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Dynamics of waste proteins in brain tissue: Numerical insights into Alzheimer’s risk factors
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Over the past few decades, research has indicated that the buildup of waste proteins, like amyloid-β (Aβ), in
the brain’s interstitial spaces is linked to neurodegenerative diseases like Alzheimer’s, but the details of how such
proteins are removed from the brain are not well understood. We have developed a numerical model to investigate
the aggregation and clearance mechanisms of Aβ in the interstitial spaces of the brain. The model describes the
volume-averaged transport of Aβ in a segment of the brain interstitium modeled as a porous medium, oriented
between the perivascular space (fluid-filled channel surrounding a blood vessel) of a penetrating arteriole and
that of a venule. Our numerical approach solves N coupled advection-diffusion-aggregation equations that
model the production, aggregation, fragmentation, and clearance of N species of Aβ. We simulate N = 50
species to investigate the oligomer-size dependence of clearance and aggregation. We introduce a timescale
plot that helps predict Aβ buildup for different neurological conditions. We show that a sudden increase in
monomer concentration, as occurs in conditions like traumatic brain injury, leads to significant plaque formation,
which can qualitatively be predicted using the timescale plot. Our results also indicate that impaired protein
clearance (as occurs with aging) and fragmentation are both mechanisms that sustain large intermediate oligomer
concentrations. Our results provide novel insight into several known risk factors for Alzheimer’s disease and
cognitive decline, and we introduce a unique framing of Aβ dynamics as a competition between different
timescales associated with production rates, aggregation rates, and clearance conditions.
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I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
and the most prevalent form of dementia in older adults.
AD patients exhibit memory loss and overall cognitive de-
cline, and recent pharmacological interventions have shown
marginal therapeutic results [1]. In the United States alone,
AD is the fifth leading cause of death in older populations,
and the cost of care for AD patients exceeds $300 billion
annually [2]. There is a need for presymptomatic diagnoses
as AD pathology is thought to begin at least 20 years before
noticeable symptoms arise, at which point significant neuronal
dysfunction and death have already occurred [2]. Since an
effective cure for AD remains elusive, the number of AD
patients is projected to double within the next 40 years [2].
Thus, there is a crucial need to understand the underlying
causes of AD to develop effective prevention, diagnosis, and
treatment strategies.

One of the key indicators in diagnosing AD is the presence
of Aβ plaques in the interstitial spaces of the brain [3]. The
waste protein amyloid-β (Aβ) forms naturally in the brain as a
monomer, which self-aggregates into larger assemblies called
oligomers. As an oligomer becomes larger, it may eventually
adopt a fibril morphology and become lodged in the brain
tissue, at which point it is considered plaque. Note that we do
not distinguish between oligomers of spherical versus fibrillar

*Contact author: tithof@umn.edu

morphology, and therefore we use the terms “oligomer” and
“aggregate” interchangeably. Aβ has been linked to several
neurodegenerative diseases, including AD [3,4], but its exact
role in AD is debated. There are two leading theories on the
role of Aβ in neurodegenerative diseases: the amyloid cascade
hypothesis and the toxic oligomer hypothesis. In the amyloid
cascade hypothesis, AD is believed to be caused by the large
buildup of Aβ plaque in the interstitial spaces [5,6]. Thus,
patients with higher plaque concentrations are expected to
have a more significant cognitive decline [6]. In contrast, the
toxic oligomer hypothesis states that Aβ oligomers are re-
sponsible for the cognitive decline associated with AD, which
implies that a potential treatment or prevention of AD is tied
to reducing Aβ oligomer concentrations [7,8]. Cerebrospinal
fluid (CSF) studies have shown elevated concentrations of
oligomers of size 10–50 monomers as the distinguishing fac-
tor between control patients and AD patients; additionally, in
vivo studies have shown higher neurotoxicity of oligomers
relative to monomers [4]. Thus, oligomers of size 10–50
monomers are hypothesized to contribute to cognitive decline.
The present study examines a few possible factors that can
increase plaque accumulation and oligomeric concentrations.

The clearance of Aβ from the brain has been estimated to
be due to a combination of transport across the blood-brain
barrier (25%), proteolytic degradation (50%), and interstitial
fluid (ISF) drainage to the CSF (25%) [9]. In the present
study, we focus on the last clearance mechanism, involv-
ing waste protein transport through the interstitial space to
the perivascular spaces (PVSs), which are annular channels
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surrounding the vasculature in the brain. Experimental reports
of CSF transport along PVSs date back decades [10,11], but
the importance of such transport for Aβ clearance was only
shown about a decade ago [12]. In 2012, Iliff et al. [12]
demonstrated that Aβ is actively cleared along PVSs and is
dependent on astrocytes (a type of glial cell), which highly
express a water channel protein, aquaporin-4; they dubbed this
pathway the “glymphatic” (glial-lymphatic) system. Despite
many important, subsequent discoveries from the past decade,
many open questions remain regarding the details of the glym-
phatic system. We point the reader to a couple of recent review
articles [13,14] for further information.

The dominant mechanism transporting Aβ from the inter-
stitial space to the PVS is debated [15]. Diffusion certainly
plays a role, but the possibility of transport via bulk flow
of interstitial fluid has been extensively debated [10,16–18].
Such flow is likely quite slow and has proven challenging to
measure directly in experiments [19]. An innovative magnetic
resonance imaging approach concluded that large solutes are
transported by both advection and diffusion [20], and recent
modeling studies have estimated parenchymal flow speeds in
the range of about 2−5 µm/min (close to the PVS) [21–24].
For relatively large molecules like Aβ, this implies that the
Péclet number Pe (which characterizes the ratio of the diffu-
sive transport timescale to the advective transport timescale)
is likely not much larger than unity under physiological con-
ditions. Bulk flow through PVSs, on the other hand, is likely
much faster than that of interstitial flow and could conceiv-
ably sweep away Aβ and similar solutes quickly enough to
constitute an effective clearance mechanism [18].

In addition to open questions regarding the dominant
modality of Aβ transport, the causes of increased oligomeric
concentrations and plaque deposition are poorly understood.
However, evidence suggests that in most cases, Aβ accumu-
lation results from a clearance impairment rather than excess
production [25]. Thus, in the present study, we use compu-
tational modeling to explore the mechanisms by which Aβ

accumulates. In particular, we examine the effects of initial
concentrations, impaired clearance, advection, and fragmen-
tation (the breakage of longer protein aggregates into smaller
ones). Computational modeling offers the unique ability to
vary each of these parameters and methodically test their ef-
fects on Aβ kinetics in a way that cannot be precisely achieved
in experiments.

Several models have been proposed to study the transport
of Aβ in the interstitial spaces of the brain by combining the
discrete Smoluchowski aggregation equation with diffusion
[26–28]. A model proposed by Knowles et al. [29] focuses on
the aggregation and fragmentation of Aβ through analytical
solutions of a system of coupled nonlinear ordinary differ-
ential equations based on polymer nucleation to understand
the oligomer size and time dependence of the coagulation
processes. Schreck et al. [30] compared the analytical solution
to the Smoluchowski aggregation equations by matching the
overall mass of the aggregates to experimental data to show
the validity of both methods. They found similarities between
the models regarding aggregate mass but discrepancies in
oligomer size distributions, leading to vastly different predic-
tions between the models. Additionally, Schreck compared
size-independent and size-dependent aggregation rates to

experimental fit. Ultimately, Schreck proposes size-dependent
rates for aggregation of the Smoluchowski model, as this more
closely matched experimental values [30], which we follow in
the present study.

In our previous study [24], we proposed a three-species
model of Aβ aggregation and clearance from the interstitial
space. The model uses Smoluchowski aggregation kinetics
with size-dependent aggregation rates and includes monomer
production. To study their relative importance, the model also
couples advective and diffusive transport through the intersti-
tial spaces. In this previous study, we showed an exponential
decrease in accumulation for Pe >1, as well as an increase in
clearance due to the sleep-wake cycle [24]. However, our fur-
ther development of the model revealed a few shortcomings.
First, using three species does not allow the determination of
oligomer size dependence on the various factors. It has also
been shown that Aβ aggregates exceed the aggregate of size
three monomers [4]; thus a three-species model may not fully
capture the complex aggregation and fragmentation dynamics.
Additionally, the model did not consider the fragmentation of
any species, which is a factor that is believed to sustain the
concentrations of intermediate oligomeric species, which are
potentially toxic [4]. Thus, in the present study, we aim to
obtain novel—and more realistic—insights by extending our
model to incorporate these factors.

