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Robustly encoding certainty in a metastable neural circuit model
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Localized persistent neural activity can encode delayed estimates of continuous variables. Common experi-
ments require that subjects store and report the feature value (e.g., orientation) of a particular cue (e.g., oriented
bar on a screen) after a delay. Visualizing recorded activity of neurons along their feature tuning reveals
activity bumps whose centers wander stochastically, degrading the estimate over time. Bump position therefore
represents the remembered estimate. Recent work suggests bump amplitude may represent estimate certainty
reflecting a probabilistic population code for a Bayesian posterior. Idealized models of this type are fragile
due to the fine tuning common to constructed continuum attractors in dynamical systems. Here we propose
an alternative metastable model for robustly supporting multiple bump amplitudes by extending neural circuit
models to include quantized nonlinearities. Asymptotic projections of circuit activity produce low-dimensional
evolution equations for the amplitude and position of bump solutions in response to external stimuli and
noise perturbations. Analysis of reduced equations accurately characterizes phase variance and the dynamics
of amplitude transitions between stable discrete values. More salient cues generate bumps of higher amplitude
which wander less, consistent with experiments showing certainty correlates with more accurate memories.
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I. INTRODUCTION

Working memory involves the essential ability to encode
and store information for short periods of time [1]. Since
estimation errors can propagate through subsequent compu-
tations [2], robust and flexible maintenance of information is
key for daily tasks like decision making and planned move-
ment [3–5]. Delayed estimates of a continuous object feature
value are encoded by persistent and spatially localized neu-
ral activity across multiple brain regions [6] sustained by
feature-specific excitation and lateral inhibition [1,7]. Esti-
mate abnormalities can be indicators of neural dysfunctions
arising in schizophrenia [8], autism [9], and attention deficit
hyperactivity disorder [10]. Thus identifying mechanisms
supporting working memory stability may guide diagnos-
tics for predicting neuropsychopathologies [11]. Biologically
aligned computational models are useful for identifying how
such disorders present and may also act as a testbed for inter-
vention [10,12,13].

We focus here on extending neural circuit models of visu-
ospatial working memory, building on decades of successful
interaction between oculomotor delayed response experi-
ments and physiologically inspired models [5,7,14]. In the
task, a subject must identify and remember the position of
a briefly presented cue and then indicate the remembered
location after a few seconds. Neural recordings reveal that
the centroid of neural activity bumps encodes the remem-
bered location of the cue during the delay and response
[15]. Connections between pyramidal (excitatory) neurons
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maintain persistent activity during the delay and interneuron
(inhibitory) populations help localize activity to those with
similar feature tuning as the cue [1]. Fluctuations in neural
and synaptic activity cause the activity bump to wander diffu-
sively, generating response error variance that scales roughly
linearly with time [15–18].

Subjects also appear to reliably encode confidence (or
certainty) in their delayed estimates [19]. Confidence reports
align with accuracy, suggesting delayed estimates are rep-
resented probabilistically, possibly by the firing rate level
of persistent activity in neurons encoding the estimate [20]
which has been observed to increase with training and higher
working memory performance [21]. Peak neural activity dur-
ing retention periods has been shown to increase with strength
of evidence [4,22], consistent with Bayesian computation
[23–25]. Visual attention [26], stimulus presentation duration
[27,28], and cue contrast [26,27] all can increase spike rates
and corresponding estimates in neural circuits representing
recalled sensory stimuli [29–31]. Overall, these experiments
suggest increased (decreased) activity during delay periods
generates higher (lower) certainty and more (less) accuracy
in estimates [19,22,32].

Our models relate neural activity amplitude and response
errors along these lines. Building on physiologically inspired
models [7,15] and stochastic methods [33,34] linking neural
circuit activity to delayed estimates, we develop a theory of
activity-based encoding of confidence and its impact on re-
sponse accuracy. Larger-amplitude bumps have steeper spatial
profiles and wander less in response to fluctuations, bet-
ter retaining estimates [35]. The theory of bump attractors
must be extended to consider how bump amplitude impacts
estimate storage and readout [24,36]. Most circuit models
support bumps of a single amplitude, generating a bistable
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FIG. 1. Schematic of local metastability in a ring attractor network. Consistent with recording [43,44] and modeling [45,46] studies of
metastable neural circuits, stronger and/or longer stimuli successively and discretely recruit more active microclusters locally in a neural
circuit. Such microclusters may emerge spontaneously in development due to interactions of self-sustained activity with neuronal migration
and outgrowth [47,48]. Macroscale connectivity has ring topology akin to that inferred and observed in recordings of neural circuits encoding
periodic continuum variables [14,49–51].

amplitude space in which a stable quiescent state and stable
wide bump are separated by an unstable narrow bump [37,38].
Bumps are either instantiated or not but cannot encode cer-
tainty in bump amplitude since they filter out richer cue infor-
mation often represented in neural recordings [29]. Here we
propose and analyze a mechanism for robust encoding of cer-
tainty in activity bumps with graded amplitude values which
can be reached in response to variable stimulus features.

Metastability of firing rate states is a common phenomenon
in the brain, observed across multiple timescales. Single
neurons can occupy multiple possible discrete firing rates
states without drive [39], which could arise due to network
level phenomena revealed in stochastically switching firing
rate sequences [40,41]. Single-neuron models with multiple
bistable dendritic compartments exhibit robust and quantized
firing rate sets, providing short-term memory of transient in-
puts represented by quasicontinuous staircaselike firing rate
functions [39]. Recent complementary work has suggested
strong and sustained oscillatory input from intrinsic cell
mechanisms or circuitry may work similarly [42], producing
phase-locked states with graded firing rate amplitudes. Alter-
natively, recorded macroscale neural population activity also
exhibits multiple metastable states with local attractor-like
dynamics [40]. Furthermore, transitions between metastable
state sequences observed in neural data are well captured
by clustered population spiking models that globally exhibit
discrete firing rate increases [see Fig. 1 and Refs. [40,41,43]].

In contrast to metastable neural circuit models [45,46,52],
theory has also pursued finely tuned circuit models to sup-
port activity bumps with continuously graded amplitudes
[24,25,36]. Fixing the gain of a piecewise linear firing rate
function in spatially extended rate models generates activity
bumps whose position and amplitude jointly lie on a planar
continuum attractor [36]: radial location encodes amplitude
and angle encodes position. However, model perturbations
destroy the line attractor [53,54] and the bump amplitude
wanders in response to noise. Such fragility is alleviated by
breaking the symmetry of such continuum attractors, stabiliz-
ing a discrete set of attractors separated by saddles [55,56];
more aligned with the discrete and quasicontinuous firing
rates sets examined in other studies [39–42].

