.

This paper is organized as follows. We begin by intro-
ducing in Sec. II some relevant concepts on the measure of
disorder and presenting the families of distributions that will
be used to generate it. Next, in Sec. III, we present our theoret-
ical framework and derive the general scaling of the crossover
length in the OPRL problem. This scaling will be studied
numerically in Sec. IV, in which we also present an analytical
expression based on a two-term approach. In Sec. V, we check
the validity of our model by running numerical simulations
of the OPRL problem. Once the OPRL problem has been
understood, in Sec. VI we apply our reasoning to the OPRN,
DPRM, and UPRM problems, in that order. In all cases, we
will pay special attention to comparing our results to the dif-
ferent approaches followed in the literature. The last results of
this paper will be presented in Sec. VII, where we propose and
study a possible universal measure of the disorder strength.
Finally, Sec. VIII is devoted to a summary of our conclusions
and our ideas regarding future work.

II. ON DISORDER

We introduce the notion of disorder strength and assume
that it can be measured through a certain parameter S, called
the disorder parameter, which is obtained from the disorder
distribution. To ensure that S provides a well-behaved mea-
sure, we impose the following conditions: (i) it is defined
positive, (ii) it is a continuous and monotonic function of
the distribution parameters, and (iii) the limit S → ∞ cor-
responds to the SD limit and the limit S → 0 is the WD
limit, i.e., the homogeneous (nondisordered) case. The latter
condition implies that the S → 0 limit of f (w) must be the
Dirac delta δ(w − τ ), where τ is the expected weight of the
distribution. One of the aims of this paper is to derive a univer-
sal expression for S, but for the moment we are interested in
deducing a particular expression Si for each type i of disorder.

In a previous work [30], we showed that the coefficient of
variation (CV) of f (w) provides a universal measure of the
disorder strength in the OPRL problem on weakly disordered
lattices. The CV of a distribution with mean τ and standard
deviation s is CV = s/τ . For CV < 1, there exists a length
scale such that below it the optimal path behaves as in the
WD limit, i.e., following the Gaussian statistics, and above it
the optimal path behaves as in WD, i.e., following the KPZ
statistics [30]. That crossover length scales as (CV)−2 and it
diverges in the WD limit (CV = 0). At CV = 1 it becomes
of the same order as the lattice constant and the effects of
the lattice geometry seem to vanish [39]. In this paper, we
are interested in the regime CV � 1, where we observe the
effects of critical percolation [40]. Note that this regime is
never achieved in distributions such as the uniform, in which
CV is upper bounded by 1, or the exponential, with constant
CV = 1.

Universal behavior is expected to be independent of the
type of disorder. To check the universality of our results,
we will consider the following families of distributions: the
Weibull (W), the log normal (LN), the Pareto (P), the log
Cauchy (LC), the inverse (I), and the polynomial (Poly). As
we will see below, the identification of a disorder strength pa-
rameter in these families is straightforward. For that reason we
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also address more complex distributions such as the Dagum
(D) family, with two shape parameters.

We now present the density function of these families and
our choice for the corresponding disorder parameter Si. In all
cases, there is a parameter, the scale or the location parameter
depending on the distribution, which has been denoted by w0.
Since it is completely irrelevant for our purposes, we have
considered w0 = 1.

(i) The W family with support [0,∞) and shape parameter
k > 0:

fW(w) = k

w0

(
w

w0

)k−1

exp

[
−

(
w

w0

)k
]
. (1)

The CV is a continuously decreasing function of k. Crossover
value CV = 1 is obtained at k = 1, so we are interested in k �
1. Parameter 1/k agrees with all the requirements discussed
above, so we define SW ≡ 1/k.

(ii) The LN family with support [0,∞) and parameter
σ > 0:

fLN(w) = 1

w
√

2πσ 2
exp

[
− ln2 (w/w0)

2σ 2

]
. (2)

The CV is a continuously increasing function of σ . Crossover
value CV = 1 is obtained at σ � 0.83, so we will focus on
values σ � 1. For the log normal distribution, we define
SLN ≡ σ .

(iii) The P family with support [w0,∞) and shape param-
eter b > 0:

fP(w) = b

w0

(
w0

w

)b+1

. (3)

The CV is well-defined only for b > 2 and is a continuously
decreasing function of b. Crossover value CV = 1 is obtained
at b � 2.41, so we will be interested in values b � 1. Accord-
ingly, for the Pareto distribution, we define SP ≡ 1/b.

(iv) The LC family with support [0,∞) and parameter
γ > 0:

fLC(w) = 1

wπ

[
γ

ln2(w/w0) + γ 2

]
. (4)

The CV of the log Cauchy is not defined because its mean and
variance are infinite. However, simulation results lead us to
define SLC ≡ γ and focus on γ � 1.

(v) The I family with support [1, ea] and parameter a > 0:

fI(w) = 1

aw
. (5)

The CV is a continuously increasing function of a, which
clearly controls the broadness of the disorder. Crossover value
CV = 1 is obtained at a = 3.83. Thus, we define SI ≡ a and
SD conditions are expected for a � 1.

(vi) The Poly family with support [0,1] and exponent α >

0, called the extreme value index [10–12]:

fPoly(w) = αwα−1. (6)

This family has the particularity that its distribution function
FPoly(w) = wα shows a power-law behavior close to zero
which is different from the linear behavior of regular distribu-
tions around zero [12]. The CV is a continuously decreasing

TABLE I. Disorder strength parameter Si of each family i of
distributions.

i W LN P LC I Poly D

Si k−1 σ b−1 γ a α−1 (βχ )−1

function of α, which controls the disorder strength. The SD
and WD limits are obtained when α → 0 and α → ∞, re-
spectively [12]. Crossover value CV = 1 is obtained at α �
0.414, so SD conditions are expected for α � 1. We define
SPoly ≡ 1/α.