This article is structured as follows. In Sec. II, we
present our numerical approach by introducing the govern-
ing equations and parameters for our model, as well as
the computational domain and timescales obtained from the
nondimensionalization. We then present several results in
Sec. III, including models of a healthy brain in Sec. III A, trau-
matic brain injury (involving a large release of Aβ monomers)
in Sec. III C, and the impact of impaired monomer clearance
due to aging in Sec. III D. We then continue our study of
aging with impaired clearance of all species in Sec. III E,
introduce advection in Sec. III F, and finally investigate the
effects of fragmentation in Sec. III G. Section IV provides the
conclusions of our study.

II. APPROACH

A. Domain

Aβ is produced naturally in the brain as a monomer, i.e.,
a single protein molecule. The monomers begin to aggregate
and form larger assemblies called oligomers, which aggre-
gate both with monomers and other oligomers. We model
the aggregation process up to a cutoff size, at which point
we consider the protein aggregate to be a plaque. In our
previous study, we used a cutoff size of three monomers [24].
However, in the present study we consider an aggregate of
50 or more monomers to be the cutoff size for plaque for-
mation. This choice follows the results of Hayden et al. [4],
which showed increased neurotoxicity for oligomers of size
10–50 monomers. Additionally, a plaque aggregate of size
50 monomers may have a maximum length of up to about
12 nm [31] (depending on the arrangements of the protein
molecules), which is comparable to the typical interstitial
channel diameter [32] and can potentially become lodged in
the interstitial space. In our model, a protein aggregate of size
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i is essentially an aggregate of i monomers. Our model does
not distinguish between linear fibrils and globular aggregates.
We also tested homogeneous simulations (i.e., those with no
diffusion, advection, or spatial extent) to vary the cutoff size
for plaque formation, and we found the results to be inde-
pendent of cutoff size, with final concentrations decreasing
significantly for aggregates larger than 50 monomers. The
plaques once formed do not contribute to the reaction except
for Sec. III G; the plaques are allowed to fragment into smaller
aggregates that become a site for the aggregation reaction.
During the coagulation process, Aβ can also fragment [30],
although it is unknown if plaques can fragment, and we do
not know the significance of this fragmentation. Thus, we
expanded our previous model [24] to include the effects of
fragmentation.

For our computational domain, we model a region in the
brain in the vicinity of a penetrating arteriole and venule, as
shown in Fig. 1(a). We assume that this domain is a portion
of an infinite tiling of more arterioles and venules [22,24],
and we apply corresponding (no flux) boundary conditions
based on symmetry. Note that this domain is half of that in our
prior study [24] and therefore more computationally efficient
but perfectly equivalent due to symmetry. The computational
domain consists of the brain interstitium located between a
penetrating arteriole and venule [colored gray in Fig. 1(a)].
Figure 1(b) shows the complex, heterogeneous structure of
the brain parenchyma, which is composed of neuronal and
glial cells, capillaries, and the interstitial space [33]. The co-
agulation process is illustrated in Fig. 1(c), which shows the
classification of different species into monomers, oligomers,
and plaques, as well as some of the aggregation and fragmen-
tation pathways. In addition to coagulation, the proteins also
move through the brain along PVSs, which are considered to
be clearance pathways, as previously discussed. However, to
reach a PVS, the proteins must move through the interstitial
space shown in Fig. 1(b), by diffusion and potentially ad-
vection. In this paper, we model the protein transport to the
PVSs through the interstitial spaces (which we model as a
volume-averaged porous media) and the protein coagulation.

B. Smoluchowski coagulation kinetics

The aggregation and fragmentation of Aβ proteins are
modeled using Smoluchowski coagulation kinetics, which
captures every combination of protein aggregate size con-
centrations cr, cs from monomers through plaques and
prescribes size-dependent aggregation rates ar,s [27] and size-
independent fragmentation rates b [30],

cr + cs

ar,s�
b

cr+s. (1)

Here 1 � r � N and 1 � s � N , where N = 50 is the number
of species, and cr and cs are the concentration of protein ag-
gregates of size r and s, respectively. Following the derivation
presented by Schreck et al. [30], the scheme can be written
as a summation of the aggregation and fragmentation of a
particular combination of aggregate sizes r and s as a function
of time by introducing a coagulation flux, Wr,s(t ),

Wr,s(t ) = ar,scr (t )cs(t ) − bcr+s(t ). (2)
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FIG. 1. Representation of the spatial domain and the coagula-
tion scheme. (a) The 2D spatial domain used, composed of half
an arteriole and half a venule surrounded by the PVSs. (b) Image
of the interstitial space (red) obtained via super-resolution shadow
imaging. (c) Schematic of the coagulation scheme, including aggre-
gation, fragmentation, and monomer production. (d) The temporal
variation of the spatially averaged concentration of protein species
from a 2D diffusion simulation with complete clearance (Ci = 0),
1 µM monomer initial concentration, and no fragmentation (Sim. 1).
The green lines represent Oligomer 2. (e) The temporal variation of
the concentration of protein species from a homogeneous simulation
with 1 µM monomer initial concentration and no fragmentation,
with vertical lines showing various points in time. From highest
concentration to lowest, the green lines represent the concentrations
of Oligomers 2, 20, and 40. Concentrations below 5 × 10−3 pM
[black dotted lines in (d) and (e)] are assumed to be governed by
noncontinuum dynamics. Panel (b) adapted from Ref. [34] with
permission.

The flux can then be summed over all species to yield the
overall coagulation rate for a given species of size i > 1 as
a function of time, Fi(t ) [30]:

Fi(t ) = 1

2

i−1∑

s=1

Ws,i−s(t ) −
N∑

s=1

Wi,s(t ). (3)

The forcing function is applied to all species. Furthermore,
the aggregation rate of two proteins, ar,s, is a function of
the protein aggregate size and the aggregation rate of two
monomers, a1,1:

ar,s = a1,1

r · s
. (4)

The aggregation scheme is based on end-to-end aggregation
proposed using statistical mechanics arguments by Tomski
and Murphy [35] and later verified using in vitro coagulation
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studies by Murphy and Pallito [36]. The aggregation scheme
presented here is simplified based on the analysis from a prior
modeling study by Bertsch et al. [27]. Note that the value of
a1,1 and other parameters are provided below in Sec. II G.
The fragmentation rates were determined from experimental
values and assumed to be independent of protein aggregate
size [30].

C. Monomer production

To account for monomer production, a production term, fp,
is added to the forcing function for the monomers,

F1(t ) =
N∑

s=1

W1,s(t ) + fp. (5)

We assume that monomers are produced uniformly across
the domain and that the production rate is independent of
the monomer concentration. Our production term fp should
be interpreted as an “effective” production rate accounting
for the limitation that our model only captures one Aβ

clearance mechanism. Our model does not include an intracel-
lular compartment wherein substantial Aβ clearance occurs
via proteolytic degradation (e.g., via endothelin-converting
enzyme-1 [37]) prior to secretion into the ECS. In addition,
our model ignores blood-brain barrier efflux of extracellular
Aβ. Since Roberts et al. [9] estimated that drainage of inter-
stitial fluid (i.e., the clearance mechanism we model in this
study) accounts for about 25% of total Aβ removal, we use
an effective production rate that is 25% of the estimated true
total production rate.

