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Network compression with configuration models and the minimum description length
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Random network models, constrained to reproduce specific statistical features, are often used to represent
and analyze network data and their mathematical descriptions. Chief among them, the configuration model
constrains random networks by their degree distribution and is foundational to many areas of network science.
However, configuration models and their variants are often selected based on intuition or mathematical and
computational simplicity rather than on statistical evidence. To evaluate the quality of a network representation,
we need to consider both the amount of information required to specify a random network model and the
probability of recovering the original data when using the model as a generative process. To this end, we
calculate the approximate size of network ensembles generated by the popular configuration model and its
generalizations, including versions accounting for degree correlations and centrality layers. We then apply
the minimum description length principle as a model selection criterion over the resulting nested family of
configuration models. Using a dataset of over 100 networks from various domains, we find that the classic
configuration model is generally preferred on networks with an average degree above 10, while a layered
configuration model constrained by a centrality metric offers the most compact representation of the majority of
sparse networks.

DOI: 10.1103/PhysRevE.110.034305

I. INTRODUCTION

When we use random networks as models of empirical
network data, we typically expect faithfulness to increase with
model complexity. The idea is to include limited network
properties that we believe are important while leaving every-
thing else up to randomness. Hopefully, the more information
we include, the more our random networks will look like the
original network data, and our mathematical descriptions of
the network will become more accurate. For instance, con-
sider the Erdős-Rényi (ER) random graph model, the uniform
distribution over all networks with a fixed number of nodes N
and edges E [1], which is perhaps the simplest of sketches one
can make of a network. A random realization of this model is
unlikely to resemble an observed complex network, but the
ER model will nonetheless reproduce its density if N and E
are set to the observed values. More complex models will
capture more intricate patterns, such as degree heterogeneity
or degree correlations.

Data compression allows us to measure the effectiveness
of any random network model by considering the cost of
describing the model and the cost of describing an observed
network given the information specified by the model. More
detailed models (i.e., ones that impose more constraints on
the network structure) are more costly to specify but provide a
more precise summary of an observed network. For example,

compressing network data to only two numbers, N and E ,
provides a very succinct summary of the network, but given
this information, we only know that the original network data
is one of � = (N (N−1)/2

E

) ∼ NN possible networks (scaling
obtained by assuming the sparse limit where E ∼ N). Any
network sampled or generated from this ensemble is unlikely
to be similar to the original network in any significant way.
Hence, while this particular model is a useful mathemati-
cal simplification—we can compute the behavior of many
network quantities mathematically in the ER model—it will
not reproduce many important distinguishing features of the
network it was meant to model.

In this paper, we investigate the usefulness of new devel-
opments in Configuration Models [2,3] in representing and
compressing network data. These models incorporate simple
observable structural features of networks. In its classic form,
the configuration model (CM) summarizes a network with its
degree sequence Nk : the number of nodes with k edges. The
ensemble of networks considered by the CM then contains
all possible configurations that respect the original degree
sequence. More complex models can be constructed in an
analogous manner to add structure to the output, for example,
degree-degree correlations [4] and centrality [5,6]; see Fig. 1
for some examples of models that will be investigated here.

The intuition motivating our analysis is that a smaller
random network ensemble means a better representation of
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(d) LCM

(a) Tree (b) CM

(c) CCM

FIG. 1. Modeling a perfect tree. (a) The original dataset, a Cayley tree. We show random realizations of two models that do not preserve
the structure of the tree: (b) The configuration model (CM) [3] preserving only the degree distribution (represented with different node colors)
and (c) the correlated configuration model (CCM) [4] preserving joint degree-degree correlations also using two node types plus a 2-by-2 edge
matrix specifying frequency of connections between them. (d) The original network is preserved by the layered configuration model (LCM)
[5] using a node type for each of the seven layers—the model can only generate networks with the same structure as the original tree up to
relabeling. The layered correlated configuration model (LCCM) [6], which is not shown, would be indistinguishable from the LCM shown in
panel (d) as there are no degree-degree correlations not captured by the layer structure.

a network data set. Each network model defines a subset of
the entire space of all possible network structures. A small
ensemble size for the model means a smaller subset of that
space and, therefore, smaller distances between any given
random networks from the ensemble and the original network
data. We visualize this intuition using a simple experiment
in Fig. 2. We find without surprise that imposing different
structural constraints on random network models changes the
size and “shape” of the resulting network ensemble. What is
less obvious, and therefore requires careful calculations, is the
trade-off between these models’ accuracy and complexity. For
example, in our simple experiment, the layered configuration
model (LCM) produced the ensemble with the least dispersal
while requiring less information than the correlated configura-
tion model (CCM) but much more information than the CM.
This paper formalizes this question within the nested family
of configuration models: Which of these descriptive random

network models best represents the structure of real complex
networks?

