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Hybrid reward-punishment in feedback-evolving game for common resource governance
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How to maintain the sustainability of common resources is a persistent challenge, as overexploiters often
undermine collective efforts by prioritizing personal gain. To mitigate the overexploitation of resources by
violators, previous theoretical studies have revealed that the introduction of additional incentives, whether to
reward rule-abiding cooperators or to punish those who overexploit, can be beneficial for the sustainability
of common resources when the resource growth rate is not particularly low. However, these studies have
typically considered rewarding and punishing in isolation, thus overlooking the role of their combination in
common resource governance. Here, we introduce a hybrid incentive strategy based on reward and punishment
within a feedback-evolving game, in which there is a complex interaction between human decision making
and resource quantity. Our coevolutionary dynamics reveal that resources will be depleted entirely, even with
cooperative strategies for prudent exploitation, when resource growth is slow. When the rate of resource growth
is not particularly low, we find that the coupled system can generate a state where resource sustainability
and cooperation can be maintained. Furthermore, when the rate of resource growth is moderate, we find that
achieving this state cannot simply allocate all incentive budgets to reward. In addition, the increase in per capita
incentives significantly promotes the stability of this state.

DOI: 10.1103/PhysRevE.110.034301

I. INTRODUCTION

Curbing the overexploitation of common resources is a
significant challenge facing contemporary society [1–6]. Cur-
rently, humans face the dilemma of behavioral choices when
extracting common resources [7,8]. On the one hand, indi-
viduals who adhere to resource management regulations and
engage in sustainable exploitation are faced with the tempta-
tion of immediate but unsustainable gains [9]. On the other
hand, those who violate these rules and engage in overex-
ploitation often reap more substantial benefits than their more
responsible counterparts [10]. This difference in benefit cre-
ates an incentive for individuals to pursue overexploitation as
a strategy to maximize their immediate interests, even though
it is not good for everyone in the long run [11–15]. If not
controlled, we might end up with nothing left for everyone,
which is known as the tragedy of the commons [16,17]. To
avoid this situation, we need to design reasonable regulatory
mechanisms to regulate individual behavior and ensure that
everyone uses resources responsibly, so that there are suffi-
cient resources for today and the future [18–20].

The most commonly employed incentive strategies to reg-
ulate individual behavior are punishment and reward [21–26],
with the former being a form of negative incentive aimed
at reducing the benefits of individuals who overexploit re-
sources [27–30], and the latter a form of positive incentive
designed to increase the gains of those who exploit re-
sources responsibly [31–33]. Previous studies, based on
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evolutionary game theory, have explored various types of
reward and punishment strategies [34–37]. For instance, Szol-
noki and Perc [38] explored the evolutionary advantage of
combined reward and punishment mechanisms in spatial pub-
lic goods games. Chen and Szolnoki [39] have demonstrated
how the application of punishment and inspection affects
behavior decision-making within feedback-evolving games
when there is a feedback relationship between individual strat-
egy selection and resource status. Building on this, Wang et al.
[40] introduced tax-reward and tax-punishment strategies into
the feedback-evolving game, revealing the significant role of
resource growth rates and per capita incentives in shaping the
dynamics of coupled systems.

While previous theoretical research has investigated the
roles of various forms of reward and punishment strategies
in feedback-evolving games, these studies have typically con-
sidered that reward and punishment are examined as if they
operate independently within the population. This naturally
overlooks scenarios where both reward and punishment are
concurrently at play. Which type of incentive strategy, reward,
punishment, or a hybrid reward-punishment, can more effec-
tively regulate individual behavior? How should the incentive
budget be allocated to better sustain cooperation and ensure
the sustainability of resources? To the best of our knowledge,
these questions have not yet been investigated.

Here, we introduce a hybrid reward-punishment strategy
into feedback-evolving games, where individual behavioral
decision making affects resource status, and changes in nat-
ural resource status in turn also affect individual decision
making. We consider the tax-based incentive [41], where
a certain proportion of the total tax revenue is evenly dis-
tributed among individuals who exploit resources responsibly
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(cooperators) as a reward, and the remaining portion is evenly
allocated to those who overexploit resources (defectors) as
the fine. Rewarding cooperators and punishing defectors are
implemented by third-party institution. The reward fund is
evenly distributed to all cooperators in the group to increase
their benefits, while the punishment fund is used to implement
punitive actions (for individuals who overexploit resources)
to reduce their benefits. Here, the punishment fund is used
as a cost for entrusting law enforcement to punish individu-
als who engage in excessive exploitation. Through analysis,
we find that coevolutionary dynamics are mainly influenced
by per capita incentive, resource growth rate, and incentive
budget allocation rate. Specifically, when the natural growth
rate of resources is low, the coupled system will evolve to a
state where all individuals reasonably exploit resources, but
the resources are depleted. At this point, the implementation
of incentives is ineffective, and breaking this deadlock de-
pends on the improvement of resource growth rate. When
the growth rate of resources is moderate, we find that the
coupled system can evolve to a state where all individuals
choose to cooperate and resources are sustainable. A larger
per capita incentive, coupled with a tilt of the incentive budget
towards punishment, favors the emergence of this outcome.
When the resource growth rate is high, the coupled system can
produce an outcome where resources remain sustainable even
if all individuals choose to defect. To achieve full individuals
cooperation and sustainable resource statu, a significant per
capita incentive is required, accompanied by a hybrid reward
and punishment incentive or pure punishment being adopted.