D. Advection-diffusion

In addition to coagulation, Aβ proteins can also move
through the interstitial space due to ISF suspension. The
movement is attributed to diffusion and possible advection,
which is debated as previously discussed. In the first part of
our results, we present simulations without advective trans-
port, in which transport is purely diffusive. These simulations
utilize the standard diffusion equation, which uses the effec-
tive diffusivity, Deff, of the protein species in the interstitial
space,

∂ci

∂t
= Deff,i∇2ci. (6)

The effective diffusivity of the protein species is modeled by
using the tortuosity of the interstitial space, λ, and the diffu-
sivity of Aβ monomer in a free medium, D, and it is inversely
proportional to the cube root of the molecular weight (in our
study, a protein aggregate of size i is i times the molecular
weight of Aβ monomer), which assumes a compact globule
[24],

Deff,i = D

λ2 × i
1
3

. (7)

In cases with nonzero advective transport, the velocity field is
modeled via Darcy’s law (since we model the interstitium as
a porous medium),

�ν = −k �∇P, (8)

where k is the hydraulic conductivity, P is the average pressure
in the domain, and �ν is the volume-averaged fluid velocity.
The velocity field obtained is then applied to evolve the con-
centration field via advection and diffusion,

∂ci

∂t
= �ν · �∇ci + Deff,i∇2ci. (9)

E. Governing equation

The coagulation and transport due to advection and diffu-
sion are then combined and nondimensionalized to yield the
governing equation for the time evolution of the concentration
of each Aβ species, ci,

∂ci

∂t
= 1

Pei
∇2ci − �ν · �∇ci + Fi. (10)

We apply the governing equation to all protein species, i ∈
[1, N]. However, the plaques are considered immobile aggre-
gates, which are unable to move out of the domain through
diffusion or advection (i.e., ∂cN

∂t = FN ). A no-flux boundary
condition is enforced along all walls. A Dirichlet boundary
condition is also enforced along the PVSs. The governing
equation is then solved in Fortran using a second-order accu-
rate in space and first-order accurate in time finite-difference
scheme. For complete clearance, zero concentration is en-
forced at the PVSs for all species. For impaired clearance,
a nonzero concentration is enforced. Finally, to model com-
pletely impaired clearance, the spatial extent is removed from
the governing equation, and only the coagulation term is used
to evaluate the concentration evolution. We refer to the latter
scenario as the “homogeneous” simulation.

In addition to the concentration of individual species, it is
useful to also compute the overall oligomeric mass M of the
system [30],

M =
N−1∑

i=2

ici, (11)

which allows us to quantify the prevalence of intermediate
oligomers.

F. Timescales

Once the governing equation is determined, it is nondimen-
sionalized using a characteristic length (L), timescale (TA),
pressure scale (�P), and concentration scale (cscale) [24]. The
characteristic length of the system is taken to be the typ-
ical distance between a penetrating arteriole and venule in
primates, L = 250 µm [22,24]. Through nondimensionaliza-
tion, we obtain several timescales associated with advection,
diffusion, and coagulation, which characterize the relative
strengths of each mechanism. The characteristic advection
timescale, TA, is a function of the length, the pressure differ-
ence across the domain �P, and hydraulic conductivity of the
interstitial space, k,

TA = L2

�Pk
. (12)

We use the advection timescale to nondimensionalize the
other parameters. The diffusion timescale, TD, is defined using
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the effective diffusivity and the lengthscale, such that

TD = L2

Deff
. (13)

The Péclet number, Pe, is defined as the ratio between the
diffusion and advection timescales, and it can be used to
vary the relative strength of diffusion to show the effects of
advection versus diffusion,

Pe = TD

TA
. (14)

The production timescale, Tfp , is defined using the character-
istic concentration scale cscale and production rate,

Tfp = cscale

fp
. (15)

The aggregation timescale, Tar,s , is then determined using the
concentration scale and aggregation rates,

Tar,s = 1

ar,scscale
. (16)

Finally, the fragmentation timescale, Tb, is defined using the
fragmentation rate,

Tb = 1

b
. (17)

By evaluating the timescales at varying concentrations, we can
develop an intuition for the mechanisms that play a prominent
role in the dynamics of Aβ transport in different neurological
disorders.

G. Parameters

Next, we note the values of the different parameters used
in the simulations. The monomer production rate is taken
as fp = 3.48 × 10−14 M s−1 [24], the monomer-to-monomer
aggregation rate used is a11 = 6.6 × 103 M−1 s−1 [24], and
the fragmentation rate used is b = 1.8 × 10−7 s−1 [30]. The
concentration scale is set to be equal to the initial monomer
concentration in the domain. We used a diffusivity of D =
2.3 × 10−10 m2/s and a tortuosity of λ = 2.04 [22,24,38]. We
also used �P = 0.275 mmHg [24] for Pe = 1. The length-
scale was determined using the typical distance between a
venule and arteriole in a primate brain of L = 250 µM. The
hydraulic conductivity used is k = 200 µm2 mmHG−1 s−1

[22,24]. Additionally, unless otherwise stated, we start all
simulations with zero initial concentration for all species other
than the monomers.

H. Impaired clearance parameter

Due to the flow of CSF in the PVSs surrounding the
interstitium, any Aβ molecule of monomer or oligomer is
potentially cleared out by that flow as soon as it reaches
the PVS from the interstitium. For such a case, a Dirichlet
boundary condition like ci = 0 is a reasonable assumption.
However, we explore the possibility that this boundary con-
dition may change due to a neurological condition. The
worst-case scenario is a full blockage of clearance at the
PVS with a boundary condition of dimensionless concen-
tration unity, similar to a homogeneous simulation devoid

of diffusion and advection. In that scenario, we expect that
the steady-state concentration will not be achieved due to
monomer production. Instead, the concentration of all species
will continue to increase. Experiments indicate that periods
of sleep drive more clearance in the brain than periods of
wakefulness [39,40]; thus we focus on the worst potential
buildup during a 16-h day in a diseased brain, i.e., running a
16-h homogeneous simulation that yields the concentration
for each protein species. We then introduce an impaired
clearance parameter, α, which is a fraction of this 16-h ho-
mogeneous concentration in the domain set at the PVSs. We
are then able to model the boundary concentration for each
protein species at the PVS, ci,BC:

ci,BC = αci,H16. (18)

In the equation, ci,BC is the concentration of a given aggregate
of size i enforced as the boundary condition at the PVSs, and α

is the impaired clearance parameter, which varies from 0 to 1.
ci,H16 is the homogeneous concentration of a given aggregate
of size i after 16 h of fully impaired clearance.

I. Simulations

Each 2D simulation presented in this study is summarized
in Table I.

III. RESULTS AND DISCUSSION

A. Limiting cases

We start by comparing two limiting cases for 2D simula-
tions with purely diffusive transport (no advection): perfect
clearance (α = 0) at the boundaries and fully impaired clear-
ance. In a model of fully impaired clearance, the proteins are
not swept away at the PVS, so a concentration gradient does
not form throughout the 2D domain; the concentration field is
instead uniform and at a higher concentration relative to the
2D diffusive clearance case. Hence, there is no spatial depen-
dence on the concentration, and the domain can be reduced to
a single point in space. We refer to this fully impaired clear-
ance scenario as the “homogeneous simulation.” Figures 1(d)
and 1(e) compare the 2D diffusion scenario (d) to the ho-
mogeneous simulation (e), where both simulations start from
identical 1 µM monomer initial concentrations and do not
include fragmentation. To determine the lower bound on the
concentration that would represent a significant number of Aβ

molecules in the domain such that continuum approximation
is valid, we consider the depth of the domain to be the typical
length of a penetrating arteriole (1000 µm) [41]. A single
Aβ monomer results in a concentration of 2.6 × 10−5 pM.
We consider 200 monomer molecules a significant concentra-
tion for continuum approximation, thus resulting in a lower
concentration cutoff of 5 × 10−3 pM for all species. In some
simulations, the concentrations dropped below this threshold,
so we have added a black dotted line in the figures to represent
concentrations below the continuum approximation in order to
still provide intuition for general trends.

Figure 1(d) shows the results of Sim. 1, where it can be
seen that the monomers and smaller aggregates maintain a
small steady-state concentration, with the larger oligomers
and plaque having concentrations that are negligible (below
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TABLE I. Details of each 2D simulation presented in the study. Sims. 4–7 only have nonzero boundary conditions for the monomers.

IC ci

Sim no. IC c1 (2 � i � 49) IC c50 BC Pe Fragmentation? Fig. no.

