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Cells sense environmental signals and transmit information intracellularly through changes in the abundance
of molecular components. Such molecular abundances can be measured in single cells and exhibit significant
heterogeneity in clonal populations even in identical environments. Experimentally observed joint probability
distributions can then be used to quantify the covariability and mutual information between molecular abun-
dances along signaling cascades. However, because stationary state abundances along stochastic biochemical
reaction cascades are not conditionally independent, their mutual information is not constrained by the data-
processing inequality. Here, we report the conditions under which the mutual information between stationary
state abundances increases along a cascade of biochemical reactions. This nonmonotonic behavior can be intu-
itively understood in terms of noise propagation and time-averaging stochastic fluctuations that are short-lived
compared to an extrinsic signal. Our results reemphasize that mutual information measurements of stationary
state distributions of cellular components may be of limited utility for characterizing cellular signaling processes
because they do not measure information transfer.
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I. INTRODUCTION

Cells respond and adapt to changing environments by
transmitting information through biochemical reaction net-
works. A quantitative framework for analyzing this process
is information theory, which was originally developed in
the context of telecommunications [1] but has recently been
applied to various biological problems such as determining
the amount of information encoded in genes during fruit fly
development [2] and deriving fundamental limits on the sup-
pression of molecular fluctuations [3].

In biochemical reaction networks, information is trans-
mitted through the time-varying concentrations of molecules
[4–8]. Mutual information between temporal trajectories
obeys the data-processing inequality which establishes how
information can only be lost but never recovered along com-
munication channels [9]. This key theorem has been applied
to derive constraints on noise suppression in cells [3] and a
theoretical analysis of intracellular trajectories has character-
ized the information transfer through biochemical network
motifs [6]. However, for cellular pathways it is practically
impossible to directly estimate mutual information between
trajectories from experimental data [10]. Recent work has
thus focused on estimating the mutual information between
trajectories indirectly through model simulations [4,11,12].

In contrast, the probability distributions of molecular abun-
dances across a population of cells are directly experimentally
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accessible and are commonly reported to summarize the non-
genetic variability of molecular abundances [13–15]. While
such distributions are a powerful tool to analyze and describe
stochastic fluctuations in cells [16], the mutual information
between variables in such distributions does not measure
information transfer and is not constrained by the data-
processing inequality. The premise of the data-processing
inequality requires that a component becomes independent
of an upstream signal when conditioned on an intermediate
which is not the case for stationary state molecular levels
in biochemical reaction cascades. Components in reaction
cascades only become independent when conditioned on the
entire histories of the intermediates [17–19].

Although the premise of the theorem is not satisfied, the
data-processing inequality has been incorrectly stated or im-
plied when discussing stationary state distributions [20–23].
To counter these claims, recent work has reported that the
mutual information between a signal and downstream compo-
nents increases in the special case of a biochemical cascade
with components of equal lifetimes and increasing average
abundances [24,25].

Here, we establish general conditions under which the
mutual information between stationary distributions of com-
ponents increases along simple biochemical cascades. Com-
bining exact numerical simulations over a wide range of
parameters with analytical approximations, we show that in
a three variable linear cascade both inequalities implied by
the data-processing inequality will be violated when a slow
readout component averages out fast fluctuations of a noisy
intermediate that responds to a slow extrinsic signal. This
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FIG. 1. The stationary state distributions of molecular abundances in biochemical cascades are not constrained by Eq. (2). (a) Example
time trace of the linear cascade defined in Eq. (1) in which a signal X affects the production of Y , which in turn affects the production of
Z . (b) Corresponding stationary state distribution of molecular abundances. (c) Exact numerical simulation results for the mutual information
between pairs of variables in the stationary state distribution of the cascade defined by Eq. (1). The blue region (lower right) indicates the
regime in which the stationary state abundance of the final readout component exhibits a lower mutual information with the intermediate of
the cascade than with the further removed upstream signal. The solid black line indicates the analytical condition of Eq. (4) that approximately
determines the boundary at which I (X ; Z ) = I (Y ; Z ). Dashed gray lines indicate the approximate necessary (but not sufficient) conditions of
Eqs. (6) and (7). The depicted results correspond to systems with average abundances 〈x〉 = 〈z〉 = 20 and 〈y〉 = 2, representing a process with
a noisy intermediate. Numerical simulations for other noise regimes show similar behavior; see Supplemental Material [31].

result contradicts the naive expectation that as long as the
timescale of a signal is much slower than the timescales of the
reaction network the mutual information between stationary
state abundances decrease along biochemical cascades. We
further show that this nonmonotonic behavior is not special
to linear cascades but also occurs in more complex reaction
systems such as kinetic proofreading.

II. RESULTS

A. Mutual information is nonmonotonic
along biochemical cascades

To analyze mutual information in biochemical signaling
we consider the following stochastic process in which three
components X,Y, Z form a linear cascade

x
λ−→ x + 1,

x
x/τx−−→ x − 1,

y
α x−→ y + 1,

y
y/τy−−→ y − 1,

z
βy−→ z + 1,

z
z/τz−−→ z − 1.

(1)

Here, variables linearly affect the production of the next
downstream and each component undergoes first-order degra-
dation with respective average lifetimes τx, τy, τz.

The covariances between components of this generic regu-
latory cascade have been previously reported [26]. Here, we
consider the joint stationary state distribution of molecular
abundances Pss(x, y, z) and determine the mutual information
[1] between pairs of abundances,

I (X ;Y ) :=
∑
x,y

Pss(x, y) log2

(
Pss(x, y)

Pss(x)Pss(y)

)
,

and analogously for any other pair.