Thus, we introduce and analyze a neural circuit model
supporting metastable dynamics akin to those observed and
derived in a number of prior models [39,42,44,45,57] and
supported here with staircase shaped input-firing rate relation-
ships. Metastability is conceived as arising from successive
activation of neural microclusters with increasing cue salience
(Fig. 1). Stable activity bump solutions have multiple graded
amplitudes allowing stimulus-dependent encoding of estimate
certainty (Sec. II), whose dynamics are characterized by re-
duced phase-amplitude equations (Sec. III). Our model is
more robust to perturbations than prior models with a contin-
uum of amplitudes [36] or an all-or-none (bistable) response
[37]. Bumps subjected to fluctuating inputs retain a roughly
constant amplitude for long time intervals, and their ampli-
tude dependent wandering dynamics can be determined from
reduced equations (Sec. IV).

II. MODEL EQUATIONS

Our network attractor model encodes an angle on the cir-
cle � ∈ [−π, π ), a common requirement of memory and
navigational tasks [14,49,51] (see Table I for parameters).
Excitatory and inhibitory neural populations are collapsed to
a single neural field (integrodifferential) equation organized

TABLE I. Numerical and model parameters for Eq. (1).

Parameter Definition Value

x Domain [−180, 180]◦

dx Spatial increment 360
n where n = 212 + 1

dt Time step 0.025
Ae E strength 1.5
Ai I strength 0.5
κe E synaptic footprint 20
κi I synaptic footprint 1
M Fourier modes 20
N Firing rate steps 5
θ Firing thresholds [0.035,0.1,0.165,0.234,0.298]
Ac Cue amplitude 1
ac Cue radius 0.02 radians or ≈1.15◦
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(a)

(d)

(b) (c)

FIG. 2. Model structure and core dynamics. (a) Excitatory and inhibitory network connectivity depends on difference in stimulus angle
preference. (b) Broader and weaker inhibitory connectivity promotes stable and localized activity bumps which can exhibit multiple graded
amplitude values due to stairstep firing rate nonlinearities [see panel (d)]. Bump activity U (x) is plotted here as a function of angle x (in
degrees, not radians). (c) Phase-amplitude space plots of bumps reveal concentric ring attractors separated by unstable ring repellers, stabilizing
amplitude representations. (d) Increasing input successively engages higher firing rate states in the stairstep transfer function.

with a ring topology. Effective input u(x, t ) to local clusters
at time t is indexed by angular preference along a continuum
(x ∈ [−π, π ) for analysis, but sometimes converted to degrees
180x/π for plotting), and clusters with similar orientation
preferences are strongly coupled by excitation while those
with dissimilar preferences effectively inhibit each other [37].
Evolution of network activity is described by the spatially
extended Langevin equation:

du(x, t ) =
[
−u(x, t ) +

∫ π

−π

w(x − y) f (u(y, t ))dy

+ Ic(x, t )

]
dt + √

εdW (x, t ). (1)

Recurrent connectivity targeting clusters x from angular posi-
tion y is described by the effective synaptic kernel, w(x − y)
[Fig. 2(a)], which is locally excitatory and laterally inhibitory.

A single stationary bump solution is generated when con-
sidering a Heaviside step nonlinearity f (u) = H (u − θ ) with
H (u − θ ) = 1 if u � θ and 0 otherwise [33,34,37,58,59]. To
incorporate certainty we examine a sequence of metastable
amplitude states; generating stationary bump solutions
[Fig. 2(b)] of different amplitudes [Fig. 2(c)] when we con-
sider staircase firing rate functions with N steps [Fig. 2(d)]

f (u) = 1

N

N∑
k=1

H (u − θk ). (2)

Each step on the staircase reflects successive cluster activa-
tions (similarly to Ref. [41]), prompting increased popula-
tion level firing activity associated with distinct metastable
states (Fig. 1). Appropriate choices of the thresholds
θ = [θ1, . . . , θN ] provide for N stable bump solutions [e.g.,

N = 5 in Fig. 2(b)]. Bumps are marginally stable to shifts and
so translationally invariant [Fig. 2(c)]. Unstable solutions act
as separatrices between the stable bumps. Section III provides
details on the stability analysis.

Two limits of Eq. (2) are of interest from previous stud-
ies of attractor solutions to Eq. (1). First, taking N = 1,
we recover a Heaviside nonlinearity, imposing a model with
all-or-none responses, either exhibiting stable bumps or no
activity, as shown by Amari [37]. This limit has been useful
in analyses of the dynamics of bumps as it allows for ex-
plicit calculation of solutions, localization of linear stability
calculations, and interface methods for determining nonlin-
ear dynamics [35,37,58,60]. Alternatively, fixing θk = θ · k/N
with k ∈ {1, 2, . . . , N} and taking N → ∞ generates a piece-
wise linear firing rate function

f (u) =
⎧⎨
⎩

1, u � θ,

u/θ, 0 < u < θ,

0, u � 0.

Selecting the gain 1/θ fine-tunes the model [54] so it exhibits
bumps with a continuum of amplitudes [36]. Other continuous
forms of firing rate function f (u) could be obtained in the
limit N → ∞ with careful choices of θk .

Network connectivity w(x) is assumed to be shaped as
the difference w(x − y) = wE (x − y) − wI (x − y), collapsing
excitation and inhibition into a single population, which can
be done rigorously using a separation of timescales anal-
ysis [37,61]. Contributions from excitatory and inhibitory
populations are given by von Mises distributions wk (x) =
Akexp[κk[cos(x) − 1]]. Approximation of the effective weight
function w(x) = wE (x) − wI (x) using a finite set of even
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Fourier modes allows us to write

w(x) = W0 +
M∑

j=1

Wj cos( jx),

where the first mode ( j = 1) is dominant and has positive
weight, due to the local excitation and lateral inhibition
[1,14,15].