(vii) The D family with support [0,∞) and two shape
parameters, β and χ ;

fD(w) = βχ

w

(w/w0)βχ

(1 + (w/w0)χ )β+1 . (7)

The CV of the Dagum distribution is not defined for χ �
2 because the variance diverges. For fixed β, it is a de-
creasing function of χ with limχ→∞ CV = 0. For fixed χ ,
it is a decreasing function of β with the following limits:
limβ→0 CV = ∞ and limβ→∞ CV = K (χ ), where K (χ ) is
a positive decreasing function of χ with limχ→∞ K (χ ) = 0.
Therefore, the WD limit can only be reached in the χ → ∞
limit. On the other hand, the SD limit can be attained when
β → 0 or χ → 0. This is a very interesting case since the SD
limit can be achieved through two distribution parameters, so
it is not so obvious defining the Dagum disorder parameter SD.
For the moment, we choose SD ≡ (βχ )−1. A deeper analysis
of this question will be presented in Sec. VII.

We summarize in Table I our choice for the disorder
strength parameter Si of each family i of distributions. We
recall that, in all cases, the SD regime is observed for Si � 1
and the SD limit is obtained when Si → ∞.

III. THEORETICAL CONSIDERATIONS
(OPTIMAL PATHS)

In this section, we present our theoretical arguments and
several numerical results supporting them. We do it for the
OPRL problem [17,18,23,27–29,31–33,41]. In further sec-
tions, we adapt them to the OPRN, DPRM, and UPRM
problems. More specifically, we consider the problem of the
optimal path between two opposite sides of a square lattice of
linear size L, although our arguments and results are also valid
for the problem of the optimal path between two fixed points
in a lattice [18].

Before starting, we introduce an object that will be very
useful throughout the paper to present our theory. Given a
disordered lattice, for a certain value of the weight w′ we
define the corresponding percolation lattice CPL(w′) as the
bond percolation lattice obtained from the initial disordered
lattice when we consider that all bonds with weights w � w′
are open bonds and all bonds with w > w′ are closed. The
occupation probability of the CPL(w′) is thus p = F (w′).

OPRLs in the SD limit are self-similar objects that be-
long to the same universality class as paths in the minimum
spanning tree [4,10–12] and shortest paths in invasion perco-
lation with trapping [5,6]. Much evidence points to a close
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relationship between OPRLs in the SD limit and ordinary
bond percolation at criticality [6,17,27–29,31–33]. Indeed, the
so-called bombing algorithm proposed by Cieplak et al. [27]
to obtain the optimal path in the SD limit is actually a perco-
lation process.

It is also clear that the optimal path in the SD limit, with
total weight Wopt = wmax, belongs to the backbone of the
percolation cluster obtained in the CPL(wmax). Moreover, this
is the cluster that (for the first time) percolates the lattice.
This means that clusters obtained in CPL(w < wmax) are not
percolating.

The relationship between OPRLs in the SD limit and per-
colation is well established by the relation p = F (w), which
represents a continuous mapping of the weight into the occu-
pation probability of the percolation problem [40]. We have
recently shown [40] that the optimal balls B(W ), given by
the set of nodes that can be reached from the center node
by optimal paths with weight Wopt � W , are, in the SD limit,
statistically equal to the percolation clusters obtained at occu-
pation probability p = F (W ). For weakly disordered lattices
the fluctuations of the optimal balls obey KPZ statistics [39].

From these results, we deduce that the probability density
of wmax in the SD limit, denoted as ρ ′(wmax, L), has the form

ρ ′(wmax, L) = f (wmax)ρ(p, L), (8)

where ρ(p, L) is the probability density for a percolation
cluster to span a square lattice of side L with occupancy p. For
L → ∞, we have the following asymptotic behaviors [38,42]:
(i) ρ(pc, L) ∼ L1/ν , where ν is the percolation exponent asso-
ciated to the scaling of the correlation length ξ near criticality,
ξ ∼ |pc − p|−ν , which is well-defined for any dimension D;
(ii) the standard deviation of ρ(p, L) decreases as L−1/ν , and
(iii) the probability that the lattice percolates at probability pc,
given by the function �(pc, L) = ∫ pc ρ(p′, L)d p′, approaches
1/2 in site percolation and is equal to 1/2 for all L in bond
percolation.

By applying these results to Eq. (8), we obtain that the
L → ∞ limit of wmax is the critical weight:

wc ≡ F−1(pc). (9)

For finite L, wmax is distributed around wc [28,29] with a
standard deviation that scales as L−1/ν [28].

We now apply to our OPRL problem the links-nodes-blobs
picture proposed by Stanley to describe the infinite cluster
slightly above criticality [43]. According to that picture, the
backbone of the bond percolation cluster that connects for the
first time the left and the right sides of a percolation square
lattice of linear size L < ξ can be represented schematically as
shown in Fig. 1. The backbone behaves as a generalized link
between the two sides consisting of a series of blobs (gray
regions) connected by one-dimensional chains of red bonds
(thick lines). We recall that the backbone of a percolation
cluster carries all the current flowing through the cluster if we
impose a voltage drop between the two opposite plates. The
red bonds (also called singly connected bonds) are those links
of the backbone which carry the full current [38,43,44]. When
a red bond is removed, the current between the two plates
stops because the connectivity between them is destroyed.
Finally, the blobs are sets of multiconnected bonds left after

FIG. 1. (a) Schematic picture for the backbone of the percolation
cluster that, for the first time, connects the left and the right sides of a
square lattice. We have followed the links-nodes-blobs picture [43].
One-dimensional chains of red bonds are represented by thick lines
and blobs by gray regions. (b) Illustration of the optimal path (broken
line) between the two opposite sides.

removing the red bonds from the backbone. Blobs are dense
regions with more than one connection between two nodes.

It seems clear that the optimal path between the two oppo-
site sides in the SD limit must go through all the red bonds
in the backbone of the percolation cluster obtained in the
CPL(wmax). We have illustrated this idea in Fig. 1(b), in which
we have schematically represented the optimal path between
the two sides by the broken curve. This path must traverse all
the singly connected segments since they act as bottle necks.
When the path reaches a blob, it explores the entire patch
to minimize the weight between the entry and the exit blob
points.

