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Model for efficient dynamical ranking in networks
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We present a physics-inspired method for inferring dynamic rankings in directed temporal networks—
networks in which each directed and timestamped edge reflects the outcome and timing of a pairwise interaction.
The inferred ranking of each node is real-valued and varies in time as each new edge, encoding an outcome like
a win or loss, raises or lowers the node’s estimated strength or prestige, as is often observed in real scenarios
including sequences of games, tournaments, or interactions in animal hierarchies. Our method works by solving a
linear system of equations and requires only one parameter to be tuned. As a result, the corresponding algorithm
is scalable and efficient. We test our method by evaluating its ability to predict interactions (edges’ existence)
and their outcomes (edges’ directions) in a variety of applications, including both synthetic and real data. Our
analysis shows that in many cases our method’s performance is better than existing methods for predicting
dynamic rankings and interaction outcomes.
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I. INTRODUCTION

When considering a collection of people, animals, teams,
or other entities, there is often an underlying hierarchy struc-
turing the system. This hierarchy may be formally instilled
in the sense that some individuals are explicitly granted cer-
tain ranks based on positions of authority. For example, in a
school, there are students, teachers, and the principal or head
of the school, with each position explicitly known and ranked
in terms of level of authority. Alternatively, a hierarchy may be
implicit in the sense that the ranks are not explicitly granted or
known, but instead encoded in behaviors or interactions. For
example, in animal dominance hierarchies, animals may be
preferentially aggressive toward those lower in rank. In both
explicit and implicit cases, hierarchies can be determined by
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analyzing the patterns of interactions between the entities of
the system.

If we wish to infer the ranks of entities in a hierarchical
structure from the patterns of their interactions, then we can
treat ranks as either static or dynamic and as ordinal or real-
valued.

In the static case, time is irrelevant, and we treat all the
interactions at once regardless of the sequence in which they
occur, as one might when ranking the teams in a sports league
at the end of a seasons.

In the dynamic case, each individual’s ranking may rise
or fall over time, retaining the memory of past interactions
while taking new interactions into account. This can be seen
in leagues such as the U.S. National Basketball Association
(NBA) where rankings derived from recent games provide in-
sight for predicting games in the near future, yet the rankings
themselves may nevertheless change slowly over the course
of a season or seasons. We are also interested in real-valued
ranks, rather than ordinal ranks, such that the size of rank
difference between two entities is an interpretable and predic-
tive quantity, regardless of whether they are adjacent or well
separated in ordinal rank.

To model systems of this type we propose Dynami-
cal SpringRank. This builds on the previously proposed
SpringRank algorithm [1] by incorporating time information,
inferring a dynamic hierarchy from a dynamic network: that
is, a dataset of timestamped interactions, each of which de-
fines a directed edge i → j indicating that i “beat” j at
time t . We make similar physically-inspired assumptions as
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SpringRank, modeling directed edges as springs and assuming
that entities are more likely to interact if their ranks are not too
far apart. We also propose a generative model for constructing
directed, hierarchical networks that evolve over time.

Finally, we evaluate Dynamical SpringRank on a variety
of synthetic and real datasets. From our findings, we conclude
that it accurately and efficiently infers ranks and predicts the
direction of edges in dynamic settings. Furthermore, it fre-
quently outperforms other algorithms such as the Elo Rating
System and Whole-History Rating.

II. RELATED WORK

Estimating hidden hierarchies from pairwise interactions is
a fundamental problem in a wide variety of contexts. Several
models have been proposed to study static hierarchies, i.e.,
scenarios where ranks do not change in time. One line of
research considers spectral methods, which exploit eigenval-
ues and eigenvectors of certain matrices that can be built
from the network structure given an input. These methods
learn real-valued scores on nodes and differ in the choice
of the underlying matrix considered to solve an eigenvalue
problem. Prominent examples include Eigenvector Central-
ity [2], PageRank [3], and Rank Centrality [4]. A different
line of research considers ordinal rankings, where nodes are
assigned an order rather than a real-valued score. Exam-
ples are Minimum Violation Rank [5–7], Ranked Stochastic
Block Model [8], SerialRank [9] and SyncRank [10]. An-
other main line of research is that of probabilistic approaches,
where a main assumption is that outcomes are random vari-
ables, and they depend on real-valued scores. These are
learned using techniques from statistical inference and can
be used to estimate the probability of an outcome. These
approaches are considered in various domains. For instance,
in economics and psychology, Random Utility Models [11]
investigate preferences for choices that are not deterministic.
A relevant example is the Bradley-Terry-Luce (BTL) model
[12,13]. In ecology, probabilistic niche models [14–16] are
used to study food webs. In social networks, a variety of
probabilistic approaches have been considered. They differ
in their assumptions about the underlying patterns playing a
role in determining the hierarchy. For instance, social status
can be considered to model friendship [17]. A combination
of hierarchy and community structure [18] can be used to
learn directed interactions between individuals. Latent space
models assume that each node has a position in an underlying
latent space [19]. Physics-inspired models draw from analo-
gies with physical systems, for instance a system of springs as
in SpringRank [1] or continuous spin systems [20].

In contrast, dynamic approaches model dynamic environ-
ments where ranks vary in time and interactions have a
relevant chronological order. For instance, the Elo Rating
System [21], commonly used for rating chess players, is one
of the most popular online methods. It was later improved
by the Glicko system [22], which incorporates a measure of
reliability in estimating ranks to capture their uncertainty due
to, for instance, a period of inactivity or lack of data. The
Dynamic TranSync model [23] assumes that observations are
noisy measurements of strength differences with zero-mean
noise and imposes smoothness constraints on the time-varying

strengths. Another approach is a win-loss ranking algorithm
[24] and its dynamic extension [25]. A Bayesian ranking
system inferring individual ranks from team-level outcomes
is the so called TrueSkill algorithm [26], which can be seen
as a generalization of the Elo system. This has been extended
by TrueSkill Through Time (TTT) [27] which infers smooth
time series of ranks. Decaying-history ratings such as [25]
act directly on the data observations, progressively forgetting
old interactions. One drawback of this approach is that time
decay increases the uncertainty of player ratings: players who
stop playing for a while may experience huge jumps in their
ratings when they start playing again. However, players who
play very frequently may have the feeling that their rating is
stuck. If players do not all play at the same frequency, then
there is no clear way to tune the decay rate [28].

Finally, an additional type of dynamic method treats ranks
as time-varying, but infers the ranks at each time-step by con-
sidering the totality of all observations, including those before
and after any particular time step. For instance, the Whole-
History Rating (WHR) [28], a Bayesian approach based on
the dynamic Bradley-Terry-Luce model, computes the exact
maximum a posteriori estimate of ranks over the whole history
of all players.

III. THE MODEL

We represent a series of interactions between N individuals
as a sequence of weighted directed networks with adjacency
matrix At for t = 0, 1, 2, . . . , T . For each t , its entry At

i j is
the outcome of interactions i → j suggesting that i is ranked
above j. This allows both cardinal and ordinal inputs. For
instance, in team sports, At

i j could be the number of points by
which team i beat team j, or we could simply set At

i j = 1 to
indicate that i won and j lost. We can include the case where
individuals interact multiple times at time t by summing the
corresponding entries.

We assume that the values of At
i j are influenced by a vector

of real-valued ranks st = (st
1, . . . , st

N ), where st
i is i’s strength

or prestige at time t . To model these interactions, we follow
SpringRank’s approach of imagining the network as a physi-
cal system [1]. Specifically, each node i is embedded in R at
position st

i , and each directed edge i → j becomes an oriented
spring with a nonzero resting length and displacement st

i − st
j .

Since we are free to rescale latent space and the energy scale,
we set the spring constant and resting length to 1. The spring
corresponding to an edge i → j at time t then has energy

Hi j
(
st

i , st
j

) = 1
2

(
st

i − st
j − 1

)2
. (1)

If there were no other effects, then the total energy of the
system at time t would be

Ht (st ) =
N∑

i, j=1

At
i j Hi j

(
st

i , st
j

)
. (2)

If we determined st by minimizing Ht for each t separately,
then we would simply be applying the static SpringRank
model separately to each “snapshot” of the network. This
would ignore all previous (and future) interactions, and ignore
the hypothesis that ranks change smoothly from one time-step
to the next.

034310-2



MODEL FOR EFFICIENT DYNAMICAL RANKING … PHYSICAL REVIEW E 110, 034310 (2024)

To model this smoothness, we also assume a dependence
between ranks at successive time-steps. Specifically, we ex-
tend the Hamiltonian (2) with an extra term that models the
self-interaction between past and current ranks,

Ht
self (st , st−1) = k

2

N∑
i=1

(
st

i − st−1
i

)2
. (3)

This can be seen as a set of additional “self-springs” that
connect the rank of each individual with its own previous rank.
The spring constant k parametrizes how smoothly we want the
ranks to change from one step to the next. In inference terms,
k is a hyperparameter which we tune using cross-validation.