To evaluate the quality of a representation more formally,
we will use the minimum description length principle (DL)
[7–9]. This approach quantifies the level of compression a
model provides by accounting for the amount of information
(calculated in bits) needed to parametrize the model and the
quality of compression the models provide once parametrized.
In this framework, models that provide the most compression
are preferred since good compression can only be achieved
by identifying prominent patterns in the data and modeling
these patterns explicitly. To prevent overly complex models
from being preferred, the DL framework also considers the
informational costs of specifying the model itself, meaning
that, in practice, simple models that provide strong constraints
on the structure are preferred—a formalization of Occam’s
razor. Description length methods have been used to provide
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(a) (b) (c) (d)

FIG. 2. Projection of random network ensembles. We generated an ensemble of Erdős-Rényi (ER) random graphs with N = 250 nodes
and E = 311 edges (on average). We then plotted the density of graphs in the space defined by the clustering coefficient C and the mean
shortest path length � of each graph [17]. We then picked one unique graph at random (shown with a cross), and generated graphs from the
corresponding CM, CCM, and LCM ensembles, to see how the area covered by the ensembles in (C, �) space would shrink with additional
constraints. All ensembles are visualized with 1.4 × 106 random draws from each ensemble discretized into the bins indicated by grid cells in
the figures.

compression of network data in a range of inference settings
by exploiting structural regularities in network communities
[10], node features [11–13], and frequent interactions across
network layers or time [14–16].

Here we derive description lengths for the configuration
models shown in Fig. 1 and evaluate the compression obtained
by these models on more than a hundred complex networks
from different scientific domains, including, but not limited to,
social networks (where nodes are often people and links are
some interaction), biological networks (e.g., protein-protein
interaction networks and phylogenetic trees), connectomes
(e.g., axonal connections between brain regions), food webs,
infrastructure networks (e.g., power grids), and transportation
networks (e.g., flights between airports). Our results show that
complex configuration models can offer surprisingly strong
compression, especially when networks are sparse.

II. METHODS

A. Nested family of configuration models

The models considered in this work are the classic CM
[2,3], the CCM [4], the LCM, previously introduced as the
onion network ensemble [5], and the layered correlated con-
figuration model (LCCM) [6]. Examples of typical random
instances of these models are shown in Fig. 1.

All of these models are special cases of a general random
network model where (1) nodes are assigned one of many
possible node types representing their local connectivity pat-
terns, (2) edges follow an edge matrix specifying the number
of edges between node types, and (3) additional connection
rules can also be enforced by assigning types to stubs [18].

First, the types of nodes simply represent degree classes in
the CM and the CCM, and they represent more complicated
joint pairs of degree and centrality layer classes in the LCM
and LCCM. These centrality layers are based on the onion
decomposition [5], which is identical to the k-core decomposi-
tion but tracks the order by which the network is reduced when
peeling nodes under a certain degree. We describe this idea
further in the next sections, but importantly, this centrality
structure fully specifies the structure of perfect trees and is

therefore used to provide a treelike approximation of other
networks [6].

Second, the CCM, LCM, and LCCM are also specified by
an edge matrix specifying connections between types: degree-
degree pairs in the CCM, layer-layer pairs in the LCM, and
complex pairings of degree-layer pairs in the LCCM. These
edge matrices help us specify correlations in otherwise ran-
dom connections. This can help us reproduce, for example, the
fact that social and technological networks both have hetero-
geneous degree distributions, but degree-degree correlations
are expected to be positive in the former and negative in the
latter [19]. Without these correlations, data representing so-
cial or technological networks might look extremely different
from networks generated by the simple configuration model.
Hence, correlations can be critical to achieving a good model
and an effective compression.

Third, the LCM and LCCM are also specified by a com-
plex set of connection rules to preserve the centrality layer
of nodes, whereas preserving degrees is relatively trivial in
the CM and CCM. Within this general framework, we can
calculate the number of possible networks in a given ensemble
by thinking of stubs as tokens and estimating the number of
strings (or sequences) we can build under the constraints of
the edge matrix.

Finally, since all models are essentially the CM with added
node types, correlations, and constraints, we already know
that the ensembles of networks generated by the CCM, LCM,
and LCCM are all subsets of the CM ensemble. The precise
inclusion relationships of our family of configuration models
are represented in Fig. 3.