II. MODEL AND METHODS

We consider an infinitely large, well-mixed population
where N individuals are randomly selected to participate in
the game. These individuals share a common resource pool
with the current resource level denoted by y, which is fi-
nite and renewable. Its natural growth rate is r, and we
can describe its dynamic change using the logistic growth
model [42]

ẏ = ry

(
1 − y

Rm

)
,

where ẏ represents the derivative of the resource quantity
y with respect to time t , and Rm is the maximum carrying
capacity of the resource pool.

To simplify the model, we assume that individuals choose
between two strategies: cooperation (C) or defection (D).
Cooperators comply with the allocation rules and utilize
resources in a manner that is considered reasonable and
sustainable. The amount of resources they obtain from the
common resource pool is represented as bL = bmy

Rm
, where bm

is the maximum amount of resources an individual is allowed
to use when the resource level reaches Rm. Clearly, bm �
Rm
N . Defectors do not follow the rules of resource allocation,

and thus obtain more resources from the common pool. The
benefit they receive is represented as bV = (1 + α)bL, where
α > 0 represents the severity of the defection [39]. Taking
into account that individual behavior impacts the state of
the resource, the control equation for the abundance of the

common resource can be rewritten as

ẏ = ry

(
1 − y

Rm

)
− N

bmy

Rm
[1 + (1 − x)α]. (1)

To prevent defectors from unrestrainedly pursuing private
gains, undermining the efforts of cooperators, and causing the
problem of common resource depletion, we introduce a hybrid
reward-punishment strategy based on taxation. Specifically,
all individuals in the game group need to pay a tax δ, and the
total tax revenue will be controlled by third-party institution.
A proportion w of the total tax revenue is evenly distributed
among cooperators who adhere to the rules as a reward, while
the remaining proportion 1 − w is equally distributed among
defectors who do not follow the rules as a fine. Consequently,
each cooperator receives a reward Nwδ

NC
, and each defector is

fined N (1−w)δ
ND

, where NC is the number of cooperators and
ND is the number of defectors in the game group. Here, we
consider that the cost of punishing each defector is the same as
the fine imposed on each defector, with a punishment intensity
of 1.

In an infinite well-mixed population, we use the replica-
tor equation to describe the temporal evolution of competing
strategies [43,44], as follows:

ẋ = x(1 − x)(PC − PD), (2)

where PC and PD are the average payoffs of cooperators and
defectors, determined by the interaction between individuals
and the state of the common resource pool, which can be
calculated by

PC =
N−1∑
k=0

(
N − 1

k

)
xk (1 − x)N−1−k

(
bL − δ + w

Nδ

k + 1

)
,

(3)

PD =
N−1∑
k=0

(
N − 1

k

)
xk (1 − x)N−1−k

[
bL(1 + α) − δ

− (1 − w)
Nδ

N − k

]
. (4)

Combining Eqs. (1)–(4), we can obtain the following
feedback-evolving game system

ẋ = x(1 − x)

(
δw

1 − (1 − x)N

x
+ δ(1 − w)

1 − xN

1 − x
− bmy

Rm
α

)
,

ẏ = ry

(
1 − y

Rm

)
− N

bmy

Rm
[1 + (1 − x)α]. (5)

In the following, we will conduct a detailed analysis of the
coevolutionary dynamics of the aforementioned system.

III. RESULTS

The system (5) has at most four boundary equilib-
rium points, which are (0, 0), (1, 0), (0, Rm − Nbm (1+α)

r ), and
(1, Rm − Nbm

r ). There may exist multiple interior equilibrium
points. Without loss of generality, we denote them uniformly
as (x∗, y∗), where 0 < x∗ < 1 and 0 < y∗ < Rm are solutions
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FIG. 1. Coevolutionary dynamics of the coupled system for slowly growing resource. (a) presents the phase diagrams of x − y/Rm.
(b) displays the temporal evolution of the system’s states. When the resource growth rate is low, the resource will inevitably be depleted even
if all individuals choose to exploit it rationally. Parameters are N = 1000, Rm = 1000, bm = 0.5, w = 0.5, α = 0.5, r = 0.4, and δ = 0.04.

to the following equations:

δw
1 − (1 − x)N

x
+ δ(1 − w)

1 − xN

1 − x
− bmy

Rm
α = 0,

ry

(
1 − y

Rm

)
− N

bmy

Rm
[1 + (1 − x)α] = 0. (6)

Based on the Jacobian matrix for various equilibrium points
presented in the Appendix, we analyze the system’s evolu-
tionary dynamics in three parameter intervals, primarily using
the resource growth rate as the criterion.

