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We develop a minimal model to study the stochastic formation of Borromean links within topologically
entangled networks without requiring the use of knot invariants. Borromean linkages may form in entangled
solutions of open polymer chains or in Olympic gel systems such as kinetoplast DNA, but it is challenging to
investigate this due to the difficulty of computing three-body link invariants. Here, we investigate rectangles
randomly oriented in three Cartesian planes and densely packed within a volume, and evaluate them for Hopf
linking and Borromean link formation. We show that dense packings of rectangles can form Borromean triplets
and larger clusters, and that in high enough density the combination of Hopf and Borromean linking can create
a percolating hypergraph through the network. We present data for the percolation threshold of Borromean
hypergraphs, and discuss implications for the existence of Borromean connectivity within kinetoplast DNA.
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I. INTRODUCTION

The physical properties of a soft filamentous system are
dictated by the degree of entanglement between its con-
stituents [1]. Examples include the viscoelasticity induced by
entanglements in polymer melts [2], the tangling and untan-
gling dynamics of living worms [3], and the elastic curvature
of kinetoplast DNA (kDNA) networks [4]. Traditionally, en-
tanglement between two filaments may be described the by
Gauss linking number, which describes the integer number
of times two closed curves pass through each other, and can
be generalized to the real number of times two open curves
intertwine [5]. Certain materials share exotic entanglements
that cannot be described by the linking number. For example,
dense solutions of ring polymers contain interpenetrations
of closed loops that affect the viscoelastic properties of the
system [6], and so-called daisy chains may be formed of
unlinked but deadlocked rings [7], which cannot be separated
by stretching the system. Another exotic form of entangle-
ment is Borromean rings, which consist of three topologically
connected loops in which no two share a direct topological
link [Fig. 1(a)]. These three-body links cannot be detected
by the Gauss linking number, which yields zero for each
subset of two loops, but may be computed with more com-
plex metrics such as the Milnor triple integral [8]. Densely
entangled polymer networks may form open Borromean rings
(similar to the strands in braided hair), and a limited number
of simulation studies have detected them using the Jones [9]
or HOMFLY polynomials [10]. Recently, Ubertini and Rosa
simulated dense solutions of ring polymers in which the topol-
ogy may evolve through Monte Carlo operations that pass
parts of chains through each other and used the three-body
Jones polynomial to show that triplets of loops may form Bor-
romean rings [11]. Random Borromean entanglements have
not been observed experimentally. Physical realizations of a
randomly linked ring polymer system may include Olympic
gels of circular DNA molecules facilitated by topoisomerase
IT enzymes, either naturally in the kinetoplast (the molecular
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chain-mail network found in the mitochondria of trypanosome
parasites [12]) or in vitro [13,14]. Dense solutions of synthetic
polymers in which cyclization reactions may occur can also
yield randomly formed topological links. It is known that
dense packings of rings [15] or ring polymers [16] may form
a sufficient density of topological links that a single linked
network may percolate across the system. This linking perco-
lation transition has been investigated computationally in the
context of kinetoplasts. It is unknown if entangled polymer
solutions, kinetoplast networks, or DNA-based Olympic gels
contain Borromean links, and this paper is motivated by the
possibility of their existence.

Recently, we investigated the percolation transition in Bor-
romean networks of loops on a square lattice, in which no two
loops are linked but each triplet of neighbors is [17]. Whereas
Hopf-linked networks may be described as graphs in which
each loop is a node and each linked connection is an edge,
Borromean networks must be described as hypergraphs, in
which the interdependent connections of three loops define
a triangle of edges and nodes. The removal of a node or
edge from a triangular hypergraph destroys the remaining
edges. We found that the percolation transition occurs at a
slightly higher fraction of occupied sites than for a regularly

(a) (b) © (d)

FIG. 1. (a) Borromean rings consisting of three perpendicular
rectangles with a golden aspect ratio (1.618). (b) A network of six
rectangles connected by both Hopf and Borromean linking. (c) The
same network, with each component rendered as an elastic loop.
(d) Hypergraph structure of the network, in which nodes sharing
a Hopf link are connected with a blue edge, and each triplet of
Borromean linked rings form a red triangle of edges.
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linked network. It was subsequently proven by Bianconi and
Dorogovtsev [18] that hypergraphs have a higher node perco-
lation threshold than their graph counterparts in general. Our
previous work exploited the regularity of the square lattice to
study Borromean percolation, but for networks of randomly
linked rings it is not known how likely the formation of Bor-
romean components is, nor is it known whether Borromean
networks can randomly form in the presence of regularly
linked networks. For example, if given ring is linked with
every other ring in its spatial vicinity, it will be unable to share
Borromean connections. It is challenging to investigate this
computationally due to the complexity of computing triple
link invariants and the combinatoric challenge of three-ring
interactions.

