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Populations of spiking neuron models have densities of their microscopic variables (e.g., single-cell membrane
potentials) whose evolution fully capture the collective dynamics of biological networks, even outside equilib-
rium. Despite its general applicability, the Fokker-Planck equation governing such evolution is mainly studied
within the borders of the linear response theory, although alternative spectral expansion approaches offer some
advantages in the study of the out-of-equilibrium dynamics. This is mainly due to the difficulty in computing
the state-dependent coefficients of the expanded system of differential equations. Here, we address this issue
by deriving analytic expressions for such coefficients by pairing perturbative solutions of the Fokker-Planck
approach with their counterparts from the spectral expansion. A tight relationship emerges between several of
these coefficients and the Laplace transform of the interspike interval density (i.e., the distribution of first-passage
times). “Coefficients” like the current-to-rate gain function, the eigenvalues of the Fokker-Planck operator
and its eigenfunctions at the boundaries are derived without resorting to integral expressions. For the leaky
integrate-and-fire neurons, the coupling terms between stationary and nonstationary modes are also worked
out paving the way to accurately characterize the critical points and the relaxation timescales in networks of
interacting populations.
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I. INTRODUCTION

As in many other complex systems like macroscopic bod-
ies composed of atoms and molecules [1], the collective
dynamics of a network of neurons can be effectively described
looking at the time evolution of the density function p of
its microscopic state variables. This density changes in time
according to the following continuity equation:

∂t p = −�∇ · �Sp, (1)

where �Sp is the net flux of particles, i.e., the probability
current of neurons flowing out from an infinitesimal volume
of the phase space. Neurons interact by exchanging action
potentials, the “spikes,” which are brief and stereotyped mes-
sages traveling along their axons. Given a ionic current I
a neuron receives through its membrane, the timing of the
spikes it emits can be faithfully reproduced by generalized
integrate-and-fire (IF) neuron models [2,3]. In general, I de-
pends also on the membrane potential as ionic conductances
are voltage-gated [4,5]. The core state-variable of IF neurons
is the somatic potential V (t ) integrating the input I (V, t ) as

dV

dt
= F (V ) + I (V, t )

Cm
. (2)

*Contact author: maurizio.mattia@iss.it

Here Cm is the membrane capacitance set to 1 by express-
ing I in units of voltage per time, and F (V ) is the drifting
current determining the model-specific relaxation dynamics
towards the equilibrium potential V = 0 [5]. F (V ) incorpo-
rates the decay time τ of the free membrane potential. When
V (t ) crosses the threshold value vthr, a spike is emitted and
the membrane potential is reset to V = vres for a refrac-
tory period τ0 past which the subthreshold dynamics (2) is
restored.

Additional state variables such as synaptic conductances or
activity-dependent ionic currents can be in principle incorpo-
rated to make more realistic the single-neuron spiking activity
[4,5]. However, one-dimensional IF neurons preserve without
loss of generality, all the key features of the network dynamics
of interest here. In this framework the synaptic current is given
by the combination I (V, t ) = ∑K

i=1 Ji(V )
∑

k δ(t − ti,k − di ),
where K is the number of presynaptic neurons and Ji(V ) is the
synaptic efficacy, i.e., the instantaneous change of V (t ) each
spike emitted at time ti,k by the presynaptic neuron i induces
after the axonal delay di.

For mammalian cortical networks it is reasonable to as-
sume a large number of presynaptic contacts (K → ∞) and
relatively small excitatory and inhibitory synaptic efficacies
(Ji → 0) [6,7]. In this limit, I (V, t ) can be linearized (∂V Ji �
0) [5,8,9] making it independent from V , and the diffusion
limit holds provided that the excitatory and inhibitory Ji are
properly balanced [4,5]. The current is then well approxi-
mated by a (in general nonstationary) Gaussian noise [10,11]
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with infinitesimal mean μ(t ) and variance σ 2(t )

μ(ν) = KJν(t ) + μext (t )

σ 2(ν) = KJ2(1 + �2)ν(t ) + σ 2
ext (t ). (3)

For the sake of simplicity, here we considered a ho-
mogeneous population of neurons with firing rate ν(t ) =
limK→∞ 1/K

∑K
i=1

∑
k δ(t − ti,k − di ) with di = 0 and synap-

tic efficacies randomly distributed with mean J = E(Ji )
and standard deviation �J = E[(Ji − J )2]1/2. The recurrent
synaptic input linearly depends on the activity ν(t ) of the ho-
mogeneous population which can be either excitatory (J > 0)
or inhibitory (J < 0). The nonrecurrent synaptic input con-
tributes to the excitation-inhibition balance needed for the
diffusion limit. It is assumed to originate from other excitatory
and inhibitory networks, and it is incorporated as an additional
mean μext (t ) and variance σ 2

ext (t ). In what follows we will
refer to the more general case of voltage-gated conductances,
such that both μ and σ 2 depend also on V as J = J (V ), thus
making use of the linearized Eq. (3) only when explicitly
specified.

By incorporating the above stochastic current in Eq. (2),
a Langevin equation for the membrane potential of a single
neuron results:

dV = [F (V ) + μ]dt + σdW. (4)

Here W (t ) is the standard Wiener process with 0 mean and
〈dW (t )dW (t ′)〉 = δ(t − t ′)dt . Note that, as the infinitesimal
moments in Eq. (3) depend on time via the firing rate ν(t ),
V (t ) is in general a inhomogeneous stochastic process [12,13]
leading to a faithful description of the out-of-equilibrium pop-
ulation dynamics. In homogeneous populations of N neurons
with similar single-neuron parameters like vthr, vres, and τ , and
constant connection likelihood ε = K/N , the membrane po-
tentials of different cells can be seen as independent stochastic
realizations of the same Eq. (4). In the cortical network limit
such independence is granted by having J → 0, while the cen-
tral limit theorem with K → ∞ leads to have input currents
with the same μ and σ 2. This implies that the presynaptic
firing rate ν(t ) is the same for all the neurons, and it is
equivalent to the instantaneous rate of spikes emitted by the
whole population per neuron, i.e., the population firing rate.
Thus, although two generic neurons are not directly influenc-
ing each other, they both have dynamics conditioned by the
same collective activity of the network.

This “extended” mean-field approximation [14] including
also the fluctuation size σ of the “field” (i.e., the synaptic
current), is the foundation of the so-called population density
approach [12,13,15–17]. In this framework, the continuity
equation (1) reduces to the following Fokker-Planck equation:

∂t p = −∂vSp = −∂v[(F + μ)p] + 1
2∂2

v (σ 2 p) ≡ L p, (5)

where L = −∂vA + ∂2
v B is the Fokker-Planck operator with

drift (A) and diffusion (B) coefficients

A(v, t ) = F (v) + μ(v, t )

B(v, t ) = 1
2σ 2(v, t ). (6)

The firing rate is the flux of realizations (i.e., neurons) cross-
ing the emission threshold vthr

ν(t ) = Sp(vthr ) = − 1
2∂v (σ 2 p)|v=vthr , (7)

resulting from Eq. (5) by setting p(vthr, t ) = 0 as vthr is an
absorbing barrier for the diffusive process V (t ) [4].

Finding the general solutions of Eq. (5) is challenging,
and this is due to two main reasons. First, the Fokker-Planck
operator depends on ν via the moments μ and σ 2 as in
Eq. (3). As the firing rate depends on p(v, t ) from Eq. (7), it
makes L = L(p). Eq. (5) is thus a nonlinear partial differential
equation. Second, when a neuron emits a spike, it does not
disappear even if it is “absorbed” in vthr. Actually, its dynam-
ics is restored after resetting the membrane potential to vres.
This guarantees that the number of neurons is conserved, i.e.,∫ vthr

vmin
p(v, t )dv = 1 at any time t . Such reset is incorporated

in Eq. (5) by reentering the exiting flux of realizations in vthr

as a pointlike source δ(v − vres)ν(t − τ0). This source gives
rise to a peculiar boundary condition: Sp(vres

+) − Sp(vres
−) =

ν(t − τ0). As a result, the flux Sp(v) is nonvanishing even un-
der stationary conditions [12,15,18,19], leading to a breaking
of the so-called potential condition [20] usually holding in
equilibrium statistical physics as a consequence of the prin-
ciple of detailed balance.

In addition to the numerical integration of the partial dif-
ferential equations (1) and (5) [16,21–23], their analytical
characterization is mainly investigated via the linear response
theory dealing with the small deviations from the equilib-
rium states [12,17–19,24–27]. Due to its derivation intricacy
only few valuable attempts have been pursued investigating
perturbatively nonlinear dynamical regimes like limit cycles
[12,28].

