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Ionic current blockade in a nanopore due to an ellipsoidal particle
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Nanopores in solid-state membranes have been used to detect, identify, filter, and characterize nanoparticles
and biological molecules. In this work, we simulate an ionic flow through a nanopore while an ellipsoidal
nanoparticle translocates through a pore. We numerically solve the Poisson-Nernst-Planck equations to obtain
the ionic current values for different aspect ratios, sizes, and orientations of a translocating particle. By extending
the existing theoretical model for the ionic current in the nanopore to the particles of ellipsoidal shape,
we propose semiempirical fitting formulas which describe our computed data within 5% accuracy. We also
demonstrate how the derived formulas can be used to identify the dimensions of nanoparticles from the available
experimental data which may have useful applications in bionanotechnology.
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I. INTRODUCTION

Since 1950s [1–3], porous membranes have been used to
characterize microscopic and nanoscopic objects of various
shapes and dimensions, e.g., nanoparticles and nanorods made
of various materials, filamental viruses, and biomolecues,
such as DNA [4–9]. Nanopores in solid-state membranes are
of particular interest as their dimensions can be customized
for a problem at hand [10]. To perform a measurement, a
membrane with a nanopore in it is used to separate two
reservoirs filled with an electrolyte solution so that when an
electric bias is applied across the membrane, the ionic current
flows the pore. The same bias can also facilitate a passage of a
charged particle through the nanopore while for an uncharged
or weakly charged objects, the translocation can be achieved
by a variety of other means such as, for example, by creating
a pressure driven flow or utilizing the electroosmotic flow of
the fluid through nanopore carrying a surface charge [11].
Regardless of a particular transport mechanism, a nanoparticle
traversing through a nanopore affects the ionic current, and
the change in current which, in general, depends on the parti-
cle’s size, shape [12], location [13], and orientation inside the
nanopore [14–16] can be then recorded using a resistive pulse
technique [2,17–20].

To gain insight into how the ionic current depends on
the translocating nanoparticles properties, we first consider
a simple model where the nanopore system is represented
as a series of three Ohmic resistors connected in series [2],
which are the two access resistances [21] near the nanopore
ends, and the resistance of the nanopore itself. The access
resistances appear due to bending of the current streamlines in
the inlet and outlet regions of the nanopore. The resistance of a
cylindrical pore depends on its length, L, and the diameter, D.
When the particle is present in the pore, the volume of the pore
open to the current flow decreases resulting in the reduction of
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the ionic current Ib from its open pore value, Io, observed when
the nanoparticle is not present. In the limit of a small nanopar-
ticle in a long nanopore with L � D so that the nanoparticle
can fit completely within the pore without affecting the current
flow aroud the nanopore [22], the relative change in the ionic
current, or the “ionic current blockade” (Io − Ib)/Io = �I/Io,
is proportional to the ratio of the volumes of the nanoparticle
and nanopore, v and V , respectively [2,20]:

�I

Io
= f

v

V

1

1 + πD/(4L)
≡ f �, (1)

where parameter � lumps together the volume ratio v/V and
the finite nanopore length factor [1 + πD/(4L)]−1. Factor f
in this equation is the electric shape factor [2,14,23,24] which
depends on the nanoparticles’ shape, orientation, and position
inside the pore. For spherical particles, f = 3/2 [2]. For ellip-
soidal particles the shape factor is strongly dependent on the
particle’s dimensions [14,23,24], and for an arbitrary angle θ

between the axes of revolution of a spheroidal particle and the
nanopore, it can be written as [14]

f = f‖ + ( f⊥ − f‖) sin2(θ ), (2)

where f‖ ( f⊥) is the shape factor of the particle with the
axis of revolution parallel (perpendicular) to the pore axis
[14,23,24].

The above discussion and the resulting Eq. (1), are approx-
imate, that is, strictly speaking, they are only valid in the limit
of small nanoparticles with v � V which are also assumed
to be moving through the nanopore along its central axis.
In this case, the uniform electric field lines (or the current
streamlines) in the nanopore due to the applied bias bend
around the small nanoparticle while remaining largerly un-
affected along the nanopore walls. Increasing the dimensions
of a translocating object and/or moving it off-axis strongly
modifies the electric field in the nanopore particularly in the
annular region between the particle and the nanopore as the
current streamlines have to be confined to the nanopore. This
results in the decrease of the ionic current below the values
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predicted by the small-particle limit of Eq. (1) [13,25–27].
The above equation also omits the effects on the ionic current
from the electric charge frequently accumulated on surfaces
of the nanoparticle and/or nanopore. The charge distribution
on the nanoparticle and nanopore surfaces strongly affects the
ionic current leading, for example, to the increase of the ionic
current above the open pore baseline under certain conditions;
these effects were discussed elsewhere [28,29].

In this work, our main aim is to analyze the ionic current
blockade arising due to “large” dielectric particles of ellip-
soidal shape with dimensions larger or comparable to the
nanopore diameter. We focus on the ellipsoidal particles be-
cause many biological macromolecules can be approximated
with that shape [13] which may facilitate the analysis of the
experimental data. On the other hand, nanoparticles in the
shape of rods or cylinders (nanorods) as well as some fila-
mental viruses [5,7,30] can also be modelled as very slender
ellipsoids.