The average number of red bonds in a percolation lattice of
linear size L < ξ , denoted by nred, scales as [44]

nred ∼ L1/ν . (10)

We have carried out numerical simulations of the OPRL
problem in square lattices of linear size L and we have mea-
sured nred as follows. For each optimal path, we first identify
wmax and then we build the CPL(wmax). Finally, we calculate
the number of red bonds in the backbone of the resulting
percolation cluster. We show in Fig. 2(a) the results obtained
for a Weibull disorder with different disorder strengths. We
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FIG. 2. (a) Average number of red bonds in the optimal path
between two opposite sides of a square lattice as a function of the
lattice linear size L for a Weibull disorder with different values of SW.
(b) Data collapse obtained after scaling L to the SD-WD crossover
length L× given in Eq. (23), and nred to L1/ν

× . Dashed line in both
panels represents power-law behavior with exponent 1/ν = 3/4. Av-
erages are calculated over 5000 realizations.

clearly see that the curves follow the scaling behavior given
in Eq. (10) up to a certain point that depends on the disorder
strength. As SW increases, the deviation takes place in increas-
ingly larger lattices.

That deviation occurs when the max principle is no longer
fulfilled and the optimal path departs from the SD limit be-
havior. To illustrate it, we have displayed in Fig. 3(a) the
ratio wmax/Wopt for the same set of simulations. As disorder
strength increases, the range of validity of the max principle
(wmax/Wopt = 1) also increases. In the SD limit (SW → ∞),
this range should extend to infinite.

When we compare Figs. 2(a) and 3(a), we note that the
deviations from the SD limit behavior take place in both cases
at similar points. We denote this crossover length as L×. Thus,
L× stands for the length scale above which the max principle
is no longer fulfilled and the system deviates from the SD limit
behavior. We expect it to depend on the disorder distribution
and on the geometric and topological properties of the lattice.
From the results displayed in the figures, we also deduce that
it is an increasing function of disorder. We anticipate that

FIG. 3. (a) Ratio wmax/Wopt as a function of the lattice linear
size L for the same set of results displayed in Fig. 2. (b) Data
collapse obtained after scaling L to the SD-WD crossover length L×
given in Eq. (23). Continuous line represents function wmax/Wopt =
exp (−x3/4) with x ≡ L/L×, deduced after applying the theoreti-
cal arguments presented in Ref. [25] to the OPRL problem (see
Sec. VI B). Averages are calculated over 5000 realizations.

the data collapses displayed in the panels below, Figs. 2(b)
and 3(b), support this assumption.

Continuing with our reasoning, it is also reasonable to
assume that the bond with the largest weight wmax must be
a red bond. Otherwise, it would belong to a blob and hence
it would be discarded in the optimization process. To validate
this assumption, we have calculated the probability for it to
occur, denoted as Pred, in the same set of results presented
above. Results have been displayed in Fig. 4(a). The similarity
with Fig. 3(a) is very remarkable and clearly shows that, as
long as the problem behaves as in the SD limit, the probability
is practically one.

Suppose now that we are at some point in the crossover
region from SD to WD, so the max principle does not strictly
hold. We can thus assume that the total weight of the optimal
path is controlled by the sum of the weights of the red bonds
along the path:

Wopt ≈
nred∑
k=1

wk . (11)
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FIG. 4. (a) Probability that the bond with wmax is a red bond
as a function of the lattice linear size L for the same set of results
displayed in Figs. 2 and 3. (b) Data collapse obtained after scaling L
to the SD-WD crossover length L× given in Eq. (23). Averages are
calculated over 5000 realizations.

That assumption is reasonable since the same argument used
to show that the maximal bond must be a red bond can be
applied to the second heaviest bond, to the third, and so on
until we get bond weights comparable to the blobs weights.
Indeed, close to the crossover one expects that only the highest
valued bonds along the paths are relevant [26]. However, as
we will show later, it is enough considering the first two
terms, which is in line with the approaches followed in the
literature [20,25,26,28,31,32].

The weights of the red bonds are assumed to be i.i.d.
random variables because their choice obeys a geometrical
principle (conservation of connectivity) instead of a minimal
principle. In the SD limit and for large L, the probability
density and cumulative distribution of the red-bond weights,
denoted by fred and Fred, respectively, are

fred(w) = f (w)

pc
, Fred(w) = F (w)

pc
, (12)

with support [wA,wc].
From the above arguments and Eq. (10), we conclude

that the problem of obtaining the crossover length L× can
be simplified to the problem of determining the length of a
one-dimensional chain of i.i.d. random variables at which the
max principle fails. We denote this crossover number by n×

red

and we obtain

L× ∼ (n×
red)ν . (13)

The crossover length L× depends on the properties of the
disorder distribution and the geometry and dimensionality of
the lattice through pc and ν.

IV. CHAIN MODEL

To obtain the SD-WD crossover number n×
red, we must set

the mathematical condition for the transition to occur.
We consider a chain of n + 1 bonds and assume that the

bond at position n + 1 has the critical weight wc. The rest
of the bonds have random weights wi drawn from the prob-
ability density fred given in Eq. (12) with w ∈ [wA,wc]. Now,
we look for the probability that the total weight of the rest
of the chain,

∑n
i=1 wi, is less than wc [12]. We define that

probability as

P(n, S) ≡ Prob

{
n∑

i=1

wi < wc : wi < wc

}
. (14)

P(n, S) is, in fact, the cumulative distribution of the n convo-
lution of fred(w), evaluated at wc.

For n � n×
red, the chain should behave as in the SD limit,

hence giving P(n, S) � 1. For n � n×
red, the chain is weakly

disordered and we should obtain P(n, S) � 0. We thus expect

P(n, S) �
{

1 for n � n×
red

0 for n � n×
red.

(15)

To check this conjecture, we have numerically calculated
P(n, S) and we have displayed the results in Fig. 5. Figure 5(a)
shows P(n, S) against n for different strengths of the Weibull
disorder. In Fig. 5(b), we show the results for several families
of distributions with the same strength Si = 1000.