An alternative approach is to expand the density p as a
linear combination of the eigenfunctions φn(v) of the Fokker-
Planck operator L

Lφn = λnφn, (8)

corresponding to the eigenvalues λn, i.e., the spectrum of
L. First adopted in Refs. [15,18] to study the population
dynamics of neuronal networks, this is a standard approach
in statistical physics [20,29]. It is reminiscent of the time-
dependent Hartree-Fock theory in quantum mechanics [30]
where the basis {φn}n∈Z moves in time following the system
evolution. Indeed, L—and hence φn—depends parametrically
on the time-dependent firing rate [13,15]. Interestingly, the
nonstationary modes φn associated to the nonvanishing eigen-
values λn of L, display a hierarchy of timescales [13,15,31]
such that only the slowest modes of the spectrum con-
tribute to the firing rate dynamics making it low-dimensional
[13,18,32].

This elegant “spectral expansion” approach is particularly
well suited to describe the out-of-equilibrium dynamics of
neuronal networks as it does not rely on the perturbations
of equilibrium states. However, it comes at a price: The
coefficients of such expansion taking into account recurrent
and external synaptic couplings, involve integrals that only
in simplified models can be analytically solved [13,17]. Not
only, if the firing rate fluctuates due to a broadband in-
put from upstream neurons—or endogenously expressed in
finite-size networks (i.e., composed of a finite number of
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neurons)—are taken into account, the approach requires to
manage series which are not easily summable. This is an issue
typically arising when second-order statistics like the Fourier
power-spectrum Pν (ω) = |ν(ω)|2 is studied under stationary
conditions [13,33,34].

Starting from such remarks, here we address the following
question: Is there any way to exploit the advantages of both the
perturbative and the spectral expansion approach to overcome
their intrinsic limitations? In what follows we aim at using
the relaxation dynamics of an uncoupled set of neurons and
the response to small perturbations of a coupled network as
a “Rosetta stone.” This will allow us to translate some key
expressions with a closed form in both linear response and
renewal theory into compact and manageable sum of series
and state-dependent coefficients for the spectral expansion
approach. The results of this effort pave the way to a further
exploitation of the spectral expansion to investigate the out-
of-equilibrium dynamics of spiking neuron networks.

II. MATCHING THE RELAXATION OF ν(t )

Single-compartment IF neurons with Markovian dynamics
(4) and fixed reset potential are renewal processes. If the
moments of the stochastic input current do not change in
time, then the well-established renewal theory for this kind of
stochastic processes fully characterize the probability density
of the interspike intervals (ISIs) as a first-passage time prob-
lem. Here we show that the approach of the spectral expansion
of the Fokker-Planck operator for a set of independent IF neu-
rons can be directly related to the ISI density derived from the
renewal theory. Matching these two equivalent descriptions
of uncoupled neurons, allows us to derive the exact sum of
a family of series that relates to the eigenvalues of the Fokker-
Planck operator. As a result, we solve some notable integral
expressions and specific useful values of the eigenfunctions of
the Fokker-Planck operator. Starting from this the moments of
ISI are worked out leading for instance to a novel formula for
the so-called current-to-rate gain function, i.e., the asymptotic
firing rate of neurons.

A. Relaxation dynamics from the renewal theory

Under stationary condition and in presence of synaptic
current fluctuations (σ �= 0), the collective firing rate ν(t ) of a
set of uncoupled IF neurons always approaches an equilibrium
point ν0. Due to the reset mechanism following the emission
of a spike, spike trains emitted by IF neurons are renewal
point processes. As such, ISIs separating two consecutive
spikes do not depend on the ISIs occurred before. Finding
the probability ρ(t )dt to have an ISI in the interval [t, t + dt]
is a first-passage time problem [4], since it requires to know
when V (t ) crosses the threshold vthr for the first time starting
from V (0) = vres. With this initial condition, the ISI density
can be interpreted as the probability of first-spike occurrence
ρ1(t ) ≡ ρ(t ), leading to recursively define the density ρk (t ) of
the time until the kth emitted spike as

ρk (t ) =
∫ t

0
ρ(τ )ρk−1(t − τ )dτ. (9)

This “renewal equation” [4,5] allows to derive the “spike-
triggered firing rate,” i.e., the mean density of spikes emitted
by an isolated IF neuron at time t

ν(t ) =
∞∑

k=1

ρk (t ), (10)

which in turn is equivalent to the relaxation to equilibrium of
the firing rate ν(t ).

The firing rate in Eq. (10) has a straightforward Laplace
trasform ν̂(s) ≡ ∫ ∞

0 ν(t )e−st dt . Indeed, being ρk (t ) a convo-
lution, Eq. (9) reduces to

ρ̂k (s) = ρ̂(s)ρ̂k−1(s) = ρ̂(s)k.

Introducing it in Eq. (10), ν̂(s) results to be

ν̂(s) =
∞∑

k=1

ρ̂k (s) =
∞∑

k=1

ρ̂(s)k = 1

1 − ρ̂(s)
− 1

= ρ̂(s)

1 − ρ̂(s)
. (11)

This equation establishes a direct nonlocal relationship be-
tween the firing rate of a homogeneous pool of independent
neurons and the ISI density of a single cell [5,35].

B. Relaxation dynamics from the spectral expansion

The firing rate ν(t ) of the mentioned set of independent
neurons can be alternatively derived by expanding the density
p(v, t ) in Eq. (5) as

p(v, t ) =
∑

n

an(t )φn(v),

where φn(v) are the eigenfunctions defined in Eq. (8), and
an(t ) = 〈ψn|p〉 = ∫ vthr

vmin
ψn(v)p(v, t )dv are the projections of

p on the same modes (i.e., eigenfunctions). The infinite set
{ψn(v), φn(v)} with n ∈ Z, is an orthonormal basis such that
〈ψn|φm〉 = δnm [13,15]. Here ψn(v) are the eigenfunctions of
the adjoint operator L† = A∂v + B∂2

v defined as 〈L†ψn|φn〉 ≡
〈ψn|Lφn〉, and having the same spectrum as in Eq. (8):

L†ψn = λnψn. (12)

In the following we will refer to the solution of Eq. (12) for an
arbitrary complex λn = s value as ψ (v, s). The “expanded” p
in the Fokker-Planck equation leads to the following equiva-
lent dynamics for the projections an:

�̇a = ��a
ν = � + �f · �a, (13)

where the contribution due to the stationary mode (n = 0 with
λ0 = 0 and a0 = 1) has been isolated, and a matrix formalism
has been adopted such that {�a}n = an and {�}nm = λnδnm with
m, n �= 0 [13,15]. The current-to-rate gain function

�(μ, σ ) = Sφ0 (vthr ) = − 1
2∂2

v (σ 2φ0)|v=vthr (14)

is the flux of realization crossing vthr under stationary con-
dition, i.e., the asymptotic firing rate ν0. The flux due to the
nonstationary modes (φn with n �= 0) are instead the elements
of the infinite vector �f , which can be conveniently set to
fn = 1/τ [36].
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The linear system (13) has a straightforward solution hav-
ing constant coefficients (μ and σ do not depend on time):

�a(t ) = e�t �a(0)

ν(t ) = � + �f · �a. (15)

As all neurons have a starting membrane potential V (0) =
vres, p(v, 0) = δ(v − vres) and the initial value of the projec-
tions result to be

an(0) = 〈ψn|p(v, 0)〉 = ψn(vres).

Written explicitly, Eq. (15) gives the relaxation dynamics

ν(t ) = � + 1

τ

∞∑
n=1

ψn(vres)eλnt . (16)

C. ISI moments and sums in the spectral expansion

A first sum of coefficients from the spectral expansion
results by setting t = 0 in the relaxation dynamics (15):

� = − �f · �ψres ≡ − 1

τ

∑
n �=0

ψn(vres), (17)

where we took into account that ν(0) = 0. To our knowledge,
this is a novel expression to carry out the current-to-rate gain
function �(μ, σ ) for any IF neuron model.

We anticipate that this is only a particular case of a more
general result. Indeed, the Laplace transform ν̂(s) from the
renewal theory in Eq. (11) can be directly compared to the
one resulting from the firing rate equation (13). In this case
we have

s �̂a(s) − �a(0) = � �̂a(s)

ν̂(s) = �

s
+ �f · �̂a(s),

leading to �̂a(s) = (sI − �)−1 �ψres, and eventually to

ν̂(s) = �

s
+ �f · (sI − �)−1 �ψres. (18)

Recalling Eq. (11) and comparing the two transform ν̂(s) we
obtain:

ρ̂(s)

1 − ρ̂(s)
− �

s
= �f · (sI − �)−1 �ψres ≡ h(s), (19)

highlighting a tight relationship between the ISI density ρ(t ),
the eigenvalues λn and �ψres.