Here, we describe a minimal model with which to examine
the coexistence of regular (Hopf) and Borromean linking.
We study rectangles aligned with the three Cartesian planes
randomly packed within a volume [Fig. 1(b)], which can be
mapped onto a system of ring polymers [Fig. 1(c)]. We can
determine Borromean linking by simple comparison of the
rectangles’ coordinates, and construct the (hyper)graph struc-
ture of the linkages that form [Fig. 1(d)]. This allows us to
examine the possibility and probability of Borromean links
and percolating clusters forming in dense random networks,
suggesting analogous effects for more complex polymer
systems.

II. METHODS

The model is initialized by placing rectangles in a cubic
box according to a uniform random distribution in X, Y, and Z.
The rectangles have a common aspect ratio that can be varied
and a total area of 4. The number of rectangles N and the width
of the box L can be varied to tune the number density. The
box constrains the centers of each rectangle, such that their
extrema may lie beyond the edge the box. The rectangles have
random orientations aligned with the three Cartesian axes,
such that each may lie parallel to the XY, YZ, or XZ planes
with normal vectors in the Z, X, and Y directions, respectively.
Each rectangle is randomly landscape or portrait, such that
on average half the rectangles in each plane have a width
exceeding their height and vice versa. Typical systems have
N on the order of several hundred or thousand to initialize
a dense random network of rectangles. To examine systems
analogous to the quasi-two-dimensional (quasi-2D) kineto-
plast networks, we can limit the translation distribution in one
of the dimensions, and initialize their positions to uniformly
fill a circle rather than a square or cube. After initializing
the rectangles, we evaluate linking and network formation
through methods described below.

Consider two rectangles lying in perpendicular planes. We
may define rectangle A as lying in plane ij with a normal
along k, and rectangle B lying in plane jk with a normal along
i. The j direction is shared, i and k are unshared between the
rectangles. We define the terms A;; and A;_ as the maximum
and minimum position of A along the i direction, and Ay as
the location of A along its normal direction. Similar terms can
be defined for the other rectangle and directions. For two rect-
angles to have any sort of topological connection they must be

collocated along their unshared axes, which is satisfied when:
Ai— < BiO < AH—
and Bk_ < Ak() < Bk+.

If the rectangles are collocated in their unshared dimension,
then they are Hopf linked if one maximum or minimum of a
rectangle in the shared dimension lies between the maximum
and minimum of the other rectangle, satisfying either of the
two following sets of conditions:

Aj_ <Bj_ & Aj+ >Bj_ & AH’ <Bj+
or A], > BJ, & AJ, < B]+ & A]+ > BjJr

Two rectangles can be unlinked, but one can be said to pierce
another if they lie in different planes, are collocated in their
unshared dimensions, and both extrema in the shared dimen-
sion of one rectangle lie between the extrema of the other. The
conditions for A piercing B (A — B) are

Bj, <Aj, and Bj+ >Aj+.

Unlike linking, piercing does not commute. If the inequalities
are reversed, then we may say that B — A. Three rectangles
A, B,C with mutually perpendicular normals form a Bor-
romean triplet if either of two conditions are met: either A —
B—C—>A,or A— C — B— A. In principle rectangles
may intersect at points or overlap in the same plane, but
in practice this is prevented by the precision of our random
number generator.

To efficiently evaluate linking in the dense rectangular net-
works, we first check each pair of rectangles for collocation,
then conditionally check Hopf linking, then conditionally
check collocated unlinked rectangles for piercing. Sorting
rectangles by their normal axis and prechecking each pair
for collocation and linking before checking each triplet for
piercing alleviates the cubic growth of the number of needed
comparisons. For example, a system of 100 rectangles admits
(120) = 161 700 triplets, but even in dense percolating net-
works only around 25 full three-rectangle piercing checks are
required. Our scheme is considerably simpler than computing
a knot invariant such as the Milnor triple linking integral or
the Jones polynomial.

