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Destructive agents, who opt out of the game and indiscriminately harm others, paradoxically foster coopera-
tion, representing an intriguing variant of the voluntary participation strategy. Yet, their impact on cooperation
remains inadequately understood, particularly in the context of pairwise social dilemma games and in com-
parison to their counterparts, constructive agents, who opt out of the game but indiscriminately benefit others.
Furthermore, little is known about the combined effects of both agent types on cooperation dynamics. Using
replicator dynamics in infinite and well-mixed populations, we find that contrary to their role in facilitating
cooperation in multiplayer games, destructive agents fail to encourage cooperation in pairwise social dilemmas.
Instead, they replace defection in the prisoners’ dilemma and stag-hunt games. Similarly, in the chicken game,
they can destabilize or replace the mixed equilibrium of cooperation and defection, undermining cooperation
in the harmony (trivial) game. Conversely, constructive agents, when their payoffs exceed their contributions
to opponents, can exhibit effects similar to destructive agents. However, if their payoffs are lower, while they
destabilize defection in prisoners’ dilemma and stag-hunt games, they do not disrupt the cooperation equilibrium
in harmony games and have a negligible impact on the coexistence of cooperation in chicken games. The
combination of destructive and constructive agents does not facilitate cooperation, but instead generates complex
evolutionary dynamics, including bistable, tristable, and quadstable states, with outcomes contingent on their
relative payoffs and game types. These results, taken together, enhance our understanding of the impact of the
voluntary participation mechanism on cooperation, contributing to a more comprehensive understanding of its
influence.
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I. INTRODUCTION

The persistence of cooperative behavior poses a signif-
icant evolutionary puzzle. Cooperation often incurs costs
for individuals to help others, while the temptation of free
riding, i.e., benefiting from others’ assistance without con-
tributing, threatens to undermine cooperative efforts [1,2].
According to the principle of “survival of the fittest,” free
riding, which saves the cost of helping, should have more
evolutionary advantages than cooperation, leading to the lat-
ter’s eventual extinction [3]. Evolutionary game theory offers
a robust mathematical framework to unravel this paradox
[4,5]. In particular, a public goods game (PGG) is a math-
ematical metaphor for exploring the cooperation conundrum
in multiplayer games [6,7]. In the PGG, cooperators invest
in a common pool by incurring costs, whereas defectors
contribute nothing. The cumulative payoff in the common
pool is then multiplied by an enhancement factor and dis-
tributed to all participants, irrespective of their contribution. In
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scenarios where the game is one-shot and anonymous [8,9],
meaning that players never interact with the same individual
more than once, and reciprocity mechanisms such as reputa-
tion [10,11], costly signals [12,13], and repeated interactions
[14] are absent, fostering cooperation becomes particularly
challenging [15]. In such contexts, social mechanisms such
as reward [16–18], punishment [8,19–21], social exclusion
[22,23], prior commitment [24,25], and voluntary participa-
tion [26,27] become crucial for the emergence of cooperative
behavior.

While social punishment (and reward) has fostered cooper-
ation, its efficacy relies on identifying and tracking defectors.
However, the stability of these mechanisms is threatened by
second-order free riders, i.e., those who contribute but avoid
the costs of punishing (or rewarding), and antisocial punishers
(or rewarders), i.e., those who defect yet punish (or reward)
other defectors, potentially undermining the effectiveness of
these social mechanisms [28,29]. In contrast, voluntary par-
ticipation emerges as a simple yet effective strategy that
promotes cooperation without the complexities associated
with identifying and tracking defectors [26,30]. Importantly,
this social mechanism does not face the same evolutionary
challenges as punishment and reward, making it a subject of
extensive study.
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Voluntary participants, also known as loners who abstain
from partaking in the benefits generated from public goods
and instead receive a fixed positive payoff by opting out, can
effectively establish cooperation. This is achieved through
a cyclic dominance effect, where cooperation yields to de-
fectors, who, in turn, give way to loners, and loners give
way to cooperators. Extending beyond the original research,
studies have explored the effects of loners in networked pop-
ulations [31,32], the role of loners in punishment dilemmas
[33], and various other cooperation-related issues [34]. More-
over, researchers have investigated different variants of the
loner strategy, such as abstention strategies, where individ-
uals neither pay nor receive anything while their opponents
bear a participation cost [35]. Exiters, who receive a fixed
payoff but contribute nothing to their opponents, also receive
attention [36,37]. Studies investigate the freedom to choose
between homogeneous symmetric or asymmetric public re-
sources [38,39], hedgers who enact tit-for-tat play without
cooperation in the first move [40], and other related aspects
[41,42]. Although these variants differ from the loner strategy,
they all demonstrate a cooperation-promotion effect.

Given that the voluntary participation mechanism is a
bottom-up scheme for public goods provision [43], its in-
fluence on public goods might also be related to one’s
personality. The loner model reflects an individualistic trait,
as loners focus solely on their own payoff without directly
influencing public goods. An intriguing variant of the loner
strategy is the destructive agent, who, like loners, abstain
from participating in public goods but actively harm others
without personal gain [44,45]. This represents a competitive
trait, focusing on defeating opponents. These aspects lead us
to consider the existence of constructive agents, who posi-
tively contribute to public goods and can be understood as
reflecting prosocial traits. We are first curious about how
destructive agents impact cooperation dynamics in pairwise
social dilemma games, where distinct equilibrium points ex-
ist (e.g., dominance of cooperation in the harmony game,
defection in the prisoner’s dilemma, bistable equilibrium in
the stag-hunt game, and mixed strategies equilibrium in the
chicken game), compared to their positive effects on cooper-
ation in public goods games, which only exhibit cooperation
and defection equilibria [44,45]. Second, what would be the
impact of constructive agents on cooperation dynamics, in
contrast to destructive agents? Lastly, it is crucial to explore
the joint effects of constructive and destructive agents on
cooperation dynamics in social dilemma games, especially
regarding how the presence of constructive agents may alter
the influence of destructive agents on cooperation dynamics.

To explore these questions, we extend the framework of
social dilemma games to incorporate both destructive and
constructive agents. Initially, we analyze their effects on pro-
moting cooperation within well-mixed populations separately,
before investigating their combined impact. Our model incor-
porates key parameters such as dilemma strength (Dg, Dr),
categorizing games into harmony, chicken, stag-hunt, and
prisoner’s dilemma, along with incentives for agents to exit
the game d , and the respective damage d1 and benefit d2

caused by destructive and constructive agents. Utilizing repli-
cator dynamical equations, we discover that destructive agents
fail to encourage cooperation in pairwise social dilemmas,

in contrast to their role in promoting cooperation in public
goods games. Instead, they destabilize defection, ultimately
replacing it in prisoner’s dilemma and stag-hunt games while
undermining cooperation in chicken and harmony games.
Conversely, constructive agents sustain the coexistence of
cooperation in the chicken game and minimally influence
the cooperative equilibrium in the harmony game, particu-
larly when their payoffs are less than their contributions to
opponents. Otherwise, their impact tends to mimic that of
destructive agents. When both constructive and destructive
agents are active simultaneously, their combined influence
often mirrors the effects observed when each agent type
acts alone. For example, the coexistence of destructive and
constructive agents can disrupt defection in the prisoner’s
dilemma and stag-hunt games, while also compromising co-
operation in chicken and harmony games. Furthermore, in
scenarios where constructive agents confer benefits exceed-
ing their gains, these joint effects can lead to the emergence
of complex dynamics, including bistable, tristable, or quad-
stable equilibria, contingent on game types and parameter
conditions.