1 1 µM 0 0 0 0 NO 1,3,4
2 1 pM 0 0 0 0 NO 3
3 108 pM 0 0 0 0 NO 3
4 1 µM 0 0 1 pM (c1) 0 NO 4
5 1 µM 0 0 10 pM (c1) 0 NO 4
6 1 µM 0 0 100 pM (c1) 0 NO 4
7 1 µM 0 0 1000 pM (c1) 0 NO 4
8 1 µM ci,H16 ci,H16 α = 0 0 NO 5,6
9 1 µM ci,H16 ci,H16 α = 0.0001 0 NO 5,6
10 1 µM ci,H16 ci,H16 α = 0.001 0 NO 5,6
11 1 µM ci,H16 ci,H16 α = 0.01 0 NO 5,6
12 1 µM ci,H16 ci,H16 α = 0.1 0 NO 5,6
13 1 µM ci,H16 ci,H16 α = 0.5 0 NO 5,6
14 1 µM ci,H16 ci,H16 α = 0 3 NO 6
15 1 µM ci,H16 ci,H16 α = 0.0001 3 NO 6
16 1 µM ci,H16 ci,H16 α = 0.001 3 NO 6
17 1 µM ci,H16 ci,H16 α = 0.01 3 NO 6
18 1 µM ci,H16 ci,H16 α = 0.1 3 NO 6
19 1 µM ci,H16 ci,H16 α = 0.5 3 NO 6
20 1 µM ci,H16 ci,H16 α = 0 10 NO 6
21 1 µM ci,H16 ci,H16 α = 0.0001 10 NO 6
22 1 µM ci,H16 ci,H16 α = 0.001 10 NO 6
23 1 µM ci,H16 ci,H16 α = 0.01 10 NO 6
24 1 µM ci,H16 ci,H16 α = 0.1 10 NO 6
25 1 µM ci,H16 ci,H16 α = 0.5 10 NO 6
26 1 µM 0 50 µM 0 0 NO 7
27 1 µM 0 50 µM 0 0 YES 7

a cutoff of 5 × 10−3 pM). However, in the homogeneous sim-
ulation for which diffusive clearance is not present [Fig. 1(e)],
the concentrations of all proteins increase substantially. The
homogeneous simulations show the effect of aggregation
and monomer production. A recent study involving a three-
species Smoluchowski model (with monomer production)
[42] reported that the first two species achieve steady-state
concentrations after about 500 days, implying that from that
point on, all monomer production is immediately converted
to the largest aggregate (analogous to plaque). We therefore
expected to potentially see low/moderate steady-state con-
centrations for the oligomeric species and long-term increase
in the concentration of only c50. However, we instead see
an increasing concentration of all oligomeric species for the
five years of simulation. This seemingly unbounded increase
in concentrations of all species lends credence to the toxic
oligomer hypothesis and demonstrates how it may result from
impaired clearance.

Thus, the most general diffusion scenario maintains low
plaque and oligomeric concentrations and moderately higher
monomer concentrations, whereas the fully impaired clear-
ance scenario results in large concentrations of all species.
These two simulations suggest that diffusive clearance can
maintain low concentrations of monomers and all heavier
species if clearance at the PVS is rapid enough that the
ci = 0 boundary condition is reasonable. However,
when clearance is fully impaired (as in the homogeneous

simulation), concentrations of all species are several orders of
magnitude higher and exhibit years-long transients.

B. Timescale plot

We generated the timescale plot shown in Fig. 2 by plot-
ting the various timescales presented in Sec. II F against the
concentration scale, cscale = c1 (t = 0). It is useful to note that
when comparing the monomer production timescale and the
diffusive clearance timescale, we have used a characteristic
lengthscale of L/2, as this better represents the character-
istic length for diffusion between a venule and arteriole in
our domain. Even though the full 50-species model given by
Eq. (10) is nonequilibrium because of the constant production
of monomers (c1) and the lack of clearance of plaques (c50),
the individual protein species can reach a steady-state con-
centration when the production and the clearance timescales
match, as shown by the timescale plot.

C. Modeling traumatic brain injury with a large
monomer initial condition

We next study the effect of a rapid release of monomers
in the case of pure diffusion (no advection). Following a
traumatic brain injury (TBI), both rapid plaque formation
[43] and an overall increase in Aβ concentration [44] have
been observed; however, the exact mechanism and cause of
this increase is not well understood. One hypothesis is that
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Advection (Pe = 3)
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FIG. 2. (a) Timescale plot quantifying the relative importance of
each transport mechanism as a function of the concentration scale.
The timescales associated with oligomer aggregation are plotted as a
band (green) where the red lines separate the monomer aggregation
(lower) and plaque formation (upper) timescale regimes. The advec-
tion (light blue) and diffusion (dark blue) timescales are shown as
horizontal lines. The monomer production timescale is also shown
in teal. The vertical black dashed line represents the steady-state
concentration predicted when the monomer production rate matches
the diffusive clearance rate. (b) Zoomed-in version of (a) showing
the slowest plaque formation timescale from oligomers (c49 + c49 →
c50; top red line), the slowest monomer aggregation timescale or
equivalently the fastest plaque formation timescale (c1 + c49 → c50;
middle red line), and the fastest monomer aggregation timescale
(c1 + c1 → c2; bottom red line).

axon damage causes a rapid release of Aβ that then leads
to plaque formation [43]. A second hypothesis, which is not
mutually exclusive with the first, suggests that TBI reduces
glymphatic transport leading to impaired clearance of Aβ

from the interstitial space [45]. Regardless of the cause, el-
evated Aβ concentrations are sustained for an extended time
after the injury. To mimic this transient increase due to either
hypothesized scenario, we start our simulations with a large
monomer initial concentration.

We performed three simulations with purely diffusive
transport, in which the monomer initial concentration was
varied from 1 to 108 pM. These simulations (Sims. 1–3
in Table I) used the 2D domain without fragmentation and

FIG. 3. TBI model that varies the monomer initial concentra-
tion from 1 to 108 pM (Sims. 1–3). (a) Effect of varying the
monomer initial concentration on the spatially averaged monomer
concentration, with the estimated steady-state monomer concentra-
tion represented as a black dashed line. (b) Effect of varying the
monomer initial concentration on the plaque formation. (c) Effect of
varying the monomer initial concentration on the spatially averaged
concentration of Oligomer 20. (d) Effect of varying the monomer
initial concentration on the spatially averaged concentration of the
oligomeric mass. Concentrations below 5 × 10−3 pM [black dotted
lines in (c) and (d)] are assumed to be negligible.

perfect clearance at the PVSs for all species (α = 0). Before
presenting the results, we first explain the aspects that can be
inferred based on timescale arguments.

As seen in the timescale plot (Fig. 2), the intersection of
the monomer production timescale and the diffusive clearance
timescale leads to a prediction that a steady-state concentra-
tion is achieved at about 10 pM. We expect the monomer
concentrations to asymptotically approach this value regard-
less of the starting concentration. In Fig. 3(a), the results of the
simulations show that the monomers indeed approached the
predicted steady-state concentration, with a value of 8.1 pM
for all simulations, comparable to the 10 pM prediction. This
shows that a sudden increase in monomer concentration will
not change the long-term monomer steady-state concentration
(under our assumptions of perfect clearance at the PVS).

In contrast, varying the monomer initial concentration re-
sults in substantial plaque (c50) formation for a large monomer
initial concentration. As seen in Fig. 3(b), a monomer initial
concentration of 108 pM leads to a nonzero plaque formation,
while the lower concentrations do not, where concentrations
fall below 5 × 10−3 pM. This can also be predicted from the
timescale plot in Fig. 2, where a value of monomer initial
concentration larger than about 107 pM leads to faster plaque
and oligomer formation than diffusion (i.e., beyond about
107 pM, the middle red line is lower than the dark blue band
in Fig. 2). Indeed, the fastest plaque formation timescale due
to a monomer and an oligomer of size 49 (middle red line)
is faster than the diffusion timescale in the 108 pM scenario,
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which triggers plaque formation. For the smaller monomer
initial conditions, the diffusion timescale is several orders
of magnitude faster than the plaque aggregation timescale,
which results in negligible plaque formation. In contrast, for
a monomer initial condition higher than about 107 pM, the
plaque aggregation timescales are comparable to or faster than
the diffusion timescale, leading to substantial plaque forma-
tion. Thus, it can be concluded that a large (�107 pM) initial
bolus of monomers will lead to substantial plaque buildup,
whereas a small (� 106 pM) initial monomer bolus will have
minimal to zero plaque formation.