Summing over all time-steps 0 < t � T and adding this to
the pairwise interactions at each time-step then gives a total
energy

Htotal({st }) =
T∑

t=0

Ht (st ) +
T∑

t=1

Ht
self (st , st−1). (4)

We call this the dynamical SpringRank Hamiltonian. The
optimal ranks s0, s1, . . . , sT are those that minimize it.

There are two ways to minimize Htotal. One is to proceed
in an online way, moving forward in time. In this approach,
we use the static SpringRank model Eq. (2) to find the initial
ranks s0 by minimizing H0(s0). As in Ref. [1], the energy is
unchanged if we add a constant to all the ranks; we can break
this translational symmetry by setting the mean initial rank
(1/N )

∑N
i=1 s0

i to zero. Then, at each subsequent time-step t �
1, we update the ranks by taking into account both the new
pairwise interactions and the self-springs connecting the ranks
with their previous values. Namely, given st−1 and At , we find
the ranks st that minimize Ht (st ) + Ht

self (st , st−1).
Since this is a convex function of st , we can find its

minimum by setting its gradient to zero, or equivalently by
balancing all the forces st

i . This yields a system of linear
equations:

[Dout,t + Din,t − (At + (At )†) + kI] st

= [Dout,t − Din,t ]1 + kst−1. (5)

Here Dout,t and Din,t are diagonal matrices whose entries
are the weighted out- and in-degrees Dout,t

ii = ∑
j At

i j and

Din,t
ii = ∑

j At
ji; † denotes the transpose; I is the identity ma-

trix; and 1 is the all-ones vector. The derivation of Eq. (5) can
be found in Appendix A.

The matrix on the left-hand side (LHS) of Eq. (5) is in-
vertible for k > 0. This can be proved following the same
reasoning as in Ref. [1] under Eq. (3) and noticing that the
LHS of our Eq. (5) coincides with the LHS of Eq. (5) in
Ref. [1] when replacing k with α. Thus, for each At and each
st−1, Eq. (5) has a unique solution st . Overall, Eq. (5) is similar
to the regularized version of SpringRank [1] with regulariza-
tion parameter α = k. However, unlike the static model, there
is a term on the right-hand side containing the previous ranks
st−1, creating a Markovian dependence between successive
time-steps. We refer to this model as Dynamical SpringRank
(abbreviated as DSR). We provide a visual representation of
the model in Fig. 1.

Importantly the online DSR approach does not actually
minimize Htotal, instead solving a sequence of minimization
problems, one for each time step. To minimize Htotal instead,

FIG. 1. A visual representation of Dynamical SpringRank. Each
node i has rank si at time t and each edge is represented as a spring.
The red springs indicate self-springs that connect past and present
ranks. The black springs indicate interactions with different entities.
The blue and gray nodes interact once while the gray and gold nodes
interact three times. In contrast, the green node does not interact with
the other entities. Arrows indicate the direction of a win in a directed
interaction between two nodes.

we set ∇Htotal(st ) = 0, solving for the minimizers st over all
N (T + 1) ranks simultaneously, yielding the following sys-
tem of equations (Appendix B):

[Dout,t + Din,t − (At + (At )†) + 2kI] st

= [Dout,t − Din,t ]1 + k(st−1 + st+1). (6)

This differs from Eq. (4) in that the right-hand side now
includes both past and future ranks (which doubles the con-
tribution of k on the left). We remove the terms st−1 and st+1

for t = 0 and t = T , respectively. This is equivalent to speci-
fying boundary conditions s−1 = sT +1 = 0, i.e., ranks outside
the considered time interval are set to zero. Other possible
choices could be made for these boundary conditions. They
mainly impact the values of ranks close to the boundaries and
their effect lessens in the presence of many time steps. See
Appendix G for further discussion.

This entire system has translational symmetry, since the
energy Eq. (4) remains the same if we add the same constant
to all ranks at all times, but we can again break this symmetry
by setting the mean rank to zero.

Additionally, in contrast to Eq. (5), the ranks at t now
depend on both t − 1 and t + 1, which themselves depend
on ranks at adjacent time-steps, so that ranks are affected
by interactions in both the past and the future. In computer
science, methods like this where the entire history is provided
to the algorithm are called offline, to distinguish them from
online approaches that update their results in real time as data
becomes available. Thus, we refer to this model as Offline
Dynamical SpringRank (OFFDSR).

The cost of solving Eq. (5) for a single time-step is the
same as static SpringRank with only one additional parame-
ter to be tuned using cross-validation, and there are T such
N-dimensional equations to be solved successively. How-
ever, Eq. (6) requires solving a single system of dimension
NT , whose operator consists of T blocks, each of dimension
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N × N . While these two approaches feature numbers of
nonzero entries that are fundamentally determined by the
number of total edges across all time steps, the cost of solving
DSR vs OFFDSR will depend on the particular choice of linear
solver [29].

Philosophically, Eqs. (5) and (6) are trying to do two dif-
ferent things. If we are given all the data A0, A1, . . . , AT and
we want to infer retrospectively how each individual’s rank
changed over time, then it makes sense to include both past
and future interactions as in Eq. (6) so that st

i is affected by i’s
entire history. In contrast, Eq. (5) can be viewed as modeling
each individual’s perceived rank st

i at a time t � T in the past,
based only on the interactions that have occurred so far, thus
ignoring the future steps t + 1, . . . , T .

In principle, one could envisage other ways to formally
incorporate an explicit dependence on st−1 into the model,
and we provide one example in Appendix C. However, we
found that the approaches presented in this section provide a
natural interpretation, result in good prediction performance
on both real and synthetic datasets (see Sec. IV) and are
computationally scalable.

We close this section with two possible extensions to these
models. First, in some settings we might have timestamps t
that are not successive integers 0, 1, . . . , T . In this case, if the
time interval between two successive times is �t , then one
could scale the spring constant of the self-springs between
time-steps as k/�t . This corresponds to the fact that if we
have � identical springs in series, each of which is stretched
by (st − st−1)/�, their total energy is (1/2)(k/�)(st − st−1)2.
The same expression applies if the timestamps are real-valued
so that � is not an integer.

Second, if we believe that not just the ranks themselves
but their rates of change behave smoothly over time, then
one could add a momentum term to the Hamiltonian which is
quadratic in the discrete second derivative of the ranks. Since

((st+1 − st ) − (st − st−1))2

= (st+1 − 2st + st−1)2

= 2(st − st−1)2 + 2(st+1 − st )2 − (st+1 − st−1)2,

this is equivalent to adding a repulsive force, i.e., a spring with
negative spring constant, between ranks two time-steps apart.
Note that the system nevertheless remains convex: this mo-
mentum term is positive semidefinite, so adding it to Eq. (4)
keeps the coupling matrix positive definite except for transla-
tional symmetry. Of course, these terms are second-order in
time. In the online approach, one would have to determine s0

from the static model, s1 from the first-order model (5), and
then use the model including this momentum term for st for
t � 2. We have not pursued this here, but it may make sense
for certain datasets.

A. Moving-window SpringRank

Before we test the various versions of Dynamical
SpringRank defined above, we consider a simpler model as a
baseline. The simplest way to extend SpringRank to a dynam-
ical context is to apply the static model to the interactions in a
series of “windows,” where in each window we sum the inter-
actions over a series of consecutive time-steps. For instance,

we can compute st for each t by applying the static model
to a window of width τ , i.e., replacing At with

∑t+τ−1
t ′=t At ′

.
Since these windows overlap, the resulting estimates st will
be smooth to some extent, even without imposing an explicit
dependence between st and st−1. We use this method, which
we call moving-window SpringRank (mwSR), as a baseline
to compare with the dynamical models presented above.

Roughly speaking, a larger τ is like a larger self-spring
constant k, since it induces more overlap between windows
and thus a stronger correlation between the inferred ranks.
However, like a decaying-history approach, mwSR assumes
a particular kernel for the importance of past time-steps:
namely, that all t ′ in the window are equally important. In
contrast, Dynamical SpringRank infers the importance of past
time-steps by coupling st with st−1.

However, both models have a free parameter that needs to
be tuned, i.e., k and τ . A shorter window τ or smaller spring
constant k allows the ranks to respond quickly to new interac-
tions, while a longer window or larger spring constant more
tightly couples nearby estimates. This trade-off suggests the
existence of an optimal window length τopt. We tune τ using
a cross-validation procedure as explained in Appendix F.

B. Generative model and synthetic data

Analogous to a model presented in Ref. [1], we propose
a probabilistic generative model for dynamic data. It takes
as input the ranks st and generates a sequence of weighted
directed networks with adjacency matrix At at time t . One can
also imagine models that generate the ranks, for instance with
a random walk with Gaussian steps whose log-probability is
the self-spring Hamiltonian (3), but we treat st as an input
since we want the user of this model to have control over
how the ground-truth ranks vary with time. For instance, in
our experiments below we generate synthetic data where the
ranks vary sinusoidally.