These results enhance our understanding of the impact
of the voluntary participation mechanism on cooperation,
contributing to a more comprehensive understanding of its
influence.

II. MODEL

Our method contains two necessary basic components: (a)
payoff matrices and (b) population settings and game dynam-
ics. A brief description of each section is given as follows.

A. Payoff matrices

In this study, we assume a symmetric pairwise game, where
the evolutionary dynamics of cooperation within dyadic in-
teractions involve the strategic interplay of cooperation (C)
and defection (D). In instances where both players opt for
cooperation, they are endowed with the payoff denoted as R
(reward). Conversely, if both players choose defection, the
resulting payoff is designated as P (punishment). When one
player cooperates while the other defects, two distinct payoffs
emerge: T , representing the temptation to defect, signifying
an advantageous outcome for the defector; and S, denoting
the sucker’s payoff, indicating a disadvantageous outcome
for the cooperator. Based on the relative ordering of these
payoffs, four types of social dilemma games can be identified:
the prisoner’s dilemma, characterized by T > R > P > S; the
stag hunt, characterized by R > T > P > S; the chicken or
snowdrift game, characterized by T > R > S > P; and the
harmony game, characterized by R > T > S > P.

To observe cooperation dynamics, we have used the con-
cept of universal scaling of dilemma strength [46], where
Dg = T − R and Dr = P − S are used to quantify the game’s
dilemma strength, encapsulating aspects characteristic of both
chicken-type dilemmas (originating from greed) and stag-
hunt-type dilemmas (originating from fear). The nature of the
equilibrium depends on the signs of Dg and Dr : a prisoner’s
dilemma scenario, where both Dg and Dr are positive, leads
to mutual defection as the equilibrium state. A positive Dg
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TABLE I. Payoff matrix of social dilemma game for destructive
agents.

C D DA

C 1 −Dr −d1

D 1 + Dg 0 −d1

DA d d d

combined with a negative Dr , resembling the chicken game,
results in a mixed equilibrium of cooperation and defection.
The stag-hunt game, indicated by a negative Dg and a positive
Dr , presents a bistable equilibrium, where both mutual co-
operation and mutual defection are stable strategies. Finally,
in the harmony game scenario, where both Dg and Dr are
negative, cooperation emerges as the dominant equilibrium
strategy.

Pairwise game with destructive agents (DA). Incorporating
destructive agents named Joker, which inflicts equal damage
on both cooperators and defectors, without receiving any ben-
efit, was initially introduced in a public goods game (PGG)
[44]. In this study, we introduce destructive agents into the
pairwise game as a third strategy with no payoff. Then, we re-
lax the strong assumption (Joker does not receive any benefit)
with a positive payoff from destructive agents. The benefit re-
ceived by destructive agents playing with others is d ∈ [0, 1)
and the damage this imposes on its opponents is d1 ∈ [0, 1).
The payoff matrix is given in Table I.

Pairwise game with constructive agents (CA). Constructive
agents in pairwise games strive to equal benefits between
cooperators and defectors and also receive some benefits in
participation. The aid that normal players receive from play-
ing with constructive agents is d2 ∈ [0, 1) and the benefit
received by the constructive agent is the same as the de-
structive agent, i.e., d ∈ [0, 1). The payoff matrix is given as
Table II.

Pairwise game in mixed of destructive and constructive
agents. To comprehensively assess the impact of both con-
structive and destructive agents, we synthesized the strategies
outlined in Tables I and II to create a new payoff matrix. This
matrix incorporates four strategies: cooperation (C), defection
(D), constructive agents (CA), and destructive agents (DA).
The detailed interactions and resultant payoffs are presented
in Table III.

B. Population setting and game dynamics

We consider a well-mixed and infinite population model,
wherein individuals engage in random pairwise interactions
with each other.

TABLE II. Payoff matrix of social dilemma game for construc-
tive agents.

C D CA

C 1 −Dr d2

D 1 + Dg 0 d2

CA d d d

TABLE III. Payoff matrix of social dilemma game for the com-
bined effect of destructive and constructive agents.

C D DA CA

C 1 −Dr −d1 d2

D 1 + Dg 0 −d1 d2

DA d d d d
CA d d d d

Destructive agent’s game dynamics. Let x, y, z denote
the fractions of cooperation, C, defection, D, and destruc-
tive agent, DA, in the population, where 0 � x, y, z � 1, and
x + y + z = 1. The expected payoff for each player is given
as

�C = x − Dry − d1z,

�D = (1 + Dg)x − d1z,

�DA = d. (1)

The replicator equations are

ẋ = x(�C − �DA),

ẏ = y(�D − �DA),

ż = z(�DA − �DA), (2)

where �DA = x�C + y�D + z�DA.
Constructive agent’s game dynamics. Let w denote the

fractions of the constructive agent, CA, in the population; then,
0 � x, y,w � 1, and x + y + w = 1. The expected payoff for
each player and the replicator dynamics are given as Eq. (3)
and (4), respectively:

�C = x − Dry + d2w,

�D = (1 + Dg)x + d2w,

�CA = d; (3)

ẋ = x(�C − �CA),

ẏ = y(�D − �CA),

ẇ = w(�CA − �CA), (4)

where �CA = x�C + y�D + w�CA.
Game dynamics of the joint effects of DA and CA. When

both destructive and constructive agents simultaneously inter-
act with the cooperation and defection, then 0 � x, y, z,w �
1 and x + y + z + w = 1. The expected payoff for each player
is given as

�C = x − yDr − d1z + d2w,

�D = (1 + Dg)x − d1z + d2w,

�DA = d,

�CA = d. (5)

The replicator equations are

ẋ = x(�C − �),

ẏ = y(�D − �),
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FIG. 1. Destructive agents destabilize defection for Dr > 0, cooperation and a mix of cooperation and defection when Dr < 0 (b). The
defection of the prisoner’s dilemma is destabilized by destruction, and stag-hunt’s bistable equilibrium becomes bistable with destruction. On
the other hand, chicken’s mixed cooperation and defection are transformed into a bistable mix of cooperation and defection or monomorphic
destruction (after a threshold value of d), and the cooperation of harmony turns into bistable cooperation and destruction. The diagrams can be
divided into four regions (denoted by different colors) corresponding to prisoner’s dilemma (PD), stag-hunt (SH), harmony (H), and chicken
(CH) games, and the boundary (Dr = 0 and Dg = 0) separated by the black dotted lines. The tristability and the coexistence of cooperation,
defection, and destruction are defined as C/D/DA and C-D-DA. Equilibria, stable on the boundary, are shown in the same color as the interior.