Next, we examine the effects of a large monomer initial
concentration on the time series of oligomeric concentra-
tions. Again, for larger concentrations (i.e., further right on
the timescale plot, Fig. 2) we expect a shorter timescale
over which aggregation occurs. In particular, above about
2 × 106 pM, the monomer aggregation (red diagonal line) and
oligomer production (green diagonal band) become slightly
faster than the diffusive clearance (dark blue horizontal band).
Hence, for a given oligomer species, we expect a larger tran-
sient concentration when a larger monomer initial condition
is used. However, these large transients should asymptotically
approach much smaller values for three reasons: (i) they are
no longer sustained by monomer aggregation as the monomer
concentration returns to the steady-state value (about 10 pM),
(ii) they are consumed to form heavier oligomers eventually
aggregating into immobile plaque, and (iii) the oligomers are
cleared out at the α = 0 PVS boundary. Figure 3(c) shows
the spatially averaged concentration of Oligomer 20 as a
function of time, which confirms these predictions. The larger
monomer initial concentration simulations show a significant
increase in the concentration of Oligomer 20. However, as
time progresses, the concentration drops rapidly, indicating
the oligomer is no longer sustained by aggregation of lighter
species and that it is being cleared to the PVSs and/or aggre-
gating into plaque.

The oligomeric mass [M, see Eq. (11)] is plotted in
Fig. 3(d) and confirms that the aforementioned trends hold for
all oligomeric species. Specifically, we see that regardless of
the monomer initial concentration, all simulations approach a
common oligomeric mass steady-state concentration at longer
times. This steady-state concentration is dictated primarily
by the steady-state concentration values of smaller aggre-
gates such as c2, as the concentration of larger aggregates is
minimal. As explained before, large monomer initial concen-
trations lead to transient peak concentrations of intermediate
oligomers, which are then depleted in long times due to a com-
bination of reduced production (due to decreased monomer
concentration), diffusive clearance at the PVS, and plaque
formation.

D. Modeling aging: Impaired monomer clearance at the PVSs

We next explore the effect of impaired monomer clearance
at the PVSs. Experiments on mice have shown that overall
glymphatic flow and solute transport significantly decline with
age [46–48]. Kress et al. showed a 40% reduction in Aβ

clearance in aged mice [47]. Ma et al. showed a reduction in
CSF drainage to lymphatic vessels in aged mice, indicative
of reduced brain waste clearance [48]. Additionally, Kress

1000 pM BC

0 BC1 pM BC

100 pM BC

10 pM BC

1000 pM BC

0 BC1 pM BC

100 pM BC
10 pM BC

1000 pM BC

100 pM BC

10 pM BC1 pM BC
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(c)

(b)(a)

(d)

FIG. 4. Effects of impaired monomer clearance investigated by
varying the monomer boundary condition (BC) at the PVSs from
0 to 1000 pM, with a 1 µM monomer initial concentration (Sims.
1, 4–7 in Table I). The color gradient corresponds to the level of
impaired clearance, with darker color representing greater impair-
ment (i.e., higher concentration at the PVS boundary, as labeled).
(a)–(d) Effect on the spatially averaged (a) monomer, (b) oligomeric
mass, (c) Oligomer 2, and (d) Oligomer 20 concentrations over time.
In panel (d), all of the simulations resulted in nearly identical, over-
lapping results, which appear as a single line. Concentrations below
5 × 10−3 pM [black dotted lines in (b), (c), and (d)] are assumed to
be negligible.

et al. proposed that reduced clearance contributes to the
cognitive decline associated with aging [47]. Reduced clear-
ance increases the likelihood of Aβ plaque formation [46].
Studies measuring Aβ levels in ISF found that Aβ concentra-
tions were age-dependent, with higher concentrations found
in older mice [49].

In the present study, we model the effects of reduced
glymphatic clearance with aging by varying the boundary
conditions at the PVSs for the monomers while enforcing
perfect clearance (α = 0) for the oligomers. Since the PVSs
are CSF-filled spaces, impaired clearance implies the CSF in
the PVSs is not swept away as rapidly, and therefore it may
contain some non-negligible level of Aβ proteins. Thus, we
can model impaired clearance by enforcing a constant nonzero
concentration of Aβ at the PVS. We begin by only enforcing
a nonzero PVS boundary condition for the monomers, but
further below we consider nonzero boundary conditions for
all species (see Sec. III E). For each simulation presented here,
we started with a 106 pM monomer initial concentration and
no fragmentation. We then conducted separate simulations in
which the boundary concentration at the PVSs for only the
monomers varied from 0 to 1000 pM (Sims. 1, 4–7 in Table I).

The simulations show an overall increase in concentrations
for smaller aggregates as the monomer concentration at the
PVS boundary increases. Figure 4(a) shows the spatially av-
eraged concentration of monomers c̄1 as a function of time.
For the monomers, we see an approximately linear relation-
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ship between the boundary concentration and steady-state
concentration for boundary concentrations �10 pM, implying
impaired clearance has a large effect on the monomer steady-
state concentration. Similar results are seen for the oligomeric
mass in Fig. 4(b), with an approximately linear relation for
boundary concentrations above 10 pM. As the impairment in
monomer clearance increases, the oligomeric mass steady-
state concentration also increases. As before, most of the
oligomeric mass concentration is attributed to the smaller
aggregates, as observed through comparison of Figs. 4(c) and
4(d), which show the concentrations of Oligomers 2 and 20,
respectively. In Fig. 4(c), the concentration of Oligomer 2 is
relatively large, and the steady-state concentration increases
with the monomer boundary concentration. In Fig. 4(d), the
concentration of Oligomer 20 is small and continually de-
creases until it drops below a negligible value of 5 × 10−3

pM at about 300 min. Overall, monomer clearance impair-
ment leads to an increase in smaller oligomers, whereas larger
oligomers remain virtually unaffected [e.g., Fig. 4(d)]. We
note that for all cases plaque concentrations were negligible,
thus they are not shown in Fig. 4.

E. Modeling aging: Impaired monomer and oligomer
clearance at the PVSs

Realistically, we would expect reduced CSF flow through
PVSs to increase the PVS boundary concentration of not
only the monomers but also the oligomers. Thus, we further
explore the effect of impaired clearance at the PVSs by
examining the consequences of nonzero PVS boundary
conditions applied to all species. We quantify the impact of
impaired clearance by testing different values of the impaired
clearance parameter (0 � α < 1). As previously described,
α specifies the concentration at the PVS boundary as a
fraction of the concentration of a given species from the
16-h homogeneous simulation. The homogeneous simulation
represents a worst-case scenario in which clearance is absent
and the monomers are only produced and aggregate into
oligomers and plaque. Hence, the concentrations reached
after 16h in the homogeneous simulation represent the
maximum possible concentration of each species gained
during the day (when glymphatic clearance is least active).
The level of impaired clearance can then be varied from zero
(α = 0) to the 16-h homogeneous simulation concentrations
(α = 1). Each simulation we present next (Sims. 8–13) was
started from a 1 µM initial monomer concentration. The
initial concentration of all oligomeric species and plaque
was set to corresponding values from the 16-h homogeneous
simulation at α = 1 throughout the entire interior of the
domain [see the interstitial space in Fig. 1(a)]. The PVS
boundary concentration was maintained according to the
impaired clearance condition given by Eq. (18), where α

was varied from 0 to 0.5, with 0 representing perfect PVS
clearance.

Figure 5(a) shows the concentration of the oligomeric
mass (M) across the domain at three instances in time: initial
conditions, transient, and steady-state conditions. Transient
is defined as the time at which 98% of the asymptotic
solute clearance has occurred. The upper panels show M
for α = 0.01 while the lower panels show M for α = 0.

Figure 5(a) shows that when α = 0.01, the boundary con-
dition determines the concentration in the domain at steady
state, while when α = 0 at the PVS, the steady-state con-
centration is determined by the competition between diffusive
clearance and production (as shown in Sec. III A).

At the start of each simulation, the initial concentration for
species 1–49 in the domain’s interior is set to the 16-h homo-
geneous concentration. As time increases, diffusion transports
the monomers and oligomers to the PVSs. When the PVS
boundary clearance is substantially impaired (i.e., α � 0.1),
the diffusive clearance reduces the concentration inside the
domain until it matches the concentration maintained at the
boundary, as shown in the upper rightmost panel in Fig. 5(a).
In this scenario, at steady state, oligomers continue to form
through aggregation but are immediately either cleared out or
aggregate into plaques. In contrast, for the case with α = 0
[bottom panel in Fig. 5(a)], the overall concentrations are
much lower (maximum concentration of oligomeric mass
in the domain is around 2 × 10−4 pM), and a gradient is
maintained in the domain for the entirety of the simulation
(although the lower rightmost panel in Fig. 5 does not show
this gradient due to the color bar’s scaling). The gradient has a
maximum concentration of 1.6 × 10−4 (pM) and a minimum
concentration of zero at the PVSs. The gradient occurs be-
cause when α = 0 at the PVS, the steady-state concentration
is determined by the competition between diffusive clearance
and monomer production (which can be predicted based on
matching the timescales, TD = Tfp).