While we conceptually only consider simple graphs with
no self-loops or multiple edges between neighbors, the calcu-
lations of the next section ignore these constraints to simplify
the combinatorics and obtain rough approximation of ensem-
ble sizes. This is a bad assumption in the sense that the data
we wish to model always represent simple graphs, but it is
generally acceptable in the limit of large networks where the
probability of finding self-loops or multiple edges goes to
zero due to randomness. Further, it is more or less necessary,
as no exact calculations are known even for the simple CM
[20,21], although there are asymptotic results [22–24]. The
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FIG. 3. Inclusion relationships of our configuration models. The
configuration model consists of all simple graphs with a fixed degree
sequence and is a superset of all of the other models considered
in this study. The LCM and CCM, respectively, include additional
information of a different nature—layer centrality and degree-degree
correlations, respectively. By combining the constraints in both the
LCM and CCM, the LCCM represents a subset of all previous
models.

upshot is that the same approximation method can be applied
to more complex models like the LCM and LCCM, for which
no results—even asymptotic ones—are known.

B. Minimum description length

To assess the quality of the compression provided by these
configuration models, we use the minimum description length
principle [7–9]. This principle favors models that provide
the best compression of an observed network, i.e., those that
allow a sender to communicate its structure to a receiver with
the least amount of information. For example, the ER model
discussed in the introduction can be seen as compressing the
structure of a network down to SER = log2

(N (N−1)/2
E

)
bits,

since one can associate each of the �ER = (N (N−1)/2
E

)
net-

works of E edges and N nodes to a unique bitstring of length
SER = log2 �ER, and thus transmit a network with one such
string. We say that the ER model provides the compression
because the length SER of the bitstring corresponds to the en-
tropy of the ER model, SER = −∑

(1/�ER ) log2(1/�ER) =
log2 �ER. Shannon’s source coding theorem shows this is the
most efficient compression when networks are truly drawn
from the ER model [25].

We must also consider the parameters to compute the to-
tal cost of transmitting an arbitrary network with the coding
scheme implied by a model. For example, in the case of the
ER model, these parameters are the node and edge counts,
which take log2 E and log2 N bits to send (or a bit more if
we choose representations of fixed lengths, e.g., 64-bit inte-
gers). In this particular case, the information costs, in bits,
of these numerical parameters can be neglected compared
to a model’s entropy, and we will thus ignore them here. In
general, however, the parameters of more complex models can
amount to significant information costs of the same order as
S . In general, we thus write the compression provided by a
model as

LModel = SModel + PModel, (1)

where PModel is the number of bits needed to send model
parameters. This additive form shows that a model that does
not leave much to randomness may nonetheless be passed on
if it incurs a large parameter entropy PModel.

III. CALCULATIONS

A. Configuration model

The CM is the simplest model we consider, as there are
no constraints or correlations to take into account other than
the degree distribution. The network is specified through T
nonempty degree classes containing the sets of Nk nodes of
degree k. The generative process is equivalent to reshuffling
a string of tokens representing individual stubs. Since the
degree distribution pk = Nk/N is given, we know we have
Nk nodes with k stubs and therefore Nk nodes contributing
k tokens in our string for a total of

∑
kNk = 2E tokens. The

number of ways to shuffle the string is given by (2E )!. We are,
however, overcounting some networks, as we can shuffle pairs
of tokens and keep the graph intact. This process is illustrated
in Figs. 4(a) and 4(b).

Accounting for the shuffling of pairs, the permutation of
token order within pairs, and the equivalence of stubs from
the same node, the ensemble size for the CM is given by

�CM = (2E )!

E !2E
∏

k (k!)Nk
. (2)

The term E ! controls the number of ways to reshuffle the
edges obtained from a given stub sequence without actually
changing the network. Similarly, 2E accounts for the possible
ways to reshuffle any two stubs within every edge. Finally,∏

k (k!)Nk comes from a product over every node i with degree
ki, i.e.,

∏
i ki!, which corresponds to the number of possible

ways to reshuffle all stubs corresponding to the same nodes.
Note that we are still considering nodes as labeled, meaning
that we do not attempt to control for isomorphic realizations
of the models: If two networks are identical when ignoring
node labels, then they are still counted as separate realizations
in this calculation.

Combining Eq. (2) with S = log2 � yields the following
microcanonical entropy for the CM ensemble:

SCM = log2 [(2E )!] − log2 [E !] − E log2 2 −
∑

k

Nk log2 [k!].

