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General theory for extended-range percolation on simple and multiplex networks
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Extended-range percolation is a robust percolation process that has relevance for quantum communication
problems. In extended-range percolation nodes can be trusted or untrusted. Untrusted facilitator nodes are
untrusted nodes that can still allow communication between trusted nodes if they lie on a path of distance
at most R between two trusted nodes. In extended-range percolation the extended-range giant component
(ERGC) includes trusted nodes connected by paths of trusted and untrusted facilitator nodes. Here, based on
a message-passing algorithm, we develop a general theory of extended-range percolation, valid for arbitrary
values of R as long as the networks are locally treelike. This general framework allows us to investigate the
properties of extended-range percolation on interdependent multiplex networks. While the extended-range nature
makes multiplex networks more robust, interdependency makes them more fragile. From the interplay between
these two effects a rich phase diagram emerges including discontinuous phase transitions and reentrant phases.
The theoretical predictions are in excellent agreement with extensive Monte Carlo simulations. The proposed
exactly solvable model constitutes a fundamental reference for the study of models defined through properties
of extended-range paths.

DOI: 10.1103/PhysRevE.110.034302

I. INTRODUCTION

Percolation [1–5] is arguably the most fundamental critical
phenomenon defined on networks, as it reflects the connectiv-
ity properties and the robustness of the network on which it is
defined. The existence of a giant cluster is a prerequisite for
any collective critical phenomenon [1] defined on networks;
thus percolation properties are key to study processes on
networks, such as epidemic-spreading phenomena as well as
Ising models.

Requiring connectivity might, however, be a too strong
request, and in many scenarios it is becoming relevant to study
percolation problems in which this requirement is alleviated.
This is particularly interesting in quantum communication
[6–9] where noisy data transmission can cause signal degrada-
tion [10]. Thus, quantum networks require the use of quantum
repeaters to extend the range of communication between
trusted nodes [11,12]. In order to study connectivity of such
quantum networks it is therefore important to investigate
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percolation problems in which the communication between
trusted nodes might be allowed also if trusted nodes are not
directly connected to each other. Moreover, for secure quan-
tum communication, hybrid classical-quantum networks [13]
between trusted nodes are often needed, thus requiring the
investigation of multilayer [14] percolation properties of these
networks.

Here we focus on extended-range percolation (ERP), a
robust percolation process where nodes may belong to the
same component even if they are not directly connected, and
we propose a general theory of this model on simple and
multilayer networks. This model has been recently proposed
and investigated on random networks in Ref. [15]. Also the
lattice version of this model has attracted significant attention
recently [16–22].

There is an increasing interest in percolation problems
that do not require the traditional notion of connectivity. In
addition to ERP, several other percolation models have been
recently proposed in which percolation is defined through
properties of the shortest paths of the network or through
generalized notions of connected components. These include
concurrence and α percolation [4,23], motivated by quantum
communication, shortest path percolation [24], motivated by
transportation networks, no-exclaves percolation [25], mo-
tivated by the need to enhance network robustness, and
color-avoiding percolation [26,27], to reproduce nonuniform
vulnerability of nodes to attack or failure. Moreover models
assuming a nonlocal definition of connectivity are raising
interest in the last few years, also beyond the theory of
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percolation with many applications including notably epi-
demic spreading [28,29]. Thus, a general theory of ERP on
simple and multilayer networks might inspire further research
in this direction.

In ERP nodes can be trusted with probability p and
untrusted with probability 1 − p. Untrusted nodes can be in-
volved in the communication between trusted nodes if they
lie on a path between trusted nodes of length at most R.
We call these nodes facilitator nodes. The extended-range
giant component (ERGC) is formed by all the trusted nodes
connected by paths of trusted and facilitator nodes and by
all the untrusted nodes at distance less than R from these
trusted nodes. Recently the exact solution of extended-range
percolation on uncorrelated random graphs with given degree
distribution was found for R up to 6 [15]. However, this
solution relies on involved combinatorial definitions which
impede a straightforward extension of the approach to treat
larger values of R as well as to address generalized percolation
problems on multilayer or higher-order networks.

Here we provide a general theory of ERP for any arbitrary
R that is based on a message passing (MP) approach where
the messages have a simple and transparent combinatorial
interpretation allowing a deeper theoretical understanding of
the model as well as an easier generalization to multilayer
networks. The message-passing approach [14,30,31] defines
a fundamental distributed computation that applies to a large
variety of critical phenomena and dynamical processes on
networks including percolation, network control, and opti-
mization problems [32–37]. For standard percolation the MP
predicts the size of the giant component on arbitrary network
topology as long as it is locally treelike; extensions beyond
this approximation are a topic of active research [38,39]. Here
we fully develop a message-passing theory of ERP that allows
us to predict the size of the ERGC for any value of R and
for any arbitrary network that is locally treelike. In this work
we also use this theory to investigate ERP in random graphs
with given degree distribution. We stress that, although the
formalism and approach developed here is markedly distinct
from the one formulated in Ref. [15], the equations that we
obtain for arbitrary R are equivalent to the ones obtained by
the previous work for R up to 6.

The general theory for ERP formulated in this work for
single networks is then used to investigate the percolation
properties of multiplex networks under the extended-range
framework. Multiplex networks [14,40,41] are formed by N
nodes connected via M distinct networks (layers). Multiplex
networks describe a large class of complex interacting systems
where nodes are related by interactions of different types.
Notable examples include interacting infrastructure and com-
munication networks or biological networks inside the cell.
The robustness of multiplex networks has raised significant
interest [14,35,42–45], as interdependencies between the lay-
ers can lead to an increased fragility of the system, thus
providing a framework to model cascades of failure events
propagating across the layers of the multiplex network. In
particular in Ref. [42] a multiplex interdependent percolation
(MIP) problem has been defined. The order parameter of this
model is given by the size of the mutually connected giant
component (MCGC) formed by nodes (directly) connected to
each other by at least one path on each layer. The MCGC

emerges exhibiting a discontinuous hybrid phase transition,
and its critical properties reflect the increased fragility of the
system.

In this work we investigate the trade-off between the
effect of interdependencies present in multiplex networks
that increase the fragility of the multiplex networks, and
the extended-range mechanism that facilitates communication
between otherwise disconnected nodes. To this end, we for-
mulate the Multiplex Extended-Range Percolation (MERP)
whose order parameter is the size of the Multiplex Extended-
Range Giant Component (MERGC). We introduce a notion of
interdependency for trusted nodes. However, since untrusted
nodes play a significant role in extended-range percolation,
the definition of the model is not complete if we do not specify
whether untrusted nodes are interdependent. This leads to two
variants of the MERP (version V = 1 and version V = 2).
In version V = 1 of MERP an untrusted node belongs to
the MERGC if it belongs to the ERGC in each layer. Thus,
this version imposes interdependencies for untrusted nodes.
In version V = 2 instead, it is sufficient that an untrusted
node is part of the ERGC in at least one layer to belong to
the MERGC, i.e., we do not impose interdependencies for
untrusted nodes.

We provide an exact solution of both versions of MERP on
uncorrelated random multiplex networks with arbitrary degree
distributions. Our analysis of the critical phenomena of MERP
is based upon analytical predictions of the phase diagram,
supported by extensive Monte Carlo simulations. We reveal
the important interplay between the effect of interdepende-
cies and of the extended-range mechanism. In particular, the
study of version V = 2 of MERP shows a highly nontrivial
phenomenology with a reentrant discontinuous hybrid phase
transition, observed in multiplex networks where the MCGC
does not exist.

This paper is structured as follows: In Sec. II we de-
fine extended-range percolation on simple networks, and we
present a general message-passing theory to predict the size
of the ERGC on arbitrary treelike networks. In Sec. III we
formulate a general theory of extended-range percolation on
random networks, valid for any arbitrary choice of the range
R, and we compare our theory with Monte Carlo simulations.
In Sec. IV we formulate the two versions of MERP (version
V = 1 and version V = 2). We provide a general analytic
theory to calculate the MERGC, and we discuss the critical
properties of MERP, including the presence of a characteristic
reentrant phase transition in the version V = 2 of this model.
Our theoretical predictions are in excellent agreement with
Monte Carlo simulations. Finally in Sec. V we provide the
concluding remarks. The paper is enriched with Appendixes,
providing details of the derivation of the message-passing
theory for ERP, explicit equations for ERP and MERP for
finite values of R, and discussion of the equivalence of the
equations of ERP for R � 4 with the equations derived in
Ref. [15].

II. EXTENDED-RANGE PERCOLATION
AND MESSAGE-PASSING APPROACH

Consider a network G = (V, E ) of N = |V | nodes where
nodes are either untrusted or trusted. Communication between
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FIG. 1. Schematic representation of extended-range percolation
on networks. Trusted and untrusted nodes are represented by filled
and empty circles, respectively. The extended-range giant compo-
nent (ERGC) of range R = 2 (smaller, blue component) and R = 3
(larger, green component) is highlighted. The two networks in (a) and
(b) have the same R = 2 ERGC, but different R = 3 ERGC. For
R = 2, node 4 belongs to the ERGC even if it is not a facilitator.
For R = 3, node 6 is a facilitator in (a) but not in (b); nevertheless, in
both cases it is a part of the ERGC. Node 7 instead is in the ERGC
in (a) since it is a facilitator but not in (b).

two trusted nodes takes place only if there is at least one walk
connecting them including trusted and untrusted nodes and
having at most R − 1 consecutive untrusted nodes. Note that
we require the existence of a walk and not a path. For in-
stance, nodes 3 and 8 in Fig. 1(a) can communicate for R = 3
even if the (shortest) path {3 → 4 → 6 → 7 → 8} connecting
them contains three consecutive untrusted nodes, due to the
existence of the walk {3, 4, 6, 5, 6, 7, 8} having at most two
consecutive untrusted nodes because of the presence of the
trusted node 5.