From Eq. (19) other sums can be worked out recalling that
the ISI moments 〈(−t )k〉 = lims→0

dkρ(s)
dsk . We then perform

the same limit on both hand sides of the equation resorting
to the l’Hôpital’s rule and finding that

lim
s→0

h(s) = �〈t2〉 − 2〈t〉
2〈t〉 .

Here, considering that the gain function � = 1/〈t〉 and that
h(0) = − �f · �−1 �ψres, we obtain

h(0) = c2
v − 1

2
= − 1

τ

∑
n �=0

ψn(vres)

λn
, (20)

where cv =
√

〈t2〉 − 〈t〉2/〈t〉 is the coefficient of variation of
the ISIs.

We remark that other sums can be worked out deriving by s
both hand sides of Eq. (19) and taking the limit s → 0. Indeed,
in this limit the derivatives of h(s) reduce to

dkh

dsk

∣∣∣∣
s→0

= −k! �f · �−(k+1) �ψres = −k!

τ

∑
n �=0

ψn(vres)

λk+1
n

for any k > 0.

D. Eigenvalues λk and eigenfunction values ψk(vres )

We can further exploit Eq. (19) by making use of the
Cauchy’s residue theorem. Indeed,

Ress=λk h(s) = Ress=λk

ρ̂(s)

1 − ρ̂(s)
= ψk (vres) (21)

for λk �= 0. This allows us to work out from the Laplace
transform of the ISI probability density the value of the kth
eigenfunction of L† at v = vres. In this way ψk (vres) can be
found without explicitly knowing neither the analytic expres-
sion for ψ (v, s) nor the exact value of the λk . As s = λk are
poles of h(s), a generic line integral of ρ̂/(1 − ρ̂ ) around each
eigenvalues will give ψk (vres).

Note that, being h(0) in Eq. (20) a finite function of the
ISI cv , h(s) has no poles in 0. Thus, the above residue of h(s)
in s = λ0 = 0—the eigenvalue of the stationary mode—is 0.
This allows to derive from Eqs. (19) and (21) an alternative
expression for the current-to-rate gain function:

� = Ress=0
ρ̂(s)

1 − ρ̂(s)
= ψ0(vres). (22)

In principle, this general result can lead to work out novel
analytic expressions for the gain functions of specific neuron
models, as we will show later.

Similarly, the eigenvalues λk can be obtained without re-
sorting to a often complicated minimization procedure as

Ress=λk s h(s)

Ress=λk h(s)
= λkψk (vres)

ψk (vres)
= λk. (23)

Interestingly, from the Cauchy theorem the residues can be
computed as contour integrals including the singularity λk .
This provides an effective numerical way to compute eigen-
values starting from approximated guesses. We will exploit
this approach in the following for the specific case of leaky
integrate-and-fire neurons.

E. Spectral equation for λk from ρ̂(s)

The link between the spectrum of L† and ρ̂(s) pointed out
by Eq. (19) should not be surprising as ρ(t ) is the density of a
first-passage time. As such, ρ(t ) conditioned to have V (0) =
vres and V (t ) = vthr, solves the backward Kolmogorov equa-
tion [4,35]

∂tρ = A(vres)∂vresρ + B(vres)∂2
vres

ρ = L†
vres

ρ, (24)

with boundary condition ρ(t )|vres=vthr = δ(t ). Here the coeffi-
cients A and B in Eq. (6) are evaluated at v = vres and do not
explicitly depend on time t . For the sake of clarity, we write
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explicitly the dependence of the operator L†
vres

on the initial
value of the membrane potential.

Performing the Laplace transform of both hand sides of the
above equation we obtain

−ρ(t )|t=0 + sρ̂(s) = L†
vres

ρ̂(s)

with ρ̂(s) the Laplace transform of the ISI density implicitly
depending on vthr. In the case of interest, vres < vthr and no
spikes are emitted at t = 0 such that ρ(t )|t=0 = 0 and the
above equation reduces to(

L†
vres

− s
)
ρ̂(vres, s) = 0,

where we made explicit the dependence of ρ̂ on the initial
potential vres. As pointed out in [37], this is exactly the same
equation for the eigenfunctions ψk (v) = ψ (v, λk ) provided
that s = λk leading to the equivalence:

ρ̂(vres, s) = a(s)ψ (vres, s).

The arbitrary function a(s) can be derived taking into ac-
count the boundary condition ρ(vthr, t ) = δ(t ) leading to
ρ̂(vthr, s) = 1 and hence to a(s) = 1/ψ (vthr, s), allowing to
recover the known relationship [37]

ρ̂(s) = ψ (vres, s)

ψ (vthr, s)
. (25)

Following Ref. [38], this equation allows to derive a spectral
equation to determine the eigenvalues λk . Indeed, from the
boundary condition associated to the conservation of flux
of realizations exiting from vthr and reentering in vres af-
ter the emission of spike, we have ψ (vres, λk ) = ψ (vthr, λk )
[13,15,17]. Incorporating this constraint into Eq. (25) we
eventually have

ρ̂(λk ) = 1, (26)

i.e., yet another way to compute the eigenvalues of the Fokker-
Planck operator in Eq. (8) as previously derived in Ref. [38].

F. Normalization factor of eigenfunctions ψk(v)

As summarized at the beginning of this section, the spectral
expansion of the population density relies on the assumption
that the eigenfunctions ψk (v) and φk (v) are orthonormal, i.e.,

〈ψn|φm〉 =
∫ vthr

vmin

ψn(v)φm(v)dv = δnm.

Such condition is guaranteed by normalizing the generic solu-
tion of the equation (L† − λk )ψ̃k = 0 by a factor Zk in order
to have ψk ≡ ψ̃k/Zk and

Zk = 〈ψ̃k|φk〉 =
∫ vthr

vmin

ψ̃k (v)φk (v)dv.

This integral expression requires to know explicitly the eigen-
functions of both L and L†. Not only, even when they are
available, a closed form of this integral is difficult to be ob-
tained. Hence, its numerical evaluation is required even when
the integration domain is infinite, as usually vmin → −∞,
eventually making the computation of Zk demanding.

Even in this case, a way out to this issue is offered by the
residue theorem starting from the knowledge of ρ(s). Indeed,

inserting Eq. (25) into Eq. (21) we have

Ress=λk

ψ̃ (vres, s)

ψ̃ (vthr, s) − ψ̃ (vres, s)
= ψk (vres) = ψ̃k (vres)

Zk
,

where we took into account that the normalization fac-
tor does not depend on v and thus the equivalence
ψ (vres, s)/ψ (vthr, s) = ψ̃ (vres, s)/ψ̃ (vthr, s) holds. Putting out
from the residue computation the numerator which becomes
ψ̃ (vres, s) → ψ̃k (vres), the following expression results

Ress=λk

1

ψ̃ (vthr, s) − ψ̃ (vres, s)
= 1

Zk
, (27)

giving the normalization factor as a limit expression without
computing any integral or knowing φk (v). This equation can
be further developed, as the limit underlying the residue can
be solved resorting to the l’Hôpital’s rule eventually leading
to have

Zk = ψ̃
(1)
k (vthr ) − ψ̃

(1)
k (vres), (28)

with ψ̃
(1)
k (v) = ∂sψ̃ (v, s)|s=λk . The above integral expression

of Zk thus reduces to a combination of derivatives of the eigen-
function ψ̃ (v, s). Given this integral-free normalization factor,
from Eq. (22) a novel analytic expression for the current-to-
rate gain function results:

� = ψ̃0(vres)

ψ̃
(1)
0 (vthr ) − ψ̃

(1)
0 (vres)

. (29)

Note that dividing both hand sides of Eq. (28) by Zk leads to
have for any k

ψ
(1)
k (vthr ) − ψ

(1)
k (vres) = 1. (30)

Using this equivalence in Eq. (29), we close the loop recover-
ing the gain function � expressed in Eq. (22).

G. Some remarks on eigenfunctions φk(v) and ψk(v)

Due to the important role played by ψk (v) in the first-
passage time problem and, as we will see later, in determining
the network response to small perturbations, here we briefly
derive its general expression.