Cue contrast, size, and clarity is parameterized by the
convolution:

Ic(x, t ) = Ac(t )

2
w(x) ∗

[
erf

x + ac

σc
− erf

x − ac

σc

]
, (3)

where Ac(t ) = AcueI[t c
α,t c

ω](t ) describes the temporally depen-
dent strength of the cue, I
(t ) = 1 for t ∈ 
 (cue on) and
0 otherwise (indicator function), and ac is the cue halfwidth.
Increasing σc � 0 smooths the input so that in limits σc → ∞
flattens the profile and σc → 0+ yields a top hat convolved
with the weight kernel.

Spatially extended Wiener process increments have
zero mean, spatial correlations 〈dW (x, t )dW (y, z)〉 = C(x −
y)δ(t − s)dtds with δ(x) the Dirac delta distribution, and
are scaled to be weak (0 < ε � 1). Spatial correlations are
simulated by spatially convolving white noise increments
dϒ(x, t ) with an appropriate filter F (x), so that if dW (x, t ) =
F (x) ∗ dϒ(x, t ), it can be shown that C(x − y) = ∫ π

−π
F (x −

z)F (y − z)dz [33].
Numerical simulations (see Appendix A for details) show

cues of increasing salience (e.g., strength, time-length, size)
generate bumps of increasing amplitude [Fig. 2(b)]. We next
derive conditions for bumps, their stability, and their phase-
amplitude dynamics in response to perturbations.

III. DETERMINISTIC ANALYSIS

Explicit bump solutions to Eq. (1) can be directly con-
structed using self-consistency. Stability is determined by an
associated linearized operator. An appropriate ansatz inspired
by observations from stability calculations then paved the way
for low-dimensional reductions of bump dynamics to a set of
evolution equations. We conclude this section by identifying
how our metastable neural circuit models provide more robust
representations of certainty and input angle than past models.

A. Stationary solutions

Time-independent solutions u(x, t ) = U (x) to Eq. (1) with
ε ≡ 0 and Ic ≡ 0 satisfy U (x) = w(x) ∗ f (U (x)). Decompos-
ing the weight function into M Fourier modes, leveraging
trigonometric identities, and examining even solutions, we
find stationary solutions take the form:

U (x) =
M∑

j=0

Wj〈cos( jx), f (U (x))〉︸ ︷︷ ︸
Ūj

cos( jx), (4)

where 〈p(x), q(x)〉 = ∫ π

−π
p(x)q(x)dx is an inner product. For

any firing rate function, we can form a dense, nonlinear,

implicit system for the coefficients Ūj [33,38,62]

Ūj = Wj

〈
cos( jx), f

[
M∑

j=0

Ūj cos( jx)

]〉
. (5)

For the staircase firing rate f , Eq. (2), we can find N thresholds
(θ1 < · · · < θN ) such that there are N possible bump solutions.
Index bump states as B = 1, . . . , N (e.g., B = 1 and B = N
represent the lowest and highest bump-amplitude states), then
there are B interfaces (or halfwidths) ai satisfying the level set
conditions, U (±ai ) = θi. The profile of the Bth bump crosses
B levels of the firing rate function, where 1 � B � N , so
stationary bumps satisfy

U (x) = 2

N

B∑
k=1

⎡
⎣W0ak +

M∑
j=1

Wj cos( jx)

j
sin( jak )

⎤
⎦.

Utilizing the threshold-crossing conditions θi = U (ai ) for
i = 1, . . . , B one can implicitly define the half-widths ai from
the system of equations

θi = 2

N

B∑
k=1

⎡
⎣W0ak +

M∑
j=1

Wj cos( jai )

j
sin( jak )

⎤
⎦ (6)

for i = 1, . . . , B. The system Eq. (6) can be numeri-
cally solved iteratively across a range of thresholds (see
Appendix B). Cascades of saddle node bifurcations for
each half-width and threshold pair emerge (see Fig. 9 in
Appendix B). Up to N + 1 stable solutions (including the
quiescent state, U ≡ 0) exist for a neural field with an
N-step staircase firing rate, separated by N unstable bumps
[see Fig. 3(a) for N = 2 example]. Alternatively, one can also
utilize approximations to stationary bump solutions assuming
they are parameterized by a single amplitude A which repre-
sents the scaling of the peak [Fig. 3(b)].

B. Stability

Stability of bumps can be determined by examining the lin-
ear dynamics of perturbations at the interfaces defined by the
level sets u(x, t ) = θi analogously to Refs. [33,37,58,59,61].
We study small smooth perturbations of the bump using
the ansatz u(x, t ) = U (x) + ψ (x, t ), where ||ψ || << 1. For a
given bump solution state 1 � B � N , we plug in the ansatz,
Taylor expand, and truncate to first order to obtain the lin-
earized dynamics,

∂tψ = −ψ + 1

N

B∑
k=1

∑
a=±ak

ψ (a)w(x − a)

|U ′(ak )| ≡ Lψ, (7)

where we define the linear operator

Lu(x) = −u(x) + w(x) ∗ [ f ′(U (x))u(x)]. (8)

Note, to obtain this result, we have formally Taylor expanded
the Heaviside nonlinearities that comprise f (u) and whose
discontinuities are shielded by integration against the pertur-
bations ψ (x, t ). Formulas for the distributional derivatives are
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(a) (b)

FIG. 3. Stationary bump solutions. (a) All five possible solutions U (x) to Eq. (1) are plotted in degrees x for the case of a staircase firing
rate Eq. (2) with N = 2: Stable “off” state U ≡ 0; stable (purple) and unstable (red) B = 1 bump profiles only intersect lower threshold
U (a1) = θ1 (light dash dot line); stable and unstable B = 2 bump profiles intersect both low U (a1) = θ1 and high U (a2 ) = θ2 (dark dash dot
line) thresholds. (b) Bump solutions U (x) all have roughly the same normalized profile (Ũ (x) = U (x)/U (0)) allowing us to represent them
by near-exact amplitude solutions to the implicit equation A = 〈w(x), f (AŨ (x))〉, revealing the “off” state (blue); unstable bumps (red); and
stable bumps (purple) as points along the line of amplitudes A.

obtained by noting

δ(x + ak ) − δ(x − ak ) = d

dx
[H (x + ak ) − H (x − ak )]

= d

dx
H (U (x) − θk )

= H ′(U (x) − θk )U ′(x)

and then dividing by the odd function U ′(x). Summing, we
then find

f ′(U (x)) = 1

N

B∑
k=1

δ(x − ak ) + δ(x + ak )

|U ′(ak )| , (9)

where we can determine

U ′(x) = 1

N

B∑
k=1

[w(x + ak ) − w(x − ak )].