To this end, we first perform calculations based on the
current conservation inside the nanopore in order to establish
the leading term dependence of the large-particle-size cor-
rection factor to the ionic current predicted by Eq. (1). The
calculations are similar to the method originally proposed in
Ref. [2] for spherical particles which considers contribution
to the ionic current only from the current streamlines confined
completely within the nanopore volume. We then use these
results to construct the fitting formulas for the ionic current
blockade ratios �I/Io obtained from numerical calculations
utilizing the self-consistent solution of the Poisson-Nernst-
Planck (PNP) system of equations [29,31] for a broad range
of particle and pore dimensions. We perform calculations of
the ionic current blockade for the particle positioned along
the central axis or off-center and for different orientations
of the nanoparticle within the nanopore, and provide corre-
sponding large-particle correction factors for these cases, thus
providing a comprehensive description of the ionic current
response to the translocation of the ellipsoidal particle though
the nanopore.

The paper is organized as follows. Section II describes the
semiempirical model of the ionic current response to large
particles while Sec. III describes our simulated nanopore-
nanoparticle system and the PNP model we use to numericaly
calculate the ionic current. Section IV presents and discusses
the simulation results and their analysis with the help of for-
mulas derived using the model of Sec. II. The final Sec. V
summarizes the results and briefly outlines the future work.
Details of the semiempirical calculations of the ionic current
blockade for large ellipsoidal particles and the model valida-
tion are relegated to Appendixes A and B, respectively.

II. IONIC CURRENT BLOCKADE FOR LARGE
TRANSLOCATING PARTICLES

For a small, neutral, dielectric particle translocating
through a long cylindrical nanopore, neglecting the access
resistance contribution, the blocked pore ionic current Ib is
equal to [24,29]

I (1)
b = Io

(
1 − 4

∮
ap

φ0ẑ · d�a
πD2�V

)
, (3)

FIG. 1. Schematic representation of (a) the membrane-nanopore
system shown in a cross section (see Sec. III A for detailed explana-
tion of symbols), (b) the nanoparticle oriented at an angle θ relative
to the pore’s z axis, and (c) the nanoparticle in an off-axis position at
a distance xc from the pore’s z axis.

where the intergration of the electric potential φ0 is performed
over the surface of the nanoparticle ap, and in derivation of
this equation it is assumed that the nanoparticle does not
perturb the electric potential difference �V applied across the
nanopore.

In principle, the electric potential φ0 in the above equa-
tion should be evaluated numerically from the solution of
the PNP equations. However, for a small uncharged spherical
nanoparticle in the uniform electric field far away from the
nanopore walls, the approximate closed form solution for φ0

can be written as

φ0 = −E cos θ

(
r + d3

16r2

)
, (4)

where r is the distance from the particle’s center and angle
θ is measured from the z axis of the pore (see Fig. 1 where
the membrane-nanopore system is schematically represented).
Substituting this expression in Eq. (3) and evaluating the
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FIG. 2. Current streamlines (dark blue) calculated from Eq. (4)
in a nanopore with a spherical particle (red) for two different parti-
cle’s sizes. The “leakage” of the streamlines outside the nanopore is
visible for the large particle.

surface integral then gives [2,24]

I (1)
b = Io

(
1 − Ed3

�V D2

)
. (5)

If we further set E equal to the value of the uniform electric
field in the nanopore, E = �V/L, then we recover Eq. (1) with
the shape factor f = 3/2.

On the other hand, in general, the ionic current through any
cross-sectional area of the pore, Ap, can also be evaluated from
the Ohm’s law as

Ib = σ

∫
Ap

Ezda, (6)

where σ is the electrolyte’s solution conductivity (constant in
our case), and Ez = −∇φ0 · ẑ is the component of the electric
field along the nanopore z axis. In presence of the spherical
nanoparticle, at the position of the maximum nanopore con-
striction, z = 0, with the electric potential given by Eq. (4),
we then find that

I (2)
b = πσED2

4

[
1 −

(
d

D

)3]
= IoEL

�V

[
1 −

(
d

D

)3]
, (7)

where the open pore current for a cylindrical nanopore is Io =
σ�V πD2/(4L).

Clearly, I (1)
b and I (2)

b should be equal. For small nanoparti-
cles, d � D, the difference between I (1)

b and I (2)
b is slight, but

with increasing particle’s size, I (1)
b and I (2)

b begin to deviate
with I (2)

b < I (1)
b in long pores with L > D. This is because, for

larger nanoparticles, Eq. (4) is not an acceptable solution for
the electric potential as the current streamlines due to it cannot
be confined inside the nanopore in the annular region around
the nanoparticle (see Fig. 2).

We can resolve this difficulty by requiring I (1)
b = I (2)

b and
treating E as an adjustable parameter. For the long pores (D �
L), the second term in Eq. (5) can be neglected, thus leading
to E ≈ (�V/L)/[1 − (d/D)3]. Substituting this E back into

Eq. (5) gives

Ib ≈ Io

(
1 − f

v

V

[
1 −

(
d

D

)3]−1)
, (8)

and the ionic current blockade ratio

�I

Io
= f

v

V
F

[(
d

D

)3]
, (9)

which is larger than the small-particle result of Eq. (1) by a
factor F [(d/D)3] = [1 − (d/D)3]−1.

We should emphasize that the above approach only es-
tablishes that the large-particle-size correction term F for
spherical nanoparticles is ∼(d/D)3, F [(d/D)3], and does not
provide a correct numerical form of the dependence. That
task is accomplished by fitting the numerical calculations
described in the next section to this dependence. The above
is also equivalent to calculations in Ref. [2] based on conser-
vation of the number of the ionic current density streamlines
(to keep constant current value) through a nanopore with a
nanoparticle.