ż = z(�DA − �),

ẇ = w(�CA − �), (6)

where � = x�C + y�D + z�DA + w�CA. Detailed explana-
tions of the equilibria and their stability of all replicator
dynamics have been given in the Appendix.

III. RESULTS

A. Destructive agents

The presence of destructive agents in a PGG, paradox-
ically, promotes cooperation and destabilizes defection by
cyclic dominance, where cooperation leads to defection,
which leads to destruction, ultimately paving the way for
cooperation again [44]. In contrast, the introduction of de-
structive agents in the prisoner’s dilemma game—special
two-player PGG—fails to foster cooperation; instead, it desta-
bilizes the equilibrium of the prisoner’s dilemma game [refer
to the upper right of Fig. 1(b)]. In this scenario, defection
is replaced by destruction; trajectories start from an unstable
node directing to destruction directly or invading cooperation
by defection, and defection by destruction, as illustrated in the
upper right of Fig. 2.

Beyond the prisoner’s dilemma, our study extended to as-
sess the influence of destructive agents within other pairwise
social dilemma games, such as chicken, harmony, and stag-
hunt. We analyzed their impact on game equilibria, focusing
on mixed strategies of cooperation and defection, pure co-
operation, and the bistable equilibrium between cooperation

and defection. Our findings reveal that akin to observations
in the prisoner’s dilemma, destructive agents fail to promote
cooperation; instead, they tend to destabilize existing equilib-
ria [going back to Fig. 1(b) for detailed illustrations]. In the
chicken game, the introduction of destructive agents trans-
forms the mixed strategy equilibrium into a bistable system.
This system is characterized by a possible coexistence of co-
operation and defection, which is separated by a critical saddle
point leading to destruction. The game dynamics evolve from
two unstable equilibria towards these divergent outcomes,
illustrated in Fig. 2, (upper left). The harmony game’s monos-
table cooperation becomes bistable with destructive agents,
with trajectories separated into either cooperation or destruc-
tion starting from two different unstable nodes (lower left).
In the stag-hunt game, the bistable cooperation or defection
equilibrium shifts to the bistable equilibrium of coopera-
tion or destruction; trajectories stemming from an internal
unstable node present two possible outcomes: either direct
cooperation or destruction, which prevails over defection
(lower right).

The initial assumption regarding destructive agents posits
that they receive no additional payoff from opting out, which
can be seen as somewhat restrictive. Given the rarity of indi-
viduals who would opt out of the game without any potential
benefits, we have decided to relax this assumption. Now,
agents can derive benefits from opting out of the game. Simi-
lar to nonbeneficial destructive agents, beneficial destructive
agents do not facilitate cooperation. The destabilization of
equilibria in all games is akin to the impact of nonbene-
ficial destructive agents, the only exception in the chicken
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FIG. 2. The stable defection of the prisoner’s dilemma is replaced by destruction; the chicken’s mixed equilibrium of cooperation and
defection is transformed into a bistable, either a mix of cooperation and defection or monomorphic destruction; cooperation of harmony turns
into bistable cooperation and destruction; and stag-hunt bistable equilibrium’s defection is replaced with destruction. The parameters are fixed
at d1 = 0.4, d = 0.0, (Dg = Dr = 0.5; PD), (Dg = 0.5, Dr = −0.5; CH), (Dg = −0.5, Dr = −0.5; H), and (Dg = −0.5, Dr = 0.5; SH). Solid
black dots are stable nodes, whites are unstable nodes, and grays are saddle points. Images are generated by a modified version of the egttools
PYTHON Package [57]. All subsequent plots are likewise generated using this same package.

game, where the mixed equilibrium is either similar to that
of nonbeneficial destructive agents (when 0 � d <

Dr+DgDr

Dr−Dg
)

or monostable destruction ( Dr+DgDr

Dr−Dg
< d < 1; described in

Appendix A 1).
At a glance, destructive agents cannot promote cooperation

in pairwise social dilemmas. However, they can destabilize
and potentially replace defection in the prisoner’s dilemma
and stag-hunt games; likewise, they can disrupt or supersede
the mixed cooperation-defection equilibrium in the chicken
game and undermine cooperation entirely in the harmony
game. In contrast to destructive agents, which exploit or harm
either cooperators or defectors, constructive agents emerge
as a concept that benefits both parties equally and receives
rewards for abstaining from participation. This introduces a
different avenue of investigation into how constructive agents
influence the dynamics of cooperation in pairwise social
dilemma games, which we will explore further in subsequent
analyses.

B. Constructive agents

Similar to destructive agents, incorporating constructive
agents in pairwise social dilemmas does not encourage coop-

eration. Rather, introducing these agents changes the stability
of the equilibria in the dilemmas. Two distinct scenarios have
been observed based on the relative payoffs received by con-
structive agents and the payoffs offered by constructive agents
to others. When constructive agents experience greater payoff
than the contributions they make to others, the destabilization
and transformation of these agents mirror that of destructive
agents, except that the outcome shifts from destruction to
construction, as illustrated in Figs. 3(a) and 4 (a theoretical
analysis is given in Appendix A 2).

Constructive agents, when receiving lower payoffs com-
pared to the benefits they provide to others, disrupt defection
equilibria in the prisoner’s dilemma and stag-hunt games.
However, their introduction has no significant impact on co-
operation in the harmony game and only a negligible effect
on the coexistent equilibria of cooperation and defection in
the chicken game [see Fig. 3(b)]. In the prisoner’s dilemma
game, when trajectories originate at an unstable equilibrium
of purely constructive agents and sequentially lead to co-
operation and then defection, the result is a polymorphic
stable mix of defection and construction that supplants the
monostable defection equilibrium illustrated in Fig. 5 (upper
right). Similarly, in the stag-hunt game, the bistable equilibria
of cooperation and defection become bistable cooperation or
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FIG. 3. When the constructive agents’ payoff exceeds others (a), construction replaces defection if Dr > 0 and destabilizes cooperation
and a mix of cooperation and defection if Dr < 0. The stable equilibrium of prisoner’s dilemma and stag-hunt is construction and a bistable
of cooperation and construction. In contrast, chicken’s mixed equilibrium is bistable, either embracing a blend of cooperation and defection
or construction or monostable construction (depending on d values), and harmony’s cooperation demonstrates bistability with construction.
When the constructive agents’ payoff is lower than others (b), defection is changed to polymorphic defection and construction if Dr > 0, but
does not influence cooperation and a mix of cooperation and defection if Dr < 0. The defection of prisoner’s dilemma and stag-hunt changes
to a coexistence of defection and construction, and the stability of the equilibria remains unchanged in the harmony and chicken games.

a polymorphic mixture of defection and construction (lower
right). The mixed equilibria of chicken’s analogously may be
unchanged (when 0 � d <

Dr+DgDr

Dr−Dg
; see the analytical result

in Appendix A 2) or shifted to polymorphic stable mixtures
of cooperation, defection, and construction ( Dr+DgDr

Dr−Dg
< d < 1;

upper left).
To sum up, constructive agents, when their payoffs sur-

pass their contributions to opponents, may demonstrate effects
akin to destructive agents. Conversely, when their payoffs
are lower, although they destabilize defection in the pris-
oners’ dilemma and stag-hunt games, they neither disturb
cooperation in harmony games nor exert a significant influ-
ence on the coexistent equilibrium in chicken games. At this
point, it is entirely natural to investigate the combined impact
of both destructive and constructive agents.