The generative model has two real-valued parameters: a
signal-to-noise ratio or inverse temperature β, and an overall
density of edges c. Given the ranks st , it generates weighted,
directed edges between each pair of nodes i, j independently,
as follows. The probability Pt

i j (β ) of i “beating” j at time
t , giving a directed edge i → j, is a logistic function as in
Ref. [1] or the Bradley-Terry-Luce model [12,13]:

Pt
i j (β ) = 1

1 + e−2β(st
i −st

j )
.

The number of such edges, which gives the integer weight At
i j ,

is then drawn from a Poisson distribution whose mean λt
i j is

cPt
i j (β ):

At
i j ∼ Poi

(
λt

i j = c

1 + e−2β(st
i −st

j )

)
. (7)

Since Pt
i j (β ) + Pt

ji(β ) = 1, for any pair i, j the total number of
interactions At

i j + At
ji is Poisson-distributed with mean c. The

rank differences st
i − st

j are used only to choose the directions
of these edges. This is equivalent to a model where we define
a random multigraph where the number of edges between i
and j is Poi(c), and then we choose the direction of each edge
independently according to Pt

i j .
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This is different from the generative model proposed in the
static case in Ref. [1]. In that model the probability that i and
j interact depends on si − s j so that nodes are more likely to
interact if their ranks are fairly close. This is consistent with
SpringRank’s assumption that if i beats j then j is below i,
but not too far below it (since the springs have resting length
1). This assumption makes sense for some datasets but not for
others. By generating synthetic data without this dependence,
our intent is to pose a greater challenge to SpringRank by
modeling (for example) round-robin tournaments where every
team plays each other.

C. Model evaluation

Assessing a ranking model on real datasets is not straight-
forward since we do not know the true values of the
underlying ranks. Nevertheless, we may measure the extent
to which inferred ranks are accurate in the sense that they can
predict the outcome of new observations.

There are several performance metrics that can be used for
prediction evaluation. From coarse-grained measures capable
of predicting the likely winner to more fine-grained mea-
sures that also estimate odds, we consider four main metrics
in our experiments, detailed in Appendix D. We measure
prediction performance using a cross-validation protocol
where datasets are divided into training and test sets. The
training set is used for hyperparameter tuning and parameter
estimation while performance is evaluated on the test set. To
preserve the chronological ordering of the data, the test set
contains future observations, i.e., observations that chrono-
logically follow those used in training. Hyperparameters for
each method are tuned using grid-search to maximize the
performance metrics as described in Appendix F.

IV. RESULTS

Having introduced Dynamical SpringRank and its gen-
erative counterpart, as well as discussing model selection
between the dynamic and static versions of SpringRank, we
now illustrate their behavior on synthetic and real data.

We compare prediction performance on held-out test data
for DSR and OFFDSR against several state-of-the-art algo-
rithms such as the Elo Rating System (Elo) [21], TrueSkill
(TS) [27], “win-loss” decay-history rating (W-L) [25], and
Whole-History Rating (WHR) [28] (see Appendix E for a
brief description of these methods). In addition, we consider
two baselines: static SpringRank (SR) [1] and mwSR pre-
sented above in Sec. III A. (Note that static SpringRank is the
limiting case of mwSR with one window covering the entire
dataset.) Additionally, since OFFDSR considers future infor-
mation, in the experiments it was only given past information
so that a fair comparison can be made with the other models in
terms of prediction performance (see Appendix G for a further
discussion).

A. Performance on synthetic data

We first consider synthetic data, generated as described in
Sec. III B, in which ranks evolve according to periodic ground
truth dynamics,

st
i = bi cos(ωit + φi ) + ci cos(υit + φi ), (8)

where bi, ci, ωi, φi, υi are parameters randomly chosen for
each node from a continuous uniform distribution (see Ap-
pendix H for details). This results in changes in rankings,
and swaps in the order of ranks, reminiscent of real scenarios
where teams and players rise and fall. The fact that we assign
individual parameters to nodes allows us to mimic realistic
scenarios where different teams change their ranks at different
rates during a season. For instance, some teams can have more
constant ranks while others can change more rapidly.

To assess the effect of different network structures, we vary
parameters β and c from Eq. (7). We tabulate the results in
Table I for varying values of β and fixed c = 0.5, and in
Table V for varying values of c and fixed β = 2.0. We use
50% of the data for training and four time-steps for testing,
detailed in Appendix F.

Overall, DSR has the largest number of top performances
when considering all metrics (Tables I and V). Notably, DSR
outperforms its offline variant OFFDSR, even though OFFDSR
is given the entire history. This implies that using future inter-
actions to retrodict out-of-sample interactions is less accurate
than simply using past interactions. Recall also that DSR
is more efficient algorithmically than OFFDSR. Overall, all
algorithms perform better for higher values of β (i.e., lower
noise).

The model with the second largest number of top per-
formances is WHR, which does well particularly for σL,
the metric that accounts for the likelihood of the outcomes.
Notably, static SpringRank is significantly worse than the
other models, illustrating that performance can be negatively
affected by choosing a static model in dynamical settings.
However, for higher noise levels such as β = 0.1, static
SpringRank performs comparably well to the other models.
This suggests that when there is less structure in the data, a
static algorithm is enough: taking the chronological order of
events into account does not improve performance.

As a sanity check of our permutation test for model selec-
tion between static and dynamic models, we also considered
synthetic datasets generated with static ranks st

i = si. As ex-
pected, static SpringRank performs well in comparison to the
dynamic algorithms as shown in Table VII.

Finally, we qualitatively investigate the inferred ranking in
Fig. 2 for DSR, Elo, and W-L where the hierarchy as well
as predictive performance is strong, as can be seen in Table I
when β = 2.0. We notice how the time-scale of the evolution
of the ranks is different in all cases, with W-L having frequent
and sudden jumps while DSR and Elo are smoother with
roughly equal performance. In all cases, though, we notice
small jumps indicating changes in ranks that deviate from the
smoothness in the ground truth. Nevertheless, performance is
strong for DSR and Elo, who perform roughly equally well,
as the behaviors of the individual trajectories resembles that
of the ground truth well in both cases.

These synthetic tests suggest that dynamical algorithms
capture relevant information when the data has a hierarchical
structure and chronological ordering matters (i.e., low noise).
In these cases, Dynamical SpringRank performs the best ac-
cording to several metrics. For higher noise levels or static
ranks, timestamp information is no longer relevant and static
SpringRank performs well.
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TABLE I. Results obtained from synthetic data with varying noise levels, represented by β. Each value is the mean of 4 independent
realizations of the noisy model. The green highlighted values are the top performances for the considered metric. Notably, some of the values
in the same row appear identical but only a single value is highlighted. The reason for this is that the highlighted value is better by less than
three decimal places. Table IV contains the standard error of the above values. σa and σL cannot be applied to the W-L model, so there are no
values for the metrics.

β Metric Elo OFFDSR mwSR DSR SR TS W-L WHR

0.1 Accuracy 0.545 0.544 0.533 0.549 0.540 0.548 0.511 0.549
Agony 1.568 1.596 1.658 1.574 1.646 1.551 1.784 1.578

σa 0.593 0.594 0.576 0.584 0.594 0.593 − 0.592
σL −1.426 −1.382 −1.389 −1.378 −1.382 −1.392 − −1.389

0.5 Accuracy 0.700 0.700 0.698 0.700 0.652 0.703 0.620 0.701
Agony 0.881 0.877 0.887 0.877 1.075 0.885 1.230 0.882

σa 0.666 0.647 0.708 0.705 0.635 0.674 − 0.670
σL −1.344 −1.286 −1.165 −1.163 −1.263 −1.167 − −1.152

1.0 Accuracy 0.810 0.816 0.810 0.810 0.713 0.808 0.721 0.811
Agony 0.455 0.436 0.429 0.440 0.799 0.458 0.766 0.442

σa 0.771 0.783 0.813 0.813 0.702 0.767 − 0.756
σL −1.143 −0.988 −0.848 −0.853 −1.149 −0.863 − −0.846

1.5 Accuracy 0.866 0.862 0.863 0.864 0.752 0.865 0.772 0.863
Agony 0.260 0.269 0.269 0.261 0.655 0.266 0.546 0.270

σa 0.835 0.823 0.863 0.866 0.745 0.825 − 0.815
σL −0.883 −0.918 −0.671 −0.670 −1.128 −0.662 − −0.655

2.0 Accuracy 0.898 0.898 0.898 0.903 0.772 0.900 0.803 0.900
Agony 0.172 0.179 0.171 0.163 0.606 0.172 0.451 0.169

σa 0.876 0.847 0.899 0.901 0.769 0.861 − 0.856
σL −0.673 −0.844 −0.492 −0.500 −1.088 −0.500 − −0.492

FIG. 2. Evolution of inferred ranks over time on synthetic data. We illustrate the inferred ranks of three models over time: DSR, W-L, and
Elo. We also illustrate the ground truth of the synthetic ranks over time as a comparison (top left). The synthetic data is generated by setting
β = 2.0 and c = 0.5. Dashed lines are ground truth ranks.
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TABLE II. Descriptions of the real datasets.