The spectral equation (L − λn)φn = 0 is a second-order
differential equation which can be recast into the general form

k2(v)
d2φn

dv2
+ k1(v)

dφn

dv
+ k0(v, λn)φn = 0, (31)

where k1(v) = B(v), k2(v) = 2B′(v) − A(v) and k0(v, λn) =
B′′(v) − A′(v) − λn, assuming that the coefficients in Eq. (6)
do not depend on t . The solutions φn are in general a linear
combination of two fundamental (i.e., independent) solutions
f1(v, λn) and f2(v, λn) of the same equation [39]. The co-
efficients a, b, and d of the combination are determined by
solving a linear system constrained by the boundary condi-
tions of the problem (see for instance [36]):

φn(v) =
{

a f1(v, λn) + b f2(v, λn) vres � v � vthr

d f2(v, λn) vmin < v � vres
,

where we arbitrarily choose f2(v, λn) to be the only solution in
the domain v � vres by imposing the proper limit at v = vmin

(see below).
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The eigenfunctions ψn(v) = ψ (v, λn) of the adjoint
Fokker-Planck operator L† can be derived resorting to the
potential function U (v) [20]

eU (v) ≡ B(v)e− ∫ A(v)
B(v) dv, (32)

such that ψn = eU φn. In doing so the boundary conditions
for p(v, t ) must be taken into account leading to request
that (i) ψn(v) and its derivative are continuous function; (ii)
ψ ′

n(vmin) = 0 in the case v = vmin is a reflecting barrier, alter-
natively to consider vmin → −∞ and φn(vmin) → 0; and (iii)
ψn(vres) = ψn(vthr ) [13,15,17]. Given these conditions and the
above expression for φn(v) the adjoint eigenfunctions are in
general

ψn(v) = f2(v, λn)

Zn
eU (v)

= f2(v, λn)

ZnB(v)W (v)
, (33)

Here we make use of the known expression for the Wronskian
W (v) = f ′

1(v) f2(v) − f1(v) f ′
2(v) which can be in general ex-

pressed as [39]

W (v) = c e− ∫ k1 (v)
k2 (v) dv = c

B(v)2
e
∫ A(v)

B(v) dv. (34)

The arbitrary constant c here can be set to 1 as it is taken into
account in the normalization factor Zn given by Eq. (27).

H. Density ρ̂(s) and gain �(μ, σ ) for notable neurons

The simplest model is the perfect IF (PIF) neuron intro-
duced in Ref. [40] in which the membrane potential V (t )
is a diffusion Wiener process with drift, i.e., F (V ) = μ. In
this model ISI moments are finite only if μ > 0, and the ISI
density ρ̂(s) is an inverse Gaussian whose Laplace transform
is [4,35,41]

ρ̂PIF(s) = exp

[
vthr − vres

σ 2
(μ −

√
μ2 + 2σ 2s)

]
. (35)

From this, the first and second moments of the ISI result to be
〈t〉 = 1/� = (vthr − vres)/μ and 〈t2〉 = σ 2/(μ2�) [4].

A generalization of the PIF neuron model is the one in
which a reflecting barrier at vmin = 0 is incorporated, allowing
to have finite moments of the ISI also for μ � 0. The model
was introduced as a former “neuromorphic” implementation
in VLSI circuits of an IF neuron [42]. This VLSI IF (VIF)
neuron has a closed form of ρ̂(s) [19]:

ρ̂VIF(s) = ζ (s)eξ

ζ (s) cosh[ζ (s)] + ξ sinh[ζ (s)]
(36)

with ξ = vthrμ/σ 2 and ζ (s) =
√

ξ 2 + 2svthr/σ 2, fixing the
reset potential at the reflecting barrier vres = vmin = 0.

The standard, and widely used, leaky integrate-and-fire
(LIF) neuron with F (V ) = −V/τ has also a closed form for
the Laplace transform of the ISI density [37,43]:

ρ̂LIF(s) =
√

exr
2D−s(−

√
2xr )√

ext
2D−s(−

√
2xt )

(37)

with xt = (vthr − μτ )/σ
√

τ and xr = (vres − μτ )/σ
√

τ .
Dν (z) is the parabolic cylinder function solution of the Weber
differential equation [39].

From Eq. (25) we can rewrite ρ̂(s) = ψ̃ (xr, s)/ψ̃ (xt , s)
simplifying the normalization factor, thus allowing to derive
the eigenfunctions ψ̃ (x, s) for the mentioned IF neurons. For
the specific case of the LIF neuron we have

ψ̃LIF(x, s) = e
x2

2 D−s(−
√

2x), (38)

which for the stationary mode s = 0 reduces to ψ̃LIF(x, 0) =
1 [39]. The same expression can be directly derived from
Eq. (33). Indeed, for the LIF neuron A(x) = −x and
B = 1/2 such that eU (x) = ex2

/2, thus to have f2(x, s) =
e−x2/2D−s(−

√
2x) which is a fundamental solution of the

related Eq. (31). Note that an alternative and equivalent
expression for ψ̃LIF(x, s) exists and it relies on confluent hy-
pergeometric functions [43,44].

By using the above expression for ψ̃LIF in Eq. (29) we can
compute the current-to-rate gain function �LIF:

�LIF(xr, xt ) = 1

ψ̃
(1)
0,LIF(xt ) − ψ̃

(1)
0,LIF(xr )

, (39)

with

ψ̃
(1)
0,LIF(x) = ∂sψ̃LIF(x, s)|s=0

= −e
x2

2 D(1,0)
0 (−

√
2x)

= π

2
Erfi(x) + x2

2F 2

(
1, 1
3
2 , 2

; x2

)
. (40)

Here D(1,0)
0 (z) = ∂νDν (z)|ν=0, Erfi(x) is the imaginary error

function and 2F2(a, b, x) is the generalized hypergeometric
function defined in Ref. [39]. To derive such expression we
used the explicit formula for D(1,0)

ν (z) in Ref. [45] valid in the
limit ν → 0. Note that expanding 2F2 in series, the mean out-
put frequency previously derived in Refs. [43,44] is recovered.

In Fig. 1 we compare this new expression and the standard
current-to-rate gain function from [47,48]

�LIF(xr, xt ) = 1√
π

∫ xt

xr
eu2 [1 + erf(u)]du

. (41)

As expected the two �LIF perfectly overlap. However, we
remark that the numerical computation of Eq. (39) is more
demanding and its stability weakens for relatively small vari-
ances σ 2.

I. Eigenvalues and relaxation ν(t ) of LIF neurons

Given for these example neurons the eigenfunctions
ψ (v, s), we can directly test the validity of some the general
equations derived in this section. To do that we first compute
the eigenvalues λk . From Eq. (26), for the PIF neuron they
result to be [38]

λn = −2π2 σ 2

(vthr − vres)2
n2 + i2π�n. (42)

As under strongly drift-dominated regime [μ � F (vthr )] both
LIF and VIF neurons are well approximated by a PIF model,
it is not surprising to see that the above expression has been
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FIG. 1. Comparison of the current-to-rate gain function �LIF

from the standard Eq. (41) (solid) and the novel Eq. (39) (dashed)
for two example synaptic-current variance σ 2τ = 1 mV and 4 mV
(green and blue, respectively). �LIF is function of the current mo-
ments as xt = xt (μ, σ ) and xr = xr (μ, σ ) (see main text). Neuron
parameters are τ = 20 ms, vthr = 20 mV, and vres = 0. The code to
produce this and the other figures can be found in Ref. [46].

previously worked out in both References [15,17,18] and Ref-
erence [13], respectively. Equation (42) can then be exploited
as an initial guess of λn in order to identify a suited line
integral to work out the actual eigenvalues from Eq. (23). Note
that, in the regimes dominated by the current fluctuations σ ,
λn are no more well approximated by Eq. (42) as they are real
[13,49]. Besides, for LIF and VIF neurons with vmin < vres,
an additional set of real λk exists [31,49,50]. These λk can be
found and computed by searching along the real axis (Im s =
0) the nonzero residues in Eq. (23).

In Fig. 2(a) the eigenvalues (circles) computed for an ex-
ample set of uncoupled and identical LIF neurons is shown.
As remarked, we have both complex conjugate couples and
real λk . The eigenvalues are found at the intersection of the
solution of both the real and imaginary part of the spectral
equation ρLIF(s) = 1 (red and blue curves, respectively). This
confirms the reliability of the approach we introduced. Note
that, also the eigenvalue λ0 = 0 of the stationary mode is
shown. In Fig. 2(b) a wider set of λk (M = 100) computed
in the same way is plotted. On the one hand the complex
conjugate eigenvalues are distributed along a rotated parabola,
as expected from Eq. (42). On the other hand, the real λk

display a nonuniform distribution.
With the availability of such a large number of eigenvalues

for the LIF neuron, we can test the rate of convergence of
some of the series derived in this section. First we look at the
relaxation dynamics of ν(t ) given by Eq. (16). As previously
described, and not surprisingly [13,32,38], by increasing the
number M of summed modes the accuracy in reproducing
ν(t ) at shorter timescales improves [Fig. 2(c)]. The modes
included are sorted by −Re λk covering decreasing timescales
(−1/Re λk). For instance, as the second couple of complex
conjugate λk in Figs. 2(a) and 2(b) is Re λkτ � −5, the case
M = 4 accurately reproduces ν(t ) as t � τ/5 � 4 ms (com-
pare light-red and black curves).