C. Mixed destructive agents and constructive agents

The introduction of both destructive and constructive
agents in social dilemma games does not foster cooperation.
Instead, it results in intricate evolutionary dynamics, where
the end equilibrium is contingent on the relative payoff re-
ceived by constructive agents and the payoffs offered by
constructive agents to others. When the constructive agents’
payoff exceeds the aids they have given to others, they dis-
place defection fully in the prisoners’ dilemma and stag-hunt
games and can destabilize cooperation and coexistent cooper-
ation and defection in the harmony and chicken games [refer
to Fig. 6(a); see Appendix A 3 for theoretical analysis]. In the

prisoner’s dilemma, defection is substituted by a coexistence
of destruction and construction; see Fig. 7 (upper right). In this
scenario, in simplex (C, DA, CA), for instance, all trajectories
either converge to cooperation or coexistence of destruction
and cooperation; an introduction of mutant defection can in-
vade cooperation [refer to the simplex (C, D, DA) in the
same figure], but not the mixture which leads the mixture
as final equilibrium. The bistable equilibrium of stag-hunt
becomes bistable between the cooperation and coexistence
of destruction and construction (lower right). All trajectories
divided by a collection of unstable nodes [simplex (C, DA,
CA), for example, in the same figure] converge either towards
cooperation or the coexistence of destruction and construc-
tion; the introduction of mutant defection is unable to infiltrate
the stability, consequently, bistability between cooperation
and the mix of destruction and construction is sustained.
Similarly, chicken’s mixed equilibrium may become bistable,
encompassing either a mixture of cooperation and defection or
destruction and construction (when 0 � d <

Dr+DgDr

Dr−Dg
; upper

left), or monostable, encompassing a mixture of destruction
and construction ( Dr+DgDr

Dr−Dg
< d < 1; see Appendix A 3), and

harmony’s cooperation exhibits bistability with a mix of de-
struction and construction (lower left).

However, when constructive agents receive lower pay-
offs than the benefits given to opponents, the equilibria in
prisoner’s dilemma and stag-hunt shift to a complex coex-
istence of defection, destruction, and construction, showing
expanded multistability, while the equilibria in harmony and
chicken remain unchanged as constructive agents have higher
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FIG. 4. When constructive agents achieve higher payoffs than others, both defection and cooperation are destabilized by it. In the prisoner’s
dilemma and stag-hunt, the stability of defection is replaced with construction; while chicken’s mixed equilibrium becomes bistable, either
embracing a blend of cooperation and defection or construction; and harmony’s cooperation demonstrates bistability with construction. The
parameters are fixed at d = 0.4 and d2 = 0.1, (Dg = Dr = 0.5; PD), (Dg = 0.5, Dr = −0.5; CH), (Dg = −0.5, Dr = −0.5; H), and (Dg =
−0.5, Dr = 0.5; SH). Stable nodes are marked with solid black dots, unstable nodes with white dots, and saddle points with gray dots.

payoffs, illustrated in Fig. 6(b) and theoretically analyzed
in Appendix A 3. In the prisoner’s dilemma, the monostable
defection equilibrium is replaced by either the coexistence
of defection-destruction-construction or the coexistence of
destruction-cooperation or pure destruction, exhibited in
Fig. 8 (upper right). In this context, trajectories in simplex
(C, DA, CA) are divided by a branch of unstable nodes into
cooperation or a mix of destruction and cooperation; an intro-
duction of mutant defection can invade cooperation to a mix of
defection, destruction, and construction [refer to the simplex
(D, DA, CA)] or destruction only [in the simplex (C, D, DA)]
in the same figure, but no influence on the mixture of destruc-
tion and cooperation, which leads a tristable state, with either
coexistent of defection, destruction, and construction or a mix
of destruction and construction or destruction only. Similarly,
in the stag-hunt game, the bistable equilibria of cooperation
and defection become tetrastable cooperation or the coexis-
tence of defection-destruction-construction or the coexistence
of destruction-cooperation or pure destruction (lower right).
In this scenario, trajectories within the simplex (C, DA, CA)
are partitioned by a branch of unstable nodes, creating a bista-
bility between cooperation and a combination of destruction
and construction. The introduction of mutant defection does
not invade cooperation, but results in a bistable state, either a
mixture of defection, destruction, and construction [observed
in the simplex (D, DA, CA)] or destruction only [within the
simplex (C, D, DA)] in the same figure. This mutant defection

has no impact on the blend of destruction and construction,
maintaining a quadstable state that encompasses cooperation,
the coexistence of defection, destruction, and construction, or
a combination of destruction and construction, or destruction
alone.

IV. DISCUSSION

In this paper, we have demonstrated that contrary to their
role in facilitating cooperation within public goods games,
the introduction of destructive agents into pairwise social
dilemma games fails to encourage cooperation. Specifically,
destructive agents destabilize the system. This leads to a shift
from equilibria of single defection to destruction, even sin-
gle cooperation, or mixed states to regions of bistability. In
the prisoner’s dilemma and stag-hunt game, we observe the
replacement of defection to destruction; on the other hand,
single cooperation in harmony and a mixed state in chicken
can change to bistable with destruction.

Additionally, we introduced. a different agent type akin
to destructive agents: constructive agents. These agents exit
the game upon receiving a benefit, yet they also endow their
opponents with additional benefits. Our findings suggest that
when constructive agents secure higher payoffs than those
they bestow on opponents, they can destabilize defection in
the prisoner’s dilemma and stag-hunt games and disrupt co-
operation in the chicken and harmony games, mirroring the
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FIG. 5. Coexistence of construction with cooperation and defection in chicken game and disruption of defection states by a mixture of
defection and construction in prisoner’s dilemma and stag-hunt; no influence in harmony’s cooperation. The parameters are fixed at d = 0.1
and d2 = 0.4, (Dg = Dr = 0.5; PD), (Dg = 0.5, Dr = −0.5; CH), (Dg = −0.5, Dr = −0.5; H), and (Dg = −0.5, Dr = 0.5; SH). Stable nodes
are marked with solid black dots, unstable nodes with white dots, and saddle points with gray dots.

destabilizing influence of destructive agents. However, if the
payoff for constructive agents is less than what they provide to
their opponents, they predominantly disrupt defection states.
This leads to new equilibria where defection coexists with
constructive actions in the prisoner’s dilemma, and a bistable
state between mixed defection and construction, and coop-
eration in the stag-hunt games, leaving the dynamics in the
chicken and harmony games unaffected.