Performing similar calculations for spheroidal particles,
we find that (see Appendix A for details) for a large oblate
spheroid translocating through the nanopore, the large-particle
correction factor strongly depends on its orientation in the
nanopore changing from F [(d/D)3] when its axis revolu-
tion is along the nanopore axis to F [ld2/D3] when they are
perpendicular. For the prolate spheroid, the correction fac-
tor dependence varies from F [(d/D)2] for long particles to
F [ld2/D3] for small and slender ones.

III. COMPUTATIONAL MODEL AND METHOD

A. Nanopore model

In this work we consider a thin nanometer-scale silicon
dioxide (SiO2) membrane carrying a cylindrical nanopore
which connects reservoirs, above and below the membrane,
filled with an electrolyte solution (Fig. 1). The reservoirs are
large compared to the membrane thickness, and filled with a
potassium chloride (KCl) solution.

The membrane thickness (the pore length) is denoted by
L and nanopore diameter is D. An ellipsoidal nanoparticle,
placed in the nanopore center with its center at z = 0, is shown
in Fig. 1 as well. The nanoparticle has length � and diameter
d . The angular orientation of the nanoparticle in the pore is
varied from θ = 0◦ to 90◦, where θ = 0◦ is when the particle’s
axis of revolution is parallel to the nanopore axis (z axis), and
90◦ is when the particle’s vertical axis is normal to the z axis,
see Fig. 1(b). The particle’s off-axis position is also varied;
Fig. 1(c) shows the nanoparticle at some off-axis distance xc

from the nanopore axis.
Ions within the electrolyte solution move across the mem-

brane via the nanopore in the presence of the applied electric
potential bias producing an ionic current. The electric poten-
tial φ and the ionic flux density �Ni are described by the PNP
model:

∇2φ = − eNA

εoεr
(z+c+ + z−c−), (10)

∇ · �Ni = 0, (11)
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�Ni = Di

(
∇ci + ezi

kbT
ci∇φ

)
. (12)

Here subscript i = +,− denotes the positive (K+) and neg-
ative (Cl−) ion species in the electrolyte, ci is the local
concentration of the corresponding ions, e is the elementary
charge, kb is Boltzmann constant, T = 293.15 K is tempera-
ture, NA is Avogadro number, εr = 78 is the solution’s relative
permeability, εo is the permittivity of free space, zi is va-
lency of the electrolyte ions (zi = ±1 here), Di are the ions’
diffusion coefficients, DCl− = 2.03 × 10−9 m2/s and DK+ =
1.95 × 10−9 m2/s.

An electrolyte bias �V is set across the membrane by
maintaining a 100 mV potential at the bottom reservoir bound-
ary and 0 mV at the top reservoir boundary. For the Poisson
Eq. (10), on the side reservoir surfaces, we set the normal
component of the electric field to zero,

n̂ · ∇φ = 0, (13)

where n̂ is a unit vector normal to the boundary surface. Since
the dielectric constant of both the nanoparticle and membrane
is much smaller than that of the solution (3.9 vs 78), this
leads to their small induced polarization which allows to use
Eq. (13) on the membrane-electrolyte (zero charge on the
membrane) and on the nanoparticle-electrolyte (no charge on
the particle) interfaces as well [32].

For the Nernst-Planck Eq. (11), the normal component of
the ionic flux is set to zero on the membrane-electrolyte, the
nanoparticle-electrolyte interfaces, and the side boundaries of
the reservoirs, while on the top and bottom of the reservoirs
(inlet and outlet) the constant bulk ionic concentration cb =
0.1 M is maintained.

The ionic current flowing through the nanopore is calcu-
lated from the ionic flux densities �Ni, see Eq. (12), for the two
species as follows:

I = eNA

∫
S
(z+ �N+ + z− �N−) · d �S, (14)

where the integral is evaluated over the surface area S at
the upper boundary of the top reservoir. Because the ionic
blockade ratio remains constant when the uncharged parti-
cle is fully inside the uncharged nanopore [29] away from
its ends, in what follows, we always place the nanoparticle
at z = 0 (Fig. 1) when calculating the blocked pore ionic
current Ib.

B. Two-dimensional simulations

When the nanoparticle is located in the center of the pore
with nanoparticle’s axis of revolution lined up with the pore’s
z axis (θ = 0◦), due to cylindrical symmetry of our nanopore-
membrane system described in Sec. III A, the PNP Eqs. (10)
and (11) can be solved numerically in two dimensions (2D)
on the computational domain shown in Fig. 3. Here the mem-
brane thickness (the pore length) is L = 200 nm and nanopore
diameter is D = 20 nm, the electrolyte reservoirs are 100 nm
in height and 200 nm in width each. Throughout this work, we
use Comsol Multiphysics 5.3 to obtain the numerical solution
of our PNP model. The mesh utilized in the 2D model is a

FIG. 3. Two-dimensional simulation domain. The inset shows a
magnified portion of the nanoparticle-nanopore with superimposed
mesh.

free triangular mesh with a fixed size of 0.1 nm which results
in approximately 2 × 107 mesh elements.