Note that, at t < −1/Re λM the estimated ν(t ) from the
corresponding sum of M terms in Eq. (16) blows up. This
means that in the limit t → 0 we need a rapidly increasing
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FIG. 2. Eigenvalues λk and relaxation dynamics of the firing rate
ν(t ) of an uncoupled set of LIF neurons. (a) Distribution of λk , roots
of the spectral equation ρLIF(s) = 1 (circles). Red and blue curves,
separate solutions of Re ρLIF(s) = 1 and Im ρLIF(s) = 0, respectively.
(b) Same as (a) for a wider set (M = 100) of λk computed as the ratio
of residues in Eq. (23) with line integrals around the approximated
guesses of the eigenvalues (see text). (c) Relaxation dynamics of
ν(t ) as in Eq. (16) including a finite number M of eigenmodes
(those with greatest Re λk). Only the real part of the sum is taken, as
with M = {2, 4, 8, 16, 32, 64} not all the complete pairs of complex
conjugate λk are necessarily selected. Red dashed line, stationary
firing rate �LIF(μ, σ ) = 11.8 Hz. Neuron parameters: τ = 20 ms,
vthr = 20 mV, vres = 0 mV, μτ = 17 mV, and σ

√
τ = 4.5 mV.

number of modes to have an accurate estimate of ν(t ) → 0.
This is the limit when Eq. (16) reduces to Eq. (17), mean-
ing that the latter does not appear to be a convenient way
to compute �LIF(μ, σ ). To make this argument clearer, in
Fig. 3(a), for different �t � 1/�LIF, such that ν(�t ) � 0,
we show how slowly the sum in Eq. (16) approximate �LIF

(red-dashed line). For the cases plotted (�t = {8, 4, 2} ms), M
rapidly diverges in order to well approximate the asynmptotic
firing rate (red dashed line, M = {6, 13, 31}, respectively).
A limited rate of convergence is also apparent in Fig. 3(b),
where the coefficient of variation cv of the ISI for the same
LIF neurons computed from Eq. (20) is shown by varying the
number M of summed modes.

III. LINEAR RESPONSE AS A “ROSETTA STONE”

Since now, we focused on a set of uncoupled spiking
neurons. In other words, the expressions we derived pertain
to the single-neuron domain. However, a similar approach
facing the spectral expansion and the perturbative description
of the population dynamics can be further extended. In this
section we focus on this aspect, complementing our “Rosetta
stone” approach to the case of the linear response theory of

034303-7



GIANNI V. VINCI AND MAURIZIO MATTIA PHYSICAL REVIEW E 110, 034303 (2024)

0.0

0.2

0.4

0.6

0.8

1.0
(b)

Sq
ua

re
 IS

I c
oe

ff.
 o

f v
ar

ia
tio

n,
 c

v2

1 5 10 50 100
Number of modes, M

2 20

1 5 10 50 100

-30

-20

-10

0

10

Number of modes, M

G
ai

n 
fu

nc
tio

n,
 Φ

 (μ
,σ

) [
H

z]
LI

F

2 20

(a)

Φ  (μ,σ)LIF
Δt = 2 ms
Δt = 4 ms
Δt = 8 ms

FIG. 3. Rate of convergence of the series giving the gain func-
tion � and coefficient of variation cv of the ISI for LIF neurons.
(a) �LIF estimated from Eq. (16) considering ν(�t ) � 0 for �t �
1/�LIF � 85 ms. The sum τ−1

∑M
n=1 ψn,LIF(vres )eλn�t is computed

by varying the number of modes M sorted by −Re λk . Different �t
are tested: 2 ms, circles; 4 ms, squares; 8 ms, diamonds. Dashed
red line, �LIF as in Fig. 2(c). (b) c2

v computed from Eq. (20):
1 − 2τ−1

∑M
n=1 ψn,LIF(vres )λn. The sum is computed as in (a). Dashed

red line, c2
v = 0.35 resulting from the ISI moments computed from

the derivatives of the Laplace transform ρLIF(s). Neuron parameters
as in Fig. 2.

networks of spiking neurons. The aim is to derive a closed
formula for the integrals giving the coupling coefficients ap-
pearing in the spectral expansion when neurons in the network
are synaptically coupled.

A. Linear response from spectral expansion

Under the “extended” mean-field approximation [14], the
drift and diffusion coefficients of the Fokker-Planck equa-
tion for a network of coupled spiking neurons are function
of the firing rate ν. This because both the infinitesimal mean
and variance of the synaptic current depend on the network
activity: μ = μ(ν) and σ 2 = σ 2(ν). In this general framework
the dynamics of the projection coefficients an(t ) and of ν(t )
result to be [13,15]

�̇a = (� + Cν̇)�a + �c ν̇

ν = � + �f · �a, (43)

where in addition to the coefficients found in Eq. (13), we have
now the coupling terms between modes defined as {C}nm =
cnm and {�c}n = cn0 for any m, n �= 0 with cnm = 〈∂νψn|φm〉.

The couplings can in general affect both current moments
μ and σ 2 independently as in the case of a nonstationary
external input. For this reason in order to compute the linear
response we take into account a small and arbitrary perturba-
tions ε(t ) with different amplification in the drift and diffusion
coefficients (6)

A(v, t ) = A0(v) + A1(v) ε(t )

B(v, t ) = B0(v) + B1(v) ε(t ),

where only the input changes up to the first order are taken
into account (i.e., o(ε2) � 0). Here the time dependence of
A and B is fully embedded in ε(t ), and the above expres-
sion results from a Taylor expansion with A0(v) = A|ε=0 and
A1(v) = ∂εA|ε=0 and the same for B(v, ε). As an example,
considering a perturbation due to a small deterministic current
δI (t ) = ε(t ), the above amplification terms reduce to A1(v) =
1 and B1(v) = 0.

The coupling terms can then be generalized as c(ε)
nm =

〈∂εψn|φm〉. Deriving by ∂ε and applying the ket |φm〉 to both
hand sides of the spectral equation (12) an expression for c(ε)

nm
results:

〈ψn|φm〉∂ελn + λnc(ε)
nm

= δnm∂ελn + λnc(ε)
nm

= 〈L†∂εψn|φm〉 + A1〈ψ ′
n|φm〉 + B1〈ψ ′′

n |φm〉
= 〈∂εψn|Lφm〉 + A1〈ψ ′

n|φm〉 + B1〈ψ ′′
n |φm〉

= λmc(ε)
nm + A1〈ψ ′

n|φm〉 + B1〈ψ ′′
n |φm〉,

where ψ ′
n = ∂vψn and ψ ′′

n = ∂2
v ψn. Indeed, from this we have

c(ε)
nm = A1〈ψ ′

n|φm〉 + B1〈ψ ′′
n |φm〉

λn − λm
∀n �= m (44)

and

∂ελn = A1〈ψ ′
n|φn〉 + B1〈ψ ′′

n |φn〉. (45)

Under the linear response approximation, the Fourier trans-
form of Eq. (43) leads to the transfer function Hε (ω) of the
firing rate [13,33]

Hε (ω) ≡ ν̂1(ω)

ε̂(ω)
= ∂ε� + iω �f (̇iωI − �)−1�cε, (46)

where ν̂1(ω) = ∫ ∞
−∞ (ν(t ) − ν0)e−iωt dt is the Fourier trans-

form of the firing rate fluctuating around ν0 = �(μ0, σ0),
ε̂(ω) is the same transform for ε(t ) and {�cε}n = c(ε)

n0 are those
from Eq. (44).

B. Linear response from Fokker-Planck equation

The same transfer function Hε (ω) can be worked out di-
rectly from the Fokker-Planck Eq. (5) [51]. Here we follow
the perturbative approach introduced in Refs. [12,26] to the
study of IF neuron networks. In this framework Eq. (5) can
be decomposed by taking into account only the first-order
perturbations of the probability density

p(v, t ) = φ0(v) + p1(v, t ) + O(ε2),

i.e., considering p1(v, t ) = O(ε) and neglecting higher-order
terms of the perturbation ε(t ). The eigenfunction φ0 is the
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stationary probability density when the input current has con-
stant moments μ0 and σ0 (i.e., with A = A0 and B = B0). As a
consequence, the firing rate is ν(t ) = ν0 + ν1(t ) + O(ε2) with
ν0 ≡ �(μ0, σ0) (the unperturbed firing rate) and

ν1(t ) = −∂v (B1φ0)|v=vthr
ε(t ) − (B0 ∂v p1)|v=vthr

.