We first note that the decay of P(n, S) with n follows the
behavior conjectured in Eq. (15). Moreover, this decay is in
excellent agreement with the stretched exponential function,

P(n, S) ≈ exp

[
−

(
n − 1

n×
red − 1

)φ
]
, (16)

with parameters n×
red > 1 and φ > 0. From the definition of

P, we have P(1, S) = 1 regardless of the disorder strength
S. Data fits to Eq. (16) have been represented by continuous
lines of the same color as the corresponding symbols. It is
important to stress that we have obtained the same excellent
agreement in all the families studied in this work. Thus, the
behavior presented in Eq. (16) seems to be universal.

In Fig. 5(a), we observe that P(n, SW → ∞) → 1 for all n,
which means that n×

red diverges in the SD limit, as expected.
In Fig. 5(b), we also observe that disorder parameters Si

do not provide a universal measure of the disorder strength.
Otherwise, data would collapse to a single universal function.
We focus now on the fitting parameters n×

red and φ. We show
their fitted values in Figs. 6(a) and 6(b), respectively, as a
function of the disorder parameter Si for several families of
distributions. We observe that n×

red very rapidly attains its
asymptotic behavior, which seems to be linear in all cases.
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FIG. 5. Numerical estimate of probability P(n, S) as a function
of n for (a) the Weibull distribution and different values of its disorder
parameter SW and (b) different families of distributions with the same
disorder strength Si = 1000. To obtain the Dagum set of points, we
have fixed β = 1 and varied χ . The fit of each set of symbols to the
stretched exponential function given in Eq. (16) has been displayed
in both panels with continuous lines of the same color. Probabilities
are calculated from 106 simulations of the chain model.

The stretching exponent approaches a limit value that, inter-
estingly, seems to be universal as well. We have fitted n×

red to
the power law ci(Si )mi for values Si > 100, and the results are
shown in Table II. Indeed, the fitted value of the exponent mi

is practically equal to 1 in all the cases.
It is worth noting that this result depends on our choice of

the disorder parameter for each family, Si, which was given
in Table I. For example, for the Weibull family we could also
have considered SW = k−q with q > 0, since it satisfies all the
conditions we have imposed. That case would appear in the

FIG. 6. (a) Crossover number of red bonds, n×
red, obtained from

the fit of P(n, S) to the stretched exponential function given in
Eq. (16) as a function of the corresponding disorder parameter Si

for several families of distributions. Continuous lines with the same
color as the symbols stand for the analytical approximate given in
Eq. (20). The broken line represents linear behavior. (b) Fitted values
of the stretching exponent φ as a function of Si for the same results.
Dotted line represents the value φ = 1.726 (see text).

figure as a straight line with slope 1/q. Definitions given in
Table I were intended to show that in all the families analyzed
here there exists a definition of disorder parameter such that
n×

red grows linearly with it, and that this definition is closely
related to the shape parameter of the corresponding family.
Furthermore, we will see later that this choice corresponds to
the asymptotic behavior of our theoretical model.

We also display in the table, for each family i, the value φi

obtained from direct averaging of the values of φ displayed

TABLE II. For each family i, the first two rows show the values of the fitting parameters ci and mi resulting from the fit of n×
red in Fig. 6(a)

to function ci(Si )mi for Si > 100. The third row shows the value φi obtained from direct averaging of the values of φ displayed in Fig. 6(b) for
Si > 100. The bottom row shows the prefactor Ci in the asymptotic behavior of n×

red given in Eq. (21).

i Weibull Log normal Pareto Log Cauchy Dagum

ci 2.01 ± 0.01 1.707 ± 0.006 1.329 ± 0.005 2.162 ± 0.008 2.73 ± 0.02
mi 1.000 ± 0.001 1.0027 ± 0.0005 1.0062 ± 0.0006 1.0012 ± 0.0006 1.003 ± 0.001
φi 1.726 ± 0.002 1.727 ± 0.001 1.726 ± 0.001 1.726 ± 0.002 1.728 ± 0.002
Ci

1
ln2 2

� 2.08
√

π/2
ln 2 � 1.81 1

ln 2 � 1.44 π

2 ln 2 � 2.27 2
ln 2 � 2.89
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in Fig. 6(b) for Si > 100. The SD limit of the stretching
exponent is very close to 1.726. The apparent universality
of this value is certainly striking. It points to a universal
mathematical property of the SD limit which emerges when
the set of weights becomes ultrametric. Although it is indeed
a very interesting issue, it is not relevant for our purposes and
we have not addressed it.

A. Analytical two-term approach

We can obtain an analytical estimate of n×
red if we simplify

the problem to a two-term approach. We consider again a
chain of n + 1 bonds in which one of the bonds has a weight
wc. However, we suppose now that the rest of the bonds are
only of two types: bonds with weights wi < wc/2, which we
suppose negligible, and bonds with weights in the interval
wi ∈ [wc/2,wc], called heavy bonds. The probability of hav-
ing a negligible bond is

P ≡ Fred(wc/2) = F (wc/2)

pc
, (17)

and of having a heavy bond is 1 − P .
To calculate the probability P(n, S) that the total weight of

the rest of the chain is less that wc, we must take into account
that only one heavy bond is allowed. We then have

P(n, S) = Pn + nPn−1(1 − P ). (18)

Notice that a different cutoff weight of the form wc/N , with
N > 2, would involve more terms, so this is the simplest
approach. Now we can write the above expression in the form

P(n, S) = Pn

(
1 + n

n×
red

)
, (19)

with

n×
red = P

1 − P . (20)

The argument that supports this definition of the crossover
number n×

red is the following. In all the families addressed
here, we have found (1 − P ) ∼ S−1

i as we approach the SD
limit. In that limit, we then have P = 1. For n � n×

red, Eq. (19)
has the form P(n, S) ≈ Pn. This expression accounts for the
case in which the rest of the bonds are all negligible, which is
the definition of the max principle. Thus, term Pn stands for
the asymptotic behavior of P as we approach the SD limit. We
hence conclude that P(n, S) � 1 for n � n×

red. On the other
hand, for n � n×

red we obtain P(n, S) ≈ nPn−1(1 − P ). This
expression accounts for the case in which we have at least
one bond with a weight comparable to wmax, which is the
definition of the WD regime. Notice that P is proportional to
the length n of the chain. We thus conclude that P(n, S) � 0
for n � n×

red. Therefore, the definition of n×
red given Eq. in (20)

is consistent with the overall behavior depicted in Eq. (15). We
also deduce that n×

red behaves asymptotically in the form

n×
red = CiSi + O(1) as S → ∞, (21)

which is in agreement with the results displayed in Fig. 6(a)
and Table II.