C. Three-dimensional simulations

To calculate the ionic current for nonzero values of the
angle θ between the nanoparticle’s axis of revolution and the
nanopore z axis [Fig. 1(b)] or when the particle is located
off-center in the nanopore [Fig. 1(c)], a 3D computational
model of the system is built (Fig. 4). With the addition of
an extra dimension, the number of mesh elements increases
dramatically. Because of this, all dimensions of the system
have to be scaled down by an order of magnitude to make the
solution feasible by the Comsol solver, so that the nanopore

FIG. 4. Three-dimensional simulation domain with a slice re-
moved to visualize the interior. The inset shows a magnified portion
of the nanoparticle-nanopore with mesh.
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FIG. 5. (a) Normalized ionic current blockade ratio �I/(Io� f‖) for spheroids with the axis of revolution oriented parallel to the nanopore
axis for different particle lengths �. Symbols represent the results of calculations while the dashed curves are the results of the fitting with
Eq. (15): Blue × symbols and curve corresponds to �/L = 0.025, red © and curve – �/L = 0.09, and black ♦ and curve – �/L = 0.2. The
inset shows dependence of the parameter a‖ on the length � with a horizontal dashed line drawn at the best fit value. (b) Same as in (a) but
for the perpendicular orientation of the nanoparticle (θ = 90◦) with Eq. (16) used to generate the fitting curves. Blue × symbols and curve
corresponds to �/L = 0.025, black � and curve – �/L = 0.05, and red © and curve – �/L = 0.09. The inset shows a⊥(�) dependence with
the best fit (dashed) line.

now has a length of L = 20 nm and a diameter D = 2 nm.
The dimensions of the spheroidal particle are also varied
accordingly. As the current blockade expression is expected
to depend only on the ratios of the nanoparticle-nanopore
dimensions, this scaling does not affect the value of �I/Io;
this was verified by comparing results of 2D calculations
against 3D data for the appropriate cases with a nanoparticle
in the on-axis position and θ = 0 (see Appendix B). The mesh
utilized for this model is a custom free triangular mesh with
a minimum mesh size of 0.05 nm in the nanopore that grows
gradually to a maximum mesh size 0.4 nm in reservoirs and
creates approximately 3 × 106 mesh elements in total. The
relative tolerance for the Comsol solver is set to 10−6 in both
2D and 3D simulations.

IV. RESULTS AND DISCUSSION

A. Ionic current blockade

1. On-axis position of the nanoparticle

In Fig. 5 the normalized ionic current blockade,
�I/(Io� f‖(⊥) ), which is equal to the the large-particle fac-
tor, see Eq. (9), is shown for ellipsoidal particles of various
lengths and diameters when the particle’s axis of revolu-
tion is Fig. 5(a) parallel and Fig. 5(b) perpendicular to the
nanopore axis. According to the discussion in Sec. I, the ratio
�I/(Io� f‖(⊥) ) gives the large-particle factor (correction) to
the ionic current blockade which, as can be seen in this figure,
approaches unity for small particles and increases with the
particle diameter and length. For example, in Fig. 5(a), when
the particle’s diameter is about half of the pore’s diameter

(d/D ∼ 0.5), this correction is ∼10%, and it rapidly grows
to ∼200% for d/D = 0.9. One can also immediately see that
for the parallel orientation of particles, the dependence of
�I/(Io� f‖) on the nanoparticle length � is rather weak: All
curves for different ratios �/L are close together, and the ionic
current blockade ratio changes only by ∼20% when the parti-
cle’s length varies from �/L = 0.025 to 0.2 for the particles
with d/D = 0.9. Qualitatively this could be understood by
noting that for a fixed d/D the cross-sectional area of the
nanopore open to the current flow is the same irrespective of
the particle’s length �. At the same time, the electric field at
the position of the ellipsoid’s center (z = 0) becomes more
aligned along the nanopore’s axis due to the decrease in the
particle’s surface curvature with increasing � as the spheroid
starts to look like a long cylinder. Quantitatively, this behavior
is described by Eq. (A3) of the Appendix. Note also that we
limited our particle length to �/L = 0.2 as increasing it further
begins to perturb the access resistances of the nanopore so that
factor � becomes dependent on the nanoparticle dimensions
[22].

We should also note that individual curves for different �

values in Fig. 5 do not correspond to either prolate or oblate
shapes of the particles, rather, for most of them, when the par-
ticle’s diameter increases, the particle’s shape transitions from
oblate to prolate. In other words, the limiting cases considered
in Appendix A separately for different shapes can only serve
as a guidance when constructing a fitting formulas for the
ionic current blockade curves valid in the broad range of the
nanoparticle dimensions. Keeping in mind that the equations
for the large-particle factor F in Appendix A all have the
same common factor (d/D)2, we propose the following fitting
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formula for the large-particle corrections in the case of the
parallel orientation of the spheroid along the nanopore axis:

�I

Io� f‖
=

[
1 − a‖

dn + �n

Dn + �n

(
d

D

)2]−1

, (15)

where we found that for n = 2, the fitting parameter a‖ is
practically independent of the particle’s length �, see inset to
Fig. 5(a). Setting a‖ = 0.71 (dashed line in the inset) provides
the best fit to all computed data (within 4%), with correspond-
ing fits shown in Fig. 5(a) as dashed curves.

When the spheroid is oriented perpendicular to the
nanopore axis, the large-particle corrective term exhibits a
much stronger dependence on its length � as seen in Fig. 5(b).
Here shorter particles with smaller values of � exhibit smaller
corrections than longer ones for the same value of the parti-
cle’s diameter. This can be easily understood by noting that
in this orientation of the particle, increasing � for a fixed
d decreases the area of the nanopore cross section open to
the ionic current resulting in a smaller number of the current
streamlines that can fit in it.