Strictly speaking, communication is among trusted nodes,
but it is clear that untrusted nodes play a crucial role in
this process, in particular, untrusted nodes lying on paths
between two trusted nodes of length at most R. We call such
untrusted nodes facilitators, because they are allowing for the
communication of distant trusted nodes. For instance, node
2 is a facilitator for R = 2 and R = 3 in Fig. 1; nodes 4,6,7
are facilitators for R = 3 in Fig. 1(a) but not in 1(b). Given
this way to communicate, we define the extended-range giant
connected component (ERGC) as the giant component formed
by trusted nodes connected by paths including exclusively
trusted or untrusted facilitator nodes and by all the untrusted
nodes at distance less than R from these trusted nodes. This is
equivalent to say that any pair of trusted nodes in the ERGC is
connected by at least a walk formed by trusted and untrusted
nodes including at most R − 1 consecutive untrusted nodes
(facilitators). Moreover the untrusted nodes in the ERGC in-
clude all the facilitator nodes and all the untrusted nodes that
are not facilitators but are at a distance less than R from the
trusted nodes in the ERGC. For a schematic representation of
the ERGCs see Fig. 1.

The algorithm to evaluate the ERGC is a generalization of
the Depth-First Search algorithm. We assign to each node i
of the network a pair of variables (qi, ri ). Initially no node is
assigned to a cluster, i.e., every node has qi = 0. Moreover all
trusted nodes have ri = 0, and all untrusted nodes have ri = R.
At the end of the algorithm qi = q ∈ {1, 2, . . . , Q} indicates
to which of the Q clusters node i belongs and ri indicates the
distance (if smaller than R) from the closer trusted node. The
algorithm for detecting the ERGC is the recursive Extended-
Range Depth First Search ERDFS algorithm. Starting from an
arbitrary trusted (unvisited) seed node for cluster q (initially
taken to be q = 1), we set qi = q and ri = 0 and we call the
ERDFS algorithm.

The recursive ERDFS algorithm is defined as follows.
Starting from a node n with qn = q and rn = r, ERDFS im-
plements (1) and (2) defined as follows:

(1) If r < R the algorithm visits all the neighbor trusted
nodes m unvisited previously. For each of these nodes the
algorithm sets rm = 0 and qm = q, and the ERDFS is recur-
sively iterated.

(2) If r < R − 1 the algorithm visits all the neighbor un-
trusted nodes m with rm > r + 1. For each of these nodes
the algorithm sets rm = r + 1 and qm = q, and the ERDFS
is recursively iterated.

When there are no more nodes to visit, the ERDFS stops
and all the trusted and untrusted nodes with qi = q form the
ERP cluster q. If there are unvisited trusted nodes, we choose
a new trusted seed node for cluster q + 1 and iterate the proce-
dure until all the trusted nodes are assigned to a cluster and we
have Q clusters (where Q is determined by the algorithm). The
ERGC is the giant cluster q = q� formed by the trusted nodes
with ri = 0 and the untrusted nodes with ri < R all having
qi = q�.

Here we develop a message-passing (MP) theory to predict
the size of the ERGC on any locally treelike network. The
general MP equations describing the problem with a given
configuration of trusted and untrusted nodes are explained in
detail in Appendix A. Here we assume that nodes are trusted
with probability p and untrusted with probability 1 − p, and
the equations we obtain follow from the more general ones;
see Appendix A. We can express the size of the ERGC using
two sets of cavity messages σ̂ r

i→ j and ω̂r
i→ j , for 1 � r � R.

The generic message σ̂ r
i→ j sent from node i to node j indicates

the probability that node i is in the ERGC and it is at distance
r − 1 from the closest trusted node when the link (i, j) is
removed. The generic message ω̂r

i→ j sent from node i to node
j indicates the probability that node i is not in the ERGC and
it is at distance r − 1 from the closest trusted node when the
link (i, j) is removed.

Our message-passing equations (see Appendix A for a
detailed derivation) dictate that the messages σ̂ r

i→ j obey

σ̂ 1
i→ j = p

⎡
⎣1 −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R

σ̂
q
�→i

⎞
⎠

⎤
⎦

σ̂ r+1
i→ j = (1 − p)

⎧⎨
⎩

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r−1

σ̂
q
�→i −

∑
1�q�r̄

ω̂
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ̂
q
�→i −

∑
1�q�r̄

ω̂
q
�→i

⎞
⎠

⎤
⎦
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+θ (R − 2r)

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ̂
q
�→i −

∑
1�q�r−1

ω̂
q
�→i

⎞
⎠ +

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ̂
q
�→i −

∑
1�q�r

ω̂
q
�→i

⎞
⎠

−
∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r−1

σ̂
q
�→i −

∑
1�q�r

ω̂
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ̂
q
�→i −

∑
1�q�r−1

ω̂
q
�→i

⎞
⎠

⎤
⎦

⎫⎬
⎭. (1)

Note that here and in the following we use r̄ to indicate
r̄ = min(r − 1, R − r), we use θ (x) to indicate the Heaviside
function with θ (x) = 1 if x > 0 and θ (x) = 0 otherwise, and
we use ∂i \ j to denote the neighborhood of node i (∂i) with-
out node j.

The messages ω̂r
i→ j instead obey

ω̂1
i→ j = p

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�R

σ̂
q
�→i

⎞
⎠

⎤
⎦,

ω̂r+1
i→ j = (1 − p)

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−1

σ̂ r
�→i −

∑
1�q�r−1

ω̂
q
�→i

⎞
⎠

−
∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−1

σ̂
q
�→i −

∑
1�q�r

ω̂
q
�→i

⎞
⎠

⎤
⎦. (2)

The order parameter P∞ expressing the fraction of trusted
nodes in the ERGC is given by

P∞ = p

N

N∑
i=1

⎡
⎣1 −

∏
�∈∂i

⎛
⎝1 −

∑
1�r�R

σ̂ r
�→i

⎞
⎠

⎤
⎦. (3)

An untrusted node is in the ERGC if it is at distance less than
R from a trusted node in the ERGC. Thus, we can define a
second-order parameter U ∞ for ERP given by the fraction
of untrusted nodes in the ERGC, expressed in terms of the
messages as

U ∞ = (1 − p)

N

N∑
i=1

⎡
⎣1 −

∏
�∈∂i

⎛
⎝1 −

∑
1�r�R−1

σ̂ r
�→i

⎞
⎠

⎤
⎦. (4)

The overall fraction of nodes in the ERGC is the sum between
P∞ and U ∞. Setting R = 1, we recover the MP equations for
standard percolation [14].

Note that the equations for the σ̂ r
i→ j in (1) involve R vari-

ables σ̂ r
i→ j , with 1 � r � R, and only �R/2� − 1 variables

ω̂r
i→ j , with 1 � r � �R/2� − 1. Since Eqs. (3) and (4) for the

order parameters contain only the variables σ̂ r
i→ j , the total

number of independent equations needed is R + �R/2� − 1,
rather than 2R. The MP equations (1), (2) and (3) (4) can be
used to compute the size of the ERGC on any simple network
and for arbitrary interaction range R. They are exact in the
limit of large N for locally treelike networks. This theory can
also be used as the starting point to derive the equations deter-
mining the critical properties of ERP on random graphs with
given degree distribution as explained in the following section.

III. THEORY FOR EXTENDED-RANGE PERCOLATION
ON RANDOM GRAPHS

A. General theoretical framework

In this section we set up the general theoretical framework
to study the critical properties of extended-range percolation
on uncorrelated random graphs with arbitrary degree distri-
bution P(k). For R � 6, these equations are equivalent to
the equations derived in [15]. We stress, however, that the
formalism in [15] is rather cumbersome, and it is not easily
generalizable to arbitrary large values of R. Here, using the
powerful MP theory developed above, we derive exact equa-
tions valid for arbitrary R. The order parameters P∞ and U ∞
determine the probability that a random node belongs to the
ERGC, and it is trusted or untrusted, respectively. We can
express these order parameters in terms of the probabilities Sr

that following a randomly chosen link we reach a node that is
in the ERGC and is at distance r − 1 from the closest trusted
node, and of the probabilities Wr that following a randomly
chosen link we reach a node that is not in the ERGC and is at
distance r − 1 from the closest trusted node.

The probabilities Sr and Wr satisfy a set of self-consistent
equations that can be derived from the MP equations dis-
cussed in the previous section. Indeed, Sr and Wr can be
identified as the average of the messages σ̂ r

i→ j and ω̂r
i→ j ,

respectively, over the ensemble of random graphs with degree
distribution P(k) (see Appendix A for a more detailed discus-
sion).

