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Topological phases in population dynamics with rock-paper-scissors interactions
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Topological phases have arisen great interests of physicists. Though most works focus on quantum systems,
topological phases can also be found in nonquantum systems. In this work, we study an antisymmetric
Lotka-Volterra dynamics defined on a chain of two-site cells with open boundary conditions. We find two
edge-localization states, left edge-localization state, and right edge-localization state. In an edge-localization
state, there exists a boundary region in which mass distribution displays an exponential decay with the distance
away from the boundary. The two edge-localization states are connected by a sharp transition. To comprehend
the edge-localization states, we transform the population dynamics into a non-Hermitian quantum system. Based
on the generalized topological band theory of the non-Hermitian system with periodic boundary conditions, we
use winding number to distinguish the left and the right edge-localization states, and the transition between these
two states is identified to be a topological one.
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I. INTRODUCTION

Recently, topological edge states in systems with open
boundary conditions (OBC) have drawn great attention
[1–5]. The investigations of topological effects in materi-
als can be dated back to the quantum Hall effect [6,7]
and topological band theory serves as a foundation to ana-
lyze these effects [8–10]. In systems possessing Hermitian
symmetry, the topological band theory establishes the bulk-
boundary correspondence to identify the topological edge
states [11–14]. In bulk-boundary correspondence, topological
invariants acquired in periodic boundary conditions (PBC)
directly identifies the number of topologically edge states in
OBC, and topological edge states with different topological
invariants are different ones [15–20]. Only topological phases
with the same topological invariant can be transformed with-
out inducing a phase transition. Topological edge states are
topologically protected against perturbations and weak dis-
order, which is behind its potential applications in photonic
[21,22] and phononic systems [23].

It is well known that the nonreciprocal interaction or
interaction with environment may lead a system to be non-
Hermitian. In recent years, non-Hermitian systems have
attracted a lot of attention. Many phenomena and features,
which are completely different from Hermitian systems,
have been discovered. Phenomena associated with excep-
tional points have been studied in pumped atoms [24].
Non-Hermitian skin effects (NHSE), which account for edge
localization of states [25], are typical in systems with non-
reciprocal interaction. Edge burst [26] occurs for quantum
walkers on specific structures with OBC when the loss on
sites is introduced. Furthermore, non-Hermitian many-body
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systems can also show NHSE and other noteworthy features
[27]. However, traditional topological band theory fails for
non-Hermitian systems due to the existence of the complex
eigenvalues of non-Hermitian Hamiltonians. To generalize the
topological band theory to the field of topological phenomena
in non-Hermitian systems, Wang et al. [15] proposed the con-
cept of generalized Brillouin zone, based on which topological
invariants can be constructed, and rebuilt the generalized
body-boundary correspondence. Using the generalized topo-
logical band theory, topological properties in non-Hermitian
systems can be well described.

Non-Hermitian characteristics might be prevalent in eco-
logical, economic, and social systems which are actually
described as open systems. Then the question arises natu-
rally of whether topological states such as edge states can
be realized in these systems under proper conditions. Tang
and colleagues [28] showed how stochastic systems with
nonequilibrium cycles at the microscopic scale support chiral
edge currents along the boundaries of the systems configu-
ration space and ascribed the emergence of edge currents to
a topological transition. Yoshida and colleagues [29] inves-
tigated a kagome network of rock-paper-scissors (RPS) and
found a chiral edge mode of the population density which
is protected by the nontrivial topology in the bulk. Knebel
and colleagues [30] studied a one-dimensional chain of RPS
cycles and found robust polarization states. Using the sign
of the Pfaffian as a topological invariant, they identified the
polarization states as topological ones. However, in these
works, the correspondence between dynamical evolution rules
and the non-Hermitian Hamiltonian is not clearly established,
which makes the descriptions based on topological phases
in quantum systems a little vague. Moreover, a proper topo-
logical invariant in these works is short, for example, the
sign of Pfaffian cannot depict the number of different topo-
logical states as required by topological invariants. To solve
these problems, we focus on a one-dimensional chain of RPS
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FIG. 1. Schematic diagram of the chain of two-site cells with cell m consisting of sites 2m − 1 and 2m (m = 1, 2, ..., n with n = [S/2]).
The number in the circle is the node index, and the bottom number the cell index. Each triangle suggests a rock-paper-scissors interaction with
r1, r2 the intercell interaction strengths and r3 the intracell interaction strength. The site S + 1 is the same one as site 1 in the case of periodic
boundary condition.

cycles. After illustrating the edge mass localization in details
by numerically simulating the mass evolution equations, we
draw an effective non-Hermitian Hamiltonian based on on-site
creation and annihilation operators, which gives rise to an
evolution equation of number operator exactly as the mass
evolution equation. Then, using generalized topological band
theory, we present a proper topological invariant by using
biorthogonal basis of the non-Hermitian Hamiltonian which
identifies the edge mass localization states to be topological
ones.