From the Fourier transform of this perturbed firing rate the
transfer function results to be

H (P)
ε (ω) ≡ ν̂1(ω)

ε̂(ω)

= −∂v (B1φ0)|v=vthr
− (B0q̂′

1)|v=vthr . (47)

Here q̂′
1(v, ω) ≡ ∂v q̂1(v, ω) with q̂1 = p̂1/ε̂ the Fourier trans-

form of the Green function determining the linear relationship
between the input ε and the first-order perturbation p1:
p1(v, t ) ≡ ∫ ∞

0 q1(v, τ )ε(t − τ )dτ .
Considering that also the operator L depends on ε, we can

write it as L = L0 + ε(t )L1 + O(ε2) leading to

ṗ1 = L0φ0 + L0 p1 + εL1φ0 + O(ε2)

� L0 p1 + εL1φ0.

Applying the bilateral Laplace transform to both hand sides of
this equation we eventually obtain

s q̂1(v, s) = L0q̂1(v, s) + F0(v) (48)

with F0(v) = L1φ0(v) = −∂v (A1φ0) + ∂2
v (B1φ0), whose so-

lution used in Eq. (47) with s = iω gives the searched transfer
function.

As in Ref. [12], the q̂1 solving Eq. (48) can be derived as
the sum of two functions: the solution of the homogeneous
equation (L0 − s)q̂1 = 0 [i.e., the spectral equation (31) with
s = λn having fundamental solutions f1 and f2], and the par-
ticular solution Q(v, s) to be determined:

q̂1(v) =
{

a f1(v) + b f2(v) + Q(v) vres < v < vthr

d f2(v) + Q(v) vmin < v < vres
.

For the sake of clarity, the dependency on s in all functions
is implicit. As in the above derivation, the usual boundary
conditions lead to a system of linear equations in a, b, and
d to be solved. After some algebra and referring to Eq. (33)
(see Appendix A for details), we find that:

q̂′
1(vthr ) =

WQ, f2 (vthr )
W (vthr )Z − W�Q, f2 (vres )

W (vres )Z

B0(vthr )[ψ (vthr ) − ψ (vres)]
, (49)

where the Wronskian W (v) is from Eq. (34), �Q(v) ≡
limδ→0 Q(v + |δ|) − Q(v − |δ|) and W f ,g(v) ≡ f ′(v)g(v) −
f (v)g′(v). We remark that this formula is valid in general
for any IF neuron model. Besides, it depends only on the
particular solution Q(v) and on the eigenfunction ψ , as from
Eq. (33) f2(v) = ψ (v) Z B0(v)W (v) with Z (s) = Zn|λn=s.

The above expression for q̂′
1(vthr ) can be further simplified

resorting to the method of variation of parameters [39], which
allows to write the particular solution as a combination of the
fundamental ones:

Q(v) = α1(v) f1(v) + α2(v) f2(v), (50)

with

α1(v) ≡
∫ v

vmin

f2(y)F0(y)

B0(y)W (y)
dy

= Z
∫ v

vmin

ψ (y)F0(y)dy

α2(v) ≡ −
∫ v

vmin

f1(y)F0(y)

B0(y)W (y)
dy.

As f1 and f2 are continuous functions, �Q(v) = 0 leading to
have W�Q, f2 (vres) = 0 in Eq. (49). In the same equation, the
other addendum of the numerator simplifies as follows:

WQ, f2 = Q′ f2 − Q f ′
2

= (α′
1 f1 + α′

2 f2) f2 + α1W
= α1W,

considering that from Eq. (50) α′
1 f1 + α′

2 f2 = 0. Inserting
here the expression for α1, we obtain

WQ, f2 (v)

W (v)Z
=

∫ v

vmin

ψ (y)F0(y)dy.

All these simplifications eventually lead to the final expression
for q̂′

1(vthr ):

q̂′
1(vthr ) =

∫ vthr

vmin
ψ (y)F0(y)dy

B0(vthr )[ψ (vthr ) − ψ (vres)]
. (51)

It is interesting to note that from this general result arises the
deep relationship between the linear response of a network
(Hε), its stationary state (F0 = L1φ0) and the statistics of the
single-neuron first-passage time (ψk).

C. Transfer function of LIF neurons

For the specific example of networks of LIF neurons an-
alytic results can be carried out for the transfer function. In
this case the linearized synaptic current Eq. (3) holds and
perturbations can be directly taken into account in the mean
and the variance of the input

μ(t ) = μ0 + μ1 ε(t )

σ 2(t ) = σ 2
0 + σ 2

1 ε(t ).

Here μ0 and σ0 do not depend on time and set the fixed point
around which perturbations are studied.

As in Sec. II H, it is also convenient to change variable in
x = v − μ0)/σ0 leading to simplify the Fokker-Planck equa-
tion (5) into:

∂t p(x, t ) = ∂x(xp) + 1
2∂2

x p ≡ Lx p,

where for the sake of simplicity we set τ = 1. A different unit
time can be adopted simply multiplying by τ all the variables
like μ0, σ 2

0 , ν(t ), and λn. Unperturbed drift and diffusion
coefficients thus reduce to A0(x) = −x and B0 = 1/2, while
the perturbation-related ones are A1 = μ1 and B1 = σ 2

1 .
The general expressions (49) can be now worked out for

LIF neurons:

q̂′
1(xt ) = 2

σ0[ψ (xt ) − ψ (xr )]

[WQ, f2 (xt )

ZW (xt )
− W�Q, f2 (xr )

ZW (xr )

]
,
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where we have taken into account that ∂v = σ−1
0 ∂x leading

to rescale the normalization factor as Z → σ0Z . This with
Eq. (47) allows eventually to write the transfer function

H (P)
ε = σ 2

1

σ 2
0

ν0 − σ0

2
q̂′

1(xt ). (52)

Focusing now on the specific case of an input change
affecting only the drift μ, we have F0(x) = −φ′

0(x)/σ0 by
setting μ1 = 1 and σ 2

1 = 0. The related particular solution of
Eq. (48) can be verified to be [12]

Qμ(x, s) = − φ′
0(x)

(s + 1)σ0
.

Recalling that ν0 = � = −φ′
0(xt )/2, we remark that

Qμ(xt , s) = 2ν0/[(s + 1)σ0] highlighting the direct link
between Q(x) and the flux of realizations Sφ0 (x) under
stationary condition. Making use of all this information in the
above expression for q̂′

1(xt ) (see Appendix B for details), from
Eq. (52) we can derive the transfer function of the modulated
drift μ(t ) of the input current

H (P)
μ (s) = ν0

(s + 1)σ0

ψ ′(xt , s) − ψ ′(xr, s)

ψ (xt , s) − ψ (xr, s)
, (53)

where ψ ′ = ∂xψ . With a similar derivation detailed in Ap-
pendix B, the transfer function of the perturbations to the
variance σ 2(t ) (μ1 = 0 and σ 2

1 = 1) results to be

H (P)
σ (s) = ν0

(s + 2)σ 2
0

[
s + xtψ

′(xt , s) − xrψ
′(xr, s)

ψ (xt , s) − ψ (xr, s)

]
, (54)

where the related particular solution of Eq. (48)

Qσ (x, s) = φ′′
0 (x)

2(s + 1)σ 2
0

has been used [12].
Equations (53) and (54) are due to Ref. [12] for the mod-

ulation of μ and to Ref. [52] for the modulation of σ 2. In
Ref. [52] the explicit expression of ∂xψ was incorporated,
although a further simplification was previously given in
Ref. [53] such that:

ψ ′(x, s) =
√

2 ψ (x, s − 1) + 2x ψ (x, s)

=
√

2 s ψ (x, s + 1). (55)

With this no derivatives in the above transfer functions have
to be computed.

Recalling Eq. (3), we remark that under mean-field approx-
imation the mean and the variance of the input current depend
on the firing rate, and the rate-to-rate transfer function Hν (s)
can be eventually carried:

Hν (s) = Hμ(s)
dμ

dν
+ Hσ (s)

dσ 2

dν
.

D. Matching the transfer functions to derive cn0

Starting from these old and new results we now derive an
expression for the coupling coefficients between nonstation-
ary and stationary modes c(ε)

n0 = {�cε}n found in Eqs. (43) and
(46). To this purpose we note that the transfer function Hε (s)

(where s = iω) derived with the spectral expansion approach,
can give

Ress=λn Hε (s) = λn c(ε)
n0 .