In constructing a fitting formula for the data in Fig. 5(b), we
expect, based on the limiting cases discussed in Appendix A
for the perpendicular orientation of the nanoparticle, that the
resulting equation for �I/(Io� f⊥) ∼ [1 − a⊥(ld2/D3)]−1.
The computed values of a⊥ are shown in the inset in Fig. 5(b).
One can see that they can be well fitted with a linear func-
tion of �/D so that the proposed fitting formula has the
form:

�I

Io� f⊥
=

[
1 −

(
a1⊥ + a2⊥

�

D

)
�d2

D3

]−1

, (16)

where the best fit values for a1⊥ = 0.32 and a2⊥ = 0.48.
The large-particle corrections calculated with this formula are
shown in Fig. 5(b) as dashed curves; they agree with the
computed data within 4%.

We now consider how the large particles affect the ionic
current blockade for the arbitrary orientation in the pore as-
suming that they are on the nanopore axis. In Fig. 6, the
dependence of the ionic blockade ratio �I/Io vs the orien-
tation angle θ , 0 < θ < 90◦, between the particle’s axis of
revolution and the nanopore axis is shown for the same length
values � as in the last figure and for a few particle diameters.
Here the data for θ = 0 and 90◦ correspond to those shown in
Fig. 5 multiplied by the shape factors f‖ and f⊥, respectively.
Overall, this plot conforms to the conclusions made above,
specifically, that the largest orientation induced changes in
the ionic current occur for the flat oblate spheroids [smallest
value of �/L, Fig. 6(a)] and the closer the particle’s shape to
the spherical, the less is �I/Io dependence on its orientation.

The data shown in this plot, in analogy to the small-particle
limit, Eq. (2), can be fitted as

�I

Io�
= f ∗

‖ + ( f ∗
⊥ − f ∗

‖ ) sin2(θ ) (17)

with f ∗
‖(⊥) defined through the shape factors f‖(⊥) [14] and the

normlaized ionic current blockade values at θ = 0 and 90◦
given by Eqs. (15) and (16) as

f ∗
‖(⊥) = f‖(⊥)

(
�I

Io� f‖(⊥)

)
. (18)

FIG. 6. The ionic current blockade ratio �I/Io vs orientation
angle θ . Symbols are the results of the calculations, the dashed
curves are from Eq. (17) with the corrections proposed by Eqs. (15)
and (16) for the particle length (a) �/L = 0.025, (b) �/L = 0.05,
and (c) �/L = 0.09. In each plot, × correspond to d/D = 0.3, ©
– d/D = 0.5, and ♦ – d/D = 0.8.

The results of this fitting formula are shown as dashed curves
in Fig. 6 and are in excellent agreement with numerically
computed values. This means that using our proposed fitting
formulas for the perpendicular and parallel orientations of the
nanoparticle’s axis of revolution relative to the nanopore axis,
we can accurately predict the ionic current blockade values
for large ellipsoidal particles at arbitrary angular orientation
in the nanopore.

2. Off-axis position of the nanoparticle

When a nanoparticle permeates through a nanopore, in
general, it can also be found at different radial positions within
the nanopore [see Fig. 1(c)]. The particle’s position affects
the electric field and potential distribution in the nanopore,
and consequently, the ionic current. As shown in Fig. 7, as
particle gets closer to a nanopore wall, the electric field com-
ponent along the nanopore’s axis, Ez, between the spheroid
and the the nanopore’s wall nearest to it increases above the
values found when the particle is on the central axis. On the
opposite side of the particle, away from it, the electric field
decreases below the values for the symmetric placement of
the nanoparticle [cf. panels (c) and (a) in Figs. 7(c) and 7(a)].
When integrated over the whole cross-sectional area of the
nanopore, see Eq. (6), this redistribution of the electric field
results in the overall decrease of the blocked pore ionic current
relative to the values for the on-axis position of the particle
(the ionic current blockade ratio increases), and the further the
particle’s off-center displacement, the stronger the blockade.

This behavior is illustrated in Fig. 8 where it is shown how
the ionic current changes when the nanoparticles of various
dimensions are moved off-axis. Here we plot the ratio of the
ionic current change when the particle’s center is displaced
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FIG. 7. Top row: Two-dimensional distribution z component of
the electric field, Ez, in the vicinity of the translocating spheroid of
length �/L = 0.09 and diameter d/D = 0.3 for three different radial
positions of the particle in the nanopore: (a) xc = 0, (b) xc = 0.1D,
and (c) xc = 0.2D. Bottom row: Ez along the x direction for z = 0.
Vertical dashed lines show nanoparticle’s edges in the x direction.

from the cylindrical nanopore’s axis by distance xc along
the x direction, �I (xc) = Io − I (xc), to the current change
�I (0) = Io − I (0) when the nanoparticle is on the pore’s axis.
One can see from the plot that the longer the spheroid, the
smaller the change in the current. In fact, for all presented
cases, the increase in the ionic current is quite small, less that
5%, when the particle’s point closest to the nanopore surface
is at 10% of the pore’s diameter from it. This indicates that

FIG. 8. The ratio of the ionic current difference, �I (xc )/�I (0),
due to the off-axis displacement of the particle vs its position xc for
different spheroid dimensions: (a) �/L = 0.025, (b) �/L = 0.09, and
(c) �/L = 0.2. Symbols show the calculated data (� corresponds
to d/D = 0.4, ♦ – d/D = 0.5, × – d/D = 0.6, � – d/D = 0.7)
while the dashed curves are the results of the data fitting with
Eq. (19).

the random thermal fluctuations of the measured ionic current
baseline could easily mask this change so that the information
about the transverse position of the translocating object may
be difficult to extract from the current traces.