Separating solutions ψ (x, t ) = ψ (x)eλt and evaluating Eq. (7)
at interfaces x = ±a1, . . . ,±aB localizes the stability problem
to a discrete eigenvalue problem determined by a 2B × 2B
matrix. The quiescent solution u = 0 is stable [Fig. 2(d)], due
to the pure linear decay arising when ψ (±ak ) ≡ 0 for all k in
Eq. (7). For each B where bump solutions exist, we generally
find two stationary solutions: a stable wide solution and an
unstable narrow solution that is a separatrix between the wide
solution and the state below [33,37], finding no more than
N + 1 stable solutions and N unstable solutions arising due
to amplitude quantization of the metastable N step firing rate
function.

To illustrate how the stairstep firing rate function impacts
the stability problem beyond the standard single step (N = 1)
case [37], consider N = 2, so the linearized and localized
eigenproblem becomes

(λ + 1)ψ (x) = 1

2

2∑
k=1

∑
a=±ak

ψ (a)w(x − a)

|U ′(ak )| (10)

for x = ±a1,±a2, a 4 × 4 system. As expected, the bump is
marginally stable to shifts. Assuming ψ (−ak ) = −ψ (ak ) for
k = 1, 2, plugging in λ = 0, and enforcing self-consistency,

we obtain a single equation relating perturbations of the inner
ψ (a2) and outer ψ (a1) interfaces

ψ (a1)

ψ (a2)
= w(0) − w(2a1) + w(�a) − w(a+)

w(0) − w(2a2) + w(�a) − w(a+)
,

where �a = a2 − a1 and a+ = a1 + a2. This reflects the
marginal stability due to translation invariance. We do not
expect general bump stability conditions to emerge from
examining these perturbations. Stability is often determined
by studying width perturbations which are even symmet-
ric ψ (−ak ) = ψ (ak ) for k = 1, 2. This generates a 2 × 2
eigenproblem whose solutions imply stability given positive
determinant and negative trace of the associated matrix, pro-
viding the conditions

2w(2a1)w(2a2) > (w(2a1) + w(2a2))(w(�a) − w(a+))

and

(w(�a) − w(a+))2 > −2w(2a1)w(2a2)

+ 2(w(2a1) + w(2a2))(w(0) + w(�a) − w(a+)).

Alternative conditions can be constructed for other perturba-
tion types, including cases where interfaces at different levels
are shifted in opposite directions.

C. Reduced equation for amplitude evolution

Low-dimensional reductions of neural field dynamics on
the ring x ∈ [−π, π ) can be derived using Fourier decom-
positions [33,38,62–65]. A complementary approach uses
eigenfunctions of the linearized system to partition dynamics
into a position variable for a bump (phase) and its amplitude
[36,66]. Such an approach starts with the ansatz

u(x, t ) = A(t )Ũ (x − �(t )) + √
εψ (x − �(t ), t ), (11)

with � = O(
√

ε). Changes in amplitude can be large in the
event of transitions to neighboring states by external input or
accumulated noise; thus we consider dA > O(

√
ε). In general

we assume to leading order that perturbations of the bump
shift its amplitude A(t ) and/or phase �(t ) but otherwise the
bump roughly retains its shape defined as Ũ (x) = U (x)/U (0).
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(a) (b)

FIG. 4. Stimulus-driven bump-amplitude dynamics. (a) Increasing cue duration in Eq. (1) generates larger activity responses, which settle
into larger-amplitude bumps. (b) Amplitude ansatz Eq. (11) and the amplitude evolution Eq. (15) approximate the buildup and relaxation of
the bump amplitude in the full Eq. (1) well. Mild inaccuracies arise due to the assumption of fixed shape u(x, t )/u(0, t ) ≈ Ũ (x).

A low-dimensional description of input-driven bump dynam-
ics can then be obtained by first plugging Eq. (11) into a
noise-free version of Eq. (1), expanding and truncating to
obtain leading-order terms:

A′Ũ (x) − �′AŨ ′(x) + ψt − L(ψ )

≈ −AŨ (x) + w(x) ∗ f (AŨ (x)) + Ic(x + �, t ),

with the linear operator L as defined in Eq. (8). To obtain
the evolution equation for the amplitude, A, we truncate to
leading order and exploit the even symmetry of Ũ (x) to isolate
the temporal derivative. To next order we have the following
terms:

−�′AŨ ′(x) + ψt − L(ψ ) ≈ Ic(x + �, t ). (12)

The eigenvalue associated with shifts (U (x − �) ≈ U (x) −
�U ′(x)) is zero, LU ′ ≡ 0. To ensure bounded solutions we
require the right hand side of the equation to be orthogonal to
the null space of the adjoint operator

L∗(q(x)) = −q(x) + f ′(U )(x)[w(x) ∗ p(x)]. (13)

The null(L∗) is spanned by a single odd function de-
fined for a stationary solution in state 1 � B � N , φo(x) ≡
f ′(U (x))U ′(x), where f ′(U ) is as defined in Eq. (9):

L∗( f ′(U )U ′) = − f ′(U )U ′ + f ′(U )[w ∗ [ f ′(U )U ′]] ≡ 0,

since U ′ = w′ ∗ f (U ) = w ∗ [ f ′(U )U ′] from integration by
parts. Thus taking the inner product of f ′(U (x))U ′(x) with
Eq. (12) yields the evolution equation for �. Together we have
the system

A′ = −A + G(A) + JA(�, t ), (14a)

�′ = − 1

A
J�(�, t ), (14b)

where ||p||2 = 〈p(x), p(x)〉 is the squared norm induced by
the inner product and

G(A) = 〈Ũ (x),w(x) ∗ f (AŨ (x))〉
||Ũ (x)||2

describes the impact of recurrent connectivity on the bump
amplitude, and

JA(�, t ) = 〈Ũ (x), Ic(x + �, t )〉
||Ũ (x)||2 ,

J�(�, t ) = 〈 f ′(U (x))U ′(x), Ic(x + �, t )〉
〈 f ′(U (x))U ′(x), Ũ ′(x)〉 ,

describe how the even and odd parts of the cue input steer
the amplitude and phase. The phase is shifted by cues that
apply odd perturbations to the bump, though increasing the
amplitude A of the bump decreases these shifting responses.
Amplitudes relax to a stable steady state once cues are
shut off, determined by the basin of attraction demarcated
by θi where they reside [Fig. 4(a)]. Changing cue contrast,
size, and clarity also alters long-term bump amplitudes (see
Appendix C and Fig. 10). Assuming separability of the cue
Ic(x, t ) = IA(t )J (x), the phase � in Eq. (14) will not shift, so
taking �(0) = 0 without loss of generality, we can reduce the
system to