Competition Type Nteams Ngames Tsteps

NBA Basketball 30 9594 218
lichess.org Chess 96 298 90
Serie A Soccer 47 5679 397
English Premier League (EPL) Soccer 39 3396 114

B. Performance on real data

We consider a variety of real datasets of timestamped in-
teractions, as described in Table II. These datasets come from
competitions in well-known sports such as soccer, basketball
and chess. They are both relevant and relatable sources of
information for our experiments.

In soccer, we consider the Italian Serie A and the English
Premier League (EPL). The Serie A data is from the period
1993–2016 and contains the results of thousands of games
between 47 teams. Similarly, the EPL contains results of thou-
sands of games between 39 teams in the period 2006–2018.
In contrast, the NBA dataset contains roughly three times
the number of EPL matches from 2010–2018 between 30
teams. All three datasets can be found on kaggle.com. Finally,
the chess dataset is obtained from matches on lichess.org. It
contains 298 matches from 2014–2017. In all cases, At

i j is the
number of times team i (or for chess, player i) beats j in a
given time-step t . The definition of a time-step varies from
sport to sport (see below).

As with synthetic data, we found that DSR outperforms
the other algorithms in terms of the most top performances
across our four different metrics (Table III). Elo and WHR
are the next best performers: Elo does slightly better in a few
cases on the accuracy or agony metric for NBA and chess,
and as in the synthetic data WHR does well for the σL metric,
the conditional log-likelihood of generating directed edges
(outcomes) given their existence.

Perhaps surprisingly, static SpringRank performs well on
both the Serie A and chess datasets, achieving the highest
accuracy on Serie A. For Serie A, this could, in part, be
explained by the fact that the dataset has a lower frequency
of matches compared to the NBA. In a soccer competition,
typically matches are played weekly, while in the NBA teams
play more frequently, two or three times per week. It could be
that a lower frequency implies fewer dependencies between
time-steps, thus making a dynamical model that implies a
dependence between time-steps less expressive. At the same
time, the regulations behind the European soccer leagues and
the NBA are quite different (with salary caps and college
drafts aiming at levelling the teams’ strength in the NBA).
This could imply a more constant ranking in soccer than in
the NBA, making a static model work well in practice. In fact,
in the last 20 years in Serie A only four teams won the title
and only six in the English Premier League, sometime with
long winning streaks for an individual team. On the contrary,
NBA championships are clearly more unpredictable, with ten
different winners in last twenty years, with a maximum of two
titles won consecutively by the same team.

For the chess dataset, each time-step represents a day of
matches, but match days are not necessarily consecutive. For
example, the first day of matches is 2014-03-04 and the sec-
ond is 2015-11-15. Again, this poses the problem of large gaps
in time which could lessen the connection between time-steps.

As such, in both the Serie A and chess datasets, it is
understandable that the static version of SpringRank would
perform fairly well as time-steps do not influence each other
as much as in, for example, the NBA dataset. This is further
supported by the closeness in results between the static ver-
sion of SpringRank and the dynamic models on the soccer
and chess datasets. In contrast, the gap of results from the
NBA dataset between the aforementioned static and dynamic
models is larger. We discuss the influence of time further in
Sec. IV C. (The Serie A and chess datasets might also be

TABLE III. Results obtained from real data. The green highlighted values are the top performances for the considered metric. Notably,
some of the values in the same row appear identical but only a single value is highlighted. The reason for this is that the highlighted value
is better by less than three decimal places. Table IX contains the standard error of the above values. σa and σL cannot be applied to the W-L
model hence there are no values for the metrics.

Dataset Metric Elo OFFDSR mwSR DSR SR TS WHR W-L

NBA Accuracy 0.650 0.642 0.637 0.649 0.607 0.645 0.648 0.565
Agony 2.981 3.050 3.084 2.987 3.568 3.006 2.997 4.071

σa 0.579 0.562 0.639 0.646 0.596 0.584 0.580 −
σL −1.426 −1.330 −1.266 −1.256 −1.324 −1.280 −1.255 −

Chess Accuracy 0.677 0.633 0.637 0.665 0.672 0.665 0.647 0.539
Agony 8.404 11.641 9.242 8.470 8.074 7.693 8.179 1.087

σa 0.615 0.580 0.626 0.651 0.581 0.628 0.626 −
σL −1.290 −1.341 −1.294 −1.333 −1.550 −1.255 −1.206 −

EPL Accuracy 0.678 0.681 0.669 0.675 0.679 0.672 0.673 0.609
Agony 3.239 4.144 4.141 3.147 3.401 3.797 3.825 5.438

σa 0.595 0.530 0.669 0.675 0.662 0.601 0.598 −
σL −1.285 −1.357 −1.208 −1.184 −1.206 −1.211 −1.199 −

Serie A Accuracy 0.655 0.652 0.630 0.653 0.663 0.655 0.653 0.564
Agony 4.296 5.800 6.278 4.041 4.241 5.669 5.653 8.101

σa 0.582 0.530 0.628 0.652 0.647 0.590 0.585 −
σL −1.363 −1.357 −1.287 −1.240 −1.269 −1.257 −1.237 −
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FIG. 3. Fold-by-fold evaluation on the NBA dataset. We compare the predictions of DSR to Elo, WHR and mwSR in relation to the
performance metrics σa, σL and accuracy. The black points above the diagonal represent folds where DSR outperformed its competitors;
yellow points indicate equal performance and red points represent DSR loses (where it was outperformed by competitors). Numbers inside the
legend are the number of trials that an algorithm outperforms the other in percentage.

suitable for the model described above where time intervals
between snapshots can vary; we leave this for future work.)

Overall, we observe a fairly broad distribution of values for
the various metrics over the cross-validation trials, as there are
matches that are more difficult to predict than others. Hence,
we take a closer look by analyzing a fold-by-fold performance
comparison, where we assess the number of test sets in which
one algorithm outperforms the others. We find that DSR per-
forms equal to or better than the other algorithms in most cases
on the NBA dataset, and in all cases when compared to Elo
and WHR in terms of σa (Fig. 3).

We observed qualitative differences of the inferred ranks
in Fig. 4 similar to those observed in Fig. 2 for synthetic data.
W-L infers ranks that change with a much higher frequency
than the others. While smoother, the ranks inferred by TS
show more frequent variations than DSR and Elo, which infer
similarly behaving ranks.

C. Relevance of time

As a final consideration, we turn to a fundamental ques-
tion: given a dataset of timestamped interactions, does their
chronological order matter? If the answer is positive, then we
should use a dynamical ranking algorithm to analyze the data.
If not, then a simpler static algorithm should be enough.

One way to assess whether a given dataset is better mod-
eled by a dynamical or static algorithm is by randomly
permuting the order of interactions—but not their outcomes—
and thus removing any relationship between ranks and time.
If an algorithm performs significantly better on the original
data than on the permuted data, then the order matters and
a dynamical model is justified. To be more precise, applying
random permutations to the data produces a distribution of
any test statistic, including any measure of the performance
of an algorithm that predicts which way a given interaction
will go (e.g., which of two players will win a chess match,
conditioned on the event that they play). If the performance
on the original data is far out in the tail of this distribution,
then we can reject the null hypothesis that the time-steps are
simply independent draws from a static model.

We run this permutation test first on synthetic data, con-
firming as expected that the dynamical model performs
significantly better on synthetic data generated with the time-
varying model introduced in Sec. III B, provided that the
hierarchy itself is sufficiently strong (Fig. 10). However, when
the hierarchy is weak (i.e., β is small), the ranks have little re-
lationship to the outcomes, and treating the ranks dynamically
is no longer justified by the permutation tests (Fig. 10).

For NBA data, permutation tests show that chronological
order matters, and that using a dynamical model significantly
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FIG. 4. Evolution over time of predicted ranks for the NBA dataset. We illustrate the predicted ranks of four models over time: TS, DSR,
W-L and Elo. We select a subset of 13 teams (as indicated in the legend) to highlight the behaviors of both top and bottom scoring teams.
Vertical colored bands break seasons into two periods.

improves prediction (Fig. 5). However, for the soccer and
chess datasets, we find mixed results depending on the test
statistic. For instance, the “agony” (a measure which penalizes
the model for interactions i → j if s j − si is large) suggests
that time-order is relevant, while the accuracy (the fraction
of interactions whose direction is correctly predicted) is less
sensitive to this information (Fig. 9, Table X). While the most
straightforward explanation is that NBA rankings are more
time-varying, while soccer and chess are less so, we also note
that there are many more games in a NBA season than in a
soccer season, since there are more teams and more frequent
games in the NBA, therefore allowing our simple permuta-
tion test to reject the null hypothesis more easily with more
available data to differentiate time-varying versus static ranks
(Table II).

V. CONCLUSION

Dynamical SpringRank is a principled extension of the
physics-inspired SpringRank model for dynamic hierarchal
structures, which lets us infer time-varying ranks from times-
tamped interactions. By coupling individuals’ previous and
current ranks, it exploits the chronological ordering of the
data to better predict the outcomes of future interactions. It
contains a parameter k that can be tuned or learned to control
the smoothness of the change in ranks, or equivalently the
weight given to past ranks.