The mutual information between pairs of components that
form a Markov chain X → Y → Z is constrained by the data-
processing inequality [9] which implies that

I (X ; Z ) � I (Y ; Z ), (2)

I (X ; Z ) � I (X ;Y ). (3)

This pair of inequalities establishes that information can only
be lost along Markov chains and once information is lost it
cannot be recovered through processing. However, while the
biochemical cascade defined in Eq. (1) is Markovian in time,
i.e., its future evolution depends only on the current state but
not its history, the stationary state probability distributions of
the process do not satisfy P(X,Y, Z ) = P(X )P(Y |X )P(Z|Y )
[17–19] and are thus not constrained by the data-processing
inequality.

While this lack of conditional independence might look
surprising, and has in fact been mistakenly assumed in re-
lated processes [20–23], it intuitively follows because Eq. (1)
defines is a dynamically varying stochastic process rather
than a cascade of static random variables. In other words,
the conditional probability distribution P(Z|Y ) is not entirely
determined by how the dynamics of Z depends on Y but, e.g.,
depends on how long the system spends in each Y -abundance
state which in turn depends on the abundance of X . The trajec-
tories of abundances thus become conditionally independent
only when conditioned on the temporal history of upstream
variables [6,27–29].

We first analyze under which conditions the mutual in-
formation of the stationary state distribution of molecular
abundances along the above biochemical cascade does not
obey Eq. (2). Of course a proven theorem cannot be violated,
but since the premise of the data-processing inequality is not
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satisfied by the quantities under consideration they do not
need to satisfy the theorem’s conclusion. Using exact numer-
ical simulations of the system defined by Eq. (1) using the
Gillespie algorithm [30] we find that for any tested molecular
abundance levels, Eq. (2) was reversed in the regime when
τz/τx is large and τy/τx is small as indicated by the (lower
right) blue region in Fig. 1(c). In this regime the abundance
of the intermediate component Y contains significantly less
information about the abundance of the final readout variable
Z than the more distantly connected upstream signal X . See
Supplemental Material [31] for numerical simulation results
for abundances other than those depicted in Fig. 1(c).

The above timescale dependence can be intuitively un-
derstood through approximate analytical arguments. For
multivariate Gaussian distributions, the mutual information
between components is related to their correlation through
I (X ;Y ) = − log2(1 − ρ2

xy)/2. When stationary state distribu-
tions are approximately Gaussian, we can thus estimate the
mutual information between components from their correla-
tions, which can be exactly determined from the system’s
chemical master equation; see Appendix A.

Following this approach yields the following (approxi-
mate) necessary and sufficient condition to reverse Eq. (2):

1 + τy

τz

(
1 + ηint

y

ηsig

(
1 + τy

τx

))(
1 + τz

τx

)

�
(

1 + τy

τz

)(
ηint

y

ηsig
+ 1

1 + τy

τx

)1/2

, (4)

where we have introduced the normalized signal variability
and intrinsic noise terms

ηsig := Var(x)

〈x〉2
, ηint

y := 1

〈y〉 , ηint
z := 1

〈z〉 . (5)

Here, and throughout angular brackets denote stationary state
averages.

In Fig. 1(c), the black line indicates the boundary defined
by Eq. (4) which agrees well with the numerical solutions
for the cascade defined in Eq. (1) with abundances 〈x〉 =
〈z〉 = 20, 〈y〉 = 2 such that ηint

y /ηsig = 10. Equation (4) also
accurately describes systems with different variability ratios
as long as the average abundances of all molecules are larger
than one molecule [31].

The analytical condition of Eq. (4) can be intuitively under-
stood in the regimes in which τz is much slower or much faster
than τx. When τz � τx the inequality asymptotically becomes√

1 + ηint
y

ηsig
� τz

τy
, (6)

as long as τy � τx; see Appendix A 2. Equation (6) is
indicated by the diagonal line of Fig. 1.

When τz � τx the boundary asymptotically becomes a
simple cutoff τy/τx � μ where μ is the root of a quintic
polynomial in ηint

y /ηsig; see Appendix A 2. While the root is
not analytically accessible we can calculate it numerically (see
Fig. 2) and analytically determine its maximum value given by

μ∗ =
√

2 − 1

2
≈ 0.2071, (7)

FIG. 2. Analytical approximations predict that Eq. (2) will not be
reversed in cascades with a slow intermediate. Equation (4) predicts
that violating Eq. (2) requires τy/τx < μ where the cutoff parameter
μ depends on the variability ratio ηint

y /ηsig and approaches zero in
both limits. Dashed line indicates the analytically determined maxi-
mum of Eq. (7), which corresponds to the largest value of τy/τx for
which violations of Eq. (2) are expected. Regardless of any other
system details we thus do not expect violations in cascades with a
relatively slow intermediate component.

which is attained when ηsig = (6 − 2
√

2)ηint
y , suggesting that

violations of Eq. (2) will not be observed in systems in which
the lifetime of the intermediate variable is larger than one
fifth of the input signal regardless of noise levels and other
timescales.

These asymptotic behaviors of Eq. (4) translate into a sim-
ple pair of necessary conditions on the timescales as indicated
by the gray dashed lines in Fig. 1(c). The mutual infor-
mation between stationary state distributions of molecular
abundances along a linear cascade is thus expected to violate
Eq. (2) when a slowly varying signal affects a downstream
component through a short-lived and noisy intermediate.