To check our analytical approach, we have displayed in
Fig. 6(a) with continuous lines the values of n×

red obtained

from Eq. (20). The agreement with the numerical results of
the complete chain model is quite remarkable. We have also
deduced the prefactors Ci in the above asymptotic behavior.
Their exact expressions and approximate values are shown in
Table II for each type of disorder. We can now compare these
values to the values of ci obtained in the complete chain model
(second row in the table). The agreement is reasonably good
and the largest difference is about 8%. In all cases, the ci are
slightly smaller than the Ci. This is an expected result since the
contribution of all the bonds in the chain makes the crossover
occur at smaller values of n×

red.
Finally, from Eq. (13) we obtain the scaling of the

crossover length L× in the OPRL problem,

L× ∼
( P

1 − P

)ν

(OPRL), (22)

which is a functional of the disorder function n×
red =

P/(1 − P ).

V. RESULTS AND DISCUSSION

In Figs. 2(a), 3(a), and 4(a), we have shown how different
observables deviate at a certain point from the SD limit be-
havior. In Figs. 2(b), 3(b), and 4(b) we have represented the
same results but L has been scaled to the crossover length L×
given in Eq. (22), which for the Weibull family takes the form

(L×)W ∼
[

1 − (1 − pc)2−k

pc − 1 + (1 − pc)2−k

]ν

. (23)

In Fig. 2, we have also scaled the average number of red bonds
to its value at the crossover point, n×

red ∼ L1/ν
× .

In the three cases, our model yields an excellent collapse of
data to a single curve. Very small deviations appear only for
the weakest disorder SW = 10. Moreover, the transition point
in each curve seems to be very close to the value L/L× =
1, which indicates that the prefactor in the scaling law of L×
given in Eq. (22) is of the order of unity.

Our model for the crossover length also successfully ac-
counts for the SD-WD transition of other relevant observables
such as the length of the optimal path, �opt. We have calculated
the average length of the optimal path between points A and B
located at positions (−r/2, 0, 0) and (r/2, 0, 0), respectively,
in cubic lattices of linear size L � r with corners located at
positions (±L/2,±L/2,±L/2). The end-to-end distance r is
fixed to r = 10. Results are displayed in Fig. 7 as a function of
the lattice size L for different strengths of the Weibull disorder.
The nice collapse displayed in the figure is obtained when L
is scaled to L× and �opt to Lκ/ν−ϕ

× with ϕ = 0.53 and κ = 1.25
(see Ref. [18] for more details).

We now discuss the relation between our model for L×
and the approaches followed in the literature [28,29,31]. As
mentioned before, these approaches focus on the two largest
weights along the path, the maximal weight wmax and the
second largest weight, say w2. When w2 becomes of the same
order as wmax, we no longer have a single bond dominating the
optimal path and the transition takes place. We can now apply
the percolation theory and assume that w2 gets closer to wmax

in the same way that wmax gets closer to wc, i.e., as ∼L−1/ν .
Applying this reasoning to the inverse distribution, we obtain
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FIG. 7. Scaled average optimal path length �opt/Lκ/ν−ϕ
× as a

function of scaled linear size L/L× for different Weibull-disorder
strengths. L× is calculated from the expression given in Eq. (23). We
study the optimal path between two points on the axis separated by
an end-to-end distance r = 10 in simple cubic lattices of linear size
L > r. Averages are calculated over 5000 realizations.

that L× scales with the disorder strength a as L× ∼ aν [28,29].
On the other hand, from Eq. (22) we obtain

(L×)I ∼
(apc

ln 2
− 1

)ν

, (24)

which agrees asymptotically with that finding, but which also
shows that the crossover length scales with the geometry and
dimensionality of the lattice through the critical probability
pc.

Chen et al. [31] derived the general expression L× ∼ Aν ,
where A is the disorder function:

A = pc

wc f (wc)
. (25)

This model was found in agreement with the simulations [31]
and it has been recently used to derive a unified scaling for
the optimal path length in the OPRL problem [18]. For the
inverse distribution, their model gives L× ∼ (apc)ν , which is
quite similar to our result in Eq. (24).

That similarity is due to the simplicity of the inverse dis-
tribution, but the remarkable point is that n×

red and A have
the same asymptotic behavior as we approach the SD limit
(S → ∞). For P close to 1, Eq. (20) behaves as

n×
red � 1

1 − P = pc∫ wc

wc/2 f (w)dw
. (26)

In that vicinity, we also have
∫ wc
wc/2 f (w)dw ∼ wc f (wc),

hence obtaining n×
red ∼ A. More specifically, for all the dis-

tributions addressed here, we have found

n×
red = (ln 2)−1A + O(1) as S → ∞. (27)

VI. APPLICATIONS

In this section, we adapt our theory to the OPRN, DPRM,
and UPRM problems, in that order.

A. Random networks

Optimal paths in disordered random networks also undergo
a transition from strong to weak disorder [4,10–12,17,31–
33,45]. The most studied random graphs are the Erdős-Rényi
(ER) and the scale-free (SF) networks. For WD, the average
length of the optimal path between two nodes in the network
of N nodes scales as �opt ∼ log N [17,45] for both ER and
SF networks. In the SD regime, for ER networks we have
�opt ∼ N1/3 [17,45] whereas for SF networks the behavior
depends on the distribution of the node degree g, P(g) ∼ g−λ:
for 3 < λ < 4, we have �opt ∼ N (λ−3)/(λ−1), for λ � 4 we have
�opt ∼ N1/3, and for the case 2 < λ < 3 it has been suggested
that �opt ∼ lnλ−1 N [17]. However, this case is rather irrelevant
to us because it possesses only a percolative phase [46].