The equations for Sr and Wr read

S1 = p

⎡
⎣1 − G1

⎛
⎝1 −

∑
1�q�R

Sq

⎞
⎠

⎤
⎦,

Sr+1 = (1 − p)

⎧⎨
⎩

⎡
⎣G1

⎛
⎝1 −

∑
1�q�r−1

Sq −
∑

1�q�r̄

Wq

⎞
⎠ − G1

⎛
⎝1 −

∑
1�q�r

Sq −
∑

1�q�r̄

Wq

⎞
⎠

⎤
⎦
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+ θ (R − 2r)

⎡
⎣G1

⎛
⎝1 −

∑
1�q�r

Sq −
∑

1�q�r−1

Wq

⎞
⎠ + G1

⎛
⎝1 −

∑
1�q�R−r

Sq −
∑

1�q�r

Wq

⎞
⎠

− G1

⎛
⎝1 −

∑
1�q�R−r

Sq −
∑

1�q�r−1

Wq

⎞
⎠ − G1

⎛
⎝1 −

∑
1�q�r

Sq −
∑

1�q�r

Wq

⎞
⎠

⎤
⎦

⎫⎬
⎭

W1 = pG1

⎛
⎝1 −

∑
1�q�R

Sq

⎞
⎠, Wr+1 = (1 − p)

⎡
⎣G1

⎛
⎝1 −

∑
1�q�R−1

Sq −
∑

1�q�r−1

Wq

⎞
⎠ − G1

⎛
⎝1 −

∑
1�q�R−1

Sq −
∑

1�q�r

Wq

⎞
⎠

⎤
⎦,

(5)

where G0(x) and G1(x) are the generating functions defined
as

G0(x) =
∑

k

P(k)xk, G1(x) =
∑

k

kP(k)

〈k〉 xk−1. (6)

The probability P∞ that a node is trusted and is in the
ERGC is given by

P∞ = p

⎡
⎣1 − G0

⎛
⎝1 −

∑
1�r�R

Sr

⎞
⎠

⎤
⎦, (7)

while the probability U ∞ that a node is untrusted and is in the
ERGC is given by

U ∞ = (1 − p)

⎡
⎣1 − G0

⎛
⎝1 −

∑
1�r�R−1

Sr

⎞
⎠

⎤
⎦. (8)

As noted in the previous section, the total number of indepen-
dent equations needed is R + �R/2� − 1, rather than 2R, since
the equations for the Sr in (5) involve R variables Sr and only
�R/2� − 1 variables Wr .

In a more compact way, we can use the vector Y =
(S	,W 	)	 encoding all the relevant Sr [S = (S1, S2, . . .)	]
and Wr variables [W = (W1,W2, . . .)	], and we can write
Eqs. (5) as

Y = FY (Y , p) (9)

or, alternatively, as

S = FS(S,W , p), (10)

W = FW (S,W , p). (11)

In Appendix B we write explicitly Eqs. (5) and (7) for
R � 4. These equations are shown to be equivalent to the ones
derived in [15] in Appendix C.

B. Phase transition and critical threshold

The ERP order parameters P∞ and U ∞ as functions of
p are plotted in Fig. 2 for a Poisson network of average
degree c = 2. The analytic solution is in perfect agreement
with results of numerical simulations. Extended-range per-
colation displays a continuous phase transition at p = pc, in
analogy with standard percolation (case R = 1). As intuitively
expected, the percolation threshold decreases as R increases:
the presence of a range R > 1 enhances the robustness of the

network. Moreover, while the order parameter P∞ is mono-
tonically increasing in p, the order parameter U ∞ displays
a maximum as a function of p. The physical intuition is as
follows. For p < pc both P∞ and U ∞ are identically zero
as there are no nodes in the ERGC. For p = 1, the ERGC
coincides with the giant component of the network for any
R, so P∞(R) = P∞ while U ∞(R) = 0. Thus, U ∞ cannot
be monotonically increasing and actually displays a single
maximum.

As anticipated before, extended-range percolation is char-
acterized by a continuous phase transition at the percolation
threshold pc, where P∞ becomes nonzero. For p � pc, there
is a unique solution for Eqs. (9), Sr = S0

r = 0 for all values of

FIG. 2. The ERP order parameters, P∞ and U ∞, as functions
of the fraction of trusted nodes p for R ∈ 1, 2, 3, 4. ERP exhibits
a continuous phase transition at the percolation threshold p = pc,
which decreases as R increases. Note that for R = 1, P∞ reduces
to standard percolation and that U ∞ is only nontrivial (i.e., nonzero)
for R > 1. The symbols indicate results of Monte Carlo simulations
over 1000 realizations of Poisson networks of N = 2 × 104 nodes
and average degree c = 2.
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r and Wr = W 0
r with

W �
1 = p,

W �
r+1 = (1 − p)

⎡
⎣G1

⎛
⎝1 −

∑
1�q�r−1

W �
q

⎞
⎠

−G1

⎛
⎝1 −

∑
1�q�r

W �
q

⎞
⎠

⎤
⎦, (12)

corresponding to P∞ = U ∞ = 0. For p > pc another solution
with positive Sr appears, continuously in p − pc. Let us denote
Y 0 = (S0	,W 0	)	. The percolation threshold pc can be ob-
tained linearizing Eq. (10) around S = S0 and imposing that

	0(pc) = 1, (13)

where 	0 is the largest eigenvalue of the Jacobian matrix
of FY performed with respect to the variables in Y and
calculated in Y 0. As shown in [15], ERP on uncorrelated
random graphs belong to the same universality class of stan-
dard percolation for homogeneous degree distribution and
for power-law degree distributions P(K ) ∼ k−γ with γ > 3,
while R-dependent critical exponents are found for strongly
heterogeneous networks with 2 < γ < 3.

IV. MULTIPLEX EXTENDED-RANGE PERCOLATION

A. Theoretical framework

Consider a multiplex network [14] �G =
(G[1],G[2], . . . ,G[α], . . . ,G[M] ) formed by M network layers
G[α] = (V, E [α] ) of N = |V | nodes, with α ∈ {1, . . . , M}.
Each network G[α] is drawn independently at random from
the ensemble of uncorrelated random networks with degree
distribution P[α](k), whose generating functions are

G[α]
0 (x) =

∑
k

P[α](k)xk, G[α]
1 (x) =

∑
k

kP[α](k)

〈k〉 xk−1. (14)

We assume that the multiplex network has thus a negligible
link overlap [46]. Each node of the multiplex network is either
a trusted node on every layer or an untrusted node on every
layer.

Inspired by the multiplex interdependent percolation (MIP)
model [14,42,43], we formulate two versions of the Multiplex
Extended-Range Percolation (MERP) model: version V = 1
and version V = 2 (see Fig. 3 for a schematic representa-
tion of the models). Both versions exploit the presence of
untrusted facilitator nodes and the extended-range percolation
mechanism together with the interdependencies for nodes of
different layers.

The Multiplex Extended-Range Giant Component
(MERGC) is defined as follows. In both versions of the
model, a trusted node is in the MERGC if it belongs to the
ERGC in each layer of the multiplex network. Version 1 and
version 2 impose, however, different conditions on untrusted
nodes. In Version 1, we require that each untrusted node
in the MERGC must be in the ERGC in each layer of the
multiplex, as it is required for trusted nodes. In Version 2
instead, untrusted nodes in the MERGC must be part of the
ERGC in at least one layer. This difference in the condition

FIG. 3. Schematic representation of multiplex extended-range
percolation for R = 2 and M = 2 layers. Trusted and untrusted nodes
are indicated by filled and empty circles, respectively. (a) The ERGC
of each single layer is highlighted, in green for layer α = 1 and in
blue for layer α = 2. Red solid interlayer links represent the inter-
dependencies for trusted nodes in both versions of MERP, yellow
dashed interlayer links represent the condition on untrusted nodes,
considered only in version 1. Note that some nodes are facilitators
in only one layer, e.g., node 7, while others are facilitators in both
layers, e.g., node 3. (b) The two, different, MERGC for version 1,
highlighted in yellow, and version 2 highlighted in red. Since the
trusted node 6 is not in the ERGC in layer 2, it cannot be part of the
MERGC, causing also node 9 to disconnect. The untrusted node 7 is
in the ERGC of layer 1, but not in layer 2. As a consequence, it is in
the MERGC for version 2 but not for version 1, and it also affects the
presence in the MERGC of node 10. The size of the MERGC for the
two versions of the model can thus be significantly different.

imposed on untrusted nodes strongly affects the robustness of
the multiplex, as explained in detail below. Let us make some
qualitative preliminary remarks on the behavior of MERP. As
the ERGC on a single network reduces, for any finite R, to the
standard giant component in the network for p = 1 (untrusted
nodes are absent), in both versions of MERP the MERGC
reduces for p = 1 to the mutually connected giant component
of MIP. For R = 1 untrusted nodes have no role, thus both
versions of MERP have the same MERGC, which coincides
with the mutually connected giant component (MCGC)
of MIP.