The above results establish the conditions under which
the mutual information between the last component and their
upstream components can be nonmonotonic, i.e., components
that are further removed from the final readout can have larger
mutual information when compared to those closer connected
to the final component. Next, we consider the complementary
question when a seeming “loss of information” in the first step
of the cascade will be recovered through an additional step,
i.e., we analyze the conditions under which inequality Eq. (3)
is violated.

Previous work [24,25] established that this inequality will
be violated when the signaling timescale is long-lived com-
pared to downstream components with equal lifetimes and
increasing abundances along the cascade. Next, we gener-
alize those results to biochemical cascades with arbitrary
timescales and abundances. For a given set of variability ratios
the numerically observed behavior of the mutual information
between stationary state abundances depends on the relative
timescales of the system as indicated in Fig. 3(a). Changing
the variability ratios by adjusting average abundances affects
the possible behavior significantly. For example, when the
variability of the readout variable was comparable to the in-
trinsic noise of the intermediate, we did not observe violations
of Eq. (3) over the numerically explored timescales [31].
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(a) (b)

(c)

FIG. 3. Mutual information between stationary state abundances can increase along a biochemical cascade. (a) Exact numerical simulation
results for the stationary state distributions of molecular abundances in the cascade defined by Eq. (1) with noise parameters as in Fig. 1.
When the signal timescale is slowest in the cascade, and Y is fast compared to Z , the upstream signal exhibits a larger mutual information with
the final readout variable than with the intermediate as indicated by the blue region (lower left). The solid black line indicates the analytical
approximation of Eq. (8) for the boundary at which I (X ; Z ) = I (X ;Y ). Dashed gray lines indicate intuitively interpretable necessary (but
not sufficient) conditions of Eqs. (9)–(11) for violations of Eq. (3) to occur. (b) When keeping all other parameters fixed I (X ; Z ) exhibits
a maximum as a function of the relative timescale τz/τx . This maximum is significantly higher than I (X ;Y ) (dashed lines) as long as the
intermediate variable is sufficiently short-lived. (c) In the regime in which an optimal lifetime ratio exists, it decreases monotonically as the
variability ratio ηint

z /ηsig increases; see Appendix A 1.

To understand this dependence we derive approximate
analytical conditions under which the mutual information
between molecular abundances increases along biochemical
cascades. Following the same Gaussian approximation as
above, we translate the exact (co)variance solutions for Eq. (1)
into the following approximate condition for processes to
violate Eq. (3):(

1 + τz

τx

)2

1 + τy

τx

(
1

1 + τz

τy

+ 1

1 + τy

τz

1

1 + τz

τx

)
+ ηint

z

ηsig

(
1 + τz

τx

)2

�
ηint

y

ηsig

⎛
⎜⎝1 −

(
1 + τz

τx

)2

1 + τz

τy

⎞
⎟⎠ + 1

1 + τy

τx

. (8)

The boundary defined by Eq. (8) agrees well with the
exact numerical results for a system with variability ratios
ηint

y /ηsig = 10 and ηint
z = ηsig, as indicated by the solid black

line in Fig. 3(a).
To intuitively understand the condition of Eq. (3) we first

consider the maximum τz/τx above which violations become
impossible. The exact cutoff value depends on both variability
ratios (see Appendix A 2) but is itself bounded by

τz

τx
�

√
ηint

y

ηint
z

− 1, (9)

indicated by the vertical (dashed) gray line in Fig. 3. Note,
Eq. (9) explains why violations of Eq. (3) were not observed
in our numerical simulations when the readout variable was
noisier than the intermediate [31].

Considering the regime in which τz, τy � τx, leads to the
following necessary condition

τy

τz
�

ηint
y

ηint
z

− 1, (10)

which illustrates that the readout variable Z must become
longer lived the closer its intrinsic noise gets to that of the
intermediate in order for the mutual information to increase
along the cascade. The condition of Eq. (10) is indicated by
the diagonal dashed gray line in Fig. 3.

Finally, we consider the limit in which the intermediate
component is far noisier than the others, i.e., ηint

y � ηsig, η
int
z .

In this regime, Eq. (8) becomes independent of the variability
ratios and constrains the timescales through

τy

τx
� 1

2

(
1 + τz

2τx

)−1

, (11)

indicated by the curved dashed gray line in Fig. 3. Because
the right-hand side of Eq. (11) is bounded by 1/2 it puts an
upper limit on the lifetime of the intermediate variable for
violations of Eq. (3) to occur. This suggests that an increase in
mutual information between molecular abundances will not be
observed in biochemical cascades in which the lifetime of in-
termediate variable is longer than one half of that of the input
signal. Eqs. (9), (10), and (11) are derived in Appendix A 2.

While the above conditions are necessary but not suf-
ficient they intuitively describe the qualitative behavior of
biochemical cascades: the inequalities of Eqs. (2) and (3) are
simultaneously reversed when the input signal X is the slowest
component, the intermediate component Y is the fastest and
contains more intrinsic noise than Z . In this regime, the mutual
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information between the components at the end of the cascade
I (X ; Z ) is larger than the mutual information between the
abundance of either pair of directly connected components
I (X ;Y ), I (Y ; Z ).