A′ = −A + G(A) + J̄ IA(t ), (15)

where J̄ = 〈Ũ (x),J (x)〉/||Ũ (x)||2. Dynamics of Eq. (15)
match the buildup and relaxation to steady-state amplitudes
determined from full simulations with low error [Fig. 4(b)].
We can thus use Eq. (15) to approximate the transient dynam-
ics and stable bump profiles expected (freezing IA(t ) ≡ ĪA) as
the input amplitude is varied.

D. Bump robustness to model perturbations

Activity states in metastable neural circuits are robust to
dynamic perturbations, and also structural perturbations like
changes to connectivity or firing rate relations [39]. Line
attractor models which finely encode stimulus differences
can be generated by considering piecewise linear firing rate
relations [67], as in hand-designed neural circuit models
with a continuum of bump attractor amplitudes [24,25,36].
Their low-dimensional dynamics lie on a planar attractor
whose angular direction encodes stimulus estimates and ra-
dial dimension represents estimate certainty. However, even
mild structural perturbations [Fig. 5(a)] destroy the carefully
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(a) (c)

(b)

FIG. 5. Metastable neural circuit robustly encodes amplitude. (a) Memory robustness and flexibility tradeoff in circuits with quantized
firing rates. Amplitudes of stationary bumps A = maxx U (x) are represented as intersections (dots) of the inner product 〈w, f (AŨ )〉 (thick
line) and line of unity (thin line). Single step nonlinearities f (u) = H (u − θ ) support one stable bump, while staircase nonlinearities, Eq. (2),
with N steps can support N stable bumps. Equilibria persist in both models even when f (u) is perturbed (gray lines). A finely tuned piecewise
linear firing rate supports a continuum of bumps, but perturbations (see inset for slope perturbations) annihilate the line attractor. (b) Inputs of
varying time lengths either lead to a single active bump amplitude or no activity for the Heaviside network, a discrete and graded set of bumps
amplitudes for the staircase network, and a set of graded amplitudes along a continuum for the piecewise linear network [36]. The Heaviside
and staircase networks maintain these solutions under model perturbations. (c) Perturbations to the piecewise linear firing rate function lead to
bump collapse or the trivial quiescent solution, breaking the amplitude coding of the finely tuned system.

crafted continuum of amplitudes [Fig. 5(c)], motivating more
robust representations. Commonly used single step (Heavi-
side) nonlinearities in f (u) in Eq. (1) can only support bumps
with a single amplitude or a quiescent state, depending on
the duration of cues [Fig. 5(b)], but bump solutions are more
robust.

Our intermediate solution balances robustness and flexi-
bility by considering staircase firing rate functions, Eq. (2),
retaining multiple stable bump-amplitude states even when
structurally perturbed [Figs. 5(a) and 5(b)]. Even weak cues
can generate bumps, which do not arise in the single step
case. On the other hand while the piecewise linear firing
rate supports a continuum of possible amplitude states for
different cue durations [Fig. 5(b)], infinitesimal structural
perturbations (e.g., slope or threshold changes to the fir-
ing rate function, connectivity perturbations) annihilate the
line attractor [Fig. 5(c)], whereas the quantized firing rate
function allows for robustness to structural perturbations
while still providing an appreciable resolution of stimulus
representations.

IV. STOCHASTIC DYNAMICS OF BUMP PHASE
AND AMPLITUDE

Responses from tasks requiring delayed estimates of con-
tinuum quantities have been reliably modeled by bump
attractor models and their low-dimensional approximations
[7,15,56,68]. The phase �(t ) (e.g., centroid or peak) of
the bump encodes the estimate [15], so the phase variance
〈(�(t ) − �(0))2〉 across trials models memory degradation

[33,69] and scales linearly with delay time [17,70] (see,
however, Refs. [68,71] for more complex accounts of mem-
ory degradation). Strengthening cues in our model increases
the salience of bumps and the estimates they encode.
Noise in Eq. (1) causes bumps to wander diffusively with
larger-amplitude bumps wandering less [33,35,36], and bump
amplitudes can transition to neighboring values (Fig. 6). We
can derive accurate estimates of the rate of these transitions,
providing a new and extended theory of the degradation of
delayed estimate accuracy in neural circuits. Our reduced
phase-amplitude equations can also be used to estimate phase
variance across all possible bump amplitudes.

A. Stochastic phase-amplitude equations

In the analogous deterministic system, we showed the
ansatz Eq. (11) decomposes the effects of odd (even) per-
turbations into shifts (scalings) of the bump. Stochastic
perturbations from the spatially extended Wiener process
noise in Eq. (1) generate wandering in the phase variable
�(t ) [33], and occasional transitions in bump amplitude A(t )
to neighboring attractors. Plugging in the ansatz Eq. (11)
and integrating against the even and odd functions Ũ (x) and
f ′(U (x))U ′(x), we find a coupled system of stochastic differ-
ential equations

dA = [−A + G(A) + JA(�, t )]dt + √
εdZA(�, t ), (16a)

d� = − 1

A
J�(�, t )dt −

√
ε

A
dZ�(�, t ), (16b)
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(a)

(b)

FIG. 6. Bump-amplitude transitions. (a) Noise (ε = 0.001) perturbs neural activity (purple heatmap) so the bump wanders within a trial.
Note that level sets (purple lines) u = θi. The reduction of attention between trials is modeled by an increase in noise (ε = 0.01) which rapidly
drives the bump to extinction through transitions in amplitude states. (b) Comparison of amplitude dynamics identified in the full model
simulation (purple) Eq. (1) and amplitude ansatz (orange) Eq. (17).

where noise increments are obtained by separating even and
odd parts,

dZA(�, t ) = 〈Ũ (x), dW (x + �, t )〉
||Ũ (x)||2 ,

dZ�(�, t ) = 〈 f ′(U (x))U ′(x), dW (x + �, t )〉
〈 f ′(U (x))U ′(x), Ũ ′(x)〉 .