We constructed two different formulations of Dynamic
SpringRank: an online and an offline one, which are given
just past ranks and the entire history, respectively. The online
version performed better and is less computationally expen-
sive. However, both models, similar to the static version, are

FIG. 5. Permutation test results on the NBA dataset: chronology matters. The histogram is generated by 1000 random permutations to the
NBA dataset, and measuring the performance of Dynamical SpringRank on these permuted datasets. The black and red dotted lines represent
the results of DSR and mwSR, respectively, on the original, chronologically ordered NBA dataset—the accuracy is much higher, and the agony
much lower, than the vast majority of permuted datasets. This convincingly rejects the null hypothesis that chronological order does not matter,
and justifies the use of a dynamical model. In each case the p-value is less than 0.001.
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scalable algorithms that require sparse linear algebra and pro-
vide a probabilistic generative model for creating dynamically
directed networks with tunable levels of hierarchy and spar-
sity.

We also illustrated that in dynamic settings where time in-
formation is important, Dynamical SpringRank is better than
its static counterpart. Its ability to predict future outcomes in
dynamical settings proved to be similar or better than other
state-of-the-art dynamical ranking algorithms for a variety of
metrics and datasets, both synthetic and real. An open-source
implementation of both offline and online versions of Dynam-
ical SpringRank is available at Ref. [30].

For future work, we defined more elaborate models where
the time intervals between interactions can vary, or where
a momentum term induces smoothness in the rate at which

ranks change over time. Another (perhaps challenging) direc-
tion is to couple the rank dynamics with the entities’ choices
to interact with each other. For instance, one can imagine a
model in which animals tend to challenge those immediately
above them in the dominance hierarchy, or where new arrivals
to a community test themselves against current members to
find their place, or even three-way interactions where an ani-
mal who attacks another is punished by a third [31]. Testing
these models would require rich data from biological and
social systems.
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APPENDIX A: FULL DERIVATION SELF-SPRING INTERACTION

Calculate the ith component of the gradient:
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which yields

[Dout,t + Din,t − (At + (At )†) + kI] st,∗ = [Dout,t − Din,t ]�0 + k0 st−1,

as reported in Eq. (5) for �0 = 1.

APPENDIX B: FULL DERIVATION OF SELF-SPRING INTERACTION OVER ALL TIME

Calculate the ith component of the gradient:
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which yields

[Dout,t + Din,t − (At + (At )†) + 2kI]st,∗ = [Dout,t − Din,t ]�0 + k0(st−1 + st+1),

as reported in Eq. (6) for �0 = 1.

APPENDIX C: DYNAMIC SPRING REST LENGTH

As an alternative to the time-dependency presented in the
main text (i.e., through self-springs), we also investigated the
introduction of a time-dependent rest length. In this case we
assume a dynamic rest length �t

i j for the interaction at time
t between i and j. To enforce a relationship between current
and past ranks, we assume �t

i j to be a function of the rank
difference st−1

i − st−1
j between i and j at time t − 1:

Ht
i j

(
st

i , st
j

) = 1
2

(
st

i − st
j − lt

i j

)2
,

where

lt
i j = st−1

i − st−1
j + �0. (C1)

The resultant Hamiltonian for the whole system is

Ht (st , st−1) =
∑
i, j

At
i jH

t
i j

(
st

i , st
j

)
.

As opposed to Eq. (4), here we do not have self-interactions.
Instead, past ranks appear directly inside the rest lengths. If
we define a new variable zt

i = st
i − st−1

i , then we obtain the
Hamiltonian

Ht (zt ) =
∑
i, j

At
i jH

t
i j

(
zt

i , zt
j

) =
∑
i, j

At
i j

2

(
zt

i − zt
j − �0

)2
,

which is the same Hamiltonian used in static SpringRank [1]
but as a function of the auxiliary variable zt . Thus, we know
that the ground state zt,∗ will be the solution of the linear
system:

[Dout + Din − (A + A†)]z∗
t = [Dout − Din]�01.

The idea is that once zt,∗ is obtained by solving this linear
system, one can extract the ranks as st

i = zt
i + st−1

i , where
st−1

i is known from the inference of the previous step. Notice
that in the extreme case of having only two individuals i, j,
initializing s0

i = s0
j = 0 and i as the constant winner (At

i j � 0
and At

ji = 0 ∀t), we would infer s1
i − s1

j = �0 at the first time-
step. Then iterating in time yields �t

i j = t�0. In words, for
situations where the hierarchy is strong and time is constant
(i.e., a stronger individual always defeats a weaker one at any
time-step), the rest length would grow linearly in time. As a
consequence, the distance between ranks grows further and
further, driving them apart. This is the case in sports, for in-
stance, where teams earn points for each win, distancing them
more and more from the losing teams. In other situations, we
might want instead a scenario where the difference between
ranks becomes a constant value �0 the more we collect con-
sistent observations in time, i.e., ∀t, st

i − st
j = �0. This can be

easily obtain by changing the model’s details, like setting a
different initial rest length and update in Eq. (C1).

APPENDIX D: PERFORMANCE EVALUATION

In this section, we discuss the various metrics used in more
detail. Accuracy is a coarse-grained measure to evaluate the
quality of predictions. It is the fraction of times an observed
directed edge points from the higher towards the lower ranked
node, i.e., the number of times that a stronger (according to
our ranking) individual beats a weaker one,

accuracy = 1

M

∑
i, j

Ai j 
(si − s j ),

where 
(x) = 1 if x > 0, 
(x) = 0.5 if x = 0 and 
(x) = 0
if x < 0; M = ∑

i, j Ai j .
If we call an upset an interaction where a lower ranked

individual beats someone stronger, then the accuracy is just
1 minus the fraction of upsets. Accuracy does not weigh
upsets differently. However, in certain situations making an
erroneous prediction involving individuals nearby in rank
might be less important than an error involving individuals
far in rank. In this case, it is useful to consider the agony
function [7]. It considers the difference in ordinal ranks as
penalties.1 Subsequently, an upset between two nodes close
in rank counts much less than an upset between two nodes far
rank, based on a parameter d:

agony = 1

M

∑
i, j

Ai j max(0, ri − r j )
d ,

where ri ∈ [0, .., n − 1] is the ordinal rank of node i (which
can naturally be extracted from the real-valued ranks si).
When d = 0 we recover the standard number of unweighted
upsets. We use d = 1 in our evaluation of models. The more
the rank is informative towards the predicted outcomes, the
lower the value of the agony and the less the hierarchy is
violated.

Accuracy and agony are metrics for ordinal rankings. For
real-valued models such as SpringRank, it is worth consid-
ering fine-grained metrics as well. We thus consider in our
experiments two other metrics that take into account an esti-
mate of Pi j—the probability that i beats j.

First, σa is the average probability assigned to the correct
direction of an edge:

σa = 1 − 1

2M

∑
i j

|Ai j − Ai jPi j |,

where Ai j = Ai j + Aji is the number of interactions between i
and j.

1We use positional ranks instead of the real-valued ranks to avoid
scale problems comparing different algorithms.
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Second, σL is the conditional log-likelihood of generating
the directed edges given their existence:

σL = log P(A|Ā)

=
∑

i j

(
Ai j + Aji

Ai j

)
+ log[Pi j (β )Ai j (1 − Pi j (β ))Aji ].

Notice that we explicitly highlight the dependence of Pi j

on the (inverse) temperature parameter β which control the
level of hierarchy in the predictions. For β → ∞ the network
is fully hierarchical which means that an edge between i and
j, with si > s j , points from i → j with Pi j = 1. In contrast,
when β = 0, the predicted outcomes are completely random
with Pi j = Pji = 0.5.

In general, maximizing σa and σL requires two distinct
values for β that we will denote as β̂a and β̂L. Intuitively,
the reason is that a single severe mistake where Ai j = 1 but
Pi j ≈ 0 reduces the likelihood by a large amount, while only
reducing the accuracy by one edge. As a result, predictions
using β̂a produce fewer incorrectly oriented edges and achieve
a higher σa on the test set. However, predictions using β̂L will
produce fewer dramatically incorrect predictions where Pi j is
very low, and thus achieve higher σL on the test set [1]. In
other words, a prediction model that maximizes σL tends to
be more cautious in assigning high probabilities of success,
even in very unbalanced matches, to avoid potential impact-
ful mistakes. In contrast, a model optimizing σa can be less
conservative, ignoring isolated (even dramatic) mistakes and
favoring a good frequency of predictions as close as possible
to the real probability.