A. Slow resource growth rate

When r < Nbm
Rm

, the coupled system (5) only has two
boundary equilibrium points, namely (0, 0) and (1, 0). By
analyzing the eigenvalues of the Jacobian matrices cor-
responding to these equilibrium points, we find that the
equilibrium point (1, 0) is stable, while (0, 0) is unstable.
In Fig. 1, we present a specific numerical example to verify
our theoretical analysis. In Fig. 1(a), we observe that all tra-
jectories in the phase plane ultimately converge to the point
(1, 0). This implies that even if all individuals choose to co-
operate, the resource eventually becomes depleted due to an
excessively low rate of resource growth. In Fig. 1(b), we show
the evolution of the system’s state over time under specific
initial conditions. We find that the frequency of cooperators
gradually increases over time and eventually stabilizes at 1,
indicating full cooperation among individuals. Meanwhile,
the resource quantity rapidly decreases until it reaches zero.

B. Moderate resource growth rate

When Nbm
Rm

< r < Nbm (1+α)
Rm

, the coupled system (5) has
three boundary equilibrium points, namely (0, 0), (1, 0), and
(1, Rm − Nbm

r ), among which the first two are unstable. The
last one is stable when r < Nbm

Rm

bmα
bmα−δw−δ(1−w)N and δ <

bmα
w+(1−w)N or δ > bmα

w+(1−w)N . According to the theoretical anal-
ysis presented in the Appendix, the coupled system (5) may

also have one or two interior equilibrium points. When the
conditions for the existence of interior equilibrium points are
not met (see Appendix), the coupled system only has three
boundary equilibrium points. We provide a numerical exam-
ple based on the stability conditions of the aforementioned
equilibrium points. Specifically, when the model parameter
satisfies δ > bmα

w+(1−w)N , the right boundary equilibrium point

(1, Rm − Nbm
r ) is stable. As shown in Fig. 2(a), all interior tra-

jectories converge to this equilibrium point, indicating that all
individuals adopt cooperative strategies and that resources are
maintained simultaneously. We further present a new numer-
ical example of a monostable state, where the right boundary
equilibrium point is unstable and the coupled system has
a stable interior equilibrium point. As shown in Fig. 2(b),
the coupled system has four equilibrium points, and all in-
terior trajectories ultimately converge to the stable interior
equilibrium point. This implies coexistence of cooperators
and defectors within the population while the resource is
maintained.

We further provide two representative numerical exam-
ples when the coupled system has two interior equilibrium
points. As shown in Fig. 2(c), the coupled system has all
five equilibrium points, of which the right boundary point
and one interior equilibrium point are stable. Depending on
the initial conditions, a few trajectories will converge to the
right boundary point, while the vast majority of trajectories
converge to the stable interior equilibrium point. Regardless of
the outcome, cooperation and resources can both be sustained.
When we reduce the per capita incentive δ, we find that the
stable interior equilibrium point approaches the horizontal
axis. As depicted in Fig. 2(d), the level of cooperation and the
quantity of resources at this interior stable equilibrium point
are both reduced.

Now we are interested in the impact of two important
parameters on the coevolutionary outcomes: the allocation
weight of the incentive budget w and the per capita incen-
tive δ. As illustrated in the Fig. 3(a), when employing a
punishment strategy exclusively, the right boundary point
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FIG. 2. Coevolutionary dynamics of the coupled system for
moderately growing resource. The top row illustrates the phase
diagrams where the coupled system exhibits a monostable state.
The bottom row presents phase diagrams where the coupled system
exhibits a bistable state. Moderate resource growth rate accompa-
nied by reward and punishment strategies can effectively maintain
resource sustainability and a high level of cooperation. Parameters
are N = 1000, Rm = 1000, bm = 0.5, w = 0.5, α = 0.5, r = 0.6,
and δ = 0.04 in (a); N = 1000, Rm = 1000, bm = 0.5, w = 0.999,
α = 0.5, r = 0.7, and δ = 0.05 in (b); N = 1000, Rm = 1000, bm =
0.5, w = 0.1, α = 0.5, r = 0.6, and δ = 0.004 in (c); N = 1000,
Rm = 1000, bm = 0.5, w = 0.1, α = 0.5, r = 0.6, and δ = 0.001
in (d).