To construct a fitting function describing the observed be-
havior of the ionic current vs xc, we note that displacing a
small particle with the electric potential given by Eq. (A6)
by a distance xc � D/2 from the nanopore’s center decreases
the current I (2)

b by ≈12AπPx2
c /D3 where the particle’s in-

duced dipole moment P is given by Eq. (A7). To account
for an increase of the electric field next to the particle’s side
closest to the nanopore, at distances ∼d + xc from the pore’s
center, following Smythe [25], we approximate the enhanced
electric field in that region by that of the particle with a
larger diameter of d + 2xc located at the center of the pore.
Combining these two effects leads to the following fitting
formula for the ratio of the differences in the ionic current
�I (xc)/�I (0):

�I (xc)

�I (0)
= 1 + ac

2xc/D

1 − (d + 2xc)/D

(
d

D

)2

, (19)

where ac is a fitting parameter. As seen from the inset in
Fig. 8(c), this parameter depends only on the nanoparticle’s
length �. We found that setting ac = 0.04−0.13�/L provides
the best fits for all calculated data (within 2%, dashed curves
in Fig. 8). The above fitting formula obviously breaks down
when the nanoparticle touches the surface (d + 2xc = D) but
this is likely not a very realistic scenario for an object translo-
cating through a nanopore rather than sticking to its surface.

Note that we did not consider here the effects on the ionic
current due to the changes in the angular orientation of the
nanoparticle located close to the nanopore surface. This is
because, as was already shown, the calculated changes in the
ionic current are rather small as it is (within 5%), so that
any further orientation-induced contributions to the current
blockade are expected to be even smaller.

B. Experimental ramifications

The above discussion focuses on the large-particle correc-
tions to the ionic current. To illustrate the behavior of the ionic
current, in the following figure (Fig. 9), we plot the ionic
current blockade ratio, �I/Io, for parallel and perpendicular
orientations of the translocating speroidal nanoparticle in the
nanopore. Only results for particle lengths �/L � 0.09 are
shown as longer particles cannot fully turn in our nanopore.
As the diameter increases, the particle’s shape changes from
the prolate to the oblate for the green and red symbols and
curves with �/L = 0.05 and 0.025 while all data points for
�/L = 0.09 (blue symbols and curve) correspond to the the
prolate spheroids, except for the last point with d/D = 0.9
for which d = � and the particle is a sphere. One can see that
for all nonspherical shapes, �I⊥ �= �I‖, that is, as the particle
translocates through the pore, tumbling through it [33], there
will be variations in the current due to its random orientation
with respect to nanopore axis. Specifically, for the prolate
particles, �I⊥ > �I‖ while for the oblate ones, the opposite is
true, and the greater the deviations from the spherical shape,
the larger the difference between the blocked currents.
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FIG. 9. The ionic current blockade ratios �I/Io vs the particle
diameter d/D for the parallel (©) and perpendicular (×) orientations
of the spheroids in the nanopore. Blue dashed lines and symbols cor-
respond to the particle length of �/L = 0.025, green – �/L = 0.05,
and red – �/L = 0.09. Inset shows ratio of �I‖/�I⊥ for the same
three lengths with dashed lines showing the small-particle limit of
�I‖/�I⊥ = f‖/ f⊥.

The orientation difference between the ionic currents can
be further elucidated by plotting the ratio �I‖/�I⊥ and com-
paring it with the small-particle limit where this ratio is equal
to f‖/ f⊥, see Eq. (1). This is shown in the inset to Fig. 9, where
one can see that the computed ratio can be as large as ∼4 for
a large and flat, disklike particle. On the other hand, for most
of the prolate spheroids, �I‖/�I⊥ close to the small-particle
limit value f‖/ f⊥, that is, the large-particle corrections play a
more significant role for the oblate particles.

One can also use our fitting formulas in conjunction with
experimental data on the ionic current blockade values to
establish the dimensions of the translocating particles. In gen-
eral, due to complexity of formulas, this will result in a system
of algebraic equations to figure out plausible values of the
spheroid’s length and diameter. However, some beforehand
knowledge of the geometry of the translocating object would
be helpful to cut down on the number of possible combina-
tions of d and �, and, for example, in a case of a very long
and slender spheroid with � � d and � � D this solution can
be easily accomplished. To demonstrate this, we first note
that in this case the particle can only translocate parallel to
the nanopore’s axis so that Eq. (15) simplifies to �I/Io =
�[1 − 0.71(d/D)2] where we set the shape factor f‖ = 1 [14].
If one performs ionic current blockade measurements for two
pores, then using the ratio of �I1/�I2 the nanoparticle’s di-
ameter d can be extracted, and from the either of �I values,
the length � can be determined. For example, in Ref. [5],
for the long rods, it was found that (�I/Io)1 ≈ 0.014 and
(�I/Io)2 ≈ 0.006 for pores with diameters 0.77 and 1.2 µm.
Using the just outlined procedure, one can then find the rod’s
diameter to be d ≈ 0.22 µm consistent with reported value of
0.21 µm.