APPENDIX E: DESCRIPTION OF ALGORITHMS
USED FOR COMPARISON

1. Elo rating system [21]

This method assumes an hidden score Ri for each node i.
The expected score Si j of a game between players i and j is a
function of the score difference Ri − Rj as

Si j (Ri, Rj ) = 1

1 + 10−(Ri−Rj )/400
. (E1)

The actual score Ai j of the game is 1 if player i wins, 1/2
if the game is a draw, and 0 if player i loses. After observing
the outcome of the match, the score of i is updated according
to the following rule:

Rnew
i = Ri + K (Ai j − Si j ), (E2)

where K is an attenuation factor that determines the weight
that should be given to a player’s performance relative to
their previous rating. We used grid-search to determine K .
The above formula has a natural interpretation. The term
Ai j − Si j represents a discrepancy between what was expected
and what was observed. If this term is positive, then the player
achieved a result better than what predicted by the rating at the
previous time step. Hence, the player’s rating is increased to
reflect the possible improvement in strength. Similarly, if the
term Ai j − Si j is negative, then the player performed worse
than expected. Hence, this player’s rating decreases by the
discrepancy magnified by the value K .

2. WHR system [28]

This algorithm is based on the dynamic Bradley-Terry
model [32]. The Bradley-Terry model for paired comparisons

TABLE IV. Standard error of results from synthetic data with varying noise levels, represent by β.

β Metric Elo OFFDSR mwSR DSR SR TS W-L WHR

Accuracy 0.0073 0.0065 0.0067 0.0070 0.0064 0.0068 0.0068 0.0077
Agony 0.0286 0.0269 0.0278 0.0267 0.0331 0.0265 0.0325 0.0284

0.1
σa 0.0028 0.0031 0.0044 0.0039 0.0032 0.0029 − 0.0028
σL 0.0107 0.0008 0.0055 0.0044 0.0019 0.0077 − 0.0066

Accuracy 0.0056 0.0054 0.0057 0.0056 0.0042 0.0051 0.0074 0.0054
Agony 0.0197 0.0196 0.0202 0.0203 0.0168 0.0190 0.0314 0.0185

0.5
σa 0.0027 0.0030 0.0051 0.0048 0.0031 0.0029 − 0.0029
σL 0.0215 0.0035 0.0127 0.0114 0.0061 0.0121 − 0.0110

Accuracy 0.0056 0.0053 0.0048 0.0050 0.0073 0.0047 0.0060 0.0044
Agony 0.0164 0.0156 0.0152 0.0161 0.0297 0.0141 0.0218 0.0142

0.1
σa 0.0035 0.0037 0.0044 0.0047 0.0059 0.0030 − 0.0029
σL 0.0318 0.0079 0.0153 0.0159 0.0254 0.0151 − 0.0135

Accuracy 0.0049 0.0050 0.0050 0.0048 0.0052 0.0049 0.0062 0.0046
Agony 0.0126 0.0132 0.0124 0.0131 0.0210 0.0129 0.0243 0.0118

0.5
σa 0.0035 0.0040 0.0046 0.0043 0.0047 0.0037 − 0.0034
σL 0.0346 0.0080 0.0203 0.0232 0.0263 0.0187 − 0.0148

Accuracy 0.0038 0.0042 0.0036 0.0040 0.0053 0.0047 0.0056 0.0046
Agony 0.0092 0.0095 0.0080 0.0082 0.0206 0.0094 0.0183 0.0089

2.0
σa 0.0032 0.0034 0.0035 0.0038 0.0051 0.0034 − 0.0031
σL 0.0301 0.0073 0.0152 0.0144 0.0302 0.0163 − 0.0147
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TABLE V. Results obtained from synthetic data with varying density levels, represented by c. Each value is the mean of 4 independent
realizations of the model. The green highlighted values are the top performances for the considered metric. Notably, some of the values in
the same row appear identical but only a single value is highlighted. This is because the highlighted value is better by less than three decimal
places. Table VI contains the standard error for the above values. σa and σL cannot be applied to the W-L model hence there are no values for
the metrics.

c Metric Elo OFFDSR mwSR DSR SR TS W-L WHR

1.0 Accuracy 0.905 0.901 0.903 0.904 0.774 0.905 0.845 0.903
Agony 0.161 0.167 0.163 0.165 0.562 0.159 0.299 0.162

σa 0.895 0.892 0.909 0.910 0.778 0.889 − 0.884
σL −0.574 −0.705 −0.459 −0.459 −1.054 −0.451 − −0.450

1.5 Accuracy 0.900 0.897 0.902 0.903 0.770 0.902 0.852 0.903
Agony 0.161 0.171 0.159 0.157 0.608 0.162 0.280 0.157

σa 0.899 0.902 0.908 0.909 0.771 0.894 − 0.895
σL −0.581 −0.617 −0.462 −0.459 −1.155 −0.460 − −0.452

2.0 Accuracy 0.909 0.905 0.904 0.907 0.768 0.904 0.874 0.904
Agony 0.147 0.156 0.154 0.148 0.601 0.154 0.217 0.153

σa 0.911 0.910 0.915 0.916 0.772 0.907 − 0.902
σL −0.579 −0.575 −0.464 −0.453 −1.152 −0.452 − −0.453

2.5 Accuracy 0.904 0.904 0.905 0.906 0.763 0.905 0.877 0.905
Agony 0.159 0.160 0.159 0.155 0.601 0.160 0.216 0.160

σa 0.912 0.913 0.916 0.918 0.773 0.909 − 0.907
σL −0.601 −0.650 −0.470 −0.463 −1.172 −0.459 − −0.458

3.0 Accuracy 0.910 0.908 0.908 0.909 0.768 0.909 0.886 0.909
Agony 0.147 0.150 0.152 0.149 0.605 0.152 0.198 0.151

σa 0.921 0.921 0.920 0.921 0.776 0.917 − 0.915
σL −0.549 −0.559 −0.455 −0.447 −1.158 −0.438 − −0.438

TABLE VI. Standard error of results from synthetic data with varying density, represented by c.

c Metric Elo OFFDSR mwSR DSR SR TS W-L WHR

Accuracy 0.0021 0.0025 0.0023 0.0024 0.0040 0.0024 0.0040 0.0022
Agony 0.0044 0.0055 0.0048 0.0050 0.0138 0.0052 0.0093 0.0051

1.0
σa 0.0017 0.0023 0.0020 0.0020 0.0031 0.0021 − 0.0021
σL 0.0171 0.0087 0.0099 0.0099 0.0200 0.0106 − 0.0095

Accuracy 0.0026 0.0027 0.0025 0.0023 0.0039 0.0026 0.0034 0.0026
Agony 0.0051 0.0056 0.0053 0.0050 0.0180 0.0057 0.0086 0.0056

1.5
σa 0.0016 0.0019 0.0021 0.0020 0.0034 0.0016 − 0.0017
σL 0.0151 0.0053 0.0084 0.0085 0.0296 0.0086 − 0.0085

Accuracy 0.0019 0.0021 0.0020 0.0019 0.0032 0.0022 0.0025 0.0023
Agony 0.0047 0.0044 0.0049 0.0046 0.0130 0.0050 0.0052 0.0052

2.0
σa 0.0015 0.0018 0.0019 0.0018 0.0026 0.0016 − 0.0016
σL 0.0176 0.0079 0.0095 0.0087 0.0273 0.0095 − 0.0089

Accuracy 0.0017 0.0016 0.0016 0.0017 0.0036 0.0017 0.0021 0.0018
Agony 0.0042 0.0040 0.0040 0.0039 0.0140 0.0045 0.0044 0.0046

2.5
σa 0.0014 0.0013 0.0015 0.0014 0.0030 0.0014 − 0.0014
σL 0.0143 0.0065 0.0076 0.0073 0.0285 0.0076 − 0.0072

Accuracy 0.0015 0.0018 0.0016 0.0017 0.0027 0.0017 0.0022 0.0016
Agony 0.0031 0.0037 0.0036 0.0035 0.0146 0.0035 0.0051 0.0037

3.0
σa 0.0010 0.0013 0.0014 0.0013 0.0025 0.0010 − 0.0010
σL 0.0102 0.0046 0.0061 0.0059 0.0278 0.0055 − 0.0054

034310-13



ANDREA DELLA VECCHIA et al. PHYSICAL REVIEW E 110, 034310 (2024)

TABLE VII. Results obtained from synthetic data in a static framework. Performance comparison of the various models on a synthetic
dataset where the ranks are fixed along time (static framework). The green highlighted values are the top performances for the considered
metric. Table VIII contains the standard error of the above values. σa and σL cannot be applied to the W-L model, so there are no values for the
metrics.

Metric Elo OFFDSR mwSR DSR SR TS W-L WHR

Accuracy 0.715 0.716 0.696 0.720 0.722 0.724 0.552 0.723
Agony 0.528 0.518 0.565 0.523 0.498 0.517 1.099 0.515
σa 0.666 0.618 0.704 0.733 0.669 0.687 − 0.679
σL −1.211 −1.324 −1.231 −1.172 −1.148 −1.109 − −1.111

assumes that each node i has a rating γi(t ) = 10Ri (t )/400, where
Ri(t ) is the Elo rating of player i at time t . Based on this, the
probability of i winning a game against j at time t is

P
(
At

i j > 0|γi, γ j
) = γi(t )

γi(t ) + γ j (t )
. (E3)

The WHR algorithm consists in estimating the values of γ (t )
using posterior inference of p(γ |A) via Bayes’ rule using the
following expression:

p(γ |A) = P(A|γ ) p(γ )

P(A)
, (E4)

where p(γ ) is a prior distribution on γ , P(A) is a normalizing
constant and P(A|γ ) is the Bradley-Terry model described in
Eq. (E3).