of the coupled system remains stable. However, when w is
significantly large (w = 0.95), meaning that the majority of
the incentive budget is allocated to reward, in addition to a
stable right boundary equilibrium point, the system also has
a stable interior equilibrium point [see Fig. 3(b)]. When all
incentive budgets are allocated to reward, the right boundary
equilibrium point is no longer stable, and the system only
has one stable interior equilibrium point [see Fig. 3(c)]. In
Fig. 3(d), we present the variation of the attraction basin of
the right boundary equilibrium point as the incentive budget
allocation rate w changes. It is observed that when w is not
particularly large, the attraction basin of this equilibrium point
remains at 1. However, as w becomes very large, indicat-
ing a significant portion of the incentive budget is allocated
to reward, the attraction basin decreases gradually with the
increase of w, until it reaches 0. Furthermore, when the incen-
tive budget is evenly allocated (w = 0.5), and the per capita
incentive is very small, the coupled system exhibits a stable
interior equilibrium point close to the horizontal axis [see
Fig. 3(e)]. As δ increases, we find that the coupled system can
generate bistability, with one stable equilibrium point located
on the right boundary of the phase plane, and another located
inside the phase plane [see Fig. 3(f)]. With a further increase

in per capita incentives, the coupled system only has one
stable point located at the right boundary [see Fig. 3(g)]. This
indicates that the increase in per capita incentives promotes
the stability of this state. In Fig. 3(h), we present the variation
of the attraction basin of this right boundary point with the per
capita incentive δ, and find that its attraction basin increases
as δ increases, eventually stabilizing at 1.

C. Rapid resource growth rate

When r > Nbm (1+α)
Rm

, the resource growth rate surpasses the
gain rates of both cooperators and defectors. Then the coupled
system has four boundary equilibrium points, which are (0, 0),
(1, 0), (0, Rm − Nbm (1+α)

r ), and (1, Rm − Nbm
r ). Provided the

conditions outlined in the Appendix are met, the coupled
system may also have up to two interior equilibrium points.
Due to the high-order complexity involved, we present several
representative evolutionary outcomes here.

Monostable state. We initially present three monos-
table outcomes. When the model parameters satisfy the
condition δ > max{ bmα

w+N−Nw
, bmα

1+Nw−w
}, the right boundary

equilibrium point (1, Rm − Nbm
r ) is stable, while the left

boundary equilibrium point (0, Rm − Nbm (1+α)
r ) is unsta-

ble. As depicted in Fig. 4(a), the phase plane contains
four equilibrium points. All interior trajectories converge
to the right boundary equilibrium point of the phase
plane, which suggests that all individuals in the popula-
tion choose the cooperative strategy and the resource can
be maintained. When δ < min{ bmα

1+Nw−w
, bmα

w+N−Nw
} and r >

max{ Nb2
m (1+α)α

Rm (bmα+δw−δ−δwN ) ,
Nb2

mα

Rm (bmα−δw−δN+wNδ) }, we know that

the left boundary equilibrium point (0, Rm − Nbm (1+α)
r ) is

stable, while the right boundary equilibrium point (1, Rm −
Nbm

r ) is unstable. A representative diagram is presented in
Fig. 4(b), where the phase plane includes four boundary
equilibrium points. The left boundary equilibrium point is
stable, and all trajectories converge to this stable equi-
librium point, which implies that even if all individuals
choose to overexploit the resources, the resource sustain-
ability is still achievable. When { bmα

1+Nw−w
< δ < bmα

w+N−Nw

and r >
Nb2

mα

Rm (bmα−δw−δN+δwN ) } or {δ < min{ bmα
1+Nw−w

, bmα
w+N−Nw

}
and Nb2

mα

Rm (bmα−δw−δN+wNδ) < r <
Nb2

m (1+α)α
Rm (bmα+δw−δ−δwN ) } are satis-

fied, both boundary equilibrium points become unstable. We
provide a numerical example that includes a stable interior
equilibrium point, as shown in Fig. 4(c). We show that here
are five equilibrium points in the phase plane, consisting of
four unstable boundary equilibrium points and one stable in-
terior equilibrium point. All trajectories converge to this stable
point, suggesting that cooperators and defectors stably coexist
within the population, and resources can also be sustained.