To deduce the crossover network size at which the SD-WD
crossover takes place, denoted as N×, we will also make use
of the fact that the SD limit of these systems is closely related
to their corresponding critical percolation [17,45]. Indeed, the
SD limit behaviors presented above can be deduced using
percolation arguments [17,41].

We assume that percolation on random networks at criti-
cality is equivalent to critical percolation on regular lattices
in a certain dimension D [17,45,46]. Using the equivalence
relation N× ∼ LD

× in Eq. (13), we obtain

N× ∼ (n×
red)Dν . (28)

Erdős-Rényi networks are equivalent, at criticality, to criti-
cal percolation regular lattices at the upper critical dimension
Dc = 6 [17,45]. In D = 6, we have ν = 1/2 [38] and we
obtain

N× ∼
( P

1 − P

)3

(ER). (29)

For SF networks with 3 < λ < 4, we have D = 2(λ −
1)/(λ − 3) [46]. Since D > Dc, we must consider ν = 1/2
and we obtain

N× ∼
( P

1 − P

)(λ−1)/(λ−3)

(SF with 3 < λ < 4). (30)

For SF networks with λ > 4, we have D = Dc = 6 [46] and
ν = 1/2, and we obtain

N× ∼
( P

1 − P

)3

(SF with λ > 4). (31)

These results are in perfect agreement with the results of
Chen et al. [31]. We recall that our disorder function n×

red =
P/(1 − P ) behaves asymptotically as their disorder function
A [see discussion in Sec. V and Eq. (27)]. These scaling
laws have been verified by numerical simulations. See, e.g.,
Ref. [31] for different types of disorder and Refs. [17,32,33]
for the inverse distribution.

The polynomial distribution was used in Refs. [10–12]
for ER graphs and square lattices. In Ref. [11], the authors
reported a phase transition in the properties of the overall
transport at a critical extreme value index αc. For a network of
size N , for α � αc we have WD conditions and the transport
traverses many links. For α � αc, the transport behaves as
in the SD limit and thus follows the minimum spanning tree.
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Numerical simulations showed that αc ∝ N−β with β ≈ 0.63
for ER graphs and β ≈ 0.62 for square lattices.

For the polynomial distribution in Erdős-Rényi graphs, our
model gives

(N×)Poly ∼ (2α − 1)−3
. (32)

We now apply the conditions in Ref. [11]. For a network
of size N we calculate the value of α, say α×, that makes the
crossover size N× of the same order as the network size N .
From Eq. (32), we obtain

α× ∼ ln (1 + N−1/3) ∼ N−1/3 as N → ∞. (33)

Doing the same for square lattices with N = L2, we obtain

α× ∼ N−1/2ν = N−3/8 as N → ∞. (34)

Our scaling exponents for α× clearly differ from the scaling
exponents of αc deduced from their numerical simulations.
This disagreement might be due to the fact that Eqs. (33)
and (34) account for the asymptotic behavior, while the results
in Ref. [11] were obtained for relatively small networks, for
which we can expect contributions from highest order terms
such as the term N−2/3 in Eq. (33). Certainly, this question
needs further investigation and clarification.

B. Directed polymers

Directed polymers in WD belong to the KPZ universality
class, while their SD limit seems to belong to the DP uni-
versality class [25,26,34–37]. As in the isotropic case, the
transition from SD to WD takes place when the max principle
is no longer fulfilled [25,26].

Evidence of the close relationship between the SD limit of
DPRM and directed percolation is the roughness exponent ζ .
It characterizes the scaling of the transverse displacement of
the optimal directed polymer, |x|, with its length t , |x| ∼ t ζ .
For WD, we have ζ = 1/z, where z is the KPZ dynamic
exponent [15], while in the SD limit we have ζ = ν⊥/ν‖ [36],
where ν⊥ and ν‖ are the DP exponents characterizing the
scaling of the two correlation lengths of DP clusters [47]:
ξ‖ ∼ |p − pc|−ν‖ in the longitudinal direction t , and ξ⊥ ∼
|p − pc|−ν⊥ in the transverse direction x, with ν⊥ < ν‖. Thus,
DP clusters are self-affine and directed paths have a width that
scales as tν⊥/ν‖ .

That relationship is clearly revealed when we consider the
bimodal (0,1) disorder distribution at criticality [34,35]. For
t < ξ‖, the results of directed polymers and directed percola-
tion are statistically indistinguishable, whereas for t > ξ‖ we
obtain WD properties [35].

To adapt the arguments used in the (isotropic) OPRL prob-
lem to the DPRM problem, we make use of the DP theory.

The optimal directed polymer in the SD limit belongs to
the DP cluster that survives (for the first time) at time t in
the lattice given by the directed analog of the CPL(wmax).
Equation (8) also applies here but we have to consider the
DP analog of the probability density, ρD(p, t ). In the vicin-
ity of pc, we have the following results: (i) the survival
probability �D(p, t ) = ∫ p

ρD(p′, t )d p′ decays as t−δ [48,49],
where δ = β/ν‖ and β is the DP critical exponent associated
to the order parameter [47]; (ii) the standard deviation of
ρD(p, t ) decreases as t−1/ν‖ [37]; and (iii) ρD(p, t ) ∼ t θ with

θ = 1/ν‖ − δ [37]. In 1 + 1 dimensions, we have δ � 0.160
and θ � 0.417 [37,48].