Increasing the bump amplitude dampens the impact of per-
turbations on the phase. Eq. (16) describes the stochastic
dynamics of the bump phase and amplitude, accounting
for nonequilibrium dynamics of the amplitude A (see also
Ref. [66]). Amplitude dynamics in Eq. (16a) can be further
approximated by a quantized chain of Markovian states as-
suming amplitudes remain near equilibria until fluctuations
kick them to neighboring steady states of the deterministic
system, which are roots of A = G(A) [33,72]. The phase �

lies on a continuum ring attractor [−π, π ), wandering with
a diffusion coefficient determined by the bump amplitude A.
We leverage our phase-amplitude system to estimate the mean
time to transition between amplitude states (Fig. 6), which im-
pacts the wandering of bump phase and the estimate retention.

B. Mean time for amplitude transitions

Defining stable (Ās
i ) and unstable (Āu

i ) bump amplitudes of
the noise-free system (A = G(A)), we have observed (Fig. 6)
that the full system tends to dwell near stable amplitudes
(Ās

i ) on short timescales, eventually hopping to neighboring
values (Ās

i±1). In Eq. (16), the amplitude A must pass through
unstable bump amplitudes (Āu

i or Āu
i+1) when transitioning.

Between transitions and in the absence of inputs, the trans-
lation symmetry of the spatially extended Wiener process
statistics ensures Eq. (16a) behaves as a one-dimensional
stochastic differential equation

dA = [−A + G(A)]dt + √
εdZ̄A(t ). (17)

Fluctuation-induced transitions in amplitude A are deter-
mined by analyzing the associated Fokker-Planck equation of

Eq. (17). We can then formulate the mean exit time prob-
lem for A(t ) to depart the interval [Āu

i , Āu
i+1] when starting

at Ās
i (i = 0, 1, . . . , N). On the boundaries, Āu

0 → −∞ and
Āu

N+1 → ∞. The variance and diffusion coefficient of the
noise in Eq. (17) can be determined as 〈Z̄A(t )2〉 = DAt , where

DA = 〈Ũ (x), Ũ (x) ∗ C(x)〉
||Ũ (x)||4 .

The probability density p(A, t ) evolves according to the
Fokker-Planck equation

pt = − ∂

∂A
[(−A + G(A))p] + DA

2
pAA, (18)

and p(A, 0) = δ(A − Ā0), the amplitude starts at some value
A0 ∈ [Āu

i , Āu
i+1]. We expect A0 = Ās

i , but to determine first
passage time statistics, we determine quantities across the
interval. Since it determines the timescale on which a station-
ary approximation of A in Eq. (16b) is valid, as well as the
higher-order dynamics of A, we are interested in the random
time T (A0) the amplitude in Eq. (17) escapes the interval
[Āu

i , Āu
i+1]. The mean time T (A0) = 〈T (A0)〉 is determined by

leveraging the backward Fokker-Planck (FP) equation [73],
describing the evolution of the probability q ≡ p(A, t |A0, 0)
we find the amplitude at A at time t given it started at A0 at
t = 0. The state variable in the backward FP equation is the
initial condition A0 and we use the adjoint linear operator of
Eq. (18) to define the flux

qt = [−A0 + G(A0)]qA0 + DA

2
qA0A0 , (19)

= −J (A, t |A0, 0).

The probability we find the amplitude within [Āu
i , Āu

i+1] at time
t is given by integrating the density∫ Āu

i+1

Āu
i

p(A, t |A0, 0)dA = G(A0, t ) = P(T (A0) > t ),

where the last equality follows from the fact that the amplitude
leaves the interval after t if it has not left by then. Integrating
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the backward FP Eq. (19), we obtain a related equation for
G(A0, t )

Gt = [−A0 + G(A0)]GA0 + DA

2
GA0A0 , (20)

with boundary conditions G(A0, 0) = 1 if A0 ∈ [Āu
i , Āu

i+1] and
0 otherwise, while G(Āu

i , t ) = G(Āu
i+1, t ) = 0. The mean first

passage time can then be computed

T (A0) = −
∫ ∞

0
tGt (A0, t )dt =

∫ ∞

0
G(A0, t )dt .

A differential equation for T (A0) can be derived by integrat-
ing Eq. (20) over t ∈ (0,∞), finding

[−A0 + G(A0)]T ′ + DA

2
T ′′ = −1, (21)

along with boundary conditions T (Āu
i ) = T (Āu

i+1) = 0. Equa-
tion (21) can be solved by integrating to find

T (A) = 2

DA�
(
Āu

i , Āu
i+1

)
[
�

(
Āu

i , A0
) ∫ Āu

i+1

A0

V
(
Āu

i , y′)
ν(y′)

dy′

−�
(
A0, Āu

i+1

) ∫ A0

Āu
i

V
(
Āu

i , y′)
ν(y′)

]
,

where V (a, b) = ∫ b
a ν(x)dx and �(a, b) = ∫ b

a
dx

ν(x) and

ν(A0) = exp

[
2

DA

(
V

(
Āu

i

) − V (A0)
)]

. (22)

Stochastic amplitude dynamics are strongly determined by
the potential function [Fig. 7(a)], formed by integrating
V (A) = ∫ A

−∞[A′ − G(A′)]dA′, which biases transitions to
lower-amplitude states over time. The energy barrier the
stochastic particle must surmount is lower on the left side
[Fig. 7(a)], so increases in neural variability following task-
relevant epochs (when variability is lower, due perhaps to
attention [74,75]) could serve to annihilate persistent activity
[see Fig. 6 and Refs. [33,66]].

To approximate the rate of transition over either barrier,
we assume that the mean time of escape over either bound-
ary will be roughly the same T ±(Ās

i ) ≈ T (Ās
i ) as is often

the case even with asymmetric potentials [72,73]. We then
approximate the rate of transition over either barrier r±

i ≈
π±

i (Ās
i )/T (Ās

i ) as the escape probability scaled by the mean
time. Exit probabilities π±

i (Ās
i ) are determined by deriving the

appropriate differential equation. First, integrate the probabil-
ity current through the boundary of interest J (Āu

i+1, t |A0, 0)
or −J (Āu

i , t |A0, 0). For instance, the probability the particle
exits via A = Āu

i+1 after time with t is

g+(A0, t ) ≡
∫ ∞

t
J

(
Āu

i+1, t ′∣∣A0, 0
)
dt ′

=
∫ ∞

t

[
(A0 − G(A0))q − DA

2
qA0

]
dt ′.