The rest of the paper is organized as follows. In Sec. II,
we present the model. In Sec. III, we first present numer-
ical results on the chain of RPS cycles. Then we establish
the correspondence between the population dynamics and
non-Hermitian quantum system. After that, we introduce a
topological invariant, winding number, to identify different
topological states. Furthermore, we study the topological
phases by modifying the chain structures. Finally, a summary
is presented in Sec. IV.

II. MODEL

We consider an antisymmetric Lotka-Volterra equa-
tion (ALVE) defined on a network with S sites. As is
pictorially shown in Fig. 1, the network is characterized by
a one-dimensional chain of n = [S/2] two-site cells with [·]
denoting floor. We consider two types of boundary conditions,
PBC and OBC. For PBC, S is an even number and site S + 1
is exactly site 1, while S is an odd number for OBC.

The mass at each site i is denoted as xi and is evolved
according to the coupled ordinary differential equations

d

dt
xi = xi

S∑
j=1

ai jx j . (1)

Here the parameter ai j represents the interaction strength be-
tween sites i and j and we require ai j = −a ji which leads
the model to be a conservative one. Following the RPS game
rule, we let ai j = r1 if i = 2m + 1 and j = 2m − 1, ai j = r2 if
i = 2m and j = 2m + 1, ai j = r3 if i = 2m and j = 2m − 1,
and ai j = 0 otherwise, where m = 1, 2, ..., n. Actually, the
parameters r1, r2, and r3 account for the intercell or intracell
interaction strengths. Regarding this, there are two equivalent
descriptions. On one hand, two-site cell m consists of sites

2m − 1 and 2m (m = 1, 2, ...n). In this description, r3 is the
intracell interaction, while r1,2 the intercell ones. On the other
hand, two-site cell m consists of sites 2m and 2m + 1 where
r2 is the intracell interaction, while r1,3 the intercell ones. In
these two descriptions, r1 is always the intercell interaction.
In contrast, r2 and r3 alternate their roles in the intracell and
intercell interactions, which suggests that r2 and r3 would play
similar effects on the model behaviors.

III. RESULTS

A. Numerical simulations on topological phases
of the ALVE model

We consider the case of OBC. If we require r1, r2, and r3 to
be positive, as schematically shown in Fig. 1, r1 induces mass
flow from left to right (r1 flow), which is characterized by the
mass distribution on the subchain of sites 2m − 1 with m the
cell index, while r2 and r3 induce a mass flow (r3 flow) in an
opposite direction characterized by the mass distribution on
the subchain of sites 2m. The competition between these two
mass flows determines the final mass distribution along the
chain. To find the mass distribution, we numerically simulate
the model (1) using fourth order Runge-Kutta algorithm with
time step 0.01. Considering that a conservative system always
gives rise to time-dependent solutions, we monitor the time-
averaged mass 〈xi〉 on each site which is defined as 〈xi〉 =
1
T

∫ T
0 xidt over a sufficient long time interval. To be noted,

initial conditions do not influence the final distribution of 〈xi〉.
As mentioned above, the r1 flow is opposite to the r3 flow,

which suggests that the effects of interaction r1 on the model
behaviors could be quite different from interactions r2 and r3.
For the sake of it, we first fix r1 to be constant, i.e., r1 = 0.8,
and study the effects of r2 and r3 on the model behaviors.
Figure 2(a) shows the mass distributions for different chain
sizes at r2 = 1.2 and r3 = 1. As shown, the r3 flow outper-
forms the r1 flow, which results in mass localization around
the left edge. In this mass localization state, there exist
three distinct regions in the mass distribution for large chain
size (i.e., S = 101), the boundary region, transition region,
and the bulk region. In the boundary region, the mass de-
creases with the distance of cells away from the left edge
in an exponential way for both the r1 flow and r3 flow sub-
chains. The exponential mass distribution can be numerically
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FIG. 2. Mass distribution of ALVE model under different system sizes and different parameters with the mass on the r1-flow subchain in
blue and on the r3-flow subchain in red. The total mass is