Due to the equivalence between this Hε (s) and H (P)
ε (s) from

the perturbative approach for LIF neurons, we can carry out
an explicit expression for the coupling coefficients as

c(ε)
n0 = 1

λn
Ress=λn H (P)

ε (s).

To compute the residues from Eqs. (53) and (54), we point out
that the spectral equation Eq. (26) can be expressed directly in
terms of adjoint eigenfunctions: ψ (xr, λn) = ψ (xt , λn). From
this we have

Ress=λn

1

ψ (xt , s) − ψ (xr, s)
= 1,

which straightforwardly leads to

c(μ)
n0 = ν0

σ0λn(λn + 1)
[ψ ′

n(xt ) − ψ ′
n(xr )] (56)

and to

c(σ )
n0 = − ν0

2σ 2
0 λn(λn + 2)

(xtψ
′
n(xt ) − xrψ

′
n(xr )). (57)

Here we can eventually make use of Eq. (55) allowing to
explicitly write ψ ′

n(x) = √
2 λnψ (x, λn + 1). Remarkably, as

for the LIF neuron ψn(x) is given by Eqs. (38) and (28), once
we known the eigenvalues λn, the expressions for both c(μ)

n0

and c(σ )
n0 are closed formulas, not requiring any integral on the

x domain. Finally, recalling the dependence on ν of the mo-
ments of synaptic current in Eq. (3), the coupling coefficients
in the firing rate Eq. (43) are

cn0 = 〈∂νψn|φ0〉

= dμ

dν
c(μ)

n0 + dσ 2

dν
c(σ )

n0

= τKJ
(
c(μ)

n0 + J (1 + �2)c(σ )
n0

)
, (58)

where we reintroduced explicitly τ .
Figure 4(a) shows an example distribution of coupling

coefficients c(μ)
n0 due to a μ-perturbation. They appear to be

mainly real and their size scales as |λnτ |−3/2 [Fig. 4(b)].
Increasing the number M of eigenmodes the match between
Eq. (46) from the spectral expansion and the exact Eq. (53)
widen at higher Fourier frequencies ω both in the absolute
value [Fig. 4(c)] and in the phase [Fig. 4(d)], confirming the
correctness of the derived expressions. It is interesting to note
that a relatively small number M of eigenmodes has to be
taken into account in order to have a good match of the linear
response theory in the physiological range ω/2π < 200 Hz.

Similar results are found for the case of a σ modulation of
the input current (Fig. 5). In this example case it is interesting
to note a different scaling of the size |c(σ )

n0 | following two
different slopes, −1 and −2, depending on the real or complex
nature of the eigenvalues, respectively [Fig. 5(b)].

We conclude coming back to the general case of arbitrary
spiking neurons. Applying the residue approach by making
use of Eq. (51) we eventually obtain the general integral
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FIG. 4. Coupling coefficients c(μ)
n0 from Eq. (56) in the linear

response to a perturbation of the mean input current μ for LIF
neurons. (a) Coupling coefficients of the first 100 eigenmodes n
(sorted by Re λn). (b) Scaling of the magnitude |c(μ)

n0 | with the size
|λnτ | of the related eigenvalues. Blue, purple, and red dashed lines
correspond to −1, −3/2, and −2 slopes, respectively. (c) Transfer
function Hμ from Eq. (46) varying the number M of eigenmodes
incorporated (reddish curves) and H (P)

μ from Eq. (53) (cyan dotted
curve): absolute values. (d) Phase of the transfer functions as in (c).
Neuron parameters as in Fig. 2.

expression

c(ε)
n0 = − 1

λn

∫ vthr

vmin

ψn(y)F0(y)dy = −〈ψn|F0〉
λn

.

Note that such expression is the same as Eq. (44) with m =
0. This because F0 = −∂v (A1φ0) + ∂2

v (B1φ0) and, given the
usual boundary conditions, partial derivatives can be moved
to be applied directly to ψn(v).

IV. CONCLUSION

Here, by carrying out and pairing the dynamics of the firing
rate ν(t ) derived from two different approaches, we found
novel analytic expressions for the coefficients underlying the
spectral expansion of the population density p(v, t ). In the
case of an uncoupled set of spiking neurons, we used the
renewal theory in combination with the spectral expansion
approach by pairing the relaxation dynamics of ν(t )—part of
our “Rosetta stone”—eventually obtaining sums of series in
closed form. More specifically, we uncovered a new expres-
sion of the current-to-rate gain function �(μ, σ ) in Eq. (17)
as series of the adjoint eigenfunctions evaluated at the reset
potential ψn(vres). We also found a tight relationship between
the moments of the ISI distribution and a suited combination
of the ψn(vres) and the eigenvalues λn of the Fokker-Planck
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FIG. 5. Coupling coefficients c(σ )
n0 from Eq. (57) in the linear

response to a perturbation of the input current fluctuations σ for
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|c(μ)

n0 | versus |λnτ |. [(c) and (d)] Amplitude and phase of the transfer
function Hσ from Eq. (46) varying M and H (P)

σ from Eq. (54). Other
details as in Fig. 4. Neuron parameters as in Fig. 2.

operator. We remark that all these findings are model-
independent highlighting the descriptive power of the spectral
expansion and further extending recent results reported in
Ref. [38].

From the same side of our Rosetta stone, we found an
alternative way to compute both ψn(vres) and λn. Indeed,
relying on the residue theorem, Eqs. (21) and (23) show how
to obtain from the Laplace transform ρ(s) of the ISI density
both these coefficients. Notably, these equations provide a
great advantage in practical terms to estimate numerically
the eigenvalues λn even when their analytic expressions are
not available. This is due to the fact that usually eigenval-
ues results from the numerical search of the roots of the
spectral equation (26) [13,38], or of the zeros of numeri-
cally derived functions [31,54]. Evaluating residues instead
requires computation of a limit or of a line integral around
the border of a domain centered around some rough guess
for λn. The expected computational advantages resulting from
this residue-based approach can pave the way to effective
implementations of the spectral expansion formalism in the
numerical integration of the network dynamics of spiking
neurons.

For the specific case of LIF neurons, we also derived
additional analytic expressions for the coupling coefficients
cn0 involved in the evaluation of both the out-of-equilibrium
dynamics and the critical points of coupled networks via the
firing rate equation (43). Here we resorted to the linear re-
sponse to a small perturbation of the input as the other side
of our Rosetta stone. Pairing the perturbative response carried
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out from the spectral expansion approach and directly from
the Fokker-Planck equation, we finally obtained Eqs. (56)
and (57). These expressions for cn0 result to involve only the
eigenfunctions at the reset potential ψn(vres) and the eigenval-
ues λn. These coefficients in turn appear to be tightly linked in
Eq. (19) to the ISI density ρ(t ) of isolated cells. In other words
the coupling coefficients are the expression of a single-neuron
feature valid under stationary condition, rather than being a
direct function of the synaptic efficacy J . Although this may
appear as a contradiction, we remark that in Eq. (58) these
single-neuron features in c(ε)

n0 mainly play a modulatory role
of the synaptic coupling KJ , which is fully taken into account
in the mean-field expressions for the current moments μ(ν)
and σ 2(ν).

In the framework of the spectral expansion of p(v, t ), ap-
proximated expressions for c(μ)

n0 has been previously derived
in Ref. [15], finding

c(μ)
n0 � ν0

λn + 1
C(μ)

for networks of LIF neurons working in drift-dominated
regime (μτ > vthr) and with small synaptic noise (xt � 1).
This is perfectly compatible with what we derived here and
reported in Eq. (56), provided that C(μ) = 1/λn with λn =
λn(μ, σ0). Note that our result has a more general applicability
being valid also under subthreshold noise-dominated regime
(μτ < vthr). Another expression for c(μ)

n0 has been recently
presented also in Ref. [38]. In this case the spectral expansion
approach targeted the refractory density, leading to obtain for
the case of a Poisson model with a refractory period τ0, the
following expression:

c(μ)
n0 = ∂μ�

λn + (1 − τ0λn)ν0
−−−→
τ0→0

∂μ�

λn + ν0
.

This equation appears to be qualitatively different from our
Eq. (56) and does not match the evidence shown in Fig. 4
for an example network where |c(μ)

n0 | ∼ |λn|−3/2. A possible
explanation of such disagreement on one hand may reside in
the fact that LIF neurons are not Poissonian processes. On the
other hand, this might highlight a qualitative difference in the
population dynamics described by the refractory density ap-
proach compared to the classical one focused on the evolution
of the membrane potential density. To further clarify, we note
that, aside from the case of an uncoupled population—where a
strong relationship exists between the two formalisms through
the stationary ISI distribution—there is currently no method
to derive an exact hazard function in the time-dependent or
coupled scenarios. Furthermore, there are no guarantees that
such an expression can be formulated self-consistently as a
function solely of the time elapsed since the last spike, thereby
bridging the gap with the fully determined Fokker-Planck
equation.