Bistable state. Here, due to the complexity of theoretically
analyzing the stability of the interior equilibrium points, we
provide two numerical examples to illustrate the outcomes of
bistability. As illustrated in Fig. 4(d), the phase plane exhibits
six equilibrium points, comprising four boundary equilibrium
points and two interior equilibrium points. Among these, the
right boundary equilibrium point and the lower-left interior
equilibrium point are stable. The former represents an ideal
state where all individuals opt for cooperation, ensuring the
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FIG. 3. Coevolutionary dynamics with different values of w and δ in the coupled system. (a)–(c) present representative phase diagrams of
x − y/Rm for three different values of w. (d) shows the variation of attraction basin of the right boundary equilibrium point (1, Rm − Nbm

r ) with
the change in the allocation rate w. (e)–(g) present representative phase diagrams of x − y/Rm for three different values of δ. (h) shows the
variation of attraction basin of the right boundary equilibrium point (1, Rm − Nbm

r ) with the change in the per capita incentive δ. Punishment
or a combination of rewards and punishments is superior to pure reward in maintaining full cooperation and a constant level of resources.
The improvement of per capita incentives is conducive to the realization of this state. Parameters are N = 1000, Rm = 1000, bm = 0.5, δ =
0.04, α = 0.5, and r = 0.7 in (a)–(d); N = 1000, Rm = 1000, bm = 0.5, w = 0.5, α = 0.5, and r = 0.7 in (e)–(h).

sustainability of resources. The latter indicates a stable co-
existence of cooperators and defectors within the population,
with the resource can also be sustained. Another bistable out-
come is presented in Fig. 4(e), where the phase plane contains
five equilibrium points, including four boundary equilibrium
points and one interior equilibrium point. Notably, both the
left boundary equilibrium point (0, Rm − Nbm (1+α)

r ) and the
right boundary equilibrium point (1, Rm − Nbm

r ) are stable.
The majority of trajectories converge towards the right bound-
ary equilibrium point.

Next, we analyze the impact of incentive budget allocation
rate w and per capita incentive δ on coevolutionary dynamics
in rapid growth rate scenario. When all incentive budgets
are used to punish defectors (w = 0), we find that bistable
outcome can appear, that is, depending on the initial con-
ditions, the system trajectory either converges to the right
boundary point (1, Rm − Nbm

r ), implying that all individuals
cooperate and resources are sustainable, or converges to the
left boundary point (0, Rm − Nbm (1+α)

r ), implying that all indi-
viduals defect but resources are sustainable [see Fig. 5(a)].
As w increases but does not exceed the median value, we
find that the equilibrium point on the left boundary becomes
unstable, and all interior trajectories converge to the right
boundary point [see Fig. 5(b)]. When only a small amount
of incentives are allocated to punishment, we find a new
bistable outcome, where the trajectory either converges to the
right boundary point or converges to the stable interior point,
depending on the initial conditions [see Fig. 5(c)]. When all

incentives are used to reward cooperators, we find that the
right boundary equilibrium point becomes unstable, and all
system trajectories converge to the interior equilibrium point
[see Fig. 5(d)]. In Fig. 5(e), we investigate the variation of
the attraction domain of the right boundary equilibrium point
with the incentive budget allocation rate w. We find that as w

increases, the attraction domain first increases, then reaches
its maximum value of 1, and then gradually decreases to 0.
This emphasizes that relying solely on reward or punishment
may not be optimal and requires both reward and punishment
to work together. For the effect of per capita incentives, we
find that as per capita incentives increase, the system is more
likely to stabilize at the right boundary equilibrium point [see
Figs. 5(f)–5(i)].

Finally, we provide numerical simulations to study the
evolutionary outcomes of coupled systems for different model
parameters. As shown in Fig. 6, when the resource growth
rate is low, we find that no matter how the incentive budget is
allocated, we cannot escape the tragedy of resource depletion.
As the growth rate of resources increases, the system can
achieve an ideal state where all individuals choose cooper-
ative behavior and resources are sustainable [orange area in
Fig. 6(a)]. In addition, we can observe that as the incen-
tive budget shifts from punishment to reward, the attractive
domain of this ideal state gradually narrows, indicating that
shifting the incentive budget towards punishment is beneficial
for cooperation and sustainable resources. In addition, when
the per capita incentive is small, the attraction domain of the
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FIG. 4. Coevolutionary dynamics of the coupled system for rapidly growing resource. (a)–(e) present representative phase diagrams
of x − y/Rm. In the scenario of rapid growth rate, coupled system can generate monostable (top row) and bistable results (bottom row),
and resources can be maintained regardless of which result appears. Parameters are N = 1000, Rm = 1000, bm = 0.5, w = 0.5, α = 0.5, δ =
0.08, and r = 0.9 in (a); N = 1000, Rm = 1000, bm = 0.5, w = 0.5, α = 0.5, δ = 0.00001, and r = 0.9 in (b); N = 1000, Rm = 1000, bm =
0.5, w = 0.9, α = 0.5, δ = 0.002, and r = 0.9 in (c); N = 1000, Rm = 1000, bm = 0.5, w = 0.5, α = 0.5, δ = 0.01, and r = 0.9 in (d);
N = 1000, Rm = 1000, bm = 0.5, w = 0.001, α = 0.5, δ = 0.05, and r = 1.5 in (e).
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FIG. 5. Coevolutionary dynamics with different values of w and δ in the coupled system for rapidly growing resource. (a)–(d) present
representative phase diagrams of x − y/Rm for four different values of w. (e) shows the variation of attraction basin of the right boundary
equilibrium point (1, Rm − Nbm