∑S
i=1 xi = 1 in simulations. (a) The left edge localization state for several system

sizes at r1 = 0.8, r2 = 1.2, and r3 = 1; (b) The right edge localization state for several system sizes with r1 = 0.8, r2 = 1, and r3 = 1.2;
(c) The uniform state with r1 = 0.8, r2 = 1, and r3 = 1; (d) The right edge localization state at the system size S = 61, r2 = 1, and r3 = 1.2
for different r1. Dash lines in panels (a)–(c) indicate site 21 (left dash lines) and site 61 (right dash lines).

described by 〈xi〉 ∼ ln(r2/r3) as an empirical formula [30]. In
the transition region, the mass distributions along the r1-flow
and the r3-flow subchains become separated from each other.
The more the cell is away from the left edge, the more the
two mass distributions of the site in this cell get separated.
Particularly, the mass distribution over the r1-flow subchains
maintains the exponential variation as that in the boundary
region. In the bulk region, the mass distribution becomes
unchanged unless the cells are sufficiently close to the right
edge. In addition, the mass localization state around the left
edge is quite robust against the system size. For small size
system, only boundary region exists. With the increase of the
system size, the transition region and the bulk region appear
successively. Especially, for sufficiently large system size, the
distance between the delimitation of the boundary and the
transition regions (or of the transition and the bulk regions)
and the left edge is roughly unchanged with the variation of
the system size.

However, the edge localization state does not always oc-
cur at the left edge. As shown in Fig. 2(b), as we switch
the parameter for r2 = 1 and r3 = 1.2, the r1 flow outper-
forms the r3 flow and the edge localization state occurs at
the right edge. Different from the left edge localization state,
the mass distribution only displays two regions in the right
edge localization state, the boundary, and the bulk regions in
which the mass distribution of the r1 subchain displays an
exponential variation, which means r2 and r3 play different

roles in the dynamic because they stand different beside the
cell. Similar to the left edge localization state, the exponential
mass distribution in the boundary region is maintained in the
right edge localization state and, more importantly, the system
size does not change the delimitation between the boundary
and the bulk regions. Interestingly, the transition between
the right and the left edge localization states occurs right at
r2 = r3. Figure 2(c) shows one example at r2 = r3 = 1 where
the edge localization states disappear and the mass uniformly
distributes both on the r1- and r3 subchains. The uniform mass
distributions suggest the r1 and r3 flows are balanced.

Furthermore, we consider the impact of r1 on the edge lo-
calization states. In the limited situations with r1 close to zero
or sufficiently large r1, the edge localization states disappear
due to the absence of the competition between r1- and r3-mass
flows. Therefore we focus on the intermediate r1. In Fig. 2(d),
we scrutinize the right edge localization states for several r1

at N = 61. It can be seen that, though the characteristics of
the edge localization states are preserved, varying r1 alters the
mass differentiation between the r1- and the r3 subchains. In
other words, the intercell interaction strength r1 impacts on
the edge localization state by changing the mass distribution
within the cells.

B. Theoretical analysis on topological phases of the ALVE model

The edge localization states have been identified to be
topological phases in model (1) by Knebel et al. [30]. The
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authors treated the interaction matrix ai j to be an effective
Hamiltonian, and introduced a topological invariant, Pfaffian,
to identify the transition between the left and the right edge
localization states. Unfortunately, Pfaffian cannot provide the
information on the number of distinct topological phases.
Here, to explore the topological phases in model (1), we resort
to the winding number, one topological invariant, by using of
the non-Bloch band theory and biorthogonal bases proposed
by Yao et al. [15,16] recently.

The properties of edge localization states in OBC can be
inferred from the topological invariant in PBC (the body-edge
correspondence). Using the interaction matrix (ai j ) in model
(1) with n cells, the effective Hamiltonian in PBC can be
constructed as

Ĥ =
n∑
i

(r3a†
i bi − r3b†

i ai + r1a†
i−1ai − r1a†

i+1ai

+ r2a†
i+1bi − r2b†

i−1ai ) (2)

with an+1 = a1. Here, the subscript i refers to the ith cell. ai

and a†
i denote the creation and annihilation operators at site

2i − 1 while bi and b†
i the creation and annihilation operators

at site 2i. In terms of population dynamics, the number op-
erator a†

i ai (or b†
i bi) means the number of individuals at site

2i − 1 (or 2i). In the Hamiltonian (2), the first term r3a†
i bi

refers to the event that the individual at site 2i is predated by
the one at 2i − 1 with a strength r3, while the second term
−r3b†

i ai refers to the inverse of the event that the individual
at site 2i − 1 is predated by the one at 2i with a strength r3.
Therefore, the first two terms in the Hamiltonian represent
the same predation interaction between individuals in a same
cell. The last four terms on the right-hand side account for the
interaction between adjacent cells. The effective Hamiltonian
(2) provides a way to analyze the edge localization in the
population dynamics (1) in the context of quantum mechanics.