The exact solution of MERP on uncorrelated random
graphs with arbitrary degree distribution can be obtained as
follows. First, we introduce the variables S[α]

r and W [α]
r , de-

fined as the probabilities Sr and Wr in layer α. Then we
can define recursive equations for these variables starting
from Eqs. (5), (7), and (8) and implementing the differ-
ent conditions required by the two versions of MERP. The
requirement for trusted nodes to be part of the ERGC in
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all layers can be easily implemented with the multiplicative factor

∏
β �=α

⎡
⎣1 − G[β]

0

⎛
⎝1 −

∑
1�r�R

S[β]
r

⎞
⎠

⎤
⎦

in the equations for S[α]
1 and W [α]

1 , thus obtaining the equations

S[α]
1 = p

⎡
⎣1 − G[α]

1

⎛
⎝1 −

∑
1�r�R

S[α]
r

⎞
⎠

⎤
⎦

⎧⎨
⎩

∏
β �=α

⎡
⎣1 − G[β]

0

⎛
⎝1 −

∑
1�r�R

S[β]
r

⎞
⎠

⎤
⎦

⎫⎬
⎭,

W [α]
1 = p

⎡
⎣G[α]

1

⎛
⎝1 −

∑
1�r�R

S[α]
r

⎞
⎠

⎤
⎦

⎧⎨
⎩

∏
β �=α

⎡
⎣1 − G[β]

0

⎛
⎝1 −

∑
1�r�R

S[β]
r

⎞
⎠

⎤
⎦

⎫⎬
⎭. (15)

The requirement for untrusted nodes to be in the ERGC in all layers can be instead implemented by means of the multiplicative
factor

∏
β �=α

⎡
⎣1 − G[β]

0

⎛
⎝1 −

∑
1�r�R−1

S[β]
r

⎞
⎠

⎤
⎦

in the equations for S[α]
r and W [α]

r with 2 � r � R. However, as explained above, this condition is required only in version V = 1
of the model, while no restriction on untrusted nodes is applied for V = 2. The two different conditions for untrusted nodes can
then be implemented all at once using Kronecker’s δV,1 and δV,2. We get the equations

S[α]
r+1 = (1 − p)

⎧⎨
⎩

⎡
⎣G[α]

1

⎛
⎝1 −

∑
1�q�r−1

S[α]
q −

∑
1�q�r̄

W [α]
q

⎞
⎠ − G[α]

1

⎛
⎝1 −

∑
1�q�r

S[α]
q −

∑
1�q�r̄

W [α]
q

⎞
⎠

⎤
⎦

+ θ (R − 2r)

⎡
⎣G[α]

1

⎛
⎝1 −

∑
1�q�r

S[α]
q −

∑
1�q�r−1

W [α]
q

⎞
⎠ + G[α]

1

⎛
⎝1 −

∑
1�q�R−r

S[α]
q −

∑
1�q�r

W [α]
q

⎞
⎠

− G[α]
1

⎛
⎝1 −

∑
1�q�R−r

S[α]
q −

∑
1�q�r−1

W [α]
q

⎞
⎠ − G[α]

1

⎛
⎝1 −

∑
1�q�r

S[α]
q −

∑
1�q�r

W [α]
q

⎞
⎠

⎤
⎦

⎫⎬
⎭

×
⎧⎨
⎩δV,2 + δV,1

∏
β �=α

⎡
⎣1 − G[β]

0

⎛
⎝1 −

∑
1�r�R−1

S[β]
r

⎞
⎠

⎤
⎦

⎫⎬
⎭,

W [α]
r+1 = (1 − p)

⎡
⎣G[α]

1

⎛
⎝1 −

∑
1�q�R−1

S[α]
q −

∑
1�q�r−1

W [α]
q

⎞
⎠ − G[α]

1

⎛
⎝1 −

∑
1�q�R−1

S[α]
q −

∑
1�q�r

W [α]
q

⎞
⎠

⎤
⎦

×
⎧⎨
⎩δV,2 + δV,1

∏
β �=α

⎡
⎣1 − G[β]

0

⎛
⎝1 −

∑
1�r�R−1

S[β]
r

⎞
⎠

⎤
⎦

⎫⎬
⎭. (16)

Using a notation similar to the one adopted for ERP, we
can write these equations in a more compact way. Introduc-
ing the vector Y = (S	,W 	)	 and encoding all the relevant
S[α]

r [S = (S[1]
1 , S[1]

2 , . . . S[α] . . .)	] and W [α]
r variables [W =

(W [1]
1 ,W [2]

2 , . . . ,W [α]
r . . .)	], we can write Eqs. (16), as

Y = F
(
Y , p). (17)

For the order parameter P∞, corresponding to the proba-
bility that a random node is in the MERGC and it is trusted,
we can write the equation

P∞ = p
M∏

α=1

⎡
⎣1 − G[α]

0

⎛
⎝1 −

∑
1�r�R

S[α]
r

⎞
⎠

⎤
⎦, (18)

valid for both versions of MERP. For the probability U ∞ that
a node is untrusted and belongs to the MERGC we must
distinguish between V = 1 and V = 2. In version 1, we re-
quire that untrusted nodes in the MERGC must be in the
ERGC in all layers, hence we have

U ∞ = (1 − p)
M∏

α=1

⎡
⎣1 − G[α]

0

⎛
⎝1 −

∑
1�r�R−1

S[α]
r

⎞
⎠

⎤
⎦. (19)

In version 2 we require that an untrusted node in the MERGC
is in the ERGC in at least one layer, hence we get

U ∞ = (1 − p)

⎡
⎣1 −

M∏
α=1

G[α]
0

⎛
⎝1 −

∑
1�r�R−1

S[α]
r

⎞
⎠

⎤
⎦. (20)
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FIG. 4. Comparison between the order parameter P∞ as a function of p for the MIP, the two versions of MERP (MERP V = 1 and
MERP V = 2), and the single-layer ERP, for (a) R = 2, (b) R = 3, and (c) R = 4. The results of the Monte Carlo simulations (symbols) are
in excellent agreement with our theoretical predictions (solid lines). The considered multiplex networks have M = 2 uncorrelated layers and
N = 105 nodes. Each layer (or single network for ERP) is formed by a Poisson network with average degree c = 3. Data are averaged over
20 runs.

As it will be discussed in detail for a particular case in the
next section, MERP may display one or more discontinuous
hybrid transitions. The critical value p = p� for these transi-
tions can be in general found imposing that Eqs. (17) admits a
nontrivial solution Y = Y � = (S�,W �) with S� �= 0, and that
the maximum eigenvalue 	� of the Jacobian of the function
F with respect to Y evaluated at Y = Y � is one, i.e., p� is the
solution of the equations

Y � = F
(
Y �, p�), 	�(p�) = 1. (21)

Note the difference with the criticality condition of ERP, and
in general of systems exhibiting continuous phase transitions.
While for a continuous transition the criticality condition is
determined by the largest eigenvalue of the Jacobian evaluated
at the trivial fixed point Y 0, for discontinuous transitions the
critical threshold is determined when the largest eigenvalue
of the Jacobian evaluated in Y �, the nontrivial solution of
Eqs. (17), equals 1.

B. Phenomenology of the MERP for R ∈ {2, 3, 4} on Poisson
multiplex networks

In this section, we study the critical properties of MERP
for R ∈ {2, 3, 4} on multiplex networks composed of M lay-
ers independently drawn from the random Poisson networks

ensemble1 with average degree c (where c is the same for
each layer). Specifically, here we focus on the relevant phe-
nomenology predicted by our theoretical approach, and we
test it by Monte Carlo simulations of the process on multiplex
networks with M = 2 layers. We defer a deeper theoretical
derivation of the phase diagram to the next subsection.

As a general remark, we expect that a nonzero MERGC
for version V = 2 will be easier to achieve than for version
V = 1, because version V = 2 does not require interdepen-
dence of the untrusted facilitator nodes. Thus, the MERGC
of version V = 2 is always expected to be larger or at most
equal to the MERGC of version V = 2 for the same choice
of the parameters. As we have already remarked the MERGC
for R > 1 are also expected to be larger than or equal to the
MCGC, which is equivalent to the MERGC for R = 1. In par-
ticular both versions of the MERGC coincide with the MCGC
for p = 1, independently of the value of p. At the same time,
if the layers are independently drawn random networks with
the same degree distribution, the MERGC of both versions of
the model will always be smaller than the ERGC of a single
layer. For an illustration of the relation between the MERGC,
the ERGC, and the MCGC see Fig. 4.

1Poisson networks are Erdős-Rényi random graphs with link prob-
ability p = c/(N − 1) in the limit N 
 1, which define random
graphs with Poisson degree distribution P(k) = e−cck/k!.
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FIG. 5. The order parameters P∞ and U ∞ of MERP for version V = 1 [panels (a) and (c)] and version V = 2 [panels (b) and (d)] are
plotted as a function of p for different values of R ∈ {1, 2, 3, 4} (note that for R = 1 the result reduces to the standard mutually connected giant
component-MCGC). The discontinuous (hybrid) transition observed in Monte Carlo simulations (symbols) is in excellent agreement with our
theoretical predictions (solid lines). The considered multiplex networks have M = 2 uncorrelated layers and N = 105 nodes. Each layer is
formed by a Poisson network with average degree c = 3. Data are averaged over 20 runs.

Let us indicate with c̄ the minimum average degree re-
quired to observe a MCGC (or equivalently a MERGC with
R = 1). Its value for M = 2 is c̄ = 2.45541 . . .. For version
V = 1 of MERP c̄ also indicates the minimum average degree
required to observe a MERGC independently of the value
of R � 1. In version V = 1 and, as long as c > c̄, also in
version V = 2 we observe a single hybrid discontinuous phase
transition at the emergence of the MERGC (see Fig. 5).