3. Dynamic win-lose score [25]

This method assumes two scores for each node i at any
given time step tn, a win score wtn,i and a loss score �tn,i. Let
At be the win-loss matrix for the game that occurs at time
tn (1 � n � nmax). If player j wins against player i at time
tn, then the (i, j) element of the matrix Atn is set to 1. All
the other elements of Atn are set to 0. The method accounts
for the effect of wins or losses by using a discounted past
history and indirect results, i.e., results involving players that
compete against a common opponent. Formally, it defines a

“win” matrix Wtn as follows:

Wtn = Atn + e−β(tn−tn−1 )
∑

mn∈{0,1}
αmn Atn−1 Amn

tn

+ e−β(tn−tn−2 )
∑

mn−1,mn∈{0,1}
αmn−1+mn Atn−2 Amn−1

tn−1
Amn

tn

+ · · · + e−β(tn−t1 )
∑

m2,...,mn∈{0,1}
α

∑n
i=2 mi At1 Am2

t2 · · · Amn
tn ,

where α is the weight of an indirect win and β � 0 repre-
sents the decay rate of the score in time. These are the two
main hyperparameters of this model, we fix them using cross-
validation. The first term Atn on the right-hand side represents
the effect of the direct win at time tn. The second term consists
of two contributions. For mn = 0, the quantity inside the sum
represents the direct win at time tn−1, which results in weight
e−β(tn−tn−1 ), discounted depending on β and the time passed
between two time steps. For mn = 1, the quantity represents
the indirect win. The (i, j) element of Atn−1 Atn is positive if
and only if player j wins against a player k at time tn and k
wins against i at time tn−1. Player i gains score e−β(tn−tn−1 ) α

out of this situation. For both cases mn = 0 and mn = 1,the
jth column of the second term accounts for the effect of the
j’s win at time tn−1. The other terms behave analogously
considering also third order indirect interactions and so on.
A similar matrix is defined to account for losses. Then, the
win score wtn,i of a player i is computed as the ith entry of the
vector wtn = W T

tn 1, where 1 is the all-one vector. Similarly,
one can get the loss score �tn,i by considering the loss matrix.

FIG. 6. Illustration of the cross-validation used in experiments. The blue bar represents the training set, the red bar is the test and the gray
is the total dataset. N is the total number of folds.
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FIG. 7. OFFDSR with boundary conditions set to zero. A toy example was used to generate the plot where two nodes interact with a single
directed edge pointing in the same direction for every timestep. The parameter k of OFFDSR is varied as well as the number of timesteps to
further illustrate the effect of the boundary conditions on the ranks.

The final score for a player i at time tn is the difference
stn,i = wtn,i − �tn,i.

4. TrueSkill rating system [27]

TrueSkill’s current belief about a player’s skill si,t at
time t is represented by a Gaussian distribution with mean
μi and variance σ 2

i . This is inferred using Bayesian infer-
ence, where the goal is to estimate the posterior distribution
P(si,t |r), where r is a vector containing the rank of the

nodes as determined by the outcomes, i.e., is a quantity
determined by input data. The influence of the skill at
the previous time step enters as a Gaussian prior centered
at the value of the skill at the previous time step, i.e.,
P(si,t |si,t−1, γ

2) = N (si,t ; si,t−1, γ
2), where γ is an hyper-

parameter. This method estimates the posterior distributions
P(si,t |r) with a Bayesian inference procedure that performs
a Gaussian filtering that repeatedly smoothes the scores for-
ward and backward in time, using approximate message-
passing.
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FIG. 8. OFFDSR with alternative boundary conditions. The first boundary condition is st−1 = st where t = 0 and the second boundary
condition is st = st+1where t = T . A toy example was used to generate the plot where two nodes interact with a single directed edge pointing
in the same direction for every timestep. This is the same as in Fig. 7. The parameter k of OFFDSR is varied as well as the number of timesteps
to further illustrate the effect of the boundary conditions on the ranks.

APPENDIX F: CROSS-VALIDATION AND
HYPERPARAMETER TUNING

We provide more technical details about the hyperparam-
eter tuning used in the various algorithms and experiments.
In all cases, we assume training and test sets have a chrono-
logical order, i.e., all matches in the train set happen earlier
than those in the test set. Regardless of hyperparameters, all
cross-validation folds provide the same exact train/test set to

each algorithm for a fair comparison. Importantly, test sets are
only used for evaluation.

All results displayed were computed with cross-validation
which entailed using 50% of the total data as a train set and
four time-steps as a test set. This interval was shifted by 1
time-step each fold. Figure 6 demonstrates this process. As
a result of cross-validation, there are at most four different
values for the same time-step. The reported results are an
average of these values.
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FIG. 9. Null model results on the chess, EPL and Serie A datasets. It is used to determine whether chronology is important. Each entry of
the histogram is a different result of DSR on the aforementioned datasets, where time-steps have been randomly permutated; 1000 permutations
were considered. The black and red dotted lines represent the results of DSR and mwSR, respectively, on the regular, chronologically ordered
datasets.

As previously mentioned, we used grid-search to perform
hyperparameter tuning. For Dynamical SpringRank, grid-
search is divided into two steps: first, finding the order of
magnitude of k and then progressively finding a more precise
value. Refer to Algorithm 1 for the pseudocode of the proce-
dure followed.

ALGORITHM I. Grid-Search.

1: K ={0.001, 0.01, 0.1, 1, 10, 100, 1000}
2: for i ← −1, −2, −3 do
2: for k in K do
4: Find k∗, the optimal k that produces best result
5: end for
6: Update interval K = [k∗ − 10i, k∗ + 10i]
7: end for

Three algorithms (mwSR, TS, and WHR) require an op-
timal window size, τopt, for storing data in the training set.
We chose this by varying the window size, calculating the
average value for each performance metric inside the train-
ing set and then choosing the window size corresponding to
the best of each of these values. Since the reported results
are due to cross-validation, on average the window size of
mwSR, TS, and WHR on the NBA dataset is τopt = 13, 23, 31,
respectively.

Next, Elo requires a scaling factor k which was determined
through a grid-search in the interval [0.01,1). WL requires
a decaying factor β = 3 and a weighting for indirect wins
α = 0.005, both of which were fixed with cross-validation.
Finally, there are different versions of static SpringRank
and we considered the standard version with regularization
α = 0.
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FIG. 10. Null model results on the synthetic dataset with varying levels of noise. It is used to determine whether chronology is important.
Each entry of the histogram is a different result of DSR on the synthetic dataset where time-steps have been randomly permutated;
1000 permutations were considered. The black and red dotted lines represent the results of DSR and mwSR, respectively, on the regular,
chronologically ordered dataset.
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FIG. 11. Null model results on the synthetic dataset with static ranks. It is used to determine whether chronology is important. Each entry
of the histogram is a different result of DSR on the synthetic dataset where time-steps have been randomly permutated; 1000 permutations
were considered. The black and red dotted lines represent the results of DSR and mwSR, respectively, on the regular, chronologically ordered
dataset.

APPENDIX G: IMPLEMENTATION OF OFFDSR AND ITS
BOUNDARY CONDITIONS

In our experiments we created a realistic scenario in which
each algorithm had to predict the future ranks of a node
given its past interactions, as if the predictions were taking
place in “real-time.” Thus, only past information was given
to each model. Offline Dynamical SpringRank depends on
both past and future ranks [see Eq. (6)]. As a consequence of
our experimental choice, the information it was given during
the experiments was restricted to only the past. However, the
description of OFFDSR in Sec. III relates more to a scenario
where all information is available and ranks are inferred in
hindsight.

Next, here we further discuss the boundary conditions
of OFFDSR. Our choice for the boundary conditions on the
ranks is implemented by removing the following terms from
Eq. (6): st−1 and st+1for t = 0 and t = T , respectively. This
is equivalent to s−1 = 0 = sT +1. The effect of this boundary
condition is that ranks close to the boundary conditions are
slightly pulled towards zero. This has a greater influence on
datasets with a small number of timesteps. However, the effect
lessens with more timesteps. Alternate boundary conditions
may be chosen, such as s−1 = s0 and sT = sT +1. The effect of
the two aforementioned boundary conditions on a toy example
with only two nodes and one directed edge between them is
illustrated in Figs. 7 and 8, respectively. We do not explore
the effects of different boundary conditions in our experiments
and leave it for future work.

APPENDIX H: SYNTHETIC EXPERIMENTS

1. Periodic evolution of synthetic ranks

We consider a periodic evolution of the ranks generated for
synthetic experiments, expressed as Eq. (8). To add detail to
the extraction process of the parameters, they were selected
from a continuous uniform distribution. The interval of the
distribution for parameters was as follows: bi, ci ∈ [−1, 1), as
it is the standard range for a cosine function; ωi, υi ∈ [−1, 2)
to vary the frequency with which scores change, with larger
increases reflected in values between 1 and 2 being less likely
than values between −1 and 1; finally, φi ∈ [0, 1) to ensure
that scores do not have the same rate of change at the begin-
ning of the time interval.