How an additional “readout” step can increase mutual in-
formation between molecular abundances can be intuitively
understood in the regime in which the input signal varies on
slower timescales than the lifetime of downstream cellular
components, i.e., τx � τy, τz as is expected for many biolog-
ical input signals. Under the above Gaussian approximation,
the mutual information between X and Y is then given by

I (X ;Y ) = 1

2
log2

(
1 + ηsig

ηint
y

)
. (12)

In contrast, the mutual information between X and Z is
given by

I (X ; Z ) = 1

2
log2

⎛
⎝1 + ηsig

ηint
z

1

1 + ηint
y

ηint
z

τy

τy+τz

⎞
⎠. (13)

We see the magnitude of I (X ;Y ) is limited by ηsig/η
int
y ,

while the magnitude of I (X ; Z ) is limited by ηsig/η
int
z when

Z becomes slow. The additional readout step thus performs
time-averaging that effectively replaces the intrinsic noise of
Y with that of Z . How much time-averaging is needed to
violate Eq. (3) depends on the ratio of intrinsic noises as given
by Eq. (10).

This suggests the increase in mutual information across
more distant variables in a cascade occurs because the final
slow variable filters out fast intrinsic noise of intermediates
as previously reported for stochastic biochemical reaction
cascades [13,26,32,33] Such time-averaging is common in
biology and has, e.g., been reported in bacterial sensing [34].
It is equivalent to low-pass filters used in signal processing to
remove high-frequency noise in engineering applications [35].

B. Optimal timescale for maximizing mutual information

The above results show that adding a component to a
biochemical cascade can increase the mutual information
between the stationary state abundances of the last compo-
nent and the upstream input. Next, we determine the optimal
timescale over which the additional variable Z should average
out fluctuations to maximize I (X ; Z ).

For distributions that are approximately Gaussian, we
find for the ideal readout variable with ηint

z = 0 the optimal
timescale τ ∗

z is given by

τ ∗
z = τx

√√√√√√
τy

τx
− 2

(
τy

τx

)3
−

(
τy

τx

)2(
1 + 2 ηsig

ηint
y

)
(

1 + τy

τx

)(
ηsig

ηint
y

+ τy

τx

) . (14)

The existence of this optimum can be intuitively under-
stood because in the limit of τz → ∞, Z averages out both
intrinsic fluctuations from the intermediate as well as the
signal; see Fig. 3(b). For readout variables with finite noise,
the optimal timescale τ ∗

z monotonically decreases as ηint
z in-

creases, see Fig. 3(c), until ultimately violations of Eq. (3) are
no longer possible for any value of τz; see Appendix A 1.

C. On-off upstream

Instead of a Poissonian input signal, we next consider a
two-state input signal, e.g., motivated by a single receptor that
is in a bound or unbound state, or by a gene stochastically
switching between two transcriptional states. We thus ana-
lyze the following cascade in which the production rate of Y
stochastically switches on and off according to

λ = 0
kon−⇀↽−
koff

λ = 1,
y

αλ−−→ y + 1,

y
y/τy−−−→ y − 1,

z
βy−−→ z + 1,

z
z/τz−−−→ z − 1.

(15)
Exact numerical simulations of the process defined in

Eq. (15) show that Eqs. (2) and (3) are also violated in this
strongly non-Gaussian biochemical cascade; see Fig. 4(b).
Note, the stochastic switching process of Eq. (15) yields iden-
tical mathematical forms for the covariances and correlation
coefficients as the original model given by Eq. (1) with the
only difference that variability of the input signal is now
given by

ηλ = 1 − Pon

Pon
, (16)

where Pon is the fraction of time the gene spends in the on-
state, and the signal timescale is given by τλ = 1/(kon + koff ).
As far as correlation coefficients are concerned, the systems of
Eqs. (1) and (15) behave identically and can be exactly solved
analytically using the standard linear noise approach [32]. It
is the Gaussian approximation for the mutual information that
loses accuracy; see Fig. 4(a).

While the behavior is now quantitatively different from
the simple analytical approximation, the qualitative behavior
remains. Reversal of Eq. (2) requires an intermediate compo-
nent that is significantly faster than both X, Z , and reversal of
Eq. (3) requires a cascades in which the signal timescale is
longer than the lifetime of both Y, Z .

Differences between the Gaussian approximation and
the exact simulation data also become apparent for the
cascade define system Eq. (1) when components are
present in abundances lower than two molecules on
average [31].

D. Other types of biochemical cascades

In the previous sections we showed that mutual infor-
mation can increase along the cascade defined in Eq. (1).
Next, we analyze mutual information along more complex
cascades to analyze the effect of molecular conversion events,
or proofreading steps. (For a generalization of Eq. (1) to four
components, see Supplemental Material [31].)

1. Cascades with molecular conversion events

In the cascade defined by Eq. (1) the levels of one molecule
set the production rate of another. However, in biochemical
cascades one molecule might convert into another through
conformational changes. We first consider the case where
the intermediate variable Y converts into the final readout
variable Z by replacing the production reaction of Z and the
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(b)(a)

FIG. 4. Gaussian approximations make qualitatively correct but quantitatively inaccurate predictions for mutual information in cascades
responding to on-off signals. (a) Comparing exact numerical simulations with analytical results for the cascade defined by Eq. (15). Correlation
coefficients are exactly predicted by the linear noise approximation (LNA) because all rates are linear. Mutual information is only approxi-
mately predicted by Gaussian approximations. Data corresponds to a cascade with abundances 〈y〉 = 2, 〈z〉 = 20 and τy/τλ = 0.1, Pon = 0.5.
(b) Exact numerical simulations show the Gaussian approximation (black line) no longer quantitatively predicts the region of violations,
but qualitative timescale features are accurately characterized, i.e., for noisy intermediates Eq. (2) is not obeyed when the intermediate Y is
significantly faster than both X, λ (lower right region in left panel), and Eq. (3) is not obeyed when the signal timescales is slowest overall and
Y is short-lived compared to Z (lower left region in right panel). Same parameters as panel (a).

degradation reaction of Y in Eq. (1) with

(y, z)
β1y−−−→ (y − 1, z + 1),

y
β2y−−−→ y − 1, (17)

where the lifetime of the intermediate component is now given
by τy = 1/(β1 + β2).