r ) with the change in the allocation rate w. The results show that a hybrid reward and punishment mechanism
is more conducive to achieving full cooperation and sustainable resource status compared to pure reward and punishment. (f)–(h) present
representative phase diagrams of x − y/Rm for three different values of δ. (i) shows the variation of attraction basin of the right boundary
equilibrium point (1, Rm − Nbm

r ) with the change in the per capita incentive δ. Higher per capita incentives are more conducive to achieving
full cooperation and sustainable resource status. Parameters are N = 1000, Rm = 1000, bm = 0.5, δ = 0.04, α = 0.5, and r = 0.9 in (a)–(e);
N = 1000, Rm = 1000, bm = 0.5, w = 0.5, α = 0.5, and r = 0.9 in (f)–(i).
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FIG. 6. Evolutionary outcomes vary with incentive allocation weight w and resource growth rate r for three different values of per capita
incentive δ. When the growth rate of resources is moderate, pure punishment or a mixed reward and punishment is more conducive to full
cooperation and resource sustainability, while higher per capita incentives are more conducive to achieving this state. Parameters are N =
10, Rm = 10, bm = 0.5, α = 0.5, and δ = 0.01 in (a); δ = 0.02 in (b); δ = 0.04 in (c).

left boundary equilibrium point, implying that all individuals
choose to defect and resources are sustainable, is very large
[see the pink area in Fig. 6(a)]. As per capita incentives
increase, we find that the orange area is getting larger [see
Figs. 6(b) and 6(c)], while the pink area is getting smaller
until it no longer exists [Fig. 6(c)]. Our results emphasize that
increasing per capita incentives and allocating more incentive
budgets to punishments are beneficial for cooperation and the
maintenance of common pool resources. These results are
presented more intuitively in Fig. 7. Compared to using all
incentive budgets for reward [see Fig. 7(c)], using all incentive
budgets for punishment (w = 0) can promote the stability of
the ideal state in a larger parameter range [see Fig. 7(a)].
Meanwhile, the increase in per capita incentives also promotes
full cooperation and resource sustainability.

IV. DISCUSSION

How to effectively use reward and punishment mechanisms
to regulate individual behavior and promote sustainable use of
resources when dealing with the problem of common resource
extraction is a question worthy of in-depth investigation

[45,46]. Here, we have established a feedback-evolving game
model and introduced a hybrid reward and punishment strat-
egy. We have found that the coevolutionary dynamics of the
system are influenced by the growth rate of resources, the
allocation rate of incentive budgets, and per capita incentives.
Specifically, when the growth rate of resources is relatively
low, regardless of the incentives used, even if all individ-
uals choose to exploit resources reasonably, resources will
inevitably fall into a state of depletion. When the growth rate
of resources is moderate, the coupled system can produce
monostable and bistable states, and resources can achieve
sustainability. In addition, we have also found that achieving
a state of all individuals choosing to cooperate and resource
sustainability cannot excessively allocate incentive budgets to
reward, and higher per capita incentives are more conducive
to achieving this state. When the resource growth rate is high,
even if all individuals choose to overexploit, the resources can
still be sustainable.

In our coupled social-resource system, the natural growth
rate of resources plays a crucial role in affecting the coevolu-
tionary dynamics of the system. The growth rate of resources
not only determines to what extent they can self recover and

0 0.01 0.02 0.03 0.04
0

0.4

0.8

1.2

1.6

2

Per capita incentive, δ

R
es

o
u
rc

e 
g
ro

w
th

 r
at

e,
 r

w = 0 w = 0.5 w = 1(a) (b) (c)

0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04
0

0.4

0.8

1.2

1.6

2

0

0.4

0.8

1.2

1.6

2

(0,                            )   Nbm(1 + α)
rRm -

(x*,  y*)   
(1,                   )   

Nbm
rRm -

(1,                   )   Nbm
rRm -

(0,                            )   Nbm(1 + α)
rRm -

(x*,  y*)   

(1,  0)   

(1,                       )   Nbm
r

Rm -

FIG. 7. Evolutionary outcomes vary with per capita incentive δ and resource growth rate r for three different values of incentive allocation
weight w. When the resource growth rate is moderate, a strategy that combines both punishment and reward, or even pure punishment, is more
conducive to achieving full cooperation and resource sustainability. Additionally, higher per capita incentives further support the realization of
this state. Parameters are N = 10, Rm = 10, bm = 0.5, α = 0.5, and w = 0 in (a); w = 0.5 in (b); w = 1 in (c).
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regenerate, but also determines individual strategic choices
and the design of control measures. When the growth rate of
resources is low, any degree of exploitation and utilization
will quickly lead to resource depletion, forcing humans to
immediately stop exploitation in order to avoid the tragedy of
the commons. However, when the growth rate of resources is
high, they can be quickly restored and replenished, and even
if all individuals overexploit resources within a controllable
range, the resources will not be depleted. Previous theoretical
studies have already demonstrated these points [39,40], but
our work differs from these in that it involves more diverse
dynamics, such as different forms of bistability that can be
generated. More importantly, we have provided more effective
incentive budget allocation schemes for achieving full cooper-
ation and sustainable resource status under different resource
growth rate scenarios.