Moreover, combining destructive and constructive agents
does not inherently promote cooperation, but introduces more
complex dynamics, especially when the payoff for construc-
tive agents is lower than what they bestow upon opponents.
For instance, in the prisoner’s dilemma, a tristable state
emerges, characterized by mixed defection, destructive, and
constructive agents; a mixed state of destructive and construc-
tive agents; and a state dominated by destructive agents. In
the stag-hunt game, a quadstable state arises, featuring mixed
states of defection, destruction, and constructive agents; a
mixed destructive and constructive agent state; a purely de-
structive state; and a state of pure cooperation. The harmony
game exhibits bistability between pure cooperation and a
mixed destructive and constructive agent state. In the chicken
game, dynamics are parameter dependent, sometimes result-
ing in bistability involving a mixed cooperation and defection
state, and a mixed destructive and constructive agents state, or
leading to a singular mixed state of destructive and construc-
tive agents under different conditions.

The concept of loner strategy, alongside destructive
and constructive agents, parallels the notion of social
value orientation [47]. In this framework, loners embody
individualistic values, seeking personal payoff without im-
pacting their opponents. Destructive agents align with com-
petitive values, aiming to harm their opponents while securing
non-negative benefits. Conversely, constructive agents rep-
resent prosocial values by benefiting their opponents, while
also obtaining non-negative payoffs. While the influence of
these strategies on cooperation has been extensively studied,
the role of voluntary participation in fostering cooperation
remains underexplored. These strategies, being specific, do
not encapsulate the broader spectrum of potential behav-
iors. Beyond these, the social value orientation framework
suggests additional motivations for innovative variants of
voluntary strategies. These include masochism, where indi-
viduals accept negative payoffs by exiting the game without
affecting others; martyrdom, which entails negative personal
payoffs alongside generating positive outcomes for others;
and sadomasochism, characterized by negative personal pay-
offs coupled with inflicting harm on opponents; among others.
Therefore, developing a comprehensive theoretical model that
integrates a general voluntary participation strategy, rooted
in social value orientations, presents a compelling research
direction. This approach aims to investigate how diverse social
values impact the evolution of cooperation and assess their
effectiveness in enhancing cooperative behaviors. Such an
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FIG. 6. (a) When the constructive agents’ payoff exceeds others, a polymorphic mixture of destruction and construction replaces defection
if Dr > 0 and disrupts cooperation and a mix of cooperation and defection if Dr < 0. The stable equilibrium of prisoner’s dilemma and
stag-hunt is a coexistence of destruction and construction and a bistable of cooperation and coexistence of destruction and construction. In
contrast, chicken’s mixed equilibrium becomes either bistable, i.e., either embracing a blend of cooperation and defection or coexistence of
destruction and construction, or a monostable coexistence of destruction and construction, and harmony’s cooperation demonstrates bistability
with the coexistence of destruction and construction. (b) When the constructive agents’ payoff is lower than others, defection is changed to
either coexistence of defection-destruction-construction or coexistence of destruction-cooperation, or pure destruction if Dr > 0, but if Dr < 0
stability remains, then it is the same as (a).

endeavor is poised to deepen our understanding of how vari-
ous voluntary participation strategies can address the enduring
puzzle of cooperation.

The critical assumptions of this study—namely, one-shot,
anonymous, and well-mixed scenarios—present a most chal-
lenging context for the evolution of cooperation. While we
found that both constructive and destructive agents do not fa-
cilitate cooperation in the context of pairwise social dilemma
games, the investigation of the impact of these agents war-
rants further exploration, as realistic situations often involve
repeated interactions or some prior information. It is of sig-
nificant interest to investigate the impact of these agents
on cooperation dynamics in scenarios involving repeated in-
teractions [48], networked populations [49,50], higher-order
interactions [51], and other scenarios [52,53].

The programs for theoretical analysis and image generation
are given in Ref. [54].

ACKNOWLEDGMENTS

This research was supported by the National Natural Sci-
ence Foundation of China (Grant No. 11931015). We also
acknowledge support from a JSPS Postdoctoral Fellowship
Program for Foreign Researchers (Grant No. P21374), and
an accompanying Grant-in-Aid for Scientific Research from
JSPS KAKENHI (Grant No. JP 23H03499) to C.S.; the

National Natural Science Foundation of China (Grants No.
11931015, No. 12271471, and No. 11671348), and the major
Program of National Fund of Philosophy and Social Science
of China (Grants No. 22&ZD158 and No. 22VRCO49) to
L.S.; a Grant-in-Aid for Scientific Research from JSPS, Japan,
KAKENHI (Grants No. JP 20H02314 and No. JP 23H03499)
awarded to J.T.; and a Japanese Government (MEXT) schol-
arship, Japan (Grant No. 222143) awarded to K.K.

C.S. and J.T. conceived the research. K.K. and C.S. per-
formed the analytical analysis. All co-authors discussed the
results and wrote the manuscript.

The authors declare no conflict of interest.

APPENDIX

1. Equilibria and stability of destructive agent

Four realistic equilibrium points exist in the presence of
destructive agents obtained from the solution of the replicator
dynamics given by Eq. (2): EA1 = (1, 0, 0), EA2 = (0, 1, 0),
EA3 = (0, 0, 1), and EA4 = ( −Dr

Dg−Dr
,

Dg

Dg−Dr
, 0).

First we reduce the system of equations into a lower di-
mension, setting z = 1 − x − y into Eq. (2); then the new set
of equations will be

ẋ = x[(1 − x)(�C − �DA) − y(�D − �DA)] = fC (x, y),

ẏ = y[(1 − y)(�D − �DA) − x(�C − �DA)] = fD(x, y).

(A1)
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FIG. 7. The mixture of destruction and construction shifts defection in the prisoner’s dilemma and stag-hunt and destabilizes cooperation
and coexistent cooperation and defection in harmony and chicken game. Four three-simplex combined as a four-simplex; for instance, in
prisoner’s dilemma simplex (C, DA, CA) is bistable cooperation and mix of destruction and construction. A mutant defection can invade
cooperation and leads to a monostable mixture of destruction and construction. The parameters are fixed at d = 0.4, d1 = 0.1, d2 = 0.1,
(Dg = Dr = 0.5; PD), (Dg = 0.5, Dr = −0.5; CH), (Dg = −0.5, Dr = −0.5; H), and (Dg = −0.5, Dr = 0.5; SH). Stable nodes are marked
with solid black dots, all points are stable in the thick black dashed line, unstable nodes with white dots, and saddle points with gray
dots.