Note that our derivation of the coupling terms cn0 for LIF
neurons can in principle be applied to other IF neuron models.
We expect in this case qualitatively similar results, confirming
that the ISI density-based coefficients c(ε)

n0 eventually modulate
the system response with strength proportional to KJ . We

also draw the reader attention to the fact that here we did
not report any expression for the coupling coefficients Cnm

between nonstationary modes (n, m �= 0). They are involved
in the nonlinear response of the neuronal network playing a
role when the time derivative ν̇ of the firing rate is relatively
large and the density p(v, t ) is significantly different from the
stationary one (φ0) [13]. Provided that such constraints are
not violated, the network dynamics can be fully described
by taking into account the only coefficients of the spectral
expansion we studied, even when the firing rate is driven
outside equilibrium [31,50].

Regarding the applicability to the out-of-equilibrium dy-
namics, we further point out that all the mentioned coefficients
depend on the infinitesimal moments μ and σ of the synaptic
current. This means that under the extended mean-field ap-
proximation that leads to Eq. (3), all the coefficients depend
from time to time on the activity ν(t ) of the network. Here
μ and σ must be interpreted as parameters. Indeed, it is true
that our Rosetta stone approach allowed us to carry out these
spectral expansion coefficients from the quasiequilibrium dy-
namics (linear response and relaxation in uncoupled sets),
i.e., considering μ and σ as fixed. Nonetheless, for a given
μ and σ they contribute to faithful represent a snapshot of
the moving basis {|φn〉}n∈Z onto which the density p(v, t ) is
projected. The basis moves as the drift and diffusion terms
in the Fokker-Planck equation (5) vary describing a sequence
of stochastic processes (i.e., the membrane potentials of the
neurons) locally homogeneous in time. We believe this is
an important point to stress. Starting from the linearizable
(quasiequilibrium) dynamics of spiking neuron networks, the
spectral expansion coefficients can be derived paving the way
to describe the same system outside equilibrium.
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APPENDIX A: DERIVATION OF EQS. (49) AND (50)

To derive the Laplace transform of the Green function
q1(xt ) in Eq. (49), we recall that it is given by the following
linear combination:

q̂1(v) =
{

a f1(v) + b f2(v) + Q(v) vres < v < vthr

d f2(v) + Q(v) vmin < v < vres
,

for which holds the same boundary conditions in the v do-
main for p(v, t ). This because q̂1 is a linear transform in the
t domain of the first-order perturbation p1. Such boundary
conditions [13,15,17], allows to set the linear system to find
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the coefficients a, b, and d [12,36]:

a f1(vthr ) + b f2(vthr ) = −Q(vthr )

a f1(vres) + (b − d ) f2(vres) = −�Q(vres)

B0(vthr )[a f ′
1(vthr ) + b f ′

2(vthr )] − B0(vres)[a f ′
1(vres) + (b − d ) f ′

2(vres)] = B0(vres)�Q′(vres) − B0(vthr )Q
′(vthr ).

These equations correspond respectively to the conditions about (i) the absorbing barrier in v = vthr; (ii) the fact that A, B, their
derivatives with respect to v and p1 are continuous functions; and (iii) the reentering flux in v = vres.

Solving the above system we have

a = B0(vthr )WQ, f2 (vthr ) f2(vres) − B0(vres)W�Q, f2 (vres) f2(vthr )

B0(vres)W (vres) f2(vthr ) − B0(vthr )W (vthr ) f2(vres)
and

b = B0(vres)
[
W�Q, f2 (vres) f1(vthr ) − W (vres)Q(vthr )

] − B0(vthr )WQ, f1 (vthr ) f2(vres)

B0(vres)W (vres) f2(vthr ) − B0(vthr )W (vthr ) f2(vres)
.

Note that we do not report the expression for d as we
aim at deriving q̂′

1(vthr ) for which the domain of in-
terest is v > vres. Finally, using Eq. (33) for ψ (v), the
denominator of these fractions can be further simplified
in B0(vres)W (vres)B0(vthr )W (vthr )[ψ (vthr ) − ψ (vres)], eventu-
ally leading with some algebra to Eq. (49).

The method of variation of parameters [39] requires to ex-
press the second-order differential equation (48) in canonical
form:

(L0 − s)q̂1 = −F0 ⇒
−∂v (A0q̂1) + ∂2

v (B0q̂1) − sq̂1 = −F0 ⇒
−A0q̂′

1 + B′′
0 q̂1 + 2B′

0q̂′
1 + B0q̂′′

1 − (s + A′
0)q̂1 = −F0 ⇒

B0q̂′′
1 + (2B′

0 − A0)q̂′
1 + (B′′

0 − A′
0 − s)q̂1 = −F0 ⇒

q̂′′
1 + 2B′

0 − A0

B0
q̂′

1 + B′′
0 − A′

0 − s

B0
q̂1 = − F0

B0
.

This gives the inhomogeneous term −F0/B0 to take into
account in computing the coefficients α1(v) and α2(v) in
Eq. (50).

APPENDIX B: DERIVATION OF H (P)
ε FOR LIF NEURONS

From Eq. (47) we know that the generic transfer function
H (P)

ε is proportional to q̂′
1(vthr ) given by Eq. (49), whose

derivation has been detailed in the previous Appendix. Start-
ing from this, and adopting the same change of variable of the
main text, here we provide the key steps needed to obtain the
explicit expressions for H (P)

ε reported in Eqs. (53) and (54) for
the specific case of the standard LIF neuron model. If the input
modulation involves only the mean μ, then Qμ(x) = K φ′

0(x),
where both Qμ(x) and K are implicitly dependent on s, and
from Ref. [12] K (s) = −1/[(s + 1)σ0]. Remembering that
Lx0φ0 = ∂x(xφ0) + 1

2∂2
x φ0 = 0 we can write

Q′
μ(x) = −2xQμ(x) − 2Kφ0(x)

= W ′(x)

W (x)
Qμ(x) − 2Kφ0(x),

where we taken into account that from Eq. (34) the
Wronskian for the LIF neuron reduces to the differential equa-
tion W ′(x) = −2x W (x). The first term of the numerator in
Eq. (49) for the LIF neuron then reduces to

WQ, f2 (xt )

W (xt )Z
= Q′

μ f2 − Qμ f ′
2

WZ

∣∣∣∣
x=xt

= −Qμ

Z

(
−W ′ f2

W2
+ f ′

2

W

)
− 2Kφ0

f2

WZ

∣∣∣∣
x=xt

= −(Qμ + 2Kφ0)ψ ′|x=xt

= −Qμ(xt )ψ
′(xt ),

where we used Eq. (33) replacing λn with s and defining
Z (s) = Zn|λn=s, and we took into account the boundary con-
dition φ0(xt ) = 0. The same can be done with the other term
W�Q, f2 (xr )/W (xr )Z by taking into account the other bound-
ary condition about the flux conservation, Q(xt ) = �Q(xr ),
eventually leading to rewrite Eq. (49) as

q̂′
1(xt ) = − 2

σ0
Qμ(xt )

ψ ′(xt ) − ψ ′(xr )

ψ (xt ) − ψ (xr )
.

Analogous results hold whenever the particular solution is
proportional to the derivative of the stationary eigenfunction.

In the case of a changing variance σ 2 of the input cur-
rent, the particular solution is Qσ (x) = Kφ′′

0 (x) with K (s) =
1/[2(s + 2)σ 2

0 ] [12]. As above, to compute WQ, f2 and W�Q, f2

in Eq. (49) we need the derivative Q′
σ which results to be

Q′
σ = Kφ′′′

0 = −K (2xφ′′
0 + 4φ′

0) = K (4x2 − 4)φ′
0 + 4Kxφ0.

by using the stationary equation Lx0φ0 = 0. As φ0(xt ) = 0
and �φ0(xr ) = 0, the term 4Kxφ0 does not give any contri-
bution and can be neglected leading to

WQ, f2

WZ
= Kφ′

0

WZ
(−4 f2 + 2x(2x f2 + f ′

2))

= Kφ′
0

[
−4

f2

WZ
+ 2x

(
−W ′ f2

W2Z
+ f ′

2

)]

= K (s)φ′
0(x)[−4ψ (x, s) + 2xψ ′(x, s)].

With this, the two terms in the numerator of Eq. (49) can be
derived, and substituting the resulting q̂′(xt ) in Eq. (52) we
eventually obtain Eq. (54).
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