For version V = 2 of MERP we observe a highly non-
trivial behavior for average degree c in an interval of values
c� < c < c̄ where c� decreases if R increases (see Fig. 6). For
small p there is no giant component. Increasing p, at some
point p�

− the usual discontinuous transition for percolation on
multiplex networks takes place, after which the size of the
MERGC increases. However, the behavior is nonmonotonic:
P∞ reaches a maximum and for a value p�

+ < 1 the MERGC
discontinuously disappears. As we discuss in the next section,
both transitions at p�

− and p�
+ are hybrid. Thus, our results de-

montrate the existence of a reentrant discontinuous transition
for version V = 2 of MERP.

The physical interpretation of this phenomenology is as
follows. In the limit of p close to 1, almost all nodes are
trusted, untrusted nodes do not really play a role, and version
V = 2 is practically equivalent to version V = 1, which does
not admit a MERGC for c < c̄. Hence P∞ = 0 for p → 1 for
both versions and for any R. When p is reduced from 1 the
fraction of untrusted nodes increases; their presence facilitates
the formation of the MERGC for V = 2, since they can play

the role of untrusted facilitator nodes, each in its layer, with no
interdependencies. This leads to the discontinuous formation,
at p�

+, of the MERGC. Clearly, when p is reduced further this
positive effect starts to be offset by the decrease of trusted
nodes, leading to the breakdown of the MERGC for p�

−. Hence
there is a finite interval [p�

−, p�
+] in which the presence of

many but not too many noninterdependent untrusted nodes
allows the existence of a MERGC.

C. Phase diagram of MERP for R = 2 on Poisson
multiplex networks

After recalling the main results [14,42,47] valid for the
MIP (i.e., the MERP with R = 1), in this subsection we derive
the phase diagram of MERP for R = 2 on Poisson multiplex
networks with M layers having the same average degree c.
A similar argument holds for MERP with R > 2 on the same
multiplex networks.

The fact that layers have identical statistical properties sig-
nificantly simplifies the equations for MERP. Indeed, we can
safely assume that Sα

r = Sr and W α
r = Wr do not depend on

α. Moreover, since the layers of the multiplex network have a
Poisson degree distribution, G0(x) = G1(x), hence P∞ = S1.

1. Case R = 1 (MCGC)

Let us briefly recall the main results [14,42,47] valid for
R = 1, where the MERGC reduces to the mutually connected
giant component MCGC of the multiplex network. For R = 1
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FIG. 6. The order parameters P∞,U ∞ for MERP, version V = 2 and R ∈ {2, 3, 4} are shown to display a reentrant phase transition for
multiplex networks that do not display a MCGC. The considered multiplex networks have M = 2 uncorrelated layers and N = 105 nodes.
Each layer is formed by a Poisson network with average degree c = 2.4 [panels (a) and (b)], c = 2.2 [panels (c) and (d)], and c = 1.9 [panels
(e) and (f)]. As the average degree c decreases, the MERGC disappears for MERP of increasing values of R. Data are averaged over 20 runs.
The results of the Monte Carlo simulations (symbols) are in excellent agreement with our theoretical predictions (solid lines).

we have that S1 = P∞ obeys

S1 = F (0)
1 (S1) ≡ p(1 − e−cS1 )M . (22)

Thus, for each value of p, c and M the fraction S1 of nodes
in the MCGC can be found by considering the zeros of the
function

H̃ (0)(S1) ≡ S1 − F (0)
1 (S1) = S1 − p(1 − e−cS1 )M . (23)

Note that for each choice of the parameters only the largest
stable solution is physical. Interestingly, in this case we can
further reduce the parameters by introducing the auxiliary
variables x = S1/p, z = cp, and studying the zeros of the
function

H (0)(x, z) = x − (1 − ezx )M . (24)

For any fixed value of M we can thus study the zeros of
H (0)(x) as a function of the product z = cp. In this way it
is found that for every M > 1 the MCGC emerges at a dis-
continuous (hybrid) transition where x = x� and z = z� are
determined by the equations

H (0)(x�, z�) = 0,
∂H (0)

∂x

∣∣∣∣
x�,z�

= 0. (25)

The value of z� = c̄ determining the minimal average degree
c̄ for observing the MCGC, increases as a function of M. For
M = 2 we obtain in this way c̄ = 2.45541 . . . .

2. Case R = 2

We now move to the interesting MERP case with R = 2.
In the simplified setting of multiplex Poisson networks, the
equations for version V read

S1 = F (V )
1 (S1, S2) = p

(
1 − e−c(S1+S2 ))M

,

S2 = F (V )
2 (S1) = (1 − p)

(
1 − e−cS1

)MδV,1+δV,2
, (26)

where again we use the Kronecker delta to implement the two
versions V = 1 and V = 2 all at once. As a first remark, note
that for p = 1 these equations coincide with the equations for
MCGC for values of V ; see Fig. 4. Indeed for p = 1 all nodes
are trusted, hence there is no difference between the MERGC
and the MCGC, as already noted above. For p < 1, instead
the MERGC strongly depends on the version considered and
is different from the MCGC.

Since for both versions F (V )
2 is a function of S1 only, in

order to investigate the critical properties of the two models
we can simply study the solutions of the equation

S1 = F (V )
1

(
S1, F (V )

2 (S1)
)
, (27)

or equivalently the zeros of the function

H (V )(S1; c, p) = S1 − F (V )
1

(
S1, F (V )

2 (S1)
)
, (28)

for V = 1 and V = 2. Note, however, that this function de-
pends independently from c and p, thus we do not have in
general the same simplification that we discussed for MCGC.
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FIG. 7. Phase diagram of R = 2 MERP on Poisson multiplex networks with M = 2 layers and average degree c. Panels (a) and (b) display
the phase diagram for version V = 1 and V = 2 of MERP, respectively. The filled regions are the region corresponding to a nonzero MERGC.
In both panels, the orange dashed line correspond to the critical line for R = 1 MERP, i.e., the critical line for the emergence of the MCGC; the
vertical dashed line c = c̄ = 2.455 indicates the critical average degree for the emergence of the MCGC. We observe that for version V = 2
there are values c� < c < c̄ in which the reentrant phase transition is predicted, providing solid understanding of the Monte Carlo results.

Studying Eq. (28) one finds that for any M > 1 and for any
c the percolation threshold p = p� at which the MERGC
emerges at a discontinuous (hybrid) transition where the order
parameter P∞(p�) = S�

1 can be determined by solving the
equations

H (V )(S�
1; p�, c) = 0,

∂H (V )

∂S1

∣∣∣∣
S�

1,p�

= 0. (29)

To show that these transitions are hybrid we can study
the solution of H (V )(S1; p, c) = 0 for δp = p − p� � 1 and
δS1 = S1 − S�

1 � 1. Thus, expanding H (V )(S1; p, c) and using
Eq. (29), we obtain

0 = H (V )(S1; p, c) � ∂H (V )

∂ p

∣∣∣∣
S�

1,p�

δp + 1

2

∂2H (V )

∂S2
1

∣∣∣∣
S�

1,p�

(δS1)2.

(30)

It follows that if

∂2H (V )

∂S2
1

∣∣∣∣
S�

1,p�

> 0,
∂H (V )

∂ p

∣∣∣∣
S�

1,p�

< 0, (31)

the transition is hybrid with a square root singularity, i.e.,

δS1 ∝ (δp)β (32)

with β = 1/2.

For version 1 of MERP, Eqs. (29) have a single nontrivial
solution as long as c > c� where c� = c̄, i.e., we have a non-
vanishing MERGC only for average degrees such that also
the MCGC is nonzero. For version 2 of MERP instead, in
a certain range of c values, we observe two discontinuous
hybrid transitions, both satisfying Eq. (29), one determining
the onset of the MERGC and one determining its dismantling;
see Fig. 6. This occurs for average degrees c ∈ [c�, c̄] where
c� can be found imposing the equations

H (2)(S�
1; p�, c�) = 0,

∂H (2)

∂S1

∣∣∣∣
S�

1,p�,c�

= 0,

∂H (2)

∂ p

∣∣∣∣
S�

1,p�,c�

= 0. (33)

This phenomenology can be observed in Fig. 7, where we
plot the phase diagrams of version V = 1 and version V =
2 of MERP for M = 2, clearly demonstrating the reentrant
phase transition for V = 2. We can derive the behavior of
p − p� versus c − c� expanding the equations H (2)(S1; p, c) =
0 around p = p� and c = c� with S1 = S�

1(p, c). In this way,
using Eq. (33) we obtain

0 = 1

2

∂2H (2)

∂ p2

∣∣∣∣
S�

1,p�,c�

(δp)2 + ∂H (2)

∂c

∣∣∣∣
S�

1,p�,c�

δc, (34)

where δp = p − p� and δc = c − c�. Thus, if the signs of
∂2H (2)/∂ p2|S�

1,p�,c� and ∂H (2)/∂c|S�
1,p�,c� are opposite, we ob-

tain the scaling

|p − p�| ∝ (c − c�)1/2. (35)

Finally, in Fig. 8 we show the different behavior of c� as a
function of the number of layers M for the version V = 1 as

FIG. 8. The critical average degree c� of a Poisson multiplex
network which allows the emergence of a R = 2 MERGC is plotted
versus the number of layers M for the version V = 1 (green, square
symbols) and for version V = 2 (orange, circle symbols) of MERP.
We observe that c� corresponding to version V = 1 coincides with
the critical average degree c̄ for observing the MCGC on the same
multiplex network.
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well as for the version V = 2. We observe that as the number
of layer increases, the range of values of the average degree
where the reentrant phase is observed increases significantly.