The effect of impaired clearance on the monomers is shown
in Fig. 5(b). We see that as α increases, the steady-state
concentration increases. We can also calculate a predicted
steady-state concentration for the monomers by applying
Eq. (18) to the monomer final concentration. In Fig. 5(b), it
is seen that the predicted concentrations match well with the
steady-state concentrations obtained from the simulations for
α � 0.1. However, when α � 0.1, Eq. (18) yields values of
monomer concentrations that are less than the steady-state
concentration of monomers when α = 0 at the PVS in our
simulations. This is because monomer clearance in our sim-
ulation domain is diffusion-limited. When α = 0 at the PVS,
regardless of the initial condition, the monomer steady-state
concentration (c̄1 = 8.1 pM) is set by the competition between
diffusive clearance and monomer production rates (TD = Tfp),
whereas in homogeneous simulations, lowering the initial
condition leads to lower values of monomer steady-state
concentration.

Figure 5(c) shows the spatially averaged steady-state
values of select species as a function of α. Overall, the con-
centration of all the protein species increases monotonically
with α. For the plaques (red circular data points), changing
α has little effect on the final concentrations until α ≈ 0.5,
where the final concentration increases. The plaque concen-
trations do not reach a steady state, but rather slowly increase.
In contrast, the intermediate oligomers (green circular data
points) increase linearly with α. A deviation from the linear
behavior is observed in the monomers for α < 0.01, wherein
they reach a steady-state value that becomes independent of α

as α continues to decrease. This steady-state concentration is
again due to the diffusion-limited nature of monomer transport
at lower values of α, where the steady-state concentration
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FIG. 5. Effect of varying the impaired clearance parameter α from 0 to 0.5 (Sims. 8–13). (a) The oligomeric mass concentration field for
α = 0.01 (upper panels) vs α = 0 (lower panels) at three time instances: the initial condition, time to clear 98% of the solute that will be
cleared asymptotically, and the time to reach steady state. A small gradient is present in the lower right panel that is not discernible. Note that
the maximum concentrations in the far left panels are much higher than the upper limit of the color map. (b) Spatially averaged monomer
concentration as a function of time for various values of α; both the simulation results (solid) and the predicted value (dashed) are plotted.
(c) Steady-state values for select species as a function of α. Plaque concentrations (c50) are slowly increasing, so values shown are the final
values of the simulation rather than a steady-state concentration. (d) The final concentrations of oligomers from simulations (circles) and values
predicted by the impaired clearance parameter (dashed lines). (e) Spatially averaged oligomeric mass concentration for different values of α

with both the simulation results (solid) and predicted value based on Eq. (19) (dashed). (f) Steady-state oligomeric mass concentration for
different values of α showing a line of best fit of M = 1.0022 × 106α (pM). Concentrations below 5 × 10−3 pM [black dotted lines in (d) and
(e)] are assumed to be negligible.

is determined by the competition of diffusive transport and
monomer production.

Since the boundary conditions determine the interior con-
centrations for each oligomer species (at least for the values
of α tested), we can predict the concentration we expect each
oligomer to reach using Eq. (18). We then further calculate
a predicted oligomeric mass steady-state concentration using
the concentration enforced at the boundary by combining the
impaired clearance parameter [Eq. (18)] with the oligomeric
mass [Eq. (11)]:

Mpredicted =
49∑

i=2

icH16α = MH16α. (19)

Figure 5(d) shows the final oligomer concentrations of the
16-h homogeneous simulation as a function of the aggregate
size in the solid line. The figure also shows the expected
steady-state concentrations (dashed lines) generated based on
the homogeneous simulation results via Eq. (19) and the sim-
ulated steady-state values (circles) for each α. The agreement
between the two is excellent.

Figure 5(d) also indicates that aggregates of size 2–
20 are at higher concentrations than longer proteins. This
suggests that our choice of N = 50 is adequate for resolv-
ing the dynamics of the formation of larger oligomers and

plaques. Previous experimental studies have confirmed that
the amyloid-β size distribution is dominated by species of
smaller size [50,51]. It is interesting to note that the aggre-
gation rate of larger size oligomers is inversely proportional
to their size, which can contribute to the size distribution
observed. Homogeneous simulations lead to substantial con-
centrations of intermediate oligomers (c2 to c40), as is evident
from Fig. 5(d). Furthermore, we see higher concentrations
of smaller oligomers, which is reflected in Fig. 5(c), where
Oligomers 2 and 10 had higher steady-state concentrations
than Oligomers 30 and 40 (for fixed α). We also observe in
Fig. 5(d) that the highest oligomer concentrations are for sizes
5–10, again seen in Fig. 5(c) through Oligomer 10 having a
higher concentration than Oligomer 2.

We next compare the predicted oligomeric mass concen-
trations to the spatially averaged oligomeric mass from the
simulations, as shown in Fig. 5(e). As α increases, the steady-
state value of the oligomeric mass also increases, and for
the nonzero α values considered, the steady-state values of
the oligomeric mass agree well with the predicted values.
Figure 5(f) shows the steady-state value of the spatially aver-
aged oligomeric mass concentration (from the simulation) as
a function of α. A line of best fit applied to the plot shows that
the oligomeric mass and α are linearly related through M =
1.0022 × 106α (pM). This linear relationship matches what
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FIG. 6. Effects of advective vs diffusive clearance on impaired clearance (α = [0, 0.0001, 0.001, 0.01, 0.1, 0.5]), where pure diffusion
corresponds to Pe = 0 (Sims. 8–25). (a) Spatial distribution of oligomeric mass for each value of Pe at the initial condition, at 50% of the total
solute clearance, and at steady state; the initial and final distributions were identical in all α �= 0 scenarios. (b) Spatially averaged monomer
concentrations as a function of time. (c) The spatially averaged monomer concentration at steady state for each value of Pe as a function of
the impaired clearance parameter, α. (d) Spatially averaged oligomeric mass concentration as a function of time for each scenario. (e) Time to
steady state for the spatially averaged oligomeric mass concentration for each value of Pe as a function of α. Concentrations below 5 × 10−3

pM [black dotted line in (d)] are assumed to be negligible.

was observed using Eq. (19), which predicts that Mpredicted =
1.0016 × 106α (pM), using the 16-h homogeneous concen-
trations obtained with a 1 µM monomer initial concentration.
Thus, the oligomeric mass follows the predicted trends.

F. Effects of advection

We continue the study of impaired clearance by investi-
gating effects due to advection. As previously mentioned, the
significance of advective clearance is debated. Since the dif-
fusion coefficient decreases with increasing molecular weight,
advective transport is expected to become increasingly impor-
tant for large molecules [17]. Thus, we would expect to see
advective clearance play a more significant role for heavier
weight species (e.g., longer oligomers). To investigate the
significance of advection on Aβ transport, we vary the Péclet
number Pe, which characterizes the relative strength of ad-
vection and diffusion. We tested three values of Pe: 0 (Sims.
8–13), 3 (Sims. 14–19), and 10 (Sims. 20–25). Pe = 0 is
the pure diffusion case, which has been studied in Sec. III E.
Although Pe = 10 is not expected under physiological condi-
tions, we use this upper limit to clearly distinguish between
diffusion-dominated and advection-dominated clearance. It
is interesting to note that previous numerical studies have
estimated an upper bound on the Péclet number to be about
Pe = 4 [22].

For each simulation set, we also varied the impaired clear-
ance parameter α from 0 to 0.5 to compare with the results
presented in Sec. III E. As before, we started with the con-
centration of each species in the interior of the domain set to
the full 16-h homogeneous concentration and the monomers

at a 1 µM initial concentration. The results of the advection
simulations are plotted in Fig. 6.