Within the DP cluster, we identify the same types of sub-
structures found in isotropic percolation [50]. We focus on the
red bonds, whose properties seem to depend on the constraints
and symmetries of the problem. Stenull and Janssen [51]
derived the fractal dimension of the set of red bonds in the
incipient critical cluster connecting two arbitrary lattice sites.
Denoting by t‖ the distance between the two sites in the
time direction, they obtained nred ∼ t dred

‖ , with dred = (1 +
ν⊥)/ν‖ − 1. We can also consider the problem of DP between
two opposite sides of a lattice, as in the studies of conductivity
in diode networks [52]. It has been claimed [53] that the
standard notion of red bonds is ill defined for that problem
because of the anisotropy of DP.

In the DPRM geometry, we are interested in the DP cluster
that connects the fixed end of the polymer to the transverse
x-hyperplane at time t . This DP problem has been stud-
ied [49,54,55] and it has been shown that the number of red
bonds of the DP cluster surviving after time t , at criticality,
has the form

nred ∼ t1/ν‖ . (35)

This expression is the directed analog of Coniglio’s expres-
sion [44] for the isotropic case, given in Eq. (10). It is now
easy to deduce that the crossover time of the SD-WD transi-
tion in the DPRM problem, denoted by t×, scales as

t× ∼
( P

1 − P

)ν‖
(DPRM). (36)

Perlsman and Havlin [25] studied the scaling of this
transition for the inverse distribution. They deduced that
log (Wopt/wmax) ∼ t θ /a, and concluded that the SD-WD tran-
sition is governed by the ratio ρD(pc, t )/a. Their result
suggests a crossover time of the form t× ∼ a1/θ = aν‖/(1−δν‖ )

which is different from ours:

(t×)I ∼
(apc

ln 2
− 1

)ν‖ ∼ aν‖ . (37)

In 1 + 1 dimensions, we have ν‖/(1 − δν‖) � 2.396 and ν‖ �
1.734.

We have applied their arguments to the OPRL problem and
we have obtained log (Wopt/wmax) ∼ L1/ν/a. Accordingly, the
crossover length takes the form L× ∼ aν , which agrees with
the result given in Eq. (24). The above result also points to
universal function wmax/Wopt ∼ exp (−z1/ν ), with z = L/L×.
We have represented this function in Fig. 3(b) by a contin-
uous line. This case corresponds to a Weibull disorder and
we observe some deviation with respect to the curve de-
fined by the data collapse. It would be interesting to perform
the same analysis for the inverse distribution in the DPRM
problem, since a larger deviation might be the cause of the
disagreement.

That disagreement seems to be resolved by the results
obtained two years later by the same authors [26]. They
showed that close to the SD limit, the probability that the
optimal directed polymer path is different from the minimal
path obtained after applying the max principle is proportional
to t2/ν‖/a2. By making this probability of the order of unity,
we deduce t× ∼ aν‖ , which is in agreement with our result.
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C. Undirected polymers

Undirected polymers are fractal in both SD and WD, but
the fractal dimension dopt in SD is larger than in WD [19]. This
means that they are much more compact in SD conditions. It
has been conjectured [19] that the SD limit of UPRM belongs
to the same universality class as maximal SAWs on the perco-
lation cluster at criticality and critical percolation backbones.
Maximal SAWs are the longest SAWs on a percolation cluster.

Our theoretical framework can be readily adapted to the
UPRM problem if we take into account the following. In the
SD limit, the optimization of our polymer of length � consists
of searching the smallest value of w such that the polymer fits
in the percolation cluster obtained around the fixed end in the
CPL(w). Note that this is satisfied when the maximal SAWs
in the cluster have a length larger or equal to �. Thus, the
maximal SAW acts as an upper bound for the undirected poly-
mer and this could explain their higher fractal dimension [19].
That smallest value of w obtained in the optimization process
is wmax and the total weight of the polymer is Wopt = wmax.

Now we apply our arguments to the linear length scale of
the UPRM problem, L, which is related to � through the fractal
law � ∼ Ldopt . Speaking in terms of L, the polymer searches
for that CPL(w) which yields a percolation cluster with a
correlation length ξ ∼ �1/dopt . Accordingly, the approach to the
critical point in the UPRM problem has the form

|wc − wmax| ∼ L−1/ν ∼ �−1/(νdopt ), (38)

which agrees with the theoretical and numerical results pre-
sented in Ref. [19].

Once the polymer has found the optimal CPL(w), it selects
the minimal weight configuration within the cluster. Whatever
it is, the path must pass through all the red bonds in the cluster
connecting the starting and ending points, which are separated
by a distance that goes as L. From Eq. (22), we deduce that the
crossover length �× of the WD-SD transition in the UPRM
problem is

�× ∼
( P

1 − P

)νdopt

(UPRM). (39)

In the case of the inverse distribution, we have

(�×)I ∼
(apc

ln 2
− 1

)νdopt ∼ aνdopt . (40)

This law is in perfect agreement with the numerical result
obtained by Parshani et al. [20] for the inverse distribution.

VII. UNIVERSAL MEASURE OF DISORDER

We finish the paper by returning to the starting point, i.e., to
the notion of disorder strength. We have shown that for simple
families of distributions it is rather easy to find a parameter
Si that controls the strength of the disorder generated by the
family. Typically, it is the so-called shape parameter. We
now ask if there exists a universal measure S that allows us
comparing the disorder strengths of the different families.

This question arises naturally when we consider distribu-
tions with several shape parameters, since the contribution
of each parameter to disorder is far from being evident.
It is the case of the Dagum distribution given in Eq. (7),
with two shape parameters β and χ . In Sec. II, we assumed

FIG. 8. (a) For the Dagum family, crossover number of red
bonds, n×

red, obtained from the fit of P(n, S) to the stretched exponen-
tial function given in Eq. (16), as a function of the disorder parameter
SD. Each set of results has been obtained by fixing one of the expo-
nents to the value indicated in the legend and varying the other one.
The broken line represents linear behavior. (b) Same results but dis-
played against the crossover length L× given in Eq. (41). Broken line
represents power-law behavior with exponent 1/ν = 3/4. Probability
P(n, S) is obtained from 106 realizations of the chain model.

that they contribute in the same fashion and we considered
SD = 1/(βχ ). This definition, which was enough for previous
purposes, is indeed incorrect. In Fig. 8(a), we display the
values of n×

red obtained from the fit of numerical P(n, S) to
the stretched exponential given in Eq. (16). To obtain each
set of points, we have fixed one of the exponents to the
value indicated in the figure legend and we have let the other
one vary. Numerical results are represented against SD. In all
cases, the asymptotic behavior as we approach the SD limit is
linear, as expected, but the prefactor clearly depends on β. The
results of the series with fixed χ coincide perfectly with each
other, but the results with fixed β show that disorder strength
increases as β increases. Thus, our initial assumption is false.