(3)
To obtain the description length LCM of the CM, we add

the information needed to define the model itself [7,8]. In
this case, the only information required is the degree distri-
bution. The cost of this information can be upper-bounded
by its microcanonical entropy [9], the logarithm of the num-
ber of possible degree sequences given the already known
constraints N and T . This is the length in bits (or nats if
using the natural logarithm) of the bitstring one needs to
send to a receiver to specify a particular degree sequence
out of the total number of possible degree sequences with
N nodes and T unique degree classes. In this case, one can
find an upper bound on the microcanonical entropy. We first
specify a degree distribution out of all possible histograms of
N integers in the 1 to T interval representing a distribution
over nonempty degree classes [26], i.e., (( T

N )) = (N+T −1
N

)
. This
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(a) (c)

(d) (f)

(e)

(b)

FIG. 4. Shuffling edges in random networks. [(a) and (b)] In the configuration model, we can tag stubs according to the node to which
they are attached, shown in (a). All random orderings of all 2E stubs can be turned to networks by connecting adjacent nodes pairwise, shown
in (b). We must, however, account for the fact that different orderings can lead to the same network: The order of the stubs of a given node
does not matter, the ordering of edges does not matter and the order of stubs within an edge does not matter. [(c) and (d)] In the correlated
configuration model, we now separate the stub list into distinct lists containing the stubs attached to nodes of a given degree, shown in (c) for
the network in (d). [(e) and (f)] In the onion network ensemble of Ref. [5], the stub list is separated into different lists for stubs attached to
nodes of different layers, and stubs from layer l are also colored according to whether they point to l ′ < l − 1 (green), l ′ = l − 1 (black) and
l ′ > l − 1 (red). Panel (e) shows an example of stub lists for the network in (f). The colors of the stubs in (e) are not related to the colors of
the nodes in (f), which correspond to the layer where the node is found. The layered correlated configuration model considered in the text
extends this description by distinguishing edges not only by the layer they connect [i.e., e(l, l ′)] but by the joint degree-layer type of nodes
they connect [i.e., e({k, l}, {k′, l ′}].

gives us a degree distribution but not the individual type of
every labeled node. We, therefore, also need to specify one
of the N!∏

k Nk ! permutations of node labels that lead to the
same labeled type sequence over the chosen histogram. We
finally need to specify which degree should be assigned to
each of the T nonempty degree node classes, which is one
of

(kmax+1
T

)
possible assignments, where kmax is the maximum

degree in the network. Summing all of these terms allows us
to approximate the number of bits needed to parametrize the
CM as

PCM =SCM + log2[(T + N − 1)!] − log2[N!] − log2[(T − 1)!]

+ log2[N!] −
∑

k

log2[Nk!] + log2[(kmax + 1)!]

− log2[T !] − log2[(kmax + 1 − T )!]. (4)

The DL of the classic CM is given by the sum of Eqs. (3) and
(4),

LCM = SCM + PCM. (5)

B. Correlated configuration model

The CCM is an extension of the CM with added degree-
degree correlations. To include these correlations, each degree
class is a unique node type. The edge matrix e then provides
the number e(k, k′) of edges between nodes of degree k and
nodes of degree k′.

As illustrated in Figs. 4(c) and 4(d), we are now shuffling a
stub list for each node type, or degree class, meaning that we
have at most kmax lists of tokens. We then connect nodes both
across lists [for instance, the first e(1, 2) tokens in the second
list are stubs from nodes of degree 2 that will be connected to
stubs from nodes of degree 1] and within the lists [diagonal
elements e(k, k)]. There are

∏
(kNk )! ways of shuffling all

the lists and accounting for the same permutations as before,
giving

�CCM =
∏

k (kNk )!∏
k,k′>k[e(k, k′)]

∏
k[2e(k,k)e(k, k)!(k!)Nk ]

. (6)

The first product in the denominator accounts for the shuffling
of edges between tokens of different lists. The factors in the
second product of the denominator account respectively for
the permutation of token order within e(k, k) edges, for the
shuffling of such edges, and for the equivalence of stubs of
the same node. Taking the log, we then find

SCCM =
∑

k

⎧⎨
⎩ log2[(kNk )!] − Nk log2[k!]

−e(k, k) log2 2 −
∑
k′�k

log2[e(k, k′)!]

⎫⎬
⎭. (7)

The description length LCCM will be similar to LCM cal-
culated in Eq. (5). To define the CCM model, we must also
communicate the T × T matrix of edges e(k, k′). Following
Ref. [27], we specify which matrix we are using among
all possible matrices with marginals {kNk}. The information
needed to specify which matrix defines the model is then given
by the logarithm of the total number of matrices, yielding

PCCM = log2[M(e)] + log2[(T + N − 1)!] − log2[N!]

− log2[(T − 1)!] + log2[N!] −
∑

k

log2[Nk!]

+ log2[(kmax + 1)!] − log2[T !]