V. SUMMARY

In this work we theoretically considered translocation of
the spheroidal nanoparticles (oblate and prolate ellipsoids)
of various dimensions through a cylindrical nanopore. We
focused our attention on neutral particles permeating through
an uncharged nanopore which are frequent enough cases ob-
served experimentally, and with help of the numerical solution
of the PNP system of equations in 2D and 3D domains,
we computed the ionic current through the nanopore with a
nanoparticle blocking it. The resulting values of the ionic cur-
rent blockade were then carefully analyzed vs dimensions of
the translocating spheroid, its orientation, and position inside
the nanopore.

We found that with increasing size of the nanoparticle, the
ionic current reacts differently depending on the orientation of
the particle’s axis of revolution relative to the nanopore axis.
In case of their parallel orientation, the ionic current blockade
ratio exhibits a much weaker dependence on the nanoparti-
cle’s length than when the two axes are perpendicular to each
other. Displacing the nanoparticle off the nanopore’s center
towards its surface resulted in further reduction of the ionic
current (stronger current blockade) dependent on the position
of the nanoparticle but remaining within 5% and becoming
smaller with increasing length. To make sense of all these
results, we also developed a semiempirical model accounting
for changes in the electric field inside the nanopore when a
large spheroidal particle is present. Using this model, we con-
structed one parameter fitting formulas for the ionic current
blockade values that generally agree with our computed data
within 2–4%.

The provided formulas can be extrapolated to other
nanoparticle’s dimensions not specifically considered in this
work to extract, for example, information about nanoparticle’s
dimensions and shape from the known ionic current traces.
This is possible because in case of the neutral particle-pore
system, the ionic current blockades depend only on the ratios
of nanoparticle and nanopore sizes; this fact was verified by
performing 2D and 3D calculations on systems with differ-
ent dimensions and by applying the proposed formulas to
analysis of the experimental data on translocation of rodlike
particles. However, when the surface charge on the nanopore-
nanoparticle is taken into account, the ionic current response
of the nanopore becomes more complicated even for small
objects, so that the case of large charged nanoparticles will
be considered separately.

APPENDIX A: IONIC CURRENT BLOCKADE
FOR LARGE SPHEROIDAL PARTICLES

We next use this approach to find out the correction factors
when a large spheroidal particle is blocking the nanopore. To
this end, we compute the ionic current from the Ohm’s law
at z = 0 for spheroids of prolate and oblate shapes and with
the axis of revolution along and perpendicular to the nanopore
axis.

For the case of the prolate ellipsoid (� > d) with the axis of
the revolution parallel to the nanopore axis, the exact solution
of Eqs. (10) with zero right-hand side can be written in terms
of the prolate spheroidal coordinates defined in Morse and
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Feshbach [34] as

φ0 = − 1
2 Aaη

[
ξ − BQ0

1(ξ )
]
, (A1)

where Q0
1(ξ ) is the Legendre function of the second kind

and a is the interfocal distance, a = (�2 − d2)1/2. Constant
B can be evaluated on the surface of the ellipsoid ξ = ξ0 =

[(d/a)2 + 1]1/2 from the boundary condition (13) ∂φ0/∂n =
(1/hξ )(∂φ0/∂ξ )|ξ0 = 0 as B = [ d

dξ
Q0

1(ξ )|ξ0 ]−1.
To evaluate the blocked pore current at z=y=aξη/2=0,

we set η = 0 so that x = a(ξ 2 − 1)1/2/2 and Ez =
−(2/aξ )(∂φ0/∂η). The ionic current from the Ohm’s law
[Eq. (6)] is then

I (2)
b = 2πσ

∫ D/2

d/2
Ezxdx = −πaσ

∫ ξ1

ξ0

dφ0

dη
dξ = 1

4
πσAD2

[
1 −

(
d

D

)2 2ξ0 − (
ξ 2

0 − 1
)

ln[(ξ0 + 1)/(ξ0 − 1)]

2ξ1 − (
ξ 2

1 − 1
)

ln[(ξ1 + 1)/(ξ1 − 1)]

]
, (A2)

where ξ1 = [(D/a)2 + 1]1/2.
From this general expression, following the above proce-

dure, we can then find constant A in limiting cases of interest:
(i) For a very long and slender ellipsoid (�� d and �� D)

that can only translocate through the nanopore with its major
axis parallel to the pore axis, both ξ0 and ξ1 are ≈1, and we
find

A ≈ �V

L

[
1 −

(
d

D

)2
]−1

. (A3)

(ii) On the other hand, for a small and slender ellipsoid
when D � � � d , that can in principle fully rotate inside the
nanopore,

A ≈ �V

L

(
1 − 2�d2

3D3

)−1

. (A4)

By comparing these two expressions, we can see that as the
ellipsoid’s length increases, the large-particle correction to the
ionic current eventually saturates and becomes independent of
its length, i.e., the large-particle correction factor changes its
leading term dependence from F [ld2/D3] to F [(d/D)2].

For the oblate ellipsoid on the pore’s axis (� < d , θ = 0),
we can use a similar approach to get the ionic current but in
the oblate spheroidal coordinates [34]. This leads to the ex-
pression for I (2)

b identical to Eq. (A2) in which ξ → iξ , ξ 2
0 =

(d/2a)2 − 1, ξ 2
1 = (D/2a)2 − 1, and a = (d2 − l2)1/2/2.