Exact numerical simulations of this cascade show that
Eq. (3) is now violated over a larger range of timescales; see
Fig. 5(a). This occurs because Z no longer inherits intrinsic
noise from Y ; see Appendix B. This is most easily seen in the
limit where τx � τy, τz, where the Gaussian approximation
now gives

I (X ; Z ) = 1

2
log2

(
1 + ηsig

ηint
z

)
. (18)

Compared to Eq. (13), which required τz � τy for the read-
out variable to remove the effect of intrinsic noise from the
intermediate, in a cascade in which Y converts into Z the
final readout removes the intermediate noise at all lifetimes.
I (X ; Z ) is always larger than in the case without conversions,
which explains why violations occur over a wider range of
timescales; see Appendix B.

In the above cascade with a final conversion event,
I (X ; Z ) decreases monotonically with τz. There is no advan-
tage of time-averaging with larger τz when the intermediate
noise is already filtered out via the conversion reaction; see
Appendix B.

Next, we consider the cascade in which X converts into
Y but Z is made catalytically. This corresponds to replacing
the production reaction of Y and degradation reaction of X in
Eq. (1) with

(x, y)
α1x−−−→ (x − 1, y + 1),

x
α2x−−−→ x − 1, (19)

where the lifetime of the signal is now τx = 1/(α1 + α2).

In this cascade the stationary state distribution factorizes
with P(x, y, z) = P(x) × P(y, z), where P(x) is a Poisson dis-
tribution, and P(y, z) is the stationary state distribution of a
system in which Y is made at a constant rate reported pre-
viously [36]; see Appendix B. The initial conversion event
thus makes the stationary state abundances of downstream
components statistically independent of the signal and there
is zero mutual information between the abundance of X and
its downstream variables for any parameter values.

To illustrate why the concept of statistical independence
can be dramatically misleading when applied to stationary
state distributions of stochastic processes we consider the case
of a conversion cascade in which both Y and Z molecules are
made in conversion events. This cascade belongs to a family of
reaction networks for which the stationary state distribution is
the product of three independent Poisson distributions [37,38],
which implies that the mutual information between any pair of
variables is strictly zero [6].

The physical dependence of these causally connected com-
ponents is obscured by the statistical independence of their
stationary state distributions. The interactions between bio-
chemical components only become apparent in their temporal
cross-correlation with lag L

Ci, j (L) = 〈xi(t )x j (t + L)〉 − 〈xi(t )〉〈x j (t )〉√
Var(xi )Var(x j )

, (20)

see Fig. 5(b) and Appendix B. This highlights how statistical
concepts developed for static random variables can be highly
misleading when applied to stationary state distributions of
dynamically varying components in biochemical reaction net-
works.

When considering the stationary-state distribution, an
initial conversion event will seemingly disconnect the fluc-
tuations of the input variable from any downstream variable
regardless of the length of the cascade. This can be shown by
considering the general linear cascade X1 → X2 → ... → Xk ,
where X1 is produced at a constant rate, and all molecules
undergo first-order degradation reactions while arrows denote
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(a)

(b)

FIG. 5. Cascades with conversion events also exhibit mutual in-
formation reversal that depends on relative timescales. (a) Exact
numerical simulation results for the model defined by Eq. (17) where
Y -molecules are born through catalytic production and subsequently
convert into Z-molecules. Data correspond to cascade with 〈x〉 =
〈z〉 = 20 and 〈y〉 = 2. Cascades with conversion reactions and fixed
averages are constrained in molecular lifetimes, resulting in the tri-
angular accessible region. The (almost) vertical black dashed line
corresponds to the Gaussian prediction for I (X ; Z ) = I (X ;Y ) which
closely matches the numerical data. Blue region (lower left) indi-
cates violations of Eq. (3). (b) Temporal cross-correlations between
components in a linear cascade in which X converts into Y which
converts into Z . Lag is measured in units of τx . At zero lag both
cross-correlations are exactly zero because the steady state distribu-
tions are statistically independent. The causal connection between
components only becomes apparent in temporal correlations with
nonzero lags. Molecular abundances are the same as in panel (a) with
lifetimes τx = 1, τy = 0.5, τz = 0.8.

first-order production rates that can be a molecular conversion
reactions or simple one component setting the production rate
of the next. For all such cascades the normalized covariance
between components monotonically decreases over the cas-
cade according to

Cov(x1, xk )

〈x1〉〈xk〉 = Cov(x1, xk−1)

〈x1〉〈xk−1〉
1

1 + τk
τ1

, (21)

where τ1, τk denote the average lifetimes of the first and kth

molecules in the chain. The above formula holds for k � 3;
see Appendix B. Because a cascade that starts with a con-
version event has Cov(x1, x2) = 0, Eq. (21) implies that all
downstream covariances vanish too.