Reward and punishment are commonly used incentive
methods to regulate individual behavior [47,48]. Previous
theoretical research has introduced tax-reward and tax-
punishment strategies into coupled social resource systems,
and analyzed the coevolutionary dynamics under different
resource growth rate scenarios when these two incentives act
separately [40]. However, in the real world, reward and pun-
ishment incentives are often used simultaneously. Our model
uniquely integrates both punishment and reward mechanisms.
This dual approach allows us to explore a broader spectrum of
interactions and their impacts on cooperative behaviors, which
has not been examined in prior studies. Thus, what kind of
incentive can better regulate individuals’ behavior in resource
extraction? Pure reward? Pure punishment? Or a hybrid in-
centive? If it is the latter, how to allocate the incentive budget
to better promote the realization of the ideal state, where all
individuals can reasonably exploit resources while ensuring
resource sustainability? These questions are all unclear. Our
current research reveals that when the resource growth rate
is not too low, achieving this ideal state cannot rely entirely
on reward, a mixed use of reward and punishment or pure
punishment is required.

In this work, we assume a dynamical feedback relationship
between individual behavior and resource quantity. However,
we have overlooked an important factor, the resource growth
rate, which is also influenced by individual behavior and the
quantity of resources. In our current model it is constant.
When the quantity of resources is already low and individuals
continue to overexploit, the natural growth rate of resources
will be severely affected [37]. For example, when the fish pop-
ulation is low, overfishing can affect the reproductive ability of
the fish population, thereby reducing the natural growth rate
of fish resources. Therefore, if we consider the coupling re-
lationship between individual behavior, resource growth rate,
and resource quantity, without relying on external incentives,
it is worth studying whether resources can be maintained. On
the other hand, when considering the implementation of in-
centives for individual resource extraction, how the allocation
weight of incentive budgets adapts to changes in population
and resource states is a path worth studying in the future.
Importantly, our work considers an infinite well-mixed popu-
lation, ignoring the more realistic population structure where
individuals only interact with their surrounding neighbors
[49,50]. The study of reward and punishment mechanisms in

spatial games has a long history [28,51], such as Szolnoki and
Perc have investigated the evolutionary advantages of mixed
reward and punishment mechanisms in spatial public goods
games [38]. Another point to note is that our model does
not take into account individual moral preferences, as it plays
an important role in guiding individuals to exploit resources.
Previous research has outlined the mathematical foundation
of moral preferences [52], which drive doing the right thing to
promote ideal behavior.
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APPENDIX

In the Appendix, we first analyze the conditions for the
existence of interior equilibrium points, and then investigate
the stability of the equilibrium points by analyzing the signs of
the eigenvalues of the Jacobian matrix corresponding to each
equilibrium point [53]. According to Eq. (6), we can get

r[1 − δw 1−(1−x)N

x + δ(1 − w) 1−xN

1−x

bmα
]

− Nbm

Rm
[1 + (1 − x)α] = 0.

Considering 1−(1−x)N

x = ∑N−1
i=0 (1 − x)i and 1−xN

1−x = ∑N−1
i=0 xi,

we can obtain the following equation:

r[1 − δw
∑N−1

i=0 (1 − x)i + δ(1 − w)
∑N−1

i=0 xi

bmα
]

− Nbm

Rm
[1 + (1 − x)α] = 0.

For convenience, we set F (x) = r[1 −
δw

∑N−1
i=0 (1−x)i+δ(1−w)

∑N−1
i=0 xi

bmα
] − Nbm

Rm
[1 + (1 − x)α]. By taking

the derivative, we have

F ′(x) = rδw
∑N−1

i=1 i(1 − x)i−1 − rδ(1 − w)
∑N−1

i=1 ixi−1

bmα

+ Nbmα

Rm
,

F ′′(x) = − rδw

bmα

N−1∑
i=2

i(i − 1)(1 − x)i−2

− rδ(1 − w)

bmα

N−1∑
i=2

i(i − 1)xi−2.