− log2[(kmax + 1 − T )!], (8)

where M(e) is the number of matrices with the marginals of
the network edge matrix e as calculated in Ref. [27]. The
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FIG. 5. Layered configuration models. In layered configuration
models, nodes are described by their joint layer-degree type. In the
models considered here, edges follow constraints that preserve the
layer of a node (i.e., its centrality) under the onion decomposition
[5]. Following these local connection rules provides an edge shuffling
mechanism that allows us to produce random networks with a fixed
centrality structure based on the concept of k cores and onion layers.

remaining terms specify the degree sequence as in our pre-
vious calculation for the CM. Summing Eqs. (7) and (8), we
get the following DL for the CCM,

LCCM = SCCM + PCCM. (9)

C. Layered configuration model

The LCM is the model used to generate the onion net-
work ensemble in Ref. [5]. The layers are used to enforce a
centrality structure in the random networks; an illustration of
the idea is given in Fig. 5. This centrality structure is based
on the onion decomposition, a refined version of the classic
k-core decomposition. In the k-core decomposition, we are
looking for k cores: The maximal subset of nodes where all
nodes have a degree at least k among each other. To find k
cores, the algorithm removes all nodes of degree less than k
iteratively until all nodes left have a degree at least k. The sets
of nodes removed at every iteration of the algorithm define
the layers of the onion decomposition. A layer l corresponds
to a unique coreness c(l ) where c(l ) + 1 equals the k used
to remove nodes of the l-th layer in the k-core algorithm. As
described in Ref. [5], we know that nodes in layer l have at
least c(l ) degrees leading to nodes in layers l ′ � l − 1 and
at most c(l ) degrees leading to nodes in layers l ′′ � l . To
keep track of these structural constraints stubs are now colored
based on which layers they reach. From layer l , stubs leading
to layers l ′ < l − 1 are called green stubs, stubs leading to
layer l ′ = l − 1 are called black stubs, and stubs leading to
layers l ′ � l are called red stubs. In the LCM, we specify
the joint layer-degree distribution Nk,l/N for nodes and a
coarse-grained edge matrix e that specifies the number e(l, l ′)
of edges between two layers. From that information, we can
define the fraction of nodes in layer l and the average degree of
nodes in layer l: wl = ∑

k Nk,l/N and 〈k〉l = ∑
k kNk,l/wlN

respectively. These quantities allow us to calculate the fraction
of stubs leaving layer l that are red or green using

pr|l =
∑

l ′�l e(l, l ′)
wl cl/〈k〉 , (10)

pg|l =
∑

l ′<l−1 e(l ′, l )

wl [〈k〉l − c(l )]/〈k〉 , (11)

which yields the colored degree distribution for nodes in layer
l of degree k:

P(kr, kg, kb|l, k) =
(

cl

kr

)
[pr|l ]kr [1 − pr|l ]cl −kr (12)

×
(

k − cl − δkr ,cl δcl ,cl−1

kg

)
[pg|l ]kg

× [1 − pg|l ]k−cl −kg−δkr ,cl δcl ,cl−1 δk,kr+kb+kg. (13)

A similar derivation is provided in more detail in Ref. [6].
Bringing this back to ensemble size, in Figs. 4(e)–4(f),

we now not only have lmax lists (one for each layer), but
tokens now adopt a color-based on which layers l ′ they can
reach; whereas stubs in the CCM follow correlations, but are
mostly always free to connect to any other type of nodes. We
already know the distributions of red, green, and black stubs
per layer, and we know that within a given layer l , they must
respectively sum to

R(l ) =
∑
l ′�l

e(l ′, l ) + 2e(l, l ), G(l ) =
∑

l ′<l−1

e(l ′, l ),

B(l ) = e(l, l − 1). (14)

We can then shuffle three lists for every lmax layers, such that
every list contains stubs from a specific layer with a specific
color/destination. We find

�LCM

=
∏

l

R(l )!G(l )!B(l )!

2e(l,l )
∏

l ′�l e(l, l ′)!
∏

k

∏
kr ,kg,kb

(
kr!kg!kb!

)Nkr ,kb,kg|k,l
,

(15)

as well as

SLCM =
∑

l

{
log2[R(l )!] + log2[G(l )!] + log2[B(l )!]

− e(l, l ) log2 2 −
∑
l ′�l

log2[e(l, l ′)!]

−
∑

k,kr ,kb,kg

Nkr ,kb,kg|k,l [log2 kr! + log2 kg! + log2 kb!]

}
.

(16)

To calculate the cost of the corresponding parametrization
of the LCM, we again use a similar logic to calculate the
description length of the LCM. Note that the edge matrix is
of dimension at most lmax and different from the total number
of node types T specified by the joint degree-layer types of
which there are at most kmax�max. The description length LLCM

is therefore upper bounded by

PLCM = log2[M(e)] + log2[(T + N − 1)!] − log2[N!]

− log2[(T − 1)!] + log2[N!] −
∑
k,�

log2[Nk,�!]

+ log2[(kmax�max + 1)!] − log2[T !]