To generate a hypergraph representation of the rectangle
packing, each pair of unique rectangles A and B is checked for
Hopf linking; if two rectangles are linked then two bits, Gap
and Gpy, on a binary N x N graph adjacency matrix G are
flipped. Then, each pair of unlinked normally perpendicular
rectangles is checked for piercing, and if they are pierced
then each rectangle C that is normally perpendicular to and
unlinked with the other two is checked for piercing. If the
three rectangles satisfy the Borromean conditions, six bits
of a binary hypergraph adjacency matrix are flipped: Hjg,
Hyc, Hpe, and their transpose partners. These two matrices
are used to generate a graph structure using MATLAB’s graph
function, which converts a matrix to a table of nodes and edges
that can be used to plot a graph visualization and determine
the sizes of connected components using standard algorithms
[19]. We track the size of the largest two components of G
and H as a function of the number density of rectangles. The
combined hypergraph is generated as HG = 2H + G, where
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FIG. 2. (a) Random network of rectangles in which those participating in Borromean linking are highlighted. (b) A hypergraph structure in
which Hopf linked rectangles (blue edges) have formed a percolating cluster and several Borromean components (red triangles) have formed.
(c) A hypergraph structure in which both Hopf linked and Borromean linked rectangles have formed percolating clusters. (d) Rendering of the

Borromean network in (c) as elastic loops.

the magnitude of each matrix site now contains information
about the weight of each edge for visualization.

III. RESULTS AND DISCUSSION

This study was motivated by the question of whether Bor-
romean links can form in dense randomly linked systems, and
by extension whether these Borromean connections can create
a percolating hypergraph. Simulations show that the answer
to both these questions is yes. Figure 2(a) shows an example
of a rectangle network, with rectangles that share Borromean
connections highlighted. Figure 2(b) shows a hypergraph
representation of a network with each node representing a
rectangle, each blue edge representing a Hopf link, and each
red triangle representing a Borromean triplet. In this case,
the Hopf connections form a percolating cluster and a few
Borromean components lie within it. Figure 2(c) shows a
denser network in which the Borromean connections form a
percolating cluster as well. The rectangles that form this per-
colating Borromean cluster are shown annealed and visualized
as elastic filaments in Fig. 2(d), although it is difficult by eye
to identify the connectivity.

We can examine the Hopf and Borromean percolation
transitions by examining the size of the largest connected
components as a function of the density of the rectangle
packing. Although the density of two-dimensional objects
in three-dimensional space is difficult to define, the number
density p = N/L3 (where L is the length of the box that
constrains the centers of rectangles) allows data collapse for
different numbers of rings. If all rectangles have a uniform
size and aspect ratio, a dense packing creates two separate but
interpenetrating Borromean networks in denser systems, one
in which the XY rectangles are portrait and one in which they
are landscape. This phenomenon is discussed in the Appendix.
To track percolation in Borromean systems we examine the
fraction of nodes that are in either of the two largest clusters,
rather than just the largest. This is unnecessary if the rect-
angles are given a distribution of aspect ratios, even if the
variation is limited to 10% of the aspect ratio. Since the perco-
lation threshold depends on the specific value or distribution
of aspect ratios and we are primarily concerned with whether
percolation is possible, we do not seek a detailed measure of
the percolation threshold through the entire parameter space
or the critical exponents at percolation. We simply use linear
interpolation to find the point at which the probability of a
node being in the largest component reaches 50%.