In contrast, the rate of mutual information transfer has been
shown to be large through conversion events [6], highlighting

how the mutual information of stationary state distributions
cannot be used as a convenient proxy for information transfer
in biochemical systems.

2. Kinetic proofreading

Finally, we consider kinetic proofreading [39,40], which
can enhance the response of cells to different ligand oc-
cupancies and is commonly argued to allow cells to better
distinguish between two ligands. However, recent work has
shown that the increased average differences come at the
cost of increased intrinsic noise which generally worsens the
ability to distinguish between different ligands [41].

The effect of increased intrinsic noise in kinetic proof-
reading has been quantified through computing mutual
information between ligand affinity and receptor output [41].
We thus analyze the mutual information in the following
model: ligands bind at a diffusion limited rate kon, advance
from the initial bound state to subsequent proofreading states
at a rate k f , and unbind from any state with a ligand depen-
dent rate koff. In the final bound state the receptor produces
downstream signaling molecules Y at a rate kp. The unbinding
rate koff depends on the ligand affinity while all other are
assumed to be ligand independent. Considering two different
ligands we consider the mutual information between down-
stream components and the unbinding rate koff that takes two
different values with equal probability on a timescale much
slower than τy, τz.

The results of the previous sections suggest that the effect
of increased intrinsic noise in proofreading can be removed
through time-averaging with an additional reaction step Y →
Z , as long as τz � τy. Indeed, numerical simulation results
confirm this intuition for a single receptor with two potential
ligands of different affinities such that I (koff, Z ) is larger than
I (koff,Y ); see Fig. 6(a).

This result can be intuitively understood by looking at the
probability distribution of output molecules. Although proof-
reading enhances the differences in average output associated
with each ligand type, intrinsic noise can cause the resulting
output distributions to overlap [41]; see Fig. 6(b). Adding an
additional processing step with a slow readout component can
effectively reduce the impact of intrinsic noise through time-
averaging; see Fig. 6(c). Intrinsic noise can also be reduced
by increasing the lifetime of the readout molecule directly
instead of adding an additional processing step. Both methods
of increasing the mutual information come at the expense
of slowing down the system response to changes in ligand
concentration highlighting a general speed-accuracy trade-off
in sensing systems as remarked previously [42].

III. DISCUSSION

The data-processing inequality plays a crucial role in in-
formation theory because it sets a hard bound on the rate of
information transfer between any two components that use a
particular channel as an intermediary. In contrast, the mutual
information between stationary state distributions of cellular
abundances is not a measure of information flow [6] but a
statistical measure of similarity between the distributions of
molecular levels which can be increased by post-processing.
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(a)

(b)

(c)

FIG. 6. Time-averaging can alleviate the mutual information de-
creasing effect of kinetic proofreading. (a) Simulation results for
the kinetic proofreading model defined in the main text. Mutual
information between the receptor output and the ligand dependent
unbinding rate koff can be increased by adding an extra component
Z that time-averages the receptor output. (b) The probability distri-
bution of the receptor output. Although different ligands result in
different output averages, intrinsic noise causes significant overlap
of their output distributions. (c) Time-averaging effectively reduces
the impact of intrinsic noise in Y as illustrated by the more separated
probability distribution of the final readout variable Z .

In special cases it can be shown that this measure obeys
strict inequalities [31], but in contrast to the fundamen-
tal data-processing inequality such constraints are system
specific.

Here, we clarify under which conditions the mutual in-
formation between stationary state distributions of molecular
abundances behaves nonmonotonically along biochemical
signaling cascades. By numerically determining stationary
state probability distributions of biochemical cascades we
characterize the timescale dependence of the nonmono-
tonic behavior of mutual information between molecular
abundances. We complement the exact numerical data with
approximate analytical expressions by approximating the
steady state distribution as multivariate Gaussian distribution
similar to previous work [6,21–23,43]. Direct comparison
with numerical simulations shows that the qualitative behavior
of mutual information between components in biochemical
cascades is well described by such approximations even for
strongly non-Gaussian cascades.

We find that the mutual information between stationary
state distributions can increase along signaling cascades with
fast and noisy intermediates as long as the upstream signal
is sufficiently slow. This is precisely the biologically relevant
regime because for many cellular processes, the timescale of
the signal is expected to be much longer than the lifetimes
of the intracellular components. The mutual information be-
tween stationary state distributions of molecular abundances
thus seems of limited utility for characterizing signaling pro-
cesses in biology despite its convenient accessibility from
experimental single-cell data.
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APPENDIX A: TWO-STEP CASCADE CORRELATIONS
AND MUTUAL INFORMATION

For chemical reaction systems with linear rates all mo-
ments can be exactly derived from the chemical master
equation. In particular, the matrix of normalized (co)variances
ηi j := Cov(xi, x j )/(〈xi〉〈x j〉) satisfies the Lyapunov equa-
tion [26,32,44,45]

Mη + (Mη)T + D = 0, (A1)

where M and D for the stochastic reaction system defined by
Eq. (1) are given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1

τx
0 0

1

τy
− 1

τy
0

0
1

τz
− 1

τz

⎞
⎟⎟⎟⎟⎟⎟⎠

,

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

2

τx〈x〉 0 0

0
2

τy〈y〉 0

0 0
2

τz〈z〉

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)
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Using Eqs. (A1) and (A2), one can solve for the following
normalized (co)variances

ηxx = 1

〈x〉 , ηxy = 1

〈x〉
1

1 + τy

τx

,

ηyy = 1

〈y〉 + 1

〈x〉
1

1 + τy

τx

, ηxz = 1

〈x〉
1

1 + τy

τx

1

1 + τz

τx

,

ηyz = 1

〈y〉
1

1 + τz

τy

+ 1

〈x〉
1

1 + τy

τx

(
1

1 + τz

τx

1

1 + τy

τz

+ 1

1 + τz

τy

)
,

and

ηzz = 1

〈z〉 + ηyz.