Since F ′′(x) < 0, we know that F ′(x) monotonically de-
creases on (0, 1). Considering that

F ′(0) = rδw N (N−1)
2 − rδ(1 − w)

bmα
+ Nbmα

Rm
,

F ′(1) = rδw − rδ(1 − w) N (N−1)
2

bmα
+ Nbmα

Rm
.
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We can draw the following conclusions:
(1) If F ′(0) < 0, we know that F (x) monotonically de-

creases on (0, 1). At this point, when F (0) > 0 > F (1), F (x)
has a single root on (0, 1).

(2) If F ′(1) > 0, we know that F (x) monotonically in-
creases on (0, 1). At this point, when F (0) < 0 < F (1), F (x)
has a single root on (0, 1).

(3) If F ′(1) < 0 < F ′(0), we know that F (x) first mono-
tonically increases to the maximum value F (x̄), and then
monotonically decreases on (0, 1).

(1) When F (0) < 0, F (x̄) > 0, and F (1) < 0, F (x)
has two roots x1 and x2 on (0, 1).

(2) When F (0) > 0 and F (1) > 0, F (x) has single root
on (0, 1).

(3) When F (0) < 0 and F (1) > 0, F (x) has single root
on (0, 1).
In addition to the above conditions, the existence of the

interior equilibrium point (x∗, y∗) also needs to ensure that
0 < y∗ < Rm.

Next, we will analyze the stability of the equilibrium points
of the coupled system. We set that

f (x, y) = x(1 − x)

(
δw

1 − (1 − x)N

x

+ δ(1 − w)
1 − xN

1 − x
− bmy

Rm
α

)
,

g(x, y) = ry

(
1 − y

Rm

)
− N

bmy

Rm
[1 + (1 − x)α].

We present the Jacobian matrix of the system as follows:

J =
[

∂ f (x,y)
∂x

∂ f (x,y)
∂y

∂g(x,y)
∂x

∂g(x,y)
∂y

]
,

where
∂ f (x, y)

∂x
= δw[(1 + N )(1 − x)N − 1]

+ δ(1 − w)(1 − (1 + N )xN ) + αbmy

Rm
(2x − 1),

∂ f (x, y)

∂y
= −αbm

Rm
x(1 − x),

∂g(x, y)

∂x
= αNbm

Rm
y,

∂g(x, y)

∂y
= r − Nbm

Rm
− 2r

Rm
y − αNbm

Rm
(1 − x).

Specifically, for (x, y) = (0, 0),

J (0, 0) =
[
δ[1 + (N − 1)w] 0

0 r − (1+α)Nbm

Rm

]
,

since δ[1 + (N − 1)w] > 0, it is unstable.
For (x, y) = (1, 0),

J (1, 0) =
[
−δ[N − (N − 1)w] 0

0 r − Nbm
Rm

]
,

it is stable when r < Nbm
Rm

, while when r > Nbm
Rm

, it is unstable.

For (x, y) = (0, Rm − Nbm (1+α)
r ),

J

(
0, Rm − Nbm(1 + α)

r

)

=
⎡
⎣δ[1 + (N − 1)w] − αbm + α(1+α)Nb2

m
Rmr 0

αNbm − α(1+α)b2
mN2

Rmr
(1+α)Nbm

Rm
− r

⎤
⎦,

since Rm − Nbm (1+α)
r > 0, we know (1+α)Nbm

Rm
− r < 0. Thus

it is stable when δ[1+(N−1)w] − αbm + α(1+α)Nb2
m

Rmr < 0,
while it is unstable when δ[1 + (N − 1)w] − αbm +
α(1+α)Nb2

m
Rmr > 0.

For (x, y) = (1, Rm − Nbm
r ),

J

(
1, Rm − Nbm

r

)

=
⎡
⎣−δ[N − (N − 1)w] + αbm − αNb2

m
Rmr 0

αNbm − αN2b2
m

Rmr
Nbm
Rm

− r

⎤
⎦,

since Rm − Nbm
r > 0, we know Nbm

Rm
− r < 0. Thus it is stable

when −δ[N − (N − 1)w] + αbm − αNb2
m

Rmr < 0, while it is un-

stable when −δ[N − (N − 1)w] + αbm − αNb2
m

Rmr > 0.
For the interior equilibrium point, denoted as (x∗, y∗),

where 0 < x∗ < 1 and 0 < y∗ < Rm, the Jacobian matrix is
given by:

J (x∗, y∗) =
[

a11 −αbm
Rm

x∗(1 − x∗)
αNbm

Rm
y∗ −y∗ r

Rm

]
,

where a11 = x∗(1 − x∗)[−δw
∑N−1

i=0 i(1 − x∗)i−1 + δ(1 −
w)

∑N−1
i=0 i(x∗)i−1]. Then it is stable when a11 − y∗ r

Rm
< 0

and −a11y∗ r
Rm

+ αbm
Rm

x∗(1 − x∗) αNbm
Rm

y∗ > 0.
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