− log2[(kmax�max + 1 − T )!], (17)
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which could be further refined to account for the fact that not
all matrices with the marginals of e correspond to graphical
LCM edge matrices because of the constraints necessary to
preserve layer centrality. With this current form, we obtain the
following DL for the LCM by summing Eqs. (16) and (17),

LLCM = SLCM + PLCM. (18)

D. Layered correlated configuration model

The LCCM is an extension of the previous model to also
account for degree-degree correlations [6]. In the LCCM, we
specify the joint degree-layer distribution Nk,l/N for nodes
and an edge matrix e defined over all pairs of joint degree-
layer node types to specify the number e({k, l}, {k′, l ′}) of
edges between them. As with the previous model, we can
define the fraction of nodes in layer l and the average de-
gree of nodes in layer l , respectively wl = ∑

k Nk,l/N and
〈k〉l = ∑

k kNk,l/wlN . These quantities allow us to calculate
the fractions of stubs leaving layer l that are red or green using

pr|k,l =
∑

l ′�l

∑
k,k′ e({k, l}, {k′, l ′})

Nk,l c(l )/N〈k〉 , (19)

pg|k,l =
∑

l ′<l−1

∑
k,k′ e({k, l}, {k′, l ′})

Nk,l [k − c(l )]/N〈k〉 , (20)

which yields the colored degree distribution for nodes of de-
gree k in layer l:

P(kr, kg, kb|k, l ) =
(

c(l )

kr

)
[pr|l ]kr [1 − pr|l ]c(l )−kr

×
(

k − c(l ) − δkr ,c(l )δc(l ),c(l−1)

kg

)
[pg|l ]kg

×[1 − pg|l]k−c(l )−kg−δkr ,c(l )δc(l ),c(l−1)δk,kr+kb+kg.

(21)

The mathematical description of the LCCM is developed in
detail in Ref. [6]. As with the LCM, we now deal with red,
green, and black colored tokens representing different types
of stubs for every degree-layer type,

R(k, l ) =
∑

k′,l ′�l

e({k, l}, {k′, l ′}) + 2e({k, l}, {k, l}),

G(k, l ) =
∑

k′,l ′<l−1

e({k, l}, {k′, l ′}),

B(k, l ) =
∑

k′
e({k, l}, {k′, l − 1}). (22)

We can then shuffle up to 3kmaxlmax lists that account for the
degree and layer of a node type as well as the colors of their
stubs. We find

�LCCM =
∏
k,l

R(k, l )!G(k, l )!B(k, l )!

2e({k,l},{k,l})
∏

k′�k,l ′�l e({k, l}, {k′, l ′})!
∏

kr ,kg,kb
(kr!kg!kb!)Nkr ,kb,kg|k,l

, (23)

as well as

SLCCM =
∑
k,l

{
log2[R(k, l )!] + log2[G(k, l )!] + log2[B(k, l )!] − e({k, l}, {k, l}) log2 2 −

∑
k′�k,l ′�l

log2[e({k, l}, {k′, l ′})!]

−
∑

kr ,kb,kg

Nkr ,kb,kg|k,l [log2 kr! + log2 kg! + log2 kb!]

}
. (24)

The description length PLCCM is given by an expression almost identical to the previous one but with g = T as edges and
nodes are now distributed over the same joint degree-layer types:

PLCCM = log2[M(e)] + log2[(T + N − 1)!] − log2[N!] − log2[(T − 1)!] + log2[N!] −
∑
k,�

log2[Nk,�!]

+ log2[(kmax�max + 1)!] − log2[T !] − log2[(kmax�max + 1 − T )!]. (25)

Note that Eq. (26) is again an upper bound since not all
T × T matrices whose integer entries sum to 2E correspond
to graphical LCCM edge matrices because of the constraints
necessary to preserve layer centrality. Finally, the DL for the
LCCM is again obtained by summing Eqs. (24) and (25),

LLCCM = SLCCM + PLCCM. (26)

Using the DL framework, Eqs. (5), (9), (18), and (26)
summarize how well these different configuration models can
describe network data. One can think of these results as the
level of compression of actual network data by normalizing
them with the number of bits needed to specify exactly the
same network with no model through only its edgelist. While

the ensemble size generated by a model informs us about
the loss incurred during the compression, this ratio informs
us about the compression factor of the model. The lower
the compression factor, the more compression the model can
achieve.

IV. RESULTS AND DISCUSSION

A. Model comparison on network data

To provide some intuition about the size of random net-
work ensembles (a proxy for how closely they represent
network data) and how their description lengths compare to
each other, we calculate Eqs. (3)–(5), (7)–(9), (16)–(18), and
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TABLE I. Sizes of the configuration model ensembles for a few empirical networks. Smallest ensembles are highlighted in blue.