To examine the stability of these equilibrium points, we calculate the eigenvalues of the Jacobin matrix,

JA =
[

∂ fC (x,y)
∂x

∂ fC (x,y)
∂y

∂ fD (x,y)
∂x

∂ fD (x,y,)
∂y

]
, (A2)

where
∂ fC (x, y)

∂x
= −{[−d + (1 + Dg)x − d1(1 − x − y)]y} + (1 − x)[−d + x − d1(1 − x − y) − Dry]

+ x[d + (1 + d )(1 − x) − x + d1(1 − x − y) − (1 + d1 + Dg)y + Dry],

∂ fC (x, y)

∂y
= x[d + (d1 − Dr )(1 − x) − (1 + Dg)x + d1(1 − x − y) − d1y],

∂ fD(x, y)

∂x
= y[d − x − (1 + d1)x + (1 + d1 + Dg)(1 − y) + d1(1 − x − y) + Dr],

∂ fD(x, y)

∂y
= [−d + (1 + Dg)x − d1(1 − x − y)](1 − y) + [d − (1 + Dg)x − (d − Dr )x

+ d1(1 − y) + d1(1 − x − y)]y − x[−d + x − d1(1 − x − y) − Dry]. (A3)

For a dynamical system represented by its equilibrium
points, stability [55] analysis involves examining the real
parts of its eigenvalues. If all eigenvalues possess nega-
tive real parts, the equilibrium is deemed stable due to the

system’s tendency to return to this state over time. Conversely,
if any eigenvalue has a positive real part, the equilibrium
becomes unstable, indicating divergence from the steady state.
When eigenvalues include negative real parts and those with
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FIG. 8. In the prisoner’s dilemma, the monostable defection equilibrium is replaced by either the coexistence of defection-destruction-
construction or the coexistence of destruction-cooperation or pure destruction; and in the stag-hunt game, the bistable equilibria of cooperation
and defection become tetrastable cooperation or the coexistence of defection-destruction-construction or the coexistence of destruction-
cooperation or pure destruction. Destabilization of cooperation and coexistent cooperation and defection also take place in the harmony and
chicken game as in the previous one. In the prisoners dilemma, simplex (D, DA, CA) is a tristable coexistence of defection, destruction,
and construction, the coexistence of destruction and construction, and destruction. A mutant cooperation cannot change the stability as
it is invaded by defection. The parameters are fixed at d = 0.1, d1 = 0.4, d2 = 0.4, (Dg = Dr = 0.5; PD), (Dg = 0.5, Dr = −0.5; CH),
(Dg = −0.5, Dr = −0.5; H), and (Dg = −0.5, Dr = 0.5; SH). Stable nodes are marked with solid black dots, all points are stable in the
thick black dashed line, unstable nodes with white dots, and saddle points with gray dots.

real parts equal to zero, necessitating a deeper analysis, ap-
plying the center manifold theorem [56] becomes crucial
to understanding the system’s behavior near that particular
point.

Stability of the equilibria

(1) EA1: λ1 = Dg and λ2 = −1 + d , so the real parts of the
eigenvalues will be negative if d < 1 and Dg < 0. Hence, the
equilibrium point EA1 is stable if Dg < 0. However, at Dg =
0, we find a zero eigenvalue; to conclude the stability of this
point, we need to use the center manifold theorem here. The
Jacobin matrix at EA1 is

JA1 =
[−1 + d −1 + d

0 0

]
. (A4)

An invertible matrix U is constructed by arranging the eigen-
vectors of the matrix JA1 as its column elements, which can
diagonalize the matrix,

U =
[

1 0
−1 1

]
. (A5)

Therefore,

U −1JA1U =
[−1 + d 0

0 0

]
. (A6)

The new coordinates are Eq. (A7), and Eq. (A1) has been
transformed into Eq. (A8),[

u
v

]
= U −1

[
x
y

]
=

[
x + y

y

]
, (A7)

u̇ = (−1 + u)[du − d1(−1 + u)u − (u − v)(u − Drv)],

v̇ = −v[d + d1(−1 + u)2 − du + (u − v)(−1 + u − Drv)].

(A8)

Set u = u1 + 1. Then, Eq. (A8) is converted to a diagonal
form given by Eq. (A9),

u̇1 = u1
{ − [

(1 + d1)u2
1

] + d (1 + u1) − (−1 + v)

× (−1 + Drv) + u1(−2 − d1 + v + Drv)
}
,

v̇ = −v
[
(1 + d1)u2

1 + Dr (−1 + v)v

− u1(−1 + d + v + Drv)
]
, (A9)
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which can be written as

Ẋ = PX + F (X,Y ),

Ẏ = QY + G(X,Y ). (A10)

Here, X = v, Y = u1, and P = 0, Q = −1 + d; F and G are
functions of X and Y and F (0) = G(0) = 0, F ′(0) = G′(0) =
0; there exists a δ > 0 and a function h ∈ Cr[Nδ (0)],∀r � 1,
so that h(0) = h′(0) = 0 defines the local center manifold
{(X,Y ) ∈ R2|u1 = h(v) for |v| < δ} and satisfies h′(v){Pv +
F [v, h(v)]} = Qh(v) + G[v, h(v)].

Set u1 = O(v2). Then we obtain

v̇ = Drv
2 + O(v3). (A11)

If Dr < 0, the central manifold will be stable at the origin.
So we can say that at Dg � 0, and 0 � d, d1 � 1, EA1 will be
stable when Dr < 0.

(2) EA2: λ1 = d and λ2 = −Dr , unstable for all d > 0 and
Dr < 0. If d = 0, EA2 has a zero eigenvalue with a negative
eigenvalue for Dr > 0. But, for this condition, the central
manifold is zero, so we cannot make any conclusion. Hence,
using a numerical method, we see that defection is unstable
when Dg > 0 (prisoner dilemma) and Dg < 0 (stag-hunt),
illustrated in the right panels of Fig. 2. Therefore, EA2 is
unstable for all d � 0 and −1 � Dg, Dr � 1.

(3) EA4: λ1 = Dr+d∗Dg−d∗Dr+Dg∗Dr

Dg−Dr
and λ2 = Dg∗Dr

Dg−Dr
, will be

stable if Dr < 0, Dg > 0 and 0 � d � −(Dr+DgDr )
Dg−Dr

.

2. Equilibria and stability of constructive agent

There are six realistic equilibrium points in the
presence of constructive agents obtained from the
solution of replicator dynamics given by Eq. (4):
EB1 = (1, 0, 0), EB2 = (0, 1, 0), EB3 = (0, 0, 1), EB4 =
( −Dr

Dg−Dr
,

Dg

Dg−Dr
, 0), EB5 = (0, d2−d

d2
, d

d2
)d2>d , and EB6 =

( Dr (d−d2 )
d2Dg+Dr−d2Dr+DgDr

,
−Dg(d−d2 )

d2Dg+Dr−d2Dr+DgDr
,

dDg+Dr−dDr+DgDr

d2Dg+Dr−d2Dr+DgDr
)d2>d .