Figure 6(a) shows the concentration field of the oligomeric
mass for each value of Pe at the initial condition, 50% of
solute clearance, and at steady state. For the pure diffusion
scenario of Pe = 0, the clearance is symmetric about the ver-
tical centerline. However, for the Pe > 0 cases, the clearance
becomes asymmetric, with stronger advective clearance hav-
ing a more pronounced effect on the concentration gradient
across the domain. The pressure gradient is oriented across
the domain such that the venule acts as a sink and the arteriole
as a source. Thus, the flow is driven from the arteriole toward
the venule. At larger Pe, the concentration around the arteriole
decreases, because advection moves the proteins toward the
venule. However, the concentration adjacent to the venule
increases, and the gradient becomes steeper because both ad-
vection and diffusion are cotransporting solute toward the low
concentration boundary at the venule. Correspondingly, the
proteins will then pile up around the venule, as observed in the
middle panels (labeled “Transient”), and gradually be cleared
out. Ultimately, each case converged to the same steady state,
as dictated by the impaired clearance parameter, α, as shown
in the right panel (labeled “steady state”).

The spatially averaged monomer concentration for each
value of Pe is shown in Fig. 6(b). For moderate advection
strength (Pe = 3), the trends resemble the diffusive clearance
scenario (Pe = 0); for both cases, increasing α leads to greater
steady-state concentrations. We also observe that stronger ad-
vection decreases the time to steady state, as the monomers
reach steady state significantly faster in the Pe = 3 versus
Pe = 0 case. For the highest advection strength (Pe = 10),
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the time to steady state is further reduced. Additionally for the
Pe = 10 scenario, the steady-state concentration only reaches
the predicted PVS concentration for a high impaired clearance
parameter (α � 0.1), as advection overpowers the monomer
production rate, whereas the diffusion and weaker advection
scenario reached or exceeded the predicted steady-state con-
centration for α � 0.01. Thus, a high advective strength will
reduce the time to steady state for the monomers as well as
reduce steady-state concentration given little impaired clear-
ance. In the timescale plot (Fig. 2), we see that advection
(for Pe = 3) results in a timescale slightly shorter than that
of diffusive clearance. Thus the time to steady state being
reduced for the Pe = 3 and 10 simulations in Fig. 6(b) aligns
with the expectations from the timescale plot.

The spatially averaged monomer steady-state concentra-
tion as a function of the impaired clearance parameter α is
presented in Fig. 6(c). For small levels of impaired clearance,
the steady-state concentrations vary significantly between the
purely diffusive and strongly advective scenarios. However, as
the impaired clearance increases, the concentrations converge
to similar values for all three Pe. Thus, for little to no clearance
impairment (i.e., small α), advection will further reduce the
steady-state concentrations, but when clearance impairment is
large, the only effect of advection is to reduce the time to reach
steady state. Additionally, the Pe = 0 and 3 scenarios exhibit
a nonlinear relationship between the monomer steady-state
concentration and α at low impaired clearance (α � 0.01); for
Pe = 10, this relationship becomes nonlinear for α � 0.001.

As shown in Fig. 6(d), the spatially averaged steady-
state concentration for the oligomeric mass is identical for
all three Pe cases when α � 0.0001. However, for perfect
clearance (α = 0), the steady-state concentration decreases as
the strength of advection increases. Additionally, the time to
steady state also decreases as the advective strength increases.
Since advection is movement due to bulk flow, and increasing
the strength of advection effectively increases flow speed, a
reduction in time to steady state is expected. Since the concen-
tration in the domain is dictated by the concentration enforced
at the PVS, this implies that monomers/oligomers in the in-
terior of the domain will be cleared to the boundaries faster.
The timescale plot presented in Sec. III B further illustrates
the effect of advection on time to steady state. As observed in
Fig. 2, the advection timescale for Pe = 3 is below the diffu-
sive clearance timescale. Thus, we expect the proteins to reach
a steady state faster when advection is present. The line of best
fit was also determined for the steady-state concentration of
the oligomeric mass as a function of the impaired clearance
parameter α. For Pe = 3, M = 1.0017 × 106α (pM) and for
Pe = 10, M = 1.0016 × 106α (pM). We find these equations
to be comparable to the previously presented diffusion sce-
nario of M = 1.0022 × 106α (pM), further confirming that
advection has minimal effects on the steady-state concentra-
tion for impaired clearance.

The time to steady state (tss) for the spatially averaged
oligomeric mass as a function of the impaired clearance pa-
rameter α is shown in Fig. 6(e). As no overshoot was observed
in any of the scenarios, the time to steady state was defined
as the time for the simulation to clear 99% of the solute that
will asymptotically be cleared. In Fig. 6(e), for small α values,
the purely diffusive simulations had the longest time to steady
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FIG. 7. Effect of fragmentation of all species for a 1 µM
monomer initial concentration and a 50 µM plaque initial concen-
tration in the purely diffusive model (Sims. 26–27). (a), (b) Spatially
averaged concentration over time for (a) the no-fragmentation sim-
ulation and (b) the simulation with fragmentation of all species
(excluding monomers). Concentrations below 5 × 10−3 pM [black
dotted lines in (a) and (b)] are assumed to be negligible.

state, and tss in the advection cases decreased as the advective
strength increased. However, as the impaired clearance level
increased, tss for each scenario began to converge. Thus, the
effects of advection on time to steady state are more prominent
at lower levels of clearance impairment (i.e., lower α).

G. Effects of fragmentation

Finally, we study the effects of fragmentation on Aβ

clearance. Fragmentation is defined as the breakup of larger
aggregates into smaller ones. Both numerical and analytical
models of in vitro studies of Aβ formation and self-assembly
indicate the existence of Aβ fragmentation [29,30]. How-
ever, the importance of Aβ fragmentation on Aβ clearance
is relatively unknown. Specifically, the fragmentation of
plaques may provide a mechanism for plaque clearance since
plaques are immobile (i.e., not cleared by diffusion or ad-
vection); fragmentation may also help sustain concentrations
of intermediate oligomers [52]. Fragmentation thus may be
significant in AD and other neurodegenerative diseases where
we expect the presence of plaques and larger aggregates in
the brain. To explore the effect of fragmentation, we con-
sider purely diffusive transport (Sims. 26–27) starting from
a 1 µM monomer initial concentration. We also use the size-
independent fragmentation rates proposed by Schreck et al.
[30]. We begin with a large plaque initial concentration of
50 µM, adapted from experimentally measured plaque levels
in mice brains with AD [53].

We first establish the steady-state concentrations for sim-
ulations with no fragmentation, as shown in Fig. 7(a). The
monomers quickly reach a low steady-state concentration of
about 3 pM, which is smaller than the 8 pM concentration
achieved when plaque initial concentration was zero (Fig. 3).
The change can be attributed to the coagulation kinetics,
which relies intricately on the initial concentration of each
species. The oligomeric mass reaches a small steady-state
concentration of 2 × 10−5 pM, which is mainly attributed to
the smaller oligomers, as seen through Oligomer 2 having a
nearly identical concentration profile to the oligomeric mass.
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The plaque concentration remains constant [the change is less
than 10−4 pM, Fig. 3(b)] for the duration of the simulation
because the monomer production rate is small.

We next show the effect of oligomeric and plaque frag-
mentation in Fig. 7(b). In this case, the monomers reach a
relatively high steady-state concentration of 790 pM. The
oligomers also achieve high steady-state concentrations, with
the oligomeric mass having relatively equal contributions
from every species. Finally, the plaque concentration de-
creases slightly over time, which can be attributed to the
fragmentation kinetics. In this scenario, the plaques fragment
and feed the monomers and oligomers, increasing their con-
centrations but decreasing the overall plaque concentration.
Therefore, fragmentation acts as a mechanism to remove
plaque.

The effect of fragmentation can be obtained by comparing
Figs. 7(a) and 7(b). We see that the monomer steady-state
concentration increases by two orders of magnitude when
fragmentation is present. This implies that monomers are
forming from the fragmentation of longer proteins at a large
rate, leading to an overall increase in monomer concentra-
tion, and diffusion is not fast enough to clear out these
monomers. From the perspective of timescales (Fig. 2), frag-
mentation provides a new source of monomers that shifts
the steady-state concentration between monomer production
and diffusion to the right. The shift shortens the timescale
for aggregation, which allows the monomer production to
contribute more significantly to the formation of oligomers
and plaque rather than being immediately cleared from the
domain. For the oligomers, we see that fragmentation leads
to large steady-state concentrations for all oligomeric species,
whereas the no-fragmentation scenario leads to a small
steady-state concentration only for short oligomers (and negli-
gible concentration for longer oligomers); compare Figs. 7(a)
and 7(b). Correspondingly, fragmentation leads to a large
increase in oligomeric mass. This new steady-state concentra-
tion for oligomeric species is also reached significantly faster
in the fragmentation case than the nonfragmentation case, as
predicted by timescale arguments (Fig. 2). Finally, the plaque
concentration decreases when fragmentation is present, which
implies that fragmentation may be a mechanism to reduce
plaque buildup.