Figure 3(a) shows the fraction of 500 rectangles that are
found in the largest cluster or clusters, as a function of the
number density. Aspect ratios between 1.25 and 10 were ex-
plored, and the area of the rectangles was held constant. As
predicted by Bianconi and Dorogovtsev [18], the Borromean
networks have a higher percolation threshold. The Borromean
percolation threshold may be orders of magnitude higher in
density than the Hopf linking threshold, in comparison to the
1.6% difference we observed in Borromean square lattices
[17]. The critical densities at percolation for Hopf and Bor-
romean networks are shown in Fig. 3(b), as well as data taken
when the perimeter was held constant instead of the area.
Interestingly, while the percolation threshold of Hopf linked
networks appears to be independent of aspect ratio when the
area is held constant, it decreases with aspect ratio for Bor-
romean networks. There is an extremely weak but significant
(—0.07 power) dependence on the Hopf critical density and
this is believed to be a finite-size effect. When the perime-
ter is held constant, the Hopf linking percolation threshold
increases with the aspect ratio, but the Borromean threshold
is nonmonotonic, reaching a minimum at around 3. The ratio
of the Borromean to Hopf thresholds is essentially the same
between the area and perimeter data, and appears to approach
an 8 : 1 ratio in density. The difference between constant area
and constant perimeter may have to do with a subtle rescaling
of the system’s length scale when the aspect ratio is changed,
affecting the definition of density. For overlapping randomly
oriented rectangles in two dimensions, the percolation density
also decreases with aspect ratio [20].

We can heuristically understand these results by consider-
ing two perpendicular congruent rectangles with orientations
that allow piercing. Rectangle A in the XY plane has width a
and height b > a, rectangle B is in the XZ plane with width b
and height a. Both are contained within a box of side length
L with L > b. The crux of the argument is that their range of
overlap in the x direction depends on a + b, of which 2a of
that range leads to linking and b — a leads to piercing. If we
fix the position of A and treat the location of B as variable, the
probabilities that the collocation conditions are met are a/L in
the z direction and b/L in the y direction such that:

ab
If this is satisfied, we consider the relative x positions of A and
B. In the notation above, Aj_ =A,_,Aj; = A +a, Bj_ =

B._, and B;; = B;_ + b, knowing that the right side of A is
a from the left side, and the right side of B is b from the left

Pc
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FIG. 3. (a) Percolation transition of dense rectangle networks as determined by the fraction of rectangles that are part of largest cluster
(Hopf), or part of the largest two clusters (Borromean), as a function of the number density. Networks contained 500 rectangles with aspect
ratios between 1.25 and 10. Three shown sets of Hopf data (1.25, 2, and 5) mostly overlap. The area of the rectangles was held constant as
the aspect ratio was varied. (b) Approximate density at percolation for Hopf and Borromean networks as a function of the rectangular aspect
ratio. The dimensionless ratio between the two densities is also shown. Data for constant area are shown with square points and continuous
connectors, data for constant perimeter are shown with round points and dashed connectors.

side. The rectangles may be linked if the left side of B is within
distance b left of the left side of A, and not beyond the right
side of A (By— +b > A,—, B,_ < A,_ + a). The total range
that the left side of B has in order for an overlap to happen
is a + b and the probability is (a + b)/L. However, if both
sides of A are within the x confines of B (B, < A,_, B,_ +
b > A,_ + a), they will pierce instead of link. The range of
positions for B,_ in this case is (b — a). The probability of
linking and piercing given collocation are thus
b+a b—a 2a b—a

— =— & PP|C = .
L L L L
The total probabilities of two rectangles being linked or
pierced is

Prc =

2ba*

P = I

We can define the aspect ratio y = b/a and a density p =
(a/L)* and rewrite these probabilities as

PL=2yp & Pp=y(y —1)p.

Their ratio is

ab
& Pp= E(b —a).

PL 2)/ 2

P y(y—-1) y—-1
This ratio reveals features of the topological probabilities in
our rectangle system. As the aspect ratio approaches unity
from the right, the ratio diverges, indicating that it is impos-
sible to form a Borromean network with squares. Beyond an
aspect ratio of 3, piercing becomes more likely than linking.
The probability of three simultaneous Borromean piercings
can be treated as the cube of the piercing probability. The
probability has a cubic dependence on number density mean-
ing that the link-to-Borromean ratio is not just a function
of aspect ratio and decreases with the square of number
density. This may explain the dramatic difference in density

dependence between the Hopf and Borromean percolation
thresholds. While an understanding of the linking and piercing
probabilities of two rectangles is helpful in understanding the
percolation data, we do not yet have a full derivation of the
trends in Fig. 3.