Similarly, we reduce the system of equations into a lower
dimension, setting w = 1 − x − y into Eq. (4). Then the new
set of equations will be

ẋ = x[(1 − x)(�C − �A) − y(�D − �CA)] = gC (x, y),

ẏ = y[(1 − y)(�D − �A) − x(�C − �CA)] = gD(x, y).
(A12)

To examine the stability of these equilibrium points, we
calculate the eigenvalues of the Jacobin matrix:

JB =
[

∂gC (x,y)
∂x

∂gC (x,y)
∂y

∂gD (x,y)
∂x

∂gD (x,y,)
∂y

]
, (A13)

where

∂gC (x, y)

∂x
= −{[−d + (1 + Dg)x + d2(1 − x − y)]y} + (1 − x)[−d + x + d2(1 − x − y) − Dry]

+ x[d + (1 − d2)(1 − x) − x − d2(1 − x − y) − (1 − d2 + Dg)y + Dry],

∂gC (x, y)

∂y
= x[d + (−d2 − Dr )(1 − x) − (1 + Dg)x − d2(1 − x − y) + d2y],

∂gD(x, y)

∂x
= y[d − x − (1 − d2)x + (1 − d2 + Dg)(1 − y) − d2(1 − x − y) + Dry],

∂gD(x, y)

∂y
= [−d + (1 + Dg)x + d2(1 − x − y)](1 − y) + [d − (1 + Dg)x − (−d2 − Dr )x

− d2(1 − y) − d2(1 − x − y)]y − x[−d + x + d2(1 − x − y) − Dry]. (A14)

Stability of the equilibria

(1) EB1: λ1 = Dg and λ2 = −1 + d , so the real parts of
the eigenvalues will be negative if d < 1 and Dg < 0. Hence,
the equilibrium point EA1 is stable if Dg < 0. However, at
Dg = 0, we find a zero eigenvalue; to conclude the stability
of this point, we need to use the center manifold theorem. We
can find the transformed system in Eq. (A15) and the center
manifold given by Eq. (A16) in the previous way,

u̇ = u[(−1 + d2)u2 + d (1 + u) − (−1 + v)(−1 + Drv)

+ u(−2 + d2 + v + Drv)],

v̇ = v[(−1 + d2)u2 − Dr (−1 + v)v

+ u(−1 + d + v + Drv)], (A15)

v̇ = Drv
2 + O(v3). (A16)

The coefficient of v2 will be negative if Dr < 0, and the center
manifold is stable at the origin. Hence the point EB1 is stable
when Dg � 0 and Dr < 0.

(2) EB2: λ1 = d and λ2 = −Dr , unstable for all d > 0.
If d = 0, then EB2 = (0, 1, 0) has a zero eigenvalue with a
negative eigenvalue for Dr > 0. In a similar process, we find
the following transformed system given by Eq. (A17) and the
center manifold given by Eq. (A18):

u̇ = u[Dgu(1 + u + v) − Dr (1 + u)(1 + u + v)

+ v(u + d2v)],

v̇ = v[(Dg − Dr )u2 + (1 + Dg − Dr )u(1 + v)

+ d2v(1 + v)], (A17)

v̇ = d2v
2 + O(v3), (A18)
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which is unstable at the origin as the coefficient of v2 is pos-
itive for 0 � d2 < 1, so the equilibrium point EB2 is unstable
when d � 0 and Dr > 0.

(3) EB3: λ1 = −d + d2 and λ2 = −d + d2, is stable for all
−1 � Dg, Dr � 1 if d2 < d and unstable otherwise.

(4) EB4: λ1 = Dr+d∗Dg−d∗Dr+Dg∗Dr

Dg−Dr
and λ2 = Dg∗Dr

Dg−Dr
, will be

stable if Dr < 0, Dg > 0 and d � −Dr (1+Dg)
Dg−Dr

.

(5) EB5: λ1 = −d (d2−d )
d2

and λ2 = −Dr (d2−d )
d2

, will be stable if
−1 � Dg � 1, 0 < Dr � 1 and 0 � d < d2.

(6) EB6: λ1 = (−d+d2 )DgDr (d2Dg+Dr−d2Dr+DgDr )
(−d2Dg−Dr+d2Dr−DgDr )2 and λ2 =

− (−d+d2 )(dDg+Dr−dDr+DgDr )(d2Dg+Dr−d2Dr+DgDr )
(−d2Dg−Dr+d2Dr−DgDr )2 , will be stable if

−1 < Dr < 0, 0 < Dg � 1, and Dr+DgDr

−Dg+Dr
< d < d2 < 1.

3. Equilibria and stability of the joint of destructive and constructive agents

In combination with destructive agents and constructive agents, there are seven realistic equilibrium points obtained from the
solution of the replicator dynamics given by Eq. (6): EC1 = (0, 0, a, 1 − a)a∈[0,1], EC2 = (a, 0, −d+d2+a−d2a

d1+d2
, d+d1−a−d1a

d1+d2
)a∈(0,1),

EC3 = (0, 1, 0, 0), EC4 = (1, 0, 0, 0), EC5 = ( −Dr
Dg−Dr

,
Dg

Dg−Dr
, 0, 0), EC6 = (0, a, −d+d2−d2a

d1+d2
, d+d1−d1a

d1+d2
)a∈(0,1), and EC7 =

(a,
−Dga

Dr
,

−dDr+d2Dr+d2Dga+Dr a−d2Dr a+DgDr a
(d1+d2 )Dr

,
dDr+d1Dr+d1Dga−Dr a−d1Dr a−DgDr a

(d1+d2 )Dr
)a∈(0,1).

Set w = 1 − x − y − z into Eq. (6). Then the system will be

ẋ = x[(1 − x)(�C − �CA) − y(�D − �CA) − z(�DA − �CA)] = hC (x, y, z),

ẏ = y[(1 − y)(�D − �CA) − x(�C − �CA)] = hD(x, y, z),

ż = z[−y(�D − �CA) − x(�C − �CA)] = hJ (x, y, z). (A19)

The Jacobin matrix is

JC =

⎡
⎢⎢⎣

∂hC (x,y,z)
∂x

∂hC (x,y,z)
∂y

∂hC (x,y,z)
∂z

∂hD (x,y,z)
∂x

∂hD (x,y,z)
∂y

∂hD (x,y,z)
∂z

∂hJ (x,y,z)
∂x

∂hJ (x,y,z)
∂y

∂hJ (x,y,z)
∂z

⎤
⎥⎥⎦, (A20)

where
∂hC (x, y, z)

∂x
= −y[−d + (1 + Dg)x + d2(1 − x − y − z) − d1z] + (1 − x)[−d + x − Dry + d2(1 − x − y − z) − d1z]

+x[d + (1 − d2)(1 − x) − x − (1 − d2 + Dg)y + Dry − d2(1 − x − y − z) + d1z] ,

∂hC (x, y, z)

∂y
= x [d + (−d2 − Dr )(1 − x) − (1 + Dg)x + d2y − d2(1 − x − y − z) + d1z ],

∂hC (x, y, z)

∂z
= x[(−d1 − d2)(1 − x) − (−d1 − d2)y],

∂hD(x, y, z)

∂x
= y [d − x − (1 − d2)x + (1 − d2 + Dg)(1 − y) + Dry − d2(1 − x − y − z) + d1z] ,

∂hD(x, y, z)

∂y
= (1 − y)[−d + (1 + Dg)x + d2(1 − x − y − z) − d1z] − x[−d + x − Dry + d2(1 − x − y − z) − d1z)

]
,

+y[d − (1 + Dg)x − (−d2 − Dr )x − d − 2(1 − y) − d2(1 − x − y − z) + d1z] ,

∂hD(x, y, z)

∂z
= [−(−d1 − d2)x + (−d1 − d2)(1 − y)]y ,

∂hJ (x, y, z)