V. CONCLUSIONS

In conclusion, this work establishes a general theoretical
framework for extended-range percolation in simple and mul-
tiplex networks, providing a relevant new class of exactly
solvable percolation problems. Extended-range percolation on
simple networks defines a percolation process in which com-
munication between trusted nodes is ensured even if they are
not directly connected. Specifically communication between
two trusted nodes is allowed if they are connected by paths
involving exclusively trusted and untrusted facilitator nodes.
These facilitator nodes, although untrusted, can still ensure
communication between trusted nodes if they lie on at least
a path of distance at most R between two trusted nodes.
This percolation process reduces for R = 1 to standard per-
colation and to standard interdependent percolation on single
and multiplex networks, respectively. Our theory builds on
a message-passing approach providing the exact solution for
the size of the extended-range giant component (ERGC) for
arbitrary finite R, as long as the network is locally treelike. Our
message-passing approach allows us to formulate a general
theory for ERP on simple uncorrelated random networks.
This general theory coincides with previous results obtained
with a different approach for R � 6 [15]. The resulting ERP
transition is continuous, and characterized by a percolation
threshold that decreases as R increases, demonstrating the
improved robustness of the network when this notion of
connectivity is adopted. Furthermore, this general framework
allows us to introduce and study the multiplex extended-range
percolation (MERP). This novel process enforces interdepen-
dencies between trusted nodes and can be defined in two
variants (V = 1 and V = 2) depending on how interdepen-
dencies for untrusted nodes are considered. We provide the
exact solution for the size of the Multiplex Extended-Range
Giant Component (MERGC) for arbitrary R. We show that the
MERGC emerges with a discontinuous hybrid transition at a
percolation threshold p = p�, which decreases as R increase.
Thus, the phase diagram of MERP reflects a trade-off between
the increased fragility as a consequence of the multiplex net-
work interdependencies, and the increased robustness implied
by the extended-range mechanism. In particular we observe
that version V = 2, in which interdependencies are present
only for trusted nodes, displays a rich phase diagram with
the presence of a reentrant phase for some multiplex network
topologies.

This work opens new perspectives to study the role of
extended-range percolation in a variety of settings. At a fun-
damental level, it would be interesting to explore the effect
of design principles associating the state of trusted nodes
to specific nodes of the network, for example, preferably
to nodes of low or high degree. Additionally it would be
very interesting to build on these results to formulate more
specific models which could be applied in a realistic setting
of quantum communications or of multilayer models of epi-
demic spreading. More generally it would also be relevant
to explore applications of this framework to hypergraphs and

higher-order networks, where several generalized percolation
problems have been recently proposed [48–51].
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APPENDIX A: MESSAGE PASSING THEORY
FOR EXTENDED-RANGE PERCOLATION

The aim of this Appendix is to present a general message-
passing (MP) theory for extended-range percolation on single
networks. The MP formalism allows to express the equa-
tions for extended-range percolation for arbitrary R on single
and multiplex networks, as shown in the main body of the
paper.

In order to formulate a message-passing algorithm for
extended-range percolation determining the giant compo-
nent of the model, we follow the general approach [14]
for percolation problems. This consist by first deriving the
message-passing equations when we know for each node i if it
is trusted (xi = 1) or untrusted (xi = 0), i.e., we know the ex-
act configuration of trusted and untrusted nodes. Subsequently
one can consider the scenario in which the exact configura-
tion of trusted nodes is not known, and the only available
information is that probability p that a random node is
trusted.

Let us now assume that we know the exact configu-
ration of the trusted nodes, i.e., we have access to the
variables {xi}. We consider two sets of messages σ r

i→ j
and ωr

i→ j , with r ∈ {1, 2, . . . , R}, associated to the directed
links i → j.

We consider two set of messages σ r
i→ j ∈ {0, 1} and ωr

i→ j ∈
{0, 1}, with r ∈ {1, 2, . . . , R}, associated to the directed links
i → j. Each message is a binary variable that can be 0 or 1,
according to the following rules. The messages σ r+1

i→ j are 1, i.e.,

σ r+1
i→ j = 1 when the node i is connected to at least a trusted

node in the ERGC by a path of length r < R when the link
(i, j) is removed. In all other scenarios we have σ r+1

i→ j = 0.

The messages ωr+1
i→ j = 1 if not connected to any trusted

node in the ERGC but connected to at least a trusted node not
in the ERGC by a path of length r < R when the link (i, j) is
removed. In all other scenarios we have ωr+1

i→ j = 0.
Note that by construction at most one of the messages from

i to j is different from zero; but it may also happen that all
messages from i to j are zero.

The equations for σ 1
i→ j and ω1

i, j are similar to the messages
in standard percolation [14,30,37]:

σ 1
i→ j = xi

⎡
⎣1 −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�r�R

σ r
�→i

⎞
⎠

⎤
⎦,

ω1
i→ j = xi

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�r�R

σ r
�→i

⎞
⎠

⎤
⎦, (A1)

where here and in the following ∂i denotes the neighborhood
of node i.
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All other messages σ r
i→ j and ωr

i→ j with r > 1 are zero for
links departing from trusted nodes.

Concerning messages departing from untrusted nodes, to
write recursive equations for σ r+1

i→ j with r > 0, it is important
to realize that two mutually exclusive scenarios may occur. We
call these two scenarios the standard scenario and the bridge
node scenario. In the standard scenario node i is connected to
the ERGC through a node at distance r from the closest trusted
node and node i is at distance larger than r + 1 from any other
trusted trusted node. In the bridge node scenario node i is
connected to the ERGC through nodes that are a distance r1 >

r from trusted nodes in the ERGC. In this case the value of r
is determined by the presence of bridge nodes. A bridge node
is a trusted node that is not connected to the ERGC if node i is
removed, but it is connected to the ERGC if the node i is not
removed. Thus, assuming that the bridge node is at distance r
for node i we must impose r + r1 � R as node i need to act as
a untrusted facilitator node (for a schematic representation of
the message-passing algorithm and the role of bridge node see
Fig. 9). These considerations can thus be used to determine
the conditions under which the message σ r+1

i→ j = 1 is sent from

node i to node j. Specifically we have that σ r+1
i→ j = 1 if node

i is untrusted and if either scenario (1) or scenario (2) occurs
(note that the two scenarios are mutually exclusive).

(1) Scenario bridge nodes:
(i) Node i receives at least one message σ

r1
�→i = 1 with

r1 > r, and no messages σ
r2
�→i = 1 with r2 < r1.

(ii) Node i receives at least one message ωr
�→i = 1 and

no messages ω
r3
�→i = 1 with r3 < r;

(iii) Additionally we require r + r1 � R or r1 � R − r.
(This is to ensure that the bridge node is a facilitator,
i.e., connected to the ERGC, or equivalently that node i
is in a active path between trusted nodes.) Requiring the
existence of at least a given r1 with r < r1 � R − r we
need to impose R − r > r or equivalently R − 2r > 0 for
allowing scenario (1) to hold.
(2) Standard scenario:

(a) Node i receives at least one message σ r
�→i = 1 with

r < R and it does not receive any message σ
r1
�→i = 1 with

r1 < r

FIG. 9. Schematic representation of the message-passing algo-
rithm for extended-range percolation with R = 3, and a visualization
of the role of bridge nodes. Trusted nodes are represented by filled
circles, untrusted nodes by empty circles, and the dashed nodes can
either be trusted or untrusted. Panels (a)–(c) describe the message-
passing algorithm in the standard scenario. Node j in panel (a) is
always part of the ERGC, while in (b) node j belongs to the ERGC
only if it is trusted. Node k in panel (c) is not connected to the ERGC
as it does not receive any positive message σ r

j→k = 0 for r ∈ {1, 2, 3}.
Panel (d) describes the bridge node scenario. The presence of node
b, sending the message ω1

b→i = 1, allows node k—if trusted—to be
part of the ERGC.

(b) Node i does not receive any message ω
r2
�→i = 1 that

has r2 � r̄ = min(r − 1, R − r). Indeed, we need to ex-
clude the messages ω

r2
�→i = 1 with r2 < r and r2 � R − r

that could act as bridge nodes and change the r of the
message as in the bridge node scenario.
This leads to the following equations:

σ r+1
i→ j = (1 − xi )

⎧⎨
⎩

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r−1

σ
q
�→i −

∑
1�q�r̄

ω
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ
q
�→i −

∑
1�q�r̄

ω
q
�→i

⎞
⎠

⎤
⎦

+ θ (R − 2r)

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ
q
�→i −

∑
1�q�r−1

ω
q
�→i

⎞
⎠ +

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ
q
�→i −

∑
1�q�r

ω
q
�→i

⎞
⎠

−
∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q<r

σ
q
�→i −

∑
1�q�r

ω
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ
q
�→i −

∑
1�q�r−1

ω
q
�→i

⎞
⎠

⎤
⎦

⎫⎬
⎭. (A2)

Note that here and in the following we use θ (x) to in-
dicate the Heaviside function with θ (x) = 1 if x > 0 and
θ (x) = 0 otherwise. The first row describes scenario (2),

the rest of the equations describes scenario (1), and the
expression is a direct consequence of the inclusion-exclusion
principle.
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In particular the expression describing scenario (1) can be deduced by considering the expression valid as long as
θ (R − 2r) = 1:

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r−1

ω
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

ω
q
�→i

⎞
⎠

⎤
⎦

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ
q
�→i

⎞
⎠

⎤
⎦.