Using the fact that q = p(Āu
i+1, t |A0, 0) satisfies Eq. (19), we

find that g+(A0, t ) satisfies

g+
t = (−A0 + G(A0))g+

A0
+ DA

2
∂2

A0
g+

A0A0
.

(a)

(b)

(c)

FIG. 7. Amplitude potential landscape and transition dynamics.
(a) Amplitude potential well landscape V (A) (blue line) deter-
mines drift via the descent of its gradient −V ′(A) = −A + G(A).
Potential peaks (red dashed) separate stable minima. Stochastic fluc-
tuations drive amplitude (purple particle) to escape minima, usually
downhill towards the off state (A ≡ 0). (b) Markov chain approxi-
mation of well-hopping dynamics. Transition rates from a state Ās

i to
its neighbor Ās

i±1 are approximated r±
i ≈ π±

i (Ās
i )/T (Ās

i ) by the ratio
of the escape probability and mean first passage time. Stable bump
amplitudes are enumerated from 0 (the off state) and 5 (the highest-
amplitude state). Noise ε = 0.01. (c) Mean transition times were
estimated by averaging over 1000 simulations (Mean: orange “x”;
blue lines: standard deviation) comparing well with theory (orange
line). See Appendix B for simulation details.

Taking t → 0+ and defining π+
i (A0) := g+(A0, 0), we

see that J (Āu
i+1, 0|A0, 0) vanishes if A0 �= Āu

i+1, since
p(Āu

i+1, 0|A0, 0) = δ(A0 − Āu
i+1), so g+

t (A0, 0) → 0 and

(−A0 + G(A0))∂A0π
+
i (A0) + DA

2
∂2

A0
π+

i (A0) = 0,

where π+
i (Āu

i+1) = 1, π+
i (Āu

i ) = 0, and π+
i (A0) + π−

i (A0) =
1. We solve and π+

i (A0) = N (A0)/N (Āu
i+1) and π−

i (A0) =
1 − π+

i (A0), where N (A) = ∫ A
Āu

i

dy
ν(y) . The escape probability

and exit rate associated with the left boundary of each well is
larger than for the right boundary [Fig. 7(b)], so A(t ) will tend
towards 0, and all bumps are eventually extinguished given a
long delay time, as suggested by behavior [76].

Mean transition time estimates align well with full system
simulations [Fig. 7(c)], making two key predictions. First,
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(a) (b)

(d
eg
)

FIG. 8. Increased cue duration decreases wandering. (a) Top: Estimate distributions computed from bump peak after delay for cue durations
tc = 30, 70, 110 ms. Bottom: Wandering bumps u(x, t ) of low-, medium-, and high-amplitude following cues of different lengths. (b) Response
variance decreases with cue duration due to increasing bump amplitude. Noise ε = 0.01. See Table I for other parameters and Appendix A for
numerical methods.

higher-amplitude bumps transition to neighboring amplitudes
(usually lower) quicker than low-amplitude bumps. This does
not negate our overall claim that high-amplitude bumps are
more robust, since transitions from high amplitudes still gen-
erate medium to high-amplitude bumps. Second, transition
frequency increases with the fluctuation strength. Asymptotic
errors in approximating the potential exponentially impact
passage time estimates, which is obvious at low noise levels.

C. Phase variance estimates

We now study how bump amplitude shapes the wander-
ing of the bump phase �(t ). As has been found previously,
higher-amplitude bumps wander less [33,36]. Since the phase
encodes the remembered stimulus value �0, the variance
〈(�(t ) − �0)2〉 measures recall error. Variance is determined
by analyzing the reduced and forced equation for the phase,
Eq. (16b), which we write out in terms of integrals without
external inputs

d� = −
√

ε

A

〈 f ′(U (x))U ′(x), dW (x + �, t )〉
〈 f ′(U (x))U ′(x), Ũ ′(x)〉 . (23)

Fixing the amplitude A ≈ Ā ∈ Ās
0:N in Eq. (23) in the case of

rare transitions due to weak noise and/or short delays, we
compute variance 〈(� − �0)2〉 = D(ε)t , where

D(ε) = ε

Ā2

〈 f ′(U (x))U ′(x), f ′(U (x))U ′(x) ∗ C(x)〉
[〈 f ′(U (x))U ′(x), Ũ ′(x)〉]2

.

Larger amplitudes Ā reduce the variance (Fig. 8), well pre-
dicted by our theory, as in findings showing higher certainty
reduces response errors [19,22]. Increased neural responses
(bumps of higher amplitude) occur in response to longer,
brighter, clearer, and larger cues generating more accurate
responses (i.e., there is less wandering).

V. DISCUSSION

Metastability is a powerful mechanism for supporting ro-
bust representation of information in neural circuits [43–45].
Recent works have begun to explore possible roles of multi-
stability in neuron firing arising from cell mechanisms such

as nonlinear denditric compartmentalization [39] and intrin-
sic subthreshold oscillation bands [42] which link steplike
firing rate sets of neurons and graded amplitudes of neuron
activity. On the macroscale, we have proposed a neural circuit
model inspired by microclustered architecture [45,46] of such
multistable neurons with population firing dependent on clus-
ter activation [41] which sustains neural population activity
bumps with multiple amplitudes. Rather than employing a
fragile model with a fine-tuned transfer function [24,25,36],
we considered a quantized firing rate function generating a
robust model reminiscent of metastable single-neuron models
with bistable dendritic compartments [39]. Our neural circuit
model’s dynamics can be reduced to evolution equations that
clearly account for how stochasticity and perturbations im-
pact delay encoding and confidence. Our analysis provides a
simple and understandable theory for increased accuracy of
delayed estimates made from more salient cues [22,28,29].

Our neural field model can support up to N pairs of bumps,
each pair including one stable and one unstable, when its
stairstep firing rate function possesses N steps. Active so-
lutions of the neural field asymptotically relax to similarly
shaped bump profiles, strongly suggesting an ansatz for low-
dimensionalizing system dynamics. Both external inputs and
noise can drive neural activity bumps between neighboring
amplitude values, as described by our reduced system. Our re-
duced equations not only accurately predict the wandering of
bumps in response to noise but also the timing and preference
of amplitude transitions. We find bumps formed from more
salient cues are more resilient to fluctuations and generate
more accurate response estimates.