Since Hamiltonian (2) possesses the transitional invari-
ance, we may introduce annihilation operators ãk and b̃k

such that ai = 1√
n

∑
k ãke−iki and bi = 1√

n

∑
k b̃ke−iki with i

the imaginary unit and k = i2π/n (i = 1, . . . , n). Then the
Hamiltonian (2) is reformulated as

H =
∑

k

(r3̃a†
k b̃k − r3b̃†

kãk + r1̃a†
k ãke−ik − r1̃a†

k ãkeik

+ r2̃a†
k b̃keik − r2b̃†

kãke−ik )

=
∑

k

(̃a†
k, b̃†

k )H̃ (k)(̃ak, b̃k )T , (3)

with

H̃ (k) =
(

r1(e−ik − eik ) r3 − r2e−ik

−r3 + r2eik 0

)
, (4)

the Bloch Hamiltonian. Here, H̃ (k) is clearly not a Hermitian
one since H̃ (k)† = −H̃ (k). For each k, H̃ (k) allows for two
eigenvalues:

E±(k) = −ir1 sin k

±
√

−r2
1 sin2 k − r2

2 sin2 k − (r3 − r2 cos k)2, (5)

with ± distinguishing the two energy bands.

The non-Hermitian Bloch Hamiltonian requires that the
left and the right eigenvalue of its eigenvalue E should be
obtained differently as follows:

H̃ (k)|uR(k)〉 = E (k)|uR(k)〉,
H̃†(k)|uL(k)〉 = E∗(k)|uL(k)〉, (6)

with E∗ being the complex conjugate of E . Therefore, the
right and the left eigenvectors can be given as

|u±
R (k)〉 =

(
E±(k)

−r3 + r2 cos k + ir2 sin k

)
,

|u±
L (k)〉 =

(
E∗,±(k)

r3 − r2 cos k − ir2 sin k

)
. (7)

Now using the left and the right eigenvectors |u±
R 〉 and |u±

L 〉,
of the two energy bands E±, we may present the formula for
calculating the winding number. Winding number is a global
measure of the topological nature of the band structure, which
can be calculated by taking the line integral of a certain vector
around a closed path. In one-dimensional case, line integral
around the closed path reduces to the integral for k ranging
from 0 to 2π for all energy bands. For our model, we choose
the certain vector to be the non-Abelian Berry connection Aαβ .
By using the biorthogonal basis, |u±

R 〉 and |u±
L 〉, we generalize

the definition of Berry connection in Ref. [13] such that

Aαβ (k) = 〈uα
L (k)|∇kuβ

R(k)〉, (8)

in which α and β take either + or −, denoting the energy
bands, and ∇k denotes the differentiation over k. Then the
winding number can be calculated as follows:

W = − i

2π

∫ 2π

0

(
1

A++
dA++

dk
+ 1

A−−
dA−−

dk

)
dk. (9)

The winding number in Eq. (9) represents the quantize flux of
the Berry field through a closed path of k ranging from 0 to
2π , which is analogous to the magnetic flux through a loop in
a magnetic field.

Performing numerical integration, we examine the depen-
dence of the winding number on the interaction strengths. We
find that the topological phases only depend on the ratio r2/r3

with phase transition at r2/r3 = 1 and are independent of r1.
To exemplify it, we first consider W against r2 at r1 = 0.8
and r3 = 1.2. As shown in Fig. 3(a), W can only take one
integer out of {0,−2}, W = 0 for r2 < r3, and W = −2 for
r2 > r3. At r2 = r3, W jumps from 0 to −2. According to
the bulk-boundary correspondence in the quantum topological
phases theory [15], winding number acquired in PBC may dic-
tate the properties of topological states in OBC. For example,
integer winding number suggests a topological state while the
maximum |W | determines the number of possible topological
states. Therefore, W = −2 in Fig. 3(a) indicates that there are
two different topological states in model (1), which is exactly
the left and the right edge localization states in Fig. 2. The
jump of W = 0 to W = −2 at r2 = r3 in Fig. 3(a) suggests a
sharp topological phase transition from the right edge local-
ization state to the left one in Fig. 2. Winding number against
r3 in Fig. 3(b) further confirms the above results. In contrast,
in Fig. 3(c) at r2 = r3 = 1.2 (the topological phase transition),
W varies continuously with r1, which means a nontopological
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FIG. 3. The dependence of the winding number W on different interaction strengths in theoretical (black) and numerical (blue). (a) W
against r2 at r1 = 0.8 and r3 = 1.2; (b) W against r3 at r1 = 0.8 and r2 = 1.2; (c) W against r1 at r2 = r3 = 1.2; (d) W against r1 at r2 = 0.8
and r3=1.2.