Here we assume that θ (R − 2r) = 1 implementing in part condition (iii), while the two multiplicative terms indicate the condition
(ii) and the conditions (i) and (iii), respectively. Since any product of ωr

�→iσ
r1
�→i = 0 for all r and r1 (due to the fact that the

messages are nonzero in mutually exclusive situations) we recover that the above expression is equivalent to the inclusion-
exclusion principle expression:

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ
q
�→i −

∑
1�q�r−1

ω
q
�→i

⎞
⎠ +

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ
q
�→i −

∑
1�q�r

ω
q
�→i

⎞
⎠

−
∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q<r

σ
q
�→i −

∑
1�q�r

ω
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ
q
�→i −

∑
1�q�r−1

ω
q
�→i

⎞
⎠.

This is exactly the expression that multiplies the factor θ (R − 2r) in the message-passing equation for σ r+1
i→ j and that implements

the bridge node scenario.
Having derived the equation for the message σ r+1

i→ j we now derive the equation for the message ωr+1
i→ j . The untrusted facilitator

node i sends a message ωr+1
i→ j = 1 with r > 0 if

(i) It does not receive any positive message σ
r1
�→i with 1 � r1 < R

(ii) It receives at least one positive message ωr
�→i = 1 and no messages ω

r1
�→i = 1 with r1 < r.

This leads then to the message-passing equations:

ωr+1
i→ j = (1 − xi )

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�r�R−1

σ r
�→i −

∑
1�q�r−1

ω̂
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�r�R−1

σ r
�→i −

∑
1�q�r

ω̂
q
�→i

⎞
⎠

⎤
⎦. (A3)

The fraction P∞ of nodes that are trusted and are in the ERGC is then given by

P∞ = 1

N

N∑
i=1

xi

⎡
⎣1 −

∏
�∈∂i

⎛
⎝1 −

∑
1�r�R

σ r
�→i

⎞
⎠

⎤
⎦. (A4)

while the fraction U ∞ of nodes that are untrusted and are in the ERGC is given by

U ∞ = 1

N

N∑
i=1

(1 − xi )

⎡
⎣1 −

∏
�∈∂i

⎛
⎝1 −

∑
1�r�R−1

σ r
�→i

⎞
⎠

⎤
⎦. (A5)

The message-passing equations (A2) and (A3) fully determine the order parameter P∞ given by Eq. (A4) when we know the
configuration of trusted and untrusted nodes, i.e., the configuration {xi}. However, in a number of cases the exact configuration
{xi} determining which nodes are trusted and which are untrusted is not known. In this scenario we can assume that the state
of a node xi is drawn independently at random with a probability p that the node is trusted, thus we assume that the probability
P̃({xi}) of a configuration is given by

P̃({xi}) =
N∏

i=1

pxi (1 − p)1−xi . (A6)

In this case we need to modify the message-passing equations by averaging over the probability P̃({xi}). This alternative message-
passing algorithm is formulated in terms of a new set of messages: the messages σ̂ r

i→ j ∈ [0, 1] indicating the probability that
a node i is connected to the ERGC by nodes different from j and at distance r from active trusted nodes and the messages
ω̂r

i→ j ∈ [0, 1] indicating the probability that a node i is not connected to the ERGC by nodes different from j and is at distance r
from other trusted nodes. We have that σ̂ r

i→ j is the average of σ r
i→ j and ω̂r

i→ j is the average of ωr
i→ j over the distribution P̃({x})

of trusted and untrusted nodes.
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The messages σ̂ r
i→ j for 1 � r � R obey

σ̂ 1
i→ j = p

⎡
⎣1 −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�r�R

σ̂ r
�→i

⎞
⎠

⎤
⎦

σ̂ r+1
i→ j = (1 − p)

⎧⎨
⎩

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r−1

σ̂
q
�→i −

∑
1�q�r̄

ω̂
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ̂
q
�→i −

∑
1�q�r̄

ω̂
q
�→i

⎞
⎠

⎤
⎦

+ θ (R − 2r)

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�r

σ̂
q
�→i −

∑
1�q�r−1

ω̂
q
�→i

⎞
⎠ +

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ̂
q
�→i −

∑
1�q�r

ω̂
q
�→i

⎞
⎠

−
∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q<r

σ̂
q
�→i −

∑
1�q�r

ω̂
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−r

σ̂
q
�→i −

∑
1�q�r−1

ω̂
q
�→i

⎞
⎠

⎤
⎦

⎫⎬
⎭. (A7)

The messages ω̂r
i→ j with 1 � r � �R/2� − 1 obey

ω̂1
i→ j = p

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�R

σ̂ r
�→i

⎞
⎠

⎤
⎦,

ω̂r+1
i→ j = (1 − p)

⎡
⎣ ∏

�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−1

σ̂
q
�→i −

∑
1�q�r−1

ω̂
q
�→i

⎞
⎠ −

∏
�∈∂i\ j

⎛
⎝1 −

∑
1�q�R−1

σ̂ r
�→i −

∑
1�q�r

ω̂
q
�→i

⎞
⎠

⎤
⎦. (A8)

Note that in total the messages are R + �R/2� − 1. The
order parameter P∞ expressing the fraction of nodes that are
trusted and are in the ERGC is given by

P∞ = p

N

N∑
i=1

⎡
⎣1 −

∏
�∈∂i

⎛
⎝1 −

∑
1�r�R

σ̂ r
�→i

⎞
⎠

⎤
⎦, (A9)

while the fraction of nodes U ∞ that are untrusted and are in
the ERGC is given by

U ∞ = (1 − p)

N

N∑
i=1

⎡
⎣1 −

∏
�∈∂i

⎛
⎝1 −

∑
1�r�R−1

σ̂ r
�→i

⎞
⎠

⎤
⎦.

(A10)
These equations are the starting point to formulate the

equation determining the size of the ERGC on random net-
works with given degree distribution. To this end we consider
networks G = (V, E ) drawn from the distribution

P (G) =
N∏

i=1

N∏
j=i

p
ai j

i j (1 − pi j )
1−ai j , (A11)

where a indicates the adjacency matrix of the network and pi j

indicates the probability of link between nodes i and j. The
probability pi j is expressed in terms of the degrees ki and k j

associated, respectively, to the two nodes i and j, as

pi j = kik j

〈k〉N . (A12)

Here P(k) indicates the degree distribution, i.e., fraction of
nodes of degree k. In order to derive the general equa-
tions determining the size of the ERGC, we average the

message-passing equations over the distribution P (G). In this
case we indicate with Sr the average of σ̂ r

i→ j and Wr is the
average of ω̂r

i→ j over the probability P (G). In this way we
derive Eq. (5). Moreover we indicate with P∞ (and with U ∞)
the probability that node is trusted (untrusted) and belongs to
the ERGC obtaining Eqs. (7) and (8).

APPENDIX B: EQUATIONS FOR ERP FOR FINITE R

In this Appendix we provide the explicit equations (5) for
extended-range percolation with R ∈ {1, 2, 3, 4} on a simple
network.

1. The R = 2 equations

For R = 2 the self-consistent equations involve two aver-
age messages, S1 and S2, and read

S1 = p[1 − G1(1 − S1 − S2)],

S2 = (1 − p)[1 − G1(1 − S1)]. (B1)

The order parameter P∞ is given by

P∞ = p[1 − G0(1 − S1 − S2)], (B2)

while U ∞ is given by

U ∞ = (1 − p)[1 − G0(1 − S1)]. (B3)

2. The R = 3 equations

For R = 3 the self-consistent equations involve four aver-
age messages, S1, S2, S3, and W1 reflecting that for R > 2 the
effect to bridge nodes needs to be taken into account. These
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equations read

S1 = p[1 − G1(1 − S1 − S2 − S3)],

S2 = (1 − p)[1 + G1(1 − S1 − S2 − W1)

−G1(1 − S1 − W1) − G1(1 − S1 − S2)],

S3 = (1 − p)[G1(1 − S1 − W1) − G1(1 − S1 − S2 − W1)],

W1 = pG1(1 − S1 − S2 − S3). (B4)

The order parameter P∞ is given by

P∞ = p[1 − G0(1 − S1 − S2 − S3)], (B5)

while U ∞ if given by

U ∞ = (1 − p)[1 − G0(1 − S1 − S2)]. (B6)

3. The R = 4 equations

For R = 4 the self-consistent equations involve five aver-
age messages, S1, S2, S3, S4, and W1 and read

S1 = p[1 − G1(1 − S1 − S2 − S3 − S4)],

S2 = (1 − p)[1 + G1(1 − S1 − S2 − S3 − W1)

−G1(1 − S1 − W1) − G1(1 − S1 − S2 − S3)],

S3 = (1 − p)[G1(1 − S1 − W1) − G1(1 − S1 − S2 − W1)],

S4 = (1 − p)[G1(1 − S1 − S2 − W1)

−G1(1 − S1 − S2 − S3 − W1)],

W1 = pG1(1 − S1 − S2 − S3 − S4). (B7)

The order parameter P∞ is given by

P∞ = p[1 − G0(1 − S1 − S2 − S3 − S4)], (B8)

while U ∞ is given by

U ∞ = (1 − p)[1 − G0(1 − S1 − S2 − S3)]. (B9)

APPENDIX C: EQUIVALENCE OF EQS. (5) WITH THE
EQUATIONS DERIVED IN REF. [15] FOR R � 4

In this Appendix we demonstrate the equivalence of
Eqs. (5) for extended-range percolation with R � 4 discussed
in Appendix B with the equations previously derived in
Ref. [15] using a different formalism. Note that in Ref. [15]
the equations were derived explicitly up to R = 6. All these
equations are equivalent to the equations derived in this work.
However, the expressions are rather combinatorially involved,
and we prefer for the sake of simplicity to prove the equiva-
lence between only with R � 4.