We know that the value of the crossover point L×, N×, t×
or �×, depending on the problem, represents a measure of the
extent of the SD limit regime in each problem. Thus, it seems
reasonable to think that it could also represent a universal
measure of the disorder strength for each case. To check this,
we have displayed in Fig. 8(b) the same results shown in
Fig. 8(a) but plotted against L×, which for the Dagum family
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FIG. 9. Average length of the optimal path between the center
node and its nearest neighbor in square lattices of linear size L = 500
as a function of (a) the corresponding disorder parameter Si for differ-
ent families of distributions and (b) the crossover length L× given in
Eq. (22). Broken line in (b) stands for the scaling law predicted by the
unified scaling proposed in Ref. [18]). Vertical dotted line represents
the value L× = L. The averages are over 4 × 104 realizations.

has the form

(L×)D =
[ (

1 − 2χ + 2χ p−1/β
c

)−β

pc − (
1 − 2χ + 2χ p−1/β

c
)−β

]ν

. (41)

The collapse of data is excellent hence supporting our claim.
We show in Fig. 9 another result that supports our conjec-

ture. In square lattices of linear size L = 500 centered on the
origin, we have measured the average length of the optimal
path between the origin and its nearest neighbor, denoted
as �opt(1), for several families of distributions with different
disorder strengths. Disorder parameters Si were varied from
very weak disorder (Si → 0) to strong disorder (Si � 1). In
Fig. 9(a), we have plotted the results obtained in our sim-
ulations against the disorder parameter of each family. In
Fig. 9(b), we have displayed the same results but as a function
of L× calculated from Eq. (22). In both panels, we appreciate
the same qualitative behavior. However, while data dispersion
in Fig. 9(a) is quite significant, in Fig. 9(b) the points collapse
remarkably well to a universal function, especially in the SD
regime L× � 1.

That function can be explained as follows. For L× � 1,
we cannot observe SD effects because they happen at scales

below the lattice constant. Then, the curve very rapidly ap-
proaches the WD limit �opt(1) = 1 as L× → 0. For L× � 1,
the effects of disorder are important. We can deduce the ex-
pected behavior from the theory presented in Ref. [18]. To do
this, we must take into account that both the end-to-end dis-
tance and the lattice linear size are fixed, r = 1 and L = 500,
respectively. Hence, the conditions of our problem correspond
to the so-called case MD1 (mixed disorder). Then we have
�opt(1) ∼ Lκ/ν−ϕ

× , with κ/ν − ϕ ≈ 0.55 in D = 2. The results
displayed in the figure are in agreement with that law. The
agreement is quite surprising considering that for r = 1 one
would expect important effects of the lattice discreteness. Fi-
nally, when L× reaches the system size L, a crossover towards
the SD limit behavior takes place (case SD1 in Ref. [18]). In
that limit, the optimal path length does not depend on the
disorder strength. Our results are again in agreement with
the theory. The curve departs from the scaling law when L×
becomes of the same order as linear size L (indicated in the
figure by the vertical dotted line). For L× > L, the points
seem to initiate a slow asymptotic approach towards a constant
value (the SD limit).

VIII. CONCLUSIONS AND FURTHER WORK

It is well-known that red bonds may dominate the physics
of problems defined on the critical percolation cluster [38,44].
In this paper, we have shown that the SD limit behavior of
optimal paths and directed or undirected polymers is another
example of it.

This idea is the cornerstone of the unified description for
the SD-WD crossover in these problems, which has been
proposed here. Since our arguments rely on general properties
of the percolation theory, they can be readily adapted to the
three problems and, in principle, to any other minimal path
problem whose SD limit is related to critical percolation. This
is an interesting conjecture that needs validation.

We have obtained that the crossover point is a power-law
functional of the disorder function n×

red = P/(1 − P ), with
P = F (wc/2)/pc. Interestingly, n×

red conveys information not
only on the disorder distribution but also on the topological
properties of the network, through term pc. The scaling expo-
nent of that functional depends on the kind of problem, but
in all cases is a function of the connectivity exponent of the
corresponding percolation problem, ν for isotropic percola-
tion and ν‖ for directed percolation, which depends only on
the dimension. We have shown that our results are in perfect
agreement with our simulations and with most of the results
reported in the literature, both theoretical and numerical. The
very few discrepancies we have found have been analyzed and
discussed, although their clarification needs further work.

We have also proposed this crossover point as a universal
measure S of the disorder strength in the three problems.
We thus have SOPRL = L×, SOPRN = N×, SDPRM = t×, and
SUPRM = �×. Our numerical results for the OPRL problem
support that conjecture, yet much more work is needed in
this regard. Indeed, statistical and topological properties are
coupled in that universal measure. This means, for exam-
ple, that the extent of the SD limit regime in 2D regular
lattices with the same disorder distribution depends on the
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coordination number. This coupling also appears in related
results [31] but has not yet been studied in detail.

That idea was mentioned in Ref. [11]. The authors claimed
that link weight structure and topology are orthogonal pro-
vided f (0) → ∞. The polynomial distribution with α < 1
satisfies that condition and, interestingly, we find that n×

red
depends only on α and not on pc [see Eq. (32)]. However,
there are other distribution families such as the Weibull or
the Dagum that also satisfy the condition for certain ranges
of their parameters values and yet they lead to a disorder
function n×

red that depend on pc [see Eqs. (23) and (41)].
This is an interesting question that also deserves further
work.
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