Network Domain Ref. N 〈k〉 ln �CM ln �CCM ln �LCM ln �LCCM

Cayley tree (z = 3, d = 6) Synthetic – 190 2.0 765 748 503 503
AdoHealth Social [28] 2539 8.2 62 651 61 491 49 228 35 749
arXiv Social [29] 30 561 8.2 983 426 958 272 856 298 723 576
Jazz Musicians Social [30] 198 27.7 6537 4337 4310 6312
Network Scientists Social [31] 1461 3.8 15 266 12 847 10 224 10 232
Slashdot Social [32] 82 168 12.3 3 382 330 3 206 620 3 221 360 3 076 030
C. Elegans Genetic Biological [33] 3180 3.5 30 519 28 628 26 439 24 550
E. Coli Metabolism Biological [34] 1010 6.5 14 788 12 896 11 682 11 624
Flu Phylogenetics Biological [35] 4022 2.0 28 301 27 806 22 449 22 162
Protein Interactions (yeast) Biological [36] 2614 4.9 36 177 34 468 28 933 23 848
Plant Pollinators Ecological [37] 1500 20.3 64 884 57 434 55 049 44 498
Drosophila Connectome Connectome [38] 1781 10.0 35 991 30 618 30 502 31 961
German Roads Infrastructure [39] 1168 2.1 7383 7314 5415 5386
USA Grid Infrastructure [17] 4941 2.7 47 036 46 587 39 287 38 556
World Airports Infrastructure [40] 2939 10.7 66 758 54 937 54 740 57 467
Gnutella Technological [41] 36 682 4.8 726 491 714 576 670 025 615 599
Internet AS Technological [42] 6474 3.9 61 969 55 458 54 726 76 853
PGP Technological [43] 10 680 4.6 162 652 150 996 120 598 110 051

(24)–(26) on a few representative networks and show the
results in Tables I and II. A perfect tree (in this case, a Cayley
tree network, made using six layers with coordination number
three) provides a good example of how the size of a random
network ensemble is inflated through isomorphisms. Accord-
ing to our calculations, the LCM and LCCM lead to a total
of 2502 networks on this perfect tree. One can play with the
network and edge shuffling rules to conclude that all of these
networks are actually isomorphic to each other, meaning that
they only swap node labels but preserve the exact structure of
the tree.

More generally, we find in Table I that the most constrain-
ing model, the LCCM, almost always leads to the smallest
ensemble size. And since the CM, LCM, and CCM are all

supersets of the LCCM, the cases that show otherwise are due
to small data size and the simple graph approximation in our
calculations. In particular, because our calculations rely on the
probabilities of self-loops and multiple edges going to zero,
we expect overcounting of invalid realizations when there
are very few possible pairings of nodes within certain node
classes. This overcounting is much more likely in the most
detailed model, the LCCM. Ignoring self-loops and multiple
edges was necessary to have a flexible calculation methods
able to tackle intricate models but is an approximation that
could be improved in future work.

More importantly, despite its small ensemble size, the
LCCM does not provide a great compression of network data,
as shown in Table II because the underlying model is fairly

TABLE II. Description length provided by the various configuration models for a few empirical networks. The smallest description lengths
are highlighted in blue.

Network Domain Ref. N 〈k〉 LCM LCCM LLCM LLCCM

Cayley tree (z = 3, d = 6) Synthetic – 190 2.0 1292 1273 1183 1221
AdoHealth Social [28] 2539 8.2 100 782 100 991 102 106 147 587
arXiv Social [29] 30 561 8.2 1 551 680 1 545 650 1 504 020 2 181 670
Jazz Musicians Social [30] 198 27.7 10 693 11 922 12 175 28 045
Network Scientists Social [31] 1461 3.8 26 573 23 889 22 068 28 310
Slashdot Social [32] 82 168 12.3 5 216 150 3 400 820 4 879 990 8 908 640
C. Elegans Genetic Biological [33] 3180 3.5 52 658 53 387 55 360 80 818
E. Coli Metabolism Biological [34] 1010 6.5 25 322 25 103 26 630 40 895
Flu Phylogenetics Biological [35] 4022 2.0 46 092 45 478 45 866 50 651
Protein Interactions (yeast) Biological [36] 2614 4.9 61 549 61 847 62 540 94 168
Plant Pollinators Ecological [37] 1500 20.3 102 239 101 760 104 598 187 672
Drosophila Connectome Connectome [38] 1781 10.0 60 203 62 463 68 152 120 477
German Roads Infrastructure [39] 1168 2.1 11 865 11 880 12 594 13 822
USA Grid Infrastructure [17] 4941 2.7 80 077 79 982 77 948 90 731
World Airports Infrastructure [40] 2939 10.7 109 134 112 463 120 821 224 787
Gnutella Technological [41] 36 682 4.8 1 160 690 1 149 450 1 142 220 1 382 090
Internet AS Technological [42] 6474 3.9 105 787 107 730 105 960 183 189
PGP Technological [43] 10 680 4.6 268 909 266 742 253 635 388 913
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FIG. 6. Compression of over 200 network datasets with varying
average degree 〈k〉. The compression factor is defined as the ratio
of the description length of the network, assuming a model, to its
description length using an edge list, i.e., 2E log2(N ) bits. Smaller
values mean the model compresses more. Every network dataset is
represented by a connected triplet: a black marker indicating the
compression level LCM of the configuration model, a triangle in-
dicating the level LCCM of the correlated configuration model, and
a white marker indicating the compression LLCM attained by the
layered configuration model. The difference between the three is
shown in blue if the best-performing model is the LCM, in orange if
it is the CM, and in gray when it is the CCM. The LCM offers a more
compact description for most treelike networks with a small average
degree 〈k〉, while the simpler configuration model is generally more
compressive for denser networks.