Borromean links and percolating hypergraphs were also
observed in quasi-2D networks, suggesting a possibility
that kinetoplast networks may contain Borromean links. To
estimate the number of Borromean links contained in a kine-
toplast network, should they exist, we can simulate networks
with thousands of components, comparable to kKDNA, and
tune the number density of rectangles such that the average
number Hopf links per rectangle matches the average kDNA
minicircle valence, approximately 3 [21,22]. From these net-
works we can compute the number of rectangles participating
in Borromean linking, and the total number of Borromean
clusters. Figure 4(a) shows an example hypergraph from a
quasi-2D system of 3000 rectangles and an average Hopf
valence of approximately 3. Several Borromean clusters are
interspersed through the network, with several of larger ex-
amples shown in Fig. 4(b). The largest cluster contains 20
rectangles, but there are 87 Borromean triplets throughout
the network. Note that the visualizations in Fig. 4(b) may
have ambiguity in the total number of triangles each node
belongs to.

The topology of kinetoplast DNA from Crithidia fascic-
ulata is at this time the best characterized, and it contains
approximately 5000 minicircles. We measure the total number
of links that are part of a Borromean triplet or cluster, as well
as the total number of Borromean clusters. The disk-shaped
networks contained 5000 rectangles with an aspect ratio uni-
formly between 1.5 and 2.5, and had an effective thickness
of 0.1, and were varied in radius to change the density. As the
Borromean portion of the network approaches percolation, the
number of involved rectangles increases while the number of
clusters reaches a maximum before approaching 1. When the
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(b)

FIG. 4. (a) Hypergraph structure of a quasi-2D network of 3000 rectangles with an average connectivity of three Hopf links per rectangle,
with several Borromean clusters interspersed throughout labeled in red. (b) A sample of the larger Borromean clusters appearing within the

network in (a). The largest contains 20 rectangles.

mean link valence is near 3, there are roughly 1000 rectan-
gles involved in Borromean linking, and approximately 200
Borromean clusters [Fig. 5(a)]. This suggests that, should this
system be applicable to kinetoplast DNA, the biological net-
works likely contain a significant number of Borromean links.
It is possible to use graph analysis to predict the spectrum
of components released from kinetoplasts or other Olympic
DNA networks as minicircles are broken with restriction en-
zymes [16,21], for example the number of single and double
minicircles to be detected by gel electrophoresis as a function
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of the fraction of broken minicircles. While this model is
likely too simple to make predictions for such a DNA ex-
periment, it can estimate the hazards of ignoring Borromean
connections during such a prediction. To do so, we eliminate
at random matching rows and columns from the hypergraph
adjacency matrix, which effectively removes a rectangle from
the network and a node from the hypergraph. If the rectangle
removed has Borromean connections, the adjacency values of
the other two rectangles are zeroed in the matrix, effectively
removing the hypergraph edges while keeping the nodes. The
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FIG. 5. (a) The number of rectangles with Borromean connections, and the total number of Borromean components, as a function
of the mean number of Hopf links per rectangle. The rectangles had a uniform distribution of aspect ratios between 1.5 and 2.5 in a
5000-rectangle network confined to a disk with effective height 0.1, with an average of three Hopf connections per rectangle. (b) The number
of single, double, and triple rectangles released from such a network as rectangles are removed at random. The solid lines represent the actual
dissolution of the network, the dashed line shows the prediction if Borromean linking is ignored.
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graph structure is then evaluated and the number of compo-
nents of size 1, 2, and 3 is measured as a function of the
number of rectangles removed. We can also do this with the
Hopf-only adjacency matrix, which lacks information about
Borromean connectivity. The results of such a dissolution
simulation are shown in Fig. 5(b). The general trends match
those used to predict kinetoplast dissolution experiments in
the past [21], but the naive unborromated prediction tends to
overpredict the number of single rectangles released from the
network, as it ignores some of the connections that those rect-
angles share with their neighbors. Since Borromean clusters
are more likely to be released as a triplet, the naive prediction
at times underpredicts the number of triplets released from
the network. In future analyses of kinetoplast DNA or bulk
Olympic gels made from DNA [14], it may be necessary to
take into account Borromean connectivity when attempting to
ascertain the network topology.

Finally, we may ask whether purely Borromean clusters
without shared Hopf links can arise in dense networks. By
definition, this would have to occur below the Hopf link
percolation threshold, far below the Borromean percolation
threshold. Hopf-free Borromean links can be observed in less
dense systems of rectangles, but it is a rare event even with
a high aspect ratio. The largest Hopf-free Borromean cluster
we observed contained five rectangles. Below the Hopf per-
colation threshold we also observe groups of two larger Hopf
clusters held together by a Borromean triplet.