∂x
= z[d − x − (1 − d2)x − (1 − d2 + Dg)y + Dry − d2(1 − x − y − z) + d1z] ,

∂hJ (x, y, z)

∂y
= z[d − (1 + Dg)x − (−d2 − Dr )x + d2y − d2(1 − x − y − z) + d1z] ,

∂hJ (x, y, z)

∂z
= {−[(−d1 − d2)x] − (−d1 − d2)y}z − y[−d + (1 + Dg)x + d2(1 − x − y − z) − d1z] − x[−d + x − Dry

+d2(1 − x − y − z) − d1z]. (A21)

Stability of the equilibria

(1) At EC1: λ1,2 = −d + d2 − a(d1 + d2) and λ3 = 0 are the eigenvalues; the real parts of λ1,2 < 0 for 0 � d1 < 1, if 0 �
d2 � d < 1 and a > 0 or if 0 � d < d2 and a > −d+d2

d1+d2
. Since there is a zero eigenvalue, to conclude we have to use the center

manifold theorem here.
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The Jacobin matrix at EC1 = (0, 0, a, 1 − a) is

JC1 =
⎡
⎣−d − ad1 + (1 − a)d2, 0 0

0 −d − ad1 + (1 − a)d2 0
a[d + ad1 − (1 − a)d2] a[d + ad1 − (1 − a)d2] 0

⎤
⎦. (A22)

An invertible matrix U is constructed by arranging the eigenvectors of the matrix JC1 as its column elements, which can
diagonalize the matrix,

U =
⎡
⎣− 1

a −1 0
0 1 0
1 0 1

⎤
⎦. (A23)

Therefore,

U −1JC1U =
⎡
⎣−d + d2 − a(d1 + d2) 0 0

0 −d + d2 − a(d1 + d2) 0
0 0 0

⎤
⎦. (A24)

The new coordinates are Eq. (A25), and Eq. (A19) has been transformed into Eq. (A26),⎡
⎣ u

v

w1

⎤
⎦ = U −1

⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣ −a(x + y)

y
a(x + y) + z

⎤
⎦, (A25)

u̇ = 1

a2
(a + u){(−1 + d2)u2 + a2(Dg − Dr )v2 − au[d + d1u + v − Dgv + Drv + d1w1 + d2(−1 + u + w1)]},

v̇ = 1

a2
v{(−1 + d2)u2 − au[1 + d + Dg + d1u + v − Dgv + Drv + d1w1 + d2(−2 + u + w1)]

−a2[d + d1u + v + Dgv − Dgv
2 + Drv

2 + d1w1 + d2(−1 + u + w1)]},

ẇ1 =− 1

a2
(a − w1){(−1 + d2)u2 + a2(Dg − Dr )v2 − au[d + d1u + v − Dgv + Drv + d1w1 + d2(−1 + u + w1)]}. (A26)

Set w1 = w + a. Then the system given by (A26) in (u, v,w) will be

u̇ = − 1

a2
(a + u){−[(−1 + d2)u2] + a2[d1u + d2u + (−Dg + Dr )v2]

+au[d + d1u + v − Dgv + Drv + d1w + d2(−1 + u + w)]},

v̇ = 1

a2
v{(−1 + d2)u2 − au[1 + d + Dg + d1u + v − Dgv + Drv + d1(a + w) + d2(−2 + a + u + w)]

− a2[d + d1u + v + Dgv − Dgv
2 + Drv

2 + d1(a + w) + d2(−1 + a + u + w)]},

ẇ = − 1

a2
w{−[(−1 + d2)u2] + a2[d1u + d2u + (−Dg + Dr )v2] + au[d + d1u + v − Dgv + Drv + d1w + d2(−1 + u + w)]}.

(A27)

Equation (A27) can be written as

Ẋ = PX + F (X,Y ),
Ẏ = QY + G(X,Y ).

(A28)

Here, X = w, Y = [u
v], and P = 0, Q = [−d + d2 − a(d1 + d2 ) 0

0 −d + d2 − a(d1 + d2 )]; F and G are functions of X and Y and F (0) =
G(0) = 0, F ′(0) = G′(0) = 0; there exists a δ > 0 and a function H ∈ Cr[Nδ (0)],∀r � 1, so that H (0) = H ′(0) = 0 de-
fines the local center manifold {[X, H (X )] ∈ R3|Y = H (w) for |w| < δ} and satisfies H ′(w){Pw + F [w, H (w)]} = QH (w) +
G[w, H (w)].

Set Y = O(w2). We find the following center manifold:

ẇ = − 1
a [a(d1 + d2) + (d − d2)]w3 + O(w4). (A29)

The coefficient of w3 will be negative for either d > d2 or d < d2 for all 0 � d, d1, d2 < 1, so the center manifold is stable
at the origin. Hence, the equilibrium point EC1 is stable for all 0 � d, d1, d2 < 1.

(2) At EC2: eigenvalues are λ1 = 0, λ2 = a(1 − d ), and λ3 = aDg. Here, λ > 0 for all 0 � d < 1, so the equilibrium point is
unstable.

(3) EC3: eigenvalues are λ1,2 = d and λ3 = −Dr , so EC3 is unstable as eigenvalues are positive for d > 0.
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(4) EC4: λ1,2 = −1 + d and λ3 = Dg, the real part of the eigenvalues will be negative if d < 1 and Dg < 0; if Dg = 0, then
one eigenvalue will be zero. Using the center manifold theorem, we obtain the following transformed system given by Eq. (A30)
and the center manifold is given by Eq. (A31):

u̇ = (1 + u)[dv + d1(1 + u)v − v2 + d2v(u + v) + vw + Drvw − Drw
2],

v̇ = (−1 + v)[dv + d2uv + d1(1 + u)v − v2 + d2v
2 + vw + Drvw − Drw

2],

ẇ = −w[d + d1(1 + u) − v − dv − d1(1 + u)v + v2 − d2(−1 + v)(u + v) + w − vw − Drvw + Drw
2], (A30)

ẇ = −(d + d1)w + O(w2). (A31)

The center manifold is stable at the origin, which implies EC4 is stable when Dg � 0 and −1 � Dr � 1 for all 0 � d, d1, d2 < 1.

(5) EC5: λ1,2 = Dr+d∗Dg−d∗Dr+Dg∗Dr

Dg−Dr
and λ3 = Dg∗Dr

Dg−Dr
, the real parts of the eigenvalues will be negative if Dr < 0, Dg > 0 and

d � −Dr (1+Dg)
Dg−Dr

, so EC5 will be stable.
(6) EC6: λ1 = −d + d2, λ2 = −ad , and λ3 = −aDr are the eigenvalues; the real parts of λ2 < 0 and λ3 < 0 if Dr > 0. To

conclude the stability in a rather analytic way, we rely on the numerical procedure to avoid complexity (see Fig. 8). It is stable if
0 < d < d2, Dr > 0, and −1 � Dg � 1.

(7) EC7: Coexistent of all strategies, we also rely on the numerical process to conclude this point’s stability. It is unstable for
all possible values of the parameters.
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