As a limiting case, we consider here only the case of a
small, disklike, ellipsoid with � → 0 and d ≈ 2a � D, for
which we find that

A ≈ �V

L

(
1 − 4d3

3πD3

)−1

, (A5)

that is, the ionic current correction is given by F [(d/D)3], as
is for the spherical particles of the same diameter, see Eq. (7).

To perform calculations for the perpendicular orientation
of small spheroids to the nanopore axis, angle θ = 90◦ [35],
we note that for small nanoparticles, the main contribution to
the ionic current in Eq. (A2) comes from the electric field
(current density) away from the particle, at distances large
enough compared to its dimensions. For prolate spheroids, in
this case, coordinates ξ ≈ 2r/a and η ≈ z/r = cos θ where r
is the distance from the center of the spheroid. Since Q0

1(ξ �
1) ≈ (3ξ 2)−1, at large distances from the particle, potential φ0

given by Eq. (A1) becomes approximately equal to that one of

the electric dipole P in the uniform electric field:

φ0 ≈ −A cos θ

(
r − P

r2

)
. (A6)

The dipole moment P of the spheroid can be found from the
general expression in Ref. [36] for the classical problem of
the dielectric ellipsoid in the uniform electric field [setting
ε (i) = 0 in that expression to satisfy boundary condition (13)]
as:

P = − ld2

24(1 − n)
, (A7)

where n is the depolarization (demagnetization) factor along
a specific direction—in this case, parallel to the nanopore
axis, n = n‖. For a small slender prolate spheroids [37], n‖ ≈
(d/l ) ln(2l/d ) � 1, so that substitution of the above electric
potential in Eq. (6) immediately produces the same result
for constant A as given by Eq. (A4). Performing the same
calculation for the oblate spheroids (in the oblate spheroidal
coordinates, large ξ ≈ r/a � 1 and n‖ ≈ 1 − π l/(2d ) [37])
reproduces the result of Eq. (A5).

For the perpendicular orientation of spheroids in the
nanopore, we then use the depolarization factor n = n⊥ along
a direction perpendicular to the nanopore’s axis:

(i) For a slender prolate spheroid, n⊥ ≈ 1/2 [37], and we
find that

A ≈ �V

L

(
1 − 4ld2

3D3

)−1

. (A8)

(ii) For a flat oblate spheroid, n⊥ ≈ π l/(4d ) � 1 [37],
and

A ≈ �V

L

(
1 − 2ld2

3D3

)−1

. (A9)

APPENDIX B: VALIDATION OF THE MODEL

We first compare our computed ionic currents for the spher-
ical nanoparticles of different diameters from 2D and 3D
models. To emphasize the importance of the large-particle
correction term, in Fig. 10 we plot a ratio of �I/Io and f �
vs particle diameter extracted from 2D and 3D simulations.
An excellent agreement between the two data sets (within
2%) for d/D > 0.1 is found suggesting that our procedure
for scaling down the system for 3D calculations works well
in this range of particle sizes. This is as expected because the
equations for �I/I and large-particle corrections derived in
Appendix A depend only on the ratios of the particle and pore
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FIG. 10. The large-particle correction term �I/(Io� fs ) for
spherical nanoparticles. Blue and red symbols are the results of 3D
and 2D calculations, green symbols are results of Ref. [38], and the
dashed curve is the semiempirical data fit by Eq. (B1).

dimensions. It is also seen in this plot that for the smallest
studied nanoparticle with d/D = 0.1, 2D and 3D calculations
deviate, with 2D calculations clearly producing more accurate
results, likely because our mesh in 3D case is too coarse to get
accurate data for the current change due such a small object.
Because of this, all subsequent calculations in this work are
limited to d/D � 0.2.

In the same figure, we also compare our numerically com-
puted results with analytic calculations of Smythe [38] for the
flow around a spheroid in a cylindrical tube (green symbols
in Fig. 10). A good agreement for smaller particles is found
but deviations between our numerical results and those of
Ref. [38] appear with increase of the particle’s size with our
data being smaller by about 9% for the largest considered
nanoparticle size.

Based on the results for spherical particles [Eq. (8)], one
can propose a one-parameter fitting formula for the ionic
current blockade covering all nanoparticle sizes as

�I

Io f �
=

[
1 − as

(
d

D

)3
]−1

(B1)

FIG. 11. Normalized ionic current blockade ratio �I/(Io� f‖) for
prolate (red) and oblate (blue) ellipsoids with �:d ratios 2:1 and 1:2.
Squares (connected with dotted lines) represent the results of our
calculations while crosses (with dashed lines) are the results of the
calculations of Ref. [40].

with as being a fitting parameter. The same relation between
�I/Io and d/D was also proposed in earlier works [20,39].
We found that the value of as = 0.73 fits our data best (within
3%, the black dashed curve in Fig. 10), in excellent agreement
with usually accepted value of this parameter [20,39].

We also compared our numerically computed �I/Io values
with calculations of Smythe [40] for prolate and oblate ellip-
soids with ratios � : d = 2 : 1 and 1 : 2 with axes of revolution
oriented along the nanopore axis. The results for �I/(Io� f‖)
are shown in Fig. 11 where one can see that the agreement
between our calculations and those of Ref. [40] is quite good
for the oblate ellipsoid (within 2%) for the whole range of the
particle diameters d . However, for the prolate spheroids, the
agreement is worse particularly at larger particle sizes. This
is likely due to the decreasing accuracy in calculations for the
prolate spheroids noted in Ref. [40].
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