In summary, we have developed an algorithm for exam-
ining the formation of random Borromean hypergraphs in
networks of dense rectangles. Our model takes advantage of
the geometry of rectangles to avoid computationally difficult
knot invariants. We have demonstrated the random Borromean
links can form within this system, and at sufficient density will
form percolating clusters within a percolating Hopf-linked
cluster. This model may be extended to arbitrarily rotated
rectangles, whose topological overlaps may be determined
with linear algebra, and ellipses for which linking and piercing
may be determined based on location, normal vector, and
eccentricity. Such an extension may be more applicable to ring

(a) (b)

polymer solutions. Borromean rings are the simplest Brun-
nian link, in which the removal of one component dissociates
the entire network. Examining denser packings for four-
Brunnian, five-Brunnian, etc. clusters may reveal higher-order
hypergraphs forming at even higher densities. As computation
speeds improve and the application of knot invariants to physi-
cal systems becomes more developed, it may become feasible
to investigate analogous random Borromean connection and
percolation in entangled polymer solutions and Olympic gels.
Triple threadings between polymer rings, however, may be
rare compared to rectangles as the available area for piercing
grows only linearly with the length of a ring polymer in a
gel [23], but folded ring polymers may be more likely to
form Borromean connections. Coupled to newer quantitative
experimental techniques to investigate kinetoplast DNA topol-
ogy, this may lead to the discovery of naturally occurring
Borromean networks.
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APPENDIX

In the text we stated that a network of identical rectan-
gles forms two distinct interpenetrating Borromean networks,
which we will elaborate upon here. To understand why, con-
sider two identical rectangles A and B, both in the XY plane,
overlapping with the same four corner coordinates and cen-
tered on the origin. Take the rectangles to be in the landscape
orientation such that their width in X is greater than their
height in Y. Rotate B 90° around the z axis so that it is now
portrait in the XY plane. Then, rotate it 90° around the x axis
so that it is in the XZ plane. In this case, B will pierce A.
Reverting to the original configuration, keep B landscape and
rotate it around the x axis so that it is in the XZ plane. In this
case, A and B will intersect in two places, but they will not
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FIG. 6. (a) A network of 100 rectangles forming a single Hopf-linked network and two distinct Borromean networks, one with 50 rectangles
labeled blue and the other with 38 labeled red. The twelve unborromated rectangles are black. Red and blue rectangles with the same normal
vector have opposite orientations. (b) The Borromean graph structure of the network in (a). (¢) Borromean graph structure of a different
network in which the aspect ratio is allowed by vary uniformly by 10%. By chance, a single rectangle unites the two networks into a single

Borromean cluster.
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be linked or pierced. If either is translated a small distance
in the x direction, they will link, but they cannot pierce in
this orientation. Congruent rectangles in different planes must
have compatible orientations in order to pierce each other,
and the same considerations apply when a third rectangle is
considered to complete the Borromean triplet. Note that if the
rectangles have a different aspect ratio but the same area or
perimeter, or the same aspect ratio but a different size, this
does not apply.

This is visualized for a quasi-2D network of 100 rectan-
gles in Fig. 6(a), in which rectangles from each Borromean
network are colored red or blue. Note that this occurs in
high-density systems in which there is a single percolating
Hopf cluster, so the two subnetworks are not completely in-
dependent. Although it can be hard to parse this image by

eye, the blue rectangles seen at the top of the image have the
same normal vector as the red rectangles at the right of the
image, but opposite orientations. The Borromean hypergraph
structure is shown in Fig. 6(b); there are no shared Borromean
connections between the blue and the red rectangles. If, how-
ever, the aspect ratio is allowed to vary by a small amount,
it becomes possible that rectangles will be linked to both
clusters, forming a single Borromean cluster throughout the
system. Such an example is depicted in Fig. 6(c), in which
the aspect ratio was allowed to vary by 10%. The data in
Fig. 3 was taken with a fixed aspect ratio and area, but if the
aspect ratio is allowed to vary then the wider rectangles will
be more likely to share Borromean links, increasing the size
of Borromean clusters and allowing percolation to occur at
slightly lower densities.
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