IV. CONCLUSION

We have presented a numerical model of the aggrega-
tion and clearance of Aβ protein species in the interstitial
space. We investigated the effects of varying several key pa-
rameters that model salient aspects of different neurological
disorders, including monomer initial condition as a model of
TBI, and increasing Aβ concentration at PVS boundaries as
a model of aging. We also explored the role that hypothe-
sized phenomena may play, including interstitial advection
and oligomer/plaque fragmentation.

We first studied the sudden release of Aβ monomers at-
tributed to TBI and found little effect on Aβ monomer and
oligomeric steady-state concentrations, but a significant in-
crease in plaque formation for a high (108 pM) monomer
release (Fig. 1). Our results agree with clinical observations
that show changes in plaque concentrations [43] rather than

long-term effects on monomer and oligomer concentrations.
We expect that the drastic increase in plaque, if the monomer
release is significant enough, will align with the rapid plaque
formation seen in TBI patients [43]. A significant result of our
TBI study is the ability to predict the steady-state monomer
concentrations as well as understanding the strength of each
mechanism using the timescale plot, which allows us to think
of neurodegenerative diseases as a competition of timescales.
The timescale approach can then be expanded to study other
neurodegenerative diseases beyond TBI. Furthermore, we can
use the timescale plot as a method for comparing specific
clearance methods in the absence of a computational model
that isolates those clearance methods.

Given the decline in glymphatic flow and/or CSF turnover
observed in old age and AD patients [46–48], we then
showed that impaired monomer clearance at the PVSs leads
to an increase in monomer and smaller oligomer steady-state
concentrations, but it has little impact on longer oligomer
steady-state concentrations and plaque formation. Interest-
ingly, for all simulations, the rate of approach to the
steady-state value does not change significantly with α for any
aggregate size, as seen in Figs. 4(b) and 4(e), where the curves
are overlapping until the steady state is achieved. Rather,
only the steady-state concentration changes when monomer
clearance is impaired. The monomer-impaired clearance study
implies that as the monomer concentration becomes non-
negligible in the PVSs, attributed to aging, we expect an
increase of Aβ monomers and short oligomers in the intersti-
tial spaces. However, we would not expect a drastic change
in the concentrations of plaque and longer oligomers. This
implies that the plaque buildup observed in AD patients is not
necessarily due to impaired monomer clearance (at least under
the assumptions here, including an absence of fragmentation).

However, when we allowed impaired clearance of all
species, we saw an increase in steady-state concentrations of
all oligomers. We predicted the steady-state concentrations of
the oligomeric species and the oligomeric mass for different
values of the impaired clearance parameter, α. For 0.0001 �
α � 0.5, we found a linear relationship between α and the
steady-state oligomeric mass concentration. From these sim-
ulations, we conclude that impaired clearance at the PVSs
has a large impact on the presence of intermediate oligomers.
Since plaque has no clearance mechanism in this scenario,
its concentration must remain the same or increase. Given
that the oligomeric steady-state concentrations all increase,
we expect that impaired clearance of all species is a mecha-
nism that will increase the rate of plaque formation. However,
longer simulations are needed to determine asymptotic rates
of plaque formation.

The magnitude and significance of advection in the brain’s
interstitium is debated in the literature [10,15–18,20–23].
From the advection-diffusion impaired clearance simulations,
we provide insight into the role and significance of advec-
tion on Aβ clearance. For impaired clearance (0.0001 � α �
0.5), the steady-state concentrations remain unchanged for
the oligomers; for the monomers, there is a slight reduction
when α is low and Pe is large. For perfect clearance (α = 0),
advection reduces the oligomeric and monomer steady-state
concentrations. In all scenarios, advection reduced the time
to steady state for the monomers and oligomers. We also
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observed that the presence of advection will break the re-
flection symmetry along the vertical centerline and will result
in higher protein concentrations adjacent to the venule. Ulti-
mately, our model of impaired clearance (α > 0) is meant to
capture a scenario in which flow of “clean” CSF through PVSs
is not rapid enough to dilute the PVS Aβ concentration to
negligible levels. Our model suggests that impaired clearance
(i.e., substantial PVS Aβ concentrations) has a higher impact
on oligomer steady-state concentrations and plaque formation
than the presence of advection through the interstitium.

Finally, we studied the effect of fragmentation, which
led to an increase in concentrations of both monomers and
oligomers. This result is in agreement with experimental
studies of protein aggregation [52] that demonstrate that frag-
mentation leads to larger concentrations of all species. In
particular, plaque fragmentation helps sustain large steady-
state concentrations of Aβ oligomers. Intriguingly, when
fragmentation occurs, the monomer steady-state concentra-
tion is increased, which shifts the characteristic timescales
into a regime (i.e., to the right in Fig. 2) where a greater
proportion of the monomers aggregate into oligomers and
plaques rather than being cleared at the PVSs. Overall, we
find that fragmentation reduced the amount of plaque present,
implying that fragmentation is a mechanism for sustaining
concentrations of potentially neurotoxic oligomers, and it may
be a plaque clearance mechanism. These results frame plaque
fragmentation as a potential mechanism to target when devel-
oping AD treatments, as reducing plaque fragmentation may
reduce oligomeric concentrations.

Our model has many important limitations due to several
simplifying assumptions. First, we only consider a 2D domain
that analyzes the transport of Aβ to the PVSs, and we ignore
the details of Aβ transport along the PVSs. Additionally, our
model simplifies some aspects of Aβ coagulation. While our
model does include fragmentation, it does not include primary
nucleation or surface catalyzed secondary nucleation. Previ-
ous modeling studies have included primary nucleation but
have demonstrated that aggregation dynamics are dominated
by secondary nucleation events [29,30]. In the future, we can
add primary nucleation to our model. Recent experiments
have further indicated the possibility that aggregation rates
are size-independent, which will be updated in our model in
the future [54]. We also assume size-independent fragmen-
tation rates. While size-dependent fragmentation rates more
closely fit experimental data [30], our results capture the qual-
itative effects of fragmentation, but future models could be
extended to incorporate size-dependent fragmentation rates.
Additionally, we ignore other clearance mechanisms such as
direct blood-brain-barrier efflux, which can be included in

future studies. We also model the impaired clearance bound-
ary conditions as a Dirichlet boundary condition with a
constant value, which may not reflect the true PVS con-
centration variation. For fully impaired clearance, a no-flux
boundary condition may be a better choice. A more realis-
tic representation of the boundaries would involve modeling
solute transport through the PVSs. Our model uses a rigid
domain that assumes no tissue deformation or arterial pul-
sation; recent studies suggest that deformation of the brain
parenchyma may be a critical aspect of the mechanics of
glymphatic CSF transport [39,55,56]. We also assumed an
idealized geometry for the venule and arteriole for our do-
main, which could be improved by using more realistic
anatomy [57]. Finally, the interstitial space contains capillar-
ies that also contribute to protein clearance via blood-brain
barrier efflux, which could be incorporated in future models.

We will continue the development of our model to more
precisely capture the complex dynamics of Aβ clearance.
We plan to characterize the effect of varying monomer pro-
duction, aggregation rates, and size-dependent versus size
independent fragmentation rates, as there is some disagree-
ment in the literature regarding the true values [30,42].
Additionally, our model assumes the interstitial space is a
uniform porous medium, so we may seek to increase the geo-
metrical complexity to more accurately model the interstitial
space [58]. Our future studies will also examine the impacts
of the sleep-wake cycle, which involves running simulations
for days rather than hours. Previous research has shown that
sleep leads to an expansion of the interstitial space [40], which
increases the permeability of the brain tissue, potentially mak-
ing it more amenable to advective clearance. This effect can
be included in our model by changing the Péclet number over
the sleep-wake cycle. Finally, recent studies indicate CSF flow
alterations in the PVSs due to spreading depolarization waves
during stroke, migraine, and cardiac arrest [59–62]. Exploring
how such alterations in CSF flow may affect the long-term
dynamics of protein buildup in the brain interstitium would
provide novel insights. This can be examined by combining a
model of CSF flow in the PVSs [62] with the present model
of interstitial transport.
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