complicated to specify. Interestingly, among the three other
simpler models, we find that they all provide the best descrip-
tion on some networks. From these few networks, it appears
that the CCM is preferred when compressing biological and
ecological networks, while the CM and LCM do best in the
rest of the networks. We can hypothesize that since the LCM
constrains its description of a centrality structure based on
a treelike decomposition of networks, it should perform best
on very sparse networks whose structure is more likely to be
treelike.

To test the generality of this conclusion, we calculate the
description lengths of the CM, CCM, LCM, and LCCM on
over 200 network datasets [6]. Our results are summarized in
Fig. 6. We find that the CM provides the best compression for
46% of our network data sets, in comparison with 34% best
compressed by the LCM, and the remaining 20% being best
compressed by the CCM. However, we find that the CM per-
forms best on only 20% of networks with an average degree
below 10. More complicated models are preferred on these
sparse networks, with the LCM offering the best performance
on 50% of these networks and the CCM on the remaining
30%. In general, we can say that the classic CM performs
best on dense networks, while the LCM performs best on
sparse networks. Meanwhile, the LCCM requires constraints
that are too costly to specify relative to the reduction they
achieve in the network ensemble size, resulting in the LCCM
never providing the best compression for the network datasets
studied.

B. Discussion

The classic configuration model is used throughout net-
work science as a simple way of capturing one key

distinguishing feature of complex network data, namely their
degree heterogeneity. Applications of random networks tend
to build on the configuration model in one way or another
to represent the structure of complex networks at a low cost.
Dynamical models are often based on heterogeneous mean-
field approximations [44], which assign a dynamical variable
to each degree class in the configuration models. There is a
conceptual simplicity to these models, as the degree distri-
bution is easy to measure and random networks are easy to
generate under this constraint—as opposed to, say, inference
frameworks like the degree-corrected stochastic block model
[9] that infer block partitions by minimizing the description
length over many possible partitions of a network [26]. But
is the simpler configuration model actually a parsimonious
description of network data? Are there similar alternatives that
better represent complex networks?

We answered this question by analytically approximating
the description lengths of the configuration model and three of
its variants that are further constrained for degree correlations
and layered structure. Surprisingly, we found that the layered
configuration model [5] offered a great trade-off in model
complexity when describing sparse networks. The layered
configuration model relies on a simple description of network
structure based on the onion decomposition, classifying nodes
based on their degree and centrality layer but requiring an
intricate connection scheme to generate complex random net-
works from that description.

Our results motivate further study of layered network mod-
els as they offer a powerful way of capturing the impact
of network centrality on dynamical processes. In that vein,
Ref. [6] showed that adapting a probability-generating func-
tion formalism for the LCCM greatly improved predictions
of bond percolation thresholds. Also, Ref. [45] recently illus-
trated how a heterogeneous mean-field approach generalized
to the LCM allowed for a simple yet effective way to include
complex hierarchies governing how people interact within
an organization. These results suggest that other modeling
approaches could improve accuracy by including informa-
tion about the onion decomposition. For instance, stochastic
block models could be degree-corrected and layer-corrected
to reproduce centrality structure. One could then imagine in-
ferring mesoscopic groupings through block structure while
constraining for macroscopic hierarchical structure through
onion layers.

Finally, it appears that, by using a complex connection
scheme, layered configuration models effectively constrain
the space of random networks at a low information cost,
allowing for an effective representation of complex network
data. Hence, simpler, more efficient layered models should
be investigated, as the LCM used in this work might not be
the most parsimonious layered model possible. More precise
calculations of the ensemble produced by these models should
also be explored to offer a more accurate model comparison
that avoids counting isomorphic realizations. In conclusion,
from dynamical systems to inference frameworks and net-
work analysis, we think layered random networks present
unique opportunities to reconsider how we summarize and
study complex networks. More broadly, our results provide an
inspiring example that creative network representations can
still outperform simple established models.
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