(A3)

The correlation coefficients can in turn be obtained from

ρxy = ηxy√
ηxxηyy

, (A4)

which yields

ρxy = 1

1 + τy

τx

(
1

〈x〉
〈y〉 + τx

τx+τy

)1/2

,

ρxz =
[

1

1 + τy

τx

(
1

1 + τz

τy

+ 1

1 + τy

τz

1

1 + τz

τx

)

+ 〈x〉
〈z〉 + 〈x〉

〈y〉
1

1 + τz

τy

]−1/2

× 1

1 + τy

τx

1

1 + τz

τx

,

ρyz =
[

〈x〉
〈y〉

1

1 + τz

τy

+ 1

1 + τy

τx

(
1

1 + τz

τx

1

1 + τy

τz

+ 1

1 + τz

τy

)]

×
[(

1

1 + τy

τx

(
1

1 + τz

τx

1

1 + τy

τz

+ 1

1 + τz

τy

)

+ 〈x〉
〈z〉 + 〈x〉

〈y〉
1

1 + τz

τy

)( 〈x〉
〈y〉 + 1

1 + τy

τx

)]−1/2

.

(A5)

1. Mutual information

Approximating the stationary state distribution of Eq. (1)
as a multivariate Gaussian with the same second-order mo-
ments allows us to obtain approximate analytic expressions
for the mutual information via

I (X ;Y ) = −1

2
log2

(
1 − ρ2

xy

)
. (A6)

The expressions obtained from applying Eq. (A6) to the
correlation coefficients of Eq. (A5) lead to the inequalities
Eqs. (4) and (8) via elementary algebraic manipulations.

We find this approximation accurately describes the mutual
information in our cascade unless average abundances fall
below two molecules at which point the discreteness of the
distribution becomes apparent [31].

To show that the lifetime ratio τ ∗
z /τx that maximizes

the mutual information I (X ; Z ) is a decreasing function

of ηint
z /ηsig, we note that the mutual information given by

Eq. (A6) is an increasing function of the correlation coeffi-
cient. When ηint

z /ηsig → 0, the correlation coefficient is given
by

ρxz =
(

1

1 + τy

τx

(
1

1 + τz

τy

+ 1

1 + τy

τz

1

1 + τz

τx

)
+ ηint

y

ηsig

1

1 + τz

τy

)−1/2

× 1

1 + τy

τx

1

1 + τz

τx

,

(A7)

for which a nonzero optimal timescale τ ∗
z [given by Eq. (14)]

can exist because the denominator can decrease faster with τz

than the numerator due to the ηint
y /ηsig term.

In the regime ηint
z /ηsig � ηint

y /ηsig, 1 we have

ρxz =
(

ηsig

ηint
z

)1/2

× 1

1 + τy

τx

1

1 + τz

τx

, (A8)

for which the optimal timescale is τ ∗
z = 0, as the correlation

coefficient is a decreasing function of τz. Increasing ηint
z /ηsig

reduces the effect of the ηint
y /ηsig term monotonically, resulting

in smaller optimal τ ∗
z until eventually τ ∗

z = 0.

2. Mutual information inequalities

In the regime τz, τy � τx, Eq. (4) becomes

1 + τy

τz

(
1 + ηsig

ηint
y

)
�

(
1 + τy

τz

)(
1 + ηsig

ηint
y

)1/2

, (A9)

from which Eq. (6) follows from algebraic manipulations.
Equality of Eq. (4) implies

τz

τx
=

− τy

τx

(
1 + ηsig

ηint
y

(
1 + τy

τx

)
−

√
ηsig

ηint
y

+
(

1 + τy

τx

)−1
)

1 + τy

τx

(
1 + ηsig

ηint
y

(
1 + τy

τx

))
−

√
ηsig

ηint
y

+
(

1 + τy

τx

)−1
.

(A10)

When τz � τx, Eq. (A10) implies that

1 + τy

τx

(
1 + ηsig

ηint
y

(
1 + τy

τx

))
−

√
ηsig

ηint
y

+
(

1 + τy

τx

)−1

= 0,

(A11)
which is a fifth-order polynomial in τy/τx whose roots are
analytically intractable.

However, we can obtain the roots in ηsig/η
int
y , given by

ηsig

ηint
y

=
1 − 2 τy

τx
− 4 τy

τx

2 − 2 τy

τx

3 ±
√

1 − 4 τy

τx
− τy

τx

2

2
(

τy

τx

2 + 2 τy

τx

3 + τy

τx

4
) . (A12)

Positivity of the variability ratios then gives rise to the neces-
sary condition of τy/τx � 1/2(

√
2 − 1) to obtain equality in

Eq. (4).
To obtain Eq. (9), we note the terms in Eq. (8) that are

not proportional to variability measures can be grouped into a
positive term on the left. Removing them yields the following
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necessary inequality:

ηint
z

ηsig

(
1 + τz

τx

)2

�
ηint

y

ηsig

⎛
⎜⎝1 −

(
1 + τz

τx

)2

1 + τz

τy

⎞
⎟⎠. (A13)

The right side becomes larger without the term in the brackets,
and algebraic manipulations then yield Eq. (9).