state just the same as Fig. 2(c). Figure 3(d) shows W against r1

at r2 = 0.8 and r3=1.2. Clearly, W = 0 implies the topologi-
cal states, the right edge localization states, and no topological
transition is involved with r1.

C. One variant of the ALVE model

As discussed above, the topological phases of edge local-
ization result from the competition between r1 and r3 flows.
Now we manipulate these two types of mass flows to check
the robustness of topological phases. For this aim, we modify
the chain structure to the one presented in Fig. 4(a). In the
variant model, the r1 flow is replaced by two sub-r1 flows
which alternate along the chain.

We consider the mass distribution along the chain. As
shown in Figs. 4(b) and 4(c), the alternation of two sub-r1

flows does not alter the existence of the left and the right
edge localization states. The only difference from Fig. 2 is the
shrinkage of the boundary and transition regions. The edge
localization states can be analyzed by the same theoretical
method as that in the last subsection. Considering the alter-
ation of the two sub-r1 flows, the block Hamiltonian H̃ (k) is
modified to be

H̃ (k) =
(

r1(e−2ik − e2ik ) r3 − r2e−ik

−r3 + r2eik 0

)
. (10)

Following Eq. (6), we have the two energy bands with
energy

E±(k) = −ir1 sin 2k

±
√

−r2
1 sin2 2k − r2

2 sin2 k − (r3 − r2 cos k)2,

(11)

and the corresponding left and right eigenvectors

|u±
R (k)〉 =

(
E±(k)

−r3 + r2 cos k + ir2 sin k

)
,

|u±
L (k)〉 =

(
E∗,±(k)

r3 − r2 cos k − ir2 sin k

)
. (12)

Noticing the resemblance between Eqs. (10), (11), and (12)
and Eqs. (4), (5), and (7), we may claim that topological
phases in the variant model is independent of r1 and the
topological transition occurs right at r2/r3 = 1. To demon-
strate it, we calculate the winding number W by following the
procedure from Eqs. (8) to (9). The relation between W and r3

(or r2) is presented in Figs. 4(d) [or 4(e)]. As depicted by W ,
there still exists two distinct topological phases characterized
by W = 0 and W = −2, respectively.

IV. DISCUSSION

In this work, we studied an antisymmetric Lotka-Volterra
equation defined on a chain of two-site cells with OBC.
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FIG. 4. (a) Schematic diagram of the chain structure of the variant model in which the r1 flow is replaced by two sub-r1 flows which
alternate along the chain; (b) Mass distribution of the right edge localization state at r1 = 0.8, r2 = 0.8, and r3 = 1.2; (c) Mass distribution
of the left edge localization state at r1 = 0.8, r2 = 1.2, and r3 = 0.8. The mass on the r1-flow subchain is plotted in blue and the mass on the
r3-flow subchain in red. The winding number W against r3 at r1 = 0.8 and r2 = 1.2 is shown in (d), and W against r2 at r1 = 0.8 and r3 = 1.2
in (e). Dot lines are for theoretical results, and square and circle symbols are for numerical results in (d) and (e). The system size S = 81.

We found two edge-localization states which are connected
by a sharp phase transition. In each edge-localization state,
there exists a boundary region in which mass distribution
displays an exponential decay with the distance away from
the boundary. The formation of the edge-localization state is
due to the competition between the two mass flows, r1 and
r3 flows. To further comprehend the edge-localization states,
we transformed the population dynamics into a non-Hermitian
quantum system. Based on the generalized topological band
theory of the non-Hermitian system with PBC, we found that
the winding number, one type of topological invariant, can
be used to distinguish the left and the right edge-localization
states and to identify the transition between these two states
to be a topological one. To be stressed, the transition between

the left edge and the right edge localization states cannot be
described as an ordinary first-order transition which requires
the existence of hysteresis. The proposed reformulation from
population dynamics to Non-Hermitian quantum systems here
identifies the transition to be a topological one occurring right
at r2/r3 = 1, which suggests that topological phases may
be investigated in nonquantum systems such as population
dynamics.
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