According to the approach of [15], the equations for ERP
on random networks with R = 4 are

u1 = G1(pu1 + (1 − p)u2),

u2 = G1(pu1 + (1 − p)u2),

u3 = G1((1 − p)u4) − G1((1 − p)u3) + u2,

u4 = G1(1 − p) − G1((1 − p)u3) + u2,

P∞ = p[1 − G0(pu1 + (1 − p)u2)], (C1)

where u1, . . . , u4 are probabilities of not reaching the ERGC
following a randomly chosen link conditioned to different
configurations; e.g., for u1 the chosen link ends in a trusted
node, for u2 the chosen link emanates from a trusted node
and ends in an untrusted node, while u3 and u4 take care of
more complex combinatoric configurations including bridge
nodes. For the interested reader, we defer to [15] for the details
of such a formalism. For the purpose of this Appendix, it is
sufficient to know that the {ur} are probabilities and that they
have a different physical interpretation from the {Sr,Wr}. The
equations for R = 3 are recovered by simply setting u4 = 1.
Analogously, setting u3 = 1 we recover the equations for R =
2, and setting u2 = 1 finally gives the equation for standard
site percolation (R = 1). Note that the order parameter U ∞
had not been introduced in [15].

1. The R = 2 equations

Let us now prove the equivalence between the Eqs. (B1)
and (B2) and Eqs. (C1) with u3 = u4 = 0. To define a map-
ping between the two sets of variables Sr and ur , we proceed
as follows. First, comparing the two different equations for
P∞ written in the two sets of variables, we get the condition

1 − S1 − S2 = pu1 + (1 − p)u2.

Then, from the equation for u1 and a comparison with the
equation for S1, we get

S1 = p(1 − u1).

The solution of these equations is

S1 = p(1 − u1), S2 = (1 − p)(1 − u2), (C2)

and shows the equivalence of the two formalisms.

2. The R = 3 equations

Let us now prove the equivalence between the Eqs. (B4)
and (B5) and Eqs. (C1) with u4 = 0. Reasoning as we did for
R = 2 in the previous subsection, from the two equations for
P∞ we get the condition

1 − S1 − S2 − S3 = pu1 + (1 − p)u2. (C3)

Using then the equations for u1 and S1, we get again S1 =
p(1 − u1). The equation for W1 gives instead W1 = pu1. From
(C3) we get

1 − p − S2 − S3 = (1 − p)u2.

Using then the two equations for S2 and S3, after some simpli-
fications this equation can be rewritten as

u2 = G1(1 − S1 − S2).

Comparing this equation with the equation for u2 in (C1) we
finally get

G1(pu1 + 1 − p − S2) = G1(pu1 + (1 − p)u3),

from which S2 = (1 − p)(1 − u3). The equivalence between
the two formalisms for R = 3 is then proved via the mapping

S1 = p(1 − u1), S2 = (1 − p)(1 − u3),

S3 = (1 − p)(u3 − u2), W1 = pu1. (C4)
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3. The R = 4 equations

Let us now prove the equivalence between Eqs. (B7)–(B5)
and Eqs. (C1). In perfect analogy to what we did in the two
previous subsections, we can determine a mapping between
the {Sr,Wr} and the {ur} variables to show the equivalence
of the two sets of equations. The first step is to compare the
equations for P∞, to get the condition

1 − S1 − S2 − S3 − S4 = pu1 + (1 − p)u2, (C5)

which, together with the equations for S1 and W1, determines
again S1 = p(1 − u1) = p − W1. Equation (C5) then gives

1 − p − S2 − S3 − S4 = (1 − p)u2,

which can be rewritten after some simplifications, using the
equations for S2, S3, S4, as

u2 = G1(pu1 + 1 − p − S2 − S3).

By comparison with the equation for u2 we get

1 − p − S2 − S3 = (1 − p)u3,

which can be in turn rewritten after some simplifications, us-
ing again the equations for S2, S3 and the expressions derived
above, as

u3 = [G1(1 − p − S2) − G1((1 − p)u3) + u2].

By comparison with the equation for u3 we finally get S2 =
(1 − p)(1 − u4). Hence we proved the equivalence of the two
formalisms for R = 4 via the mapping

S1 = p(1 − u1), S2 = (1 − p)(1 − u4),

S3 = (1 − p)(u3 − u2), S4 = (1 − p)(u4 − u3),

W1 = pu1. (C6)

APPENDIX D: EQUATIONS FOR MERP FOR FINITE R � 4

In this Appendix we write explicitly the equations for
multiplex extended-range percolation (16), (18), (19), and
(20) for R � 4 on multiplex uncorrelated random graphs. We
assume that the degrees of the same node across different
layers are uncorrelated. Under such hypothesis, we have that
Sα

r = Sr, W α
r = Wr , thus the equations greatly simplify.

1. The R = 1 equations

The equations in this case involve only the message S1, and
they reduce for both versions—since untrusted nodes are not
considered at all—to the standard MCGC equations for MIP,
[14]. In this case, the order parameter U ∞ is identically zero.

2. The R = 2 equations

For R = 2 the self-consistent equations involve two aver-
age messages, S1 and S2, and read

S1 = p[1 − G1(1 − S1 − S2)][1 − G0(1 − S1 − S2)]M−1,

S2 = (1 − p)[1 − G1(1 − S1)]

×{δV,2 + δV,1[1 − G0(1 − S1)]M−1}. (D1)

The order parameter P∞ is given by

P∞ = p[1 − G0(1 − S1 − S2)]M, (D2)
while U ∞ is given by

U ∞ = (1 − p)[1 − G0(1 − S1)]

×{δV,2 + δV,1[1 − G0(1 − S1)]M−1}. (D3)

3. The R = 3 equations

For R = 3 the self-consistent equations involve four aver-
age messages, S1, S2, S3, and W1 reflecting that for R > 2 the
effect to bridge nodes needs to be taken into account. These
equations read

S1 = p[1 − G1(1 − S1 − S2 − S3)][1 − G0(1 − S1 − S2 − S3)]M−1,

S2 = (1 − p)[1 + G1(1 − S1 − S2 − W1) − G1(1 − S1 − W1) − G1(1 − S1 − S2)]{δV,2 + δV,1[1 − G0(1 − S1 − S2)]M−1},
S3 = (1 − p)[G1(1 − S1 − W1) − G1(1 − S1 − S2 − W1)]{δV,2 + δV,1[1 − G0(1 − S1 − S2)]M−1},

W1 = pG1(1 − S1 − S2 − S3)[1 − G0(1 − S1 − S2 − S3)]M−1. (D4)

The order parameter P∞ is given by

P∞ = p[1 − G0(1 − S1 − S2 − S3)]M, (D5)

while U ∞ is given by

U ∞ = (1 − p)[1 − G0(1 − S1 − S2)]{δV,2 + δV,1[1 − G0(1 − S1 − S2)]M−1}. (D6)

4. The R = 4 equations

For R = 4 the self-consistent equations involve five average messages, S1, S2, S3, S4, and W1 and read

S1 = p[1 − G1(1 − S1 − S2 − S3 − S4)][1 − G0(1 − S1 − S2 − S3 − S4)]M−1,

S2 = (1 − p)[1 + G1(1 − S1 − S2 − S3 − W1) − G1(1 − S1 − W1) − G1(1 − S1 − S2 − S3)]

×{δV,2 + δV,1[1 − G0(1 − S1 − S2 + S3)]M−1},
S3 = (1 − p)[G1(1 − S1 − W1) − G1(1 − S1 − S2 − W1)]{δV,2 + δV,1[1 − G0(1 − S1 − S2 + S3)]M−1},
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S4 = (1 − p)[G1(1 − S1 − S2 − W1) − G1(1 − S1 − S2 − S3 − W1)]{δV,2 + δV,1[1 − G0(1 − S1 − S2 + S3)]M−1},
W1 = pG1(1 − S1 − S2 − S3 − S4)[1 − G0(1 − S1 − S2 − S3 − S4)]M−1. (D7)

The order parameter P∞ is given by

P∞ = p[1 − G0(1 − S1 − S2 − S3 − S4)][1 − G0(1 − S1 − S2 − S3 − S4)]M−1, (D8)

while U ∞ is given by

U ∞ = (1 − p)[1 − G0(1 − S1 − S2 − S3)]{δV,2 + δV,1[1 − G0(1 − S1 − S2 + S3)]M−1}. (D9)
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