Our analysis could be extended in several ways. Short-term
plasticity can further stabilize bumps during delay periods
[77], effects that could be analyzed using an interface based
analysis [59]. We could also consider models with separate
excitatory and inhibitory populations and develop theory sep-
arately tracking each bump’s phase and amplitude dynamics
[34]. Our phase-amplitude ansatz makes near-equilibrium as-
sumptions about the shape of the bump, but perturbations may
warp the bump profile in ways not well described by multi-
plicative scalings. Consideration of such additive changes to
neural population responses could more fully characterize the
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(a) (b) (c)

FIG. 9. Iteratively identifying bumps and stairstep firing thresh-
olds. We briefly illustrate the sequential procedure of determining
stable or unstable bump branches and stairstep firing thresholds.
(a) Select θ1 and find the B = 1 set of bump solution branches
(blue branch is stable); (b) After choosing θ1 find the second set of
branches (green or red lines in green region). (c) Iterate for thresholds
θ3:N . Gaps between solution regions arise since B = k + 1 bumps
must all have higher amplitudes than B = k bumps (lowest point on
neighboring red branch sits above blue branch).

continuum of spontaneous modulations to neural tuning [78].
Accounting for dynamic perturbations of bump profiles may
also improve the accuracy of our amplitude transition theory.
Also, our analysis is limited to firing rate functions with a few
steps, N = O(1), but could be extended to examine the limit
of many steps (N � 1) with frequent transitions between or
the impact of more irregular step spacings.

Quantized representation of inputs and even behavior
variables is supported by a number of other computational
and experimental studies. Clustered spiking networks can
also generate staircase firing rate relations [41,46], suggest-
ing that a mean-field analysis of such models could be a
fruitful direction of future study. Complementarily, modular
cortical networks exhibiting clustering at larger scales have
also demonstrated improved working memory performance
[6,79–81], further supporting the hypothesis that architectures
that engender metastability could underlie more robust delay
encoding. More recently, an analysis of neural activity in
hypothalamus has revealed that general behavioral states like
aggression may be encoded along a discrete and approximate
line attractor [82]. It is important to note that the destruction
of a line attractor may not be catastrophic for coding delayed
estimates or other states as long as the resulting evolution
of the dynamics is slow compared to the needed encoding
time [83].

Our neuromechanistic model provides several links be-
tween circuit features and behavioral response trends, pro-
viding a testbed for physiological theories of increased
errors and impaired processing for continuum estimates
in schizophrenia [8,28], autism spectrum disorders [9], or
attention deficit hyperactivity disorder [84]. Early detec-
tion of such abnormalities using noninvasive psychophysics
could speed diagnoses and the implementations of behavioral
interventions to help manage executive function in neurodi-
vergent populations [85,86]. Models that can connect aberrant
response statistics to underlying neurophysiology require
carefully balancing mathematical tractabilty and the inclusion

of hitherto unexplored features of the underlying biological
circuits.

Python code for simulating and analyzing our neural field
models are available [87].

APPENDIX A: MODEL EQUATION SIMULATIONS

Convolutions and spatially filtered noise were computed
using fast Fourier transforms. Euler-Maruyama is used to time
step Eq. (1) with initial conditions and inputs centering bumps
at x = 0. Numerical quadrature is performed using Riemann
sums. Table I gives simulation parameters unless otherwise
indicated in figure captions.

Amplitude transition times are found by (1) initializing
simulations starting with a bump having an amplitude corre-
sponding to a stable stationary bump, (2) running a stochastic
simulation until the estimated amplitude crosses through a
neighboring unstable bump value (or until a maximum time
is reached), and (3) recording the time of transition for 1000
trials with transitions detected within the delay or terminat-
ing when 25 successive or 100 cumulative trials have failed
to transition, which we take to indicate that the mean tran-
sition time is too close to or far beyond the cutoff time
for our parameterized method to make an accurate estimate.
Bump amplitudes are estimated as the peak activity value
maxx u(x, t ).

APPENDIX B: ITERATIVE CONSTRUCTION OF BUMPS

Bumps are constructed by identifying threshold intervals
in which solutions of successively higher amplitude exist.
Starting by solving the threshold condition Eq. (6) at the
first level (i = 1) and constraining θ1 < U (0), we can find
θ1 values that admit stable or unstable branches of B = 1
bumps. Then, finding the peak of the maximum U (0) for the
stable B = 1 bumps, we constrain an interval of possible θ2

values and use the Fourier coefficient equations Eq. (5) to
determine the next larger family of bumps of sufficiently high
amplitude so that θ2 < U (0). For a satisfactory θ2, we can
continue branches of stable or unstable bumps. This process
is then repeated by choosing an appropriate θk+1 > U (0) for
all B = k bumps calculated from the Fourier decomposition
given by Eq. (5), using Eq. (5) to compute the next branches
such that U (0) > θk+1 until k + 1 = N . See Fig. 9 for an
illustration.

APPENDIX C: AMPLITUDE DEPENDENCE
ON CUE CHARACTERISTICS

Here we qualitatively compare bump amplitudes to other
cue properties. Experiments show longer encoding periods
lead to higher accuracy and increased neural responses
[27,28], consistent with longer cue durations generating
bumps of higher amplitude [Fig. 4(a)]. Increasing cue con-
trast (stimulus amplitude) also increases neural responses [see
Refs. [26,27] and Fig. 10(a)]. Larger cues can also elicit higher
neural responses [see Ref. [88] and Fig. 10(b)]. Cue blurriness
can also impact detection and encoding [see Refs. [30,89] and
Fig. 10(c)].
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(a) (b) (c)

FIG. 10. Cue characteristics and certainty. Cue profile (Ac(t )[erf x+ac
σc

− erf x−ac
σc

] portion of Ic(x, t )) features are varied and resulting bump
amplitude determined. (a) Contrast controls cue strength Acue (bottom panel), whose increase generates higher-amplitude bumps. (b) Wider
cues generated by increasing the diameter 2ac increase bump amplitude. (c) Cue clarity (sharpness) is reduced by decreasing σc in Eq. (3),
decreasing encoded bump amplitude.
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