In the limit τz � τx, Eq. (8) becomes

1 + τz

τy
�

ηint
y

ηint
z

τz

τy
+ ηsig

ηint
z

τz

τy

1

1 + τy

τx

. (A14)

Applying the additional limit τy � τx results in Eq. (10).
When ηint

y � ηsig, η
int
z Eq. (8) simplifies to

0 � 1 −
(

1 + τz

τx

)2

1 + τz

τy

, (A15)

from which Eq. (11) follows from algebraic manipulation.

APPENDIX B: CASCADES WITH CONVERSION EVENTS

Applying Eq. (A1) to the model defined in Eqs. (1) and
(17) yields the following normalized covariances:

ηxx = 1

〈x〉 , ηxy = 1

〈x〉
1

1 + τy

τx

,

ηyy = 1

〈y〉 + 1

〈x〉
1

1 + τy

τx

, ηxz = 1

〈x〉
1

1 + τy

τx

1

1 + τz

τx

,

ηyz = 1

〈x〉
1

1 + τy

τx

(
1

1 + τz

τx

1

1 + τy

τz

+ 1

1 + τz

τy

)
,

ηzz = 1

〈z〉 + 1

〈x〉
1

1 + τy

τx

(
1

1 + τz

τx

1

1 + τy

τz

+ 1

1 + τz

τy

)
. (B1)

Computing the correlation coefficients from these covariances
then straightforwardly yields approximate expressions for the
mutual information.

The resulting approximate I (X ; Z ) monotonically de-
creases with τz, because Eq. (A6) which is an increasing
function of the correlation coefficient given by

ρxz =
(

1

1 + τy

τx

(
1

1 + τz

τy

+ 1

1 + τy

τz

1

1 + τz

τx

)
+ ηint

z

ηsig

)−1/2

× 1

1 + τy

τx

1

1 + τz

τx

, (B2)

which in turn is a decreasing function of τz.

For the model defined in Eqs. (1) and (19), the chemical
master equation is given by

dP(x, y, z)

dt
= −

[
λ + x

τx
+ y

(
β + 1

τy

)
+ z

τz

]
P(x, y, z)

+ λP(x − 1, y, z) + α2(x + 1)P(x + 1, y, z)

+ α1(x + 1)P(x + 1, y − 1, z) + y + 1

τy
P(x, y + 1, z)

+ βyP(x, y, z − 1) + z + 1

τz
P(x, y, z + 1).

(B3)

Substituting the ansatz P(x, y, z) = P(x) × P(y, z) into the
stationary state condition of the above master equation with
the Poissonian

P(x) = 〈x〉xe−〈x〉

x!
(B4)

results in the following condition:

0 = −
[
α1〈x〉 + y

(
β + 1

τy

)
+ z

τz

]
P(y, z)

+ α1〈x〉P(y − 1, z) + y + 1

τy
P(y + 1, z)

+ βyP(y, z − 1) + z + 1

τz
P(y, z + 1), (B5)

which is satisfied as long as P(y, z) is the stationary state dis-
tribution that solves the chemical master equation of a system
in which Y is made at a constant rate α1〈x〉 and linearly affects
the production of Z molecules with a rate βy. This implies
that P(x, y, z) = P(x) × P(y, z) is indeed the stationary state
distribution of the model defined in Eqs. (1) and (19) as
claimed in the main text.

The cross-correlations of the conversion cascade in which
both Y and Z molecules are made in conversion events can
be derived from the corresponding chemical master equa-
tion [46]. For L < 0 the temporal cross-correlations are zero
and for L � 0 we obtain

Cx,y(L) =
√

ηsig

ηint
y

e−L/τy − e−L/τx

1 − τx
τy

Cx,z(L) = 1

τxτy

√
ηsig

ηint
z

((
1

τx
− 1

τy

)(
1

τx
− 1

τz

)(
1

τy
− 1

τz

))−1

×
(

e−L/τz

(
1

τx
− 1

τy

)
+ e−L/τx

(
1

τy
− 1

τz

)

+ e−L/τy

(
1

τz
− 1

τx

))
,

(B6)

which are plotted in the main text.
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To derive Eq. (21), we utilize the fluctuation balance equa-
tions that must be satisfied by any pairs of components Xi and
Xj in a system with stationary probability distributions [45]

Cov(xi, R−
j − R+

j ) + Cov(x j, R−
i − R+

i ) =
N∑

k=1

skisk j〈rk〉,
(B7)

where xi is the abundance of molecule Xi, R±
j is the total flux

of production or degradation for molecule Xj , and 〈rk〉 is the
average reaction rate for reaction k in which levels of Xi are
changed by ski.

For the linear cascade X1 → X2 → ... → Xk , Eq. (B7)
yields the following relation for k > 2:

Cov(x1,−Rk ) + Cov(xk,−R1) = 0, (B8)

with reaction fluxes are given by

R1 = λ − x1

τ1
, Rk = ckxk−1 − xk

τk
, (B9)

where λ is the production rate of the first molecule, ckxk−1 is
the rate at which molecule Xk−1 converts into molecule Xk , and
τk the lifetime of the kth molecule. Algebraic manipulations
then result in Eq. (21).
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