2. Standard errors

We report standard errors on synthetic experiments where
we vary the noise level represented by the parameter β in
Table IV. These complement Table I in the main manuscript.

3. Results for varying network density

In Tables V and VI, we show results on synthetic data
where we vary the network density represented by the param-
eter c.

4. Synthetic ranks in static scenarios

We consider static ranks st
i = si generated synthetically

using Eq. (8) as a sanity check of our permutation test for

TABLE VIII. Standard error of results from the synthetic data in a static framework.

Metric Elo OFFDSR mwSR DSR SR TS W-L WHR

Accuracy 0.0107 0.0109 0.0109 0.0109 0.0111 0.0101 0.0192 0.0099
Agony 0.0243 0.0247 0.0250 0.0261 0.0259 0.0242 0.0552 0.0242
σa 0.0059 0.0052 0.0099 0.0095 0.0085 0.0058 − 0.0056
σL 0.0423 0.0049 0.0380 0.0399 0.0223 0.0277 − 0.0251
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TABLE IX. Standard error of results from real data

Dataset Metric Elo OFFDSR mwSR DSR SR TS WHR W-L

Accuracy 0.0048 0.0049 0.0046 0.0048 0.0047 0.0050 0.0047 0.0049
Agony 0.0587 0.0588 0.0621 0.0577 0.0529 0.0576 0.0553 0.0665

NBA
σa 0.0021 0.0026 0.0045 0.0045 0.0040 0.0024 0.0022 −
σL 0.0154 0.0029 0.0075 0.0063 0.0041 0.0097 0.0082 −

Accuracy 0.0213 0.0242 0.0246 0.0213 0.0214 0.0235 0.0226 0.0119
Agony 1.2323 1.8357 1.6712 1.2301 1.2292 1.3637 1.3848 0.3262

Chess
σa 0.0137 0.0134 0.0183 0.0179 0.0123 0.0144 0.0132 −
σL 0.0773 0.0356 0.0672 0.0753 0.1090 0.0733 0.0526 −

Accuracy 0.0061 0.0067 0.0073 0.0058 0.0063 0.0064 0.0062 0.0079
Agony 0.0920 0.1292 0.1429 0.0906 0.0935 0.1172 0.1082 0.1424

EPL
σa 0.0026 0.0035 0.0068 0.0059 0.0060 0.0030 0.0032 −
σL 0.0249 0.0038 0.0139 0.0145 0.0112 0.0154 0.0141 −
Accuracy 0.0048 0.0051 0.0051 0.0049 0.0050 0.0050 0.0047 0.0059
Agony 0.0881 0.1227 0.1282 0.0856 0.0930 0.1252 0.1174 0.1617

Serie A
σa 0.0020 0.0013 0.0047 0.0044 0.0045 0.0024 0.0022 −
σL 0.0176 0.0013 0.0102 0.0104 0.0060 0.0107 0.0093 −

model selection between static and dynamic models. Results
are shown in Tables VII and VIII.

APPENDIX I: REAL DATA EXPERIMENTS

1. Standard errors

We report the standard errors of the experiments on the real
datasets in Table IX. These complement Table III in the main
manuscript.

APPENDIX J: NULL MODEL EXPERIMENTS

1. Synthetic data

We report results of the null model experiments where we
permute the chronological order of synthetic dynamic data in
Fig. 10 and of synthetic static data in Fig. 11.

2. Real data

We report p values on the null model experiments on real
data in Table X.

TABLE X. Null model p-value results on real data. Illustrated
are the number of times (as a percentage) that the metric value on
the randomized dataset is better than on the chronologically ordered
dataset. Results are calculated over 1000 permutations.

Model Metric NBA Chess EPL Serie A

Accuracy 0.0 0.594 0.183 0.359
Agony 0.0 0.006 0.0 0.0

DSR
σa 0.0 0.139 0.155 0.282
σL 0.0 0.711 0.578 0.644
Accuracy 0.0 1.0 0.411 0.999
Agony 0.0 0.001 0.959 1.0

mwSR
σa 0.0 0.832 0.340 0.999
σL 0.0 0.797 0.911 1.0

[1] C. De Bacco, D. B. Larremore, and C. Moore, Sci. Adv. 4,
eaar8260 (2018).

[2] P. Bonacich, Amer. J. Sociol. 92, 1170 (1987).
[3] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageR-

ank citation ranking: Bringing order to the web, Tech. Rep.
(Stanford InfoLab, Stanford, CA, 1999).

[4] S. Negahban, S. Oh, and D. Shah, Oper. Res. 65, 266 (2017).
[5] I. Ali, W. D. Cook, and M. Kress, Manag. Sci. 32, 660

(1986).
[6] P. Slater, Biometrika 48, 303 (1961).
[7] M. Gupte, P. Shankar, J. Li, S. Muthukrishnan, and L. Iftode, in

Proceedings of the 20th International Conference on the World
Wide Web (ACM, New York, NY, 2011), pp. 557–566.

[8] E. Letizia, P. Barucca, and F. Lillo, PLoS One 13, e0191604
(2018).

[9] F. Fogel, A. d’Aspremont, and M. Vojnovic, in Advances
in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 2014), pp. 900–908.

[10] M. Cucuringu, IEEE Trans. Netw. Sci. Eng. 3, 58 (2016).
[11] K. E. Train, Discrete Choice Methods with Simulation

(Cambridge University Press, Cambridge, UK, 2009).
[12] R. A. Bradley and M. E. Terry, Biometrika 39, 324 (1952).
[13] R. D. Luce, Psychological Review 66, 81 (1959).
[14] R. J. Williams, A. Anandanadesan, and D. Purves, PLoS One 5,

e12092 (2010).
[15] R. J. Williams and D. W. Purves, Ecology 92, 1849 (2011).
[16] A. Z. Jacobs, J. A. Dunne, C. Moore, and A. Clauset,

arXiv:1505.04741.
[17] B. Ball and M. E. Newman, Netw. Sci. 1, 16 (2013).
[18] L. Iacovissi and C. De Bacco, Sci. Rep. 12, 8992 (2022).

034310-20

https://doi.org/10.1126/sciadv.aar8260
https://doi.org/10.1086/228631
https://doi.org/10.1287/opre.2016.1534
https://doi.org/10.1287/mnsc.32.6.660
https://doi.org/10.1093/biomet/48.3-4.303
https://doi.org/10.1371/journal.pone.0191604
https://doi.org/10.1109/TNSE.2016.2523761
https://doi.org/10.2307/2334029
https://doi.org/10.1037/h0043178
https://doi.org/10.1371/journal.pone.0012092
https://doi.org/10.1890/11-0200.1
https://arxiv.org/abs/1505.04741
https://doi.org/10.1017/nws.2012.4
https://doi.org/10.1038/s41598-022-12730-3


MODEL FOR EFFICIENT DYNAMICAL RANKING … PHYSICAL REVIEW E 110, 034310 (2024)

[19] P. D. Hoff, A. E. Raftery, and M. S. Handcock, J. Am. Stat.
Assoc. 97, 1090 (2002).

[20] G. T. Cantwell and C. Moore, Phys. Rev. E 105, L052303
(2022).

[21] A. E. Elo, The Rating of Chessplayers, Past and Present (Arco
Publishing, New York, NY, 1978).

[22] M. E. Glickman, Boston University 16, 9 (1995).
[23] E. Araya, E. Karlé, and H. Tyagi, Information and Inference A

Journal of the IMA 12, 2224 (2023).
[24] J. Park and M. E. Newman, J. Stat. Mech.: Theory Exp. (2005)

P10014.
[25] S. Motegi and N. Masuda, Sci. Rep. 2, 904 (2012).
[26] R. Herbrich, T. Minka, and T. Graepel, in Advances in Neural

Information Processing Systems (MIT Press, Cambridge, MA,
2007), pp. 569–576.

[27] P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel, in Ad-
vances in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 2008), pp. 337–344.

[28] R. Coulom, in Proceedings of the International Conference
on Computers and Games (Springer, Berlin, 2008), pp. 113–
124.

[29] R. Peng and S. Vempala, in Proceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms (SODA) (SIAM, Philadelphia,
PA, 2021), pp. 504–521.

[30] https://github.com/cdebacco/DynSpringRank.
[31] J. C. Flack, M. Girvan, F. de Waal, and D. C. Krakauer, Nature

(London) 439, 426 (2006).
[32] M. E. Glickman, Paired Comparison Models with Time-

varying Parameters (Harvard University, Cambridge, MA,
1993).

034310-21

https://doi.org/10.1198/016214502388618906
https://doi.org/10.1103/PhysRevE.105.L052303
https://doi.org/10.1093/imaiai/iaad029
https://doi.org/10.1088/1742-5468/2005/10/P10014
https://doi.org/10.1038/srep00904
https://github.com/cdebacco/DynSpringRank
https://doi.org/10.1038/nature04326

