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Quantum dynamics of wave packets in a Morse potential: A dynamical system approach
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We show how a dynamical systems approach can, somewhat unexpectedly, be relevant in the quantum
dynamics featuring oscillations and escape in the Morse potential. We compare the dynamics resulting from the
approach with the results obtained from a direct numerical integration of the relevant Schrödinger equation to
support our claim. An interesting finding of the numerical investigation is the marked increase in the probability
of obtaining a significant fraction (more than 50%) of the wave packet in the classically forbidden range beyond
a critical energy of the packet. The fact that the dynamical systems approach shows an instability near that
critical energy is a definite indication of the relevance of dynamical systems to the quantum dynamics. At lower
energies, the calculated mean position 〈x〉 and variance V from the dynamical system allow us to clearly establish
the phenomenon of tunneling since the sum 〈x〉 + √

V clearly exceeds, at various times, the classical bound on
displacement for the corresponding energy.
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I. INTRODUCTION

Studying quantum dynamics analytically, even in rela-
tively simple potentials, is difficult. The dynamics that we
are referring to is the time development of wave packets in
time-independent potentials. In this paper, we will focus on
Hamiltonians which cannot be split into a time-independent
part of order unity and a small (generally time dependent)
perturbation which can be handled by Fermi’s golden rule.
Our focus will be on the approximate techniques for time
development of wave packets. Our approach complements
the approximate techniques for time development introduced
by Heller [1], exploiting the semiclassical limit. It was later
followed up with particular emphasis on classically chaotic
quantum systems [2–10]. An attempt at obtaining such a de-
scription was carried out for the free particle by Baird [11] and
by Styer [12] for the simple harmonic oscillator. A different
approach involving different order moments was introduced
by Brizuela [13,14], exploiting the far-reaching potential of
Eherenfest’s theorem [15]. It was found that this reproduces
[16] the exact solutions of wave-packet dynamics of free
particles, particles in a simple harmonic potential, and also
electrons with a spin-orbit coupling [17]. It was also possible
to use this approach for anharmonic oscillators [18]. Further,
for the nonlinear parametric oscillator, widely used for the
signature of quantum fluctuations in nanomechanical oscil-
lators [19–21], the dynamics of moments yields consistent
answers [22]. An interesting extension of the semiclassical
limit has been carried out by Goussev [23] and a third-order
thawed-Gaussian approximation used by Kocia and Klales
[24] yielded a treatment of nonlinearity in semiclassical dy-
namics. The generalized Gaussian wave-packet dynamics has
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been used very successfully by Pal et. al. [25] to explore the
semiclassical limit of the kicked rotor.

Our goal in this paper is to introduce a dynamical system
based formulation of the method of moments which holds at
all energy scales and can address the quintessential feature
of quantum dynamics—the phenomenon of tunneling. For
this, we choose the Morse potential (Fig. 1), which plays a
very important role in the binding of diatomic molecules. The
Morse potential is

φ(x) = φ0(e−2ax − 2e−ax ). (1.1)

In the above, a is an inverse length scale. Beyond this scale,
the potential decays very fast. Recently, the Morse potential
has also been used to study soft-matter systems [26–28] and
small variants of it have been designed to study a wider range
of molecules [29–31]. A classical particle in this potential
with energy E (−φ0 < E < 0) will execute oscillations in the
domain AB (see Fig. 1). The quantum particle with average
energy E (this is a constant of motion in the quantum dy-
namics) will have a finite probability of being found outside
the domain AB. Capturing this with the help of a dynamical
system and comparing with the direct numerical simulation of
the Schrödinger equation is the primary aim of our paper.

We discuss the formulation of the relevant dynamical
system and its consequences in Sec. II. The results are com-
pared with those obtained from a direct integration of the
time-dependent Schrödinger equation in Sec. III. A brief con-
clusion is given in Sec. IV.

II. THE DYNAMICAL SYSTEM

We use the dynamics of an expectation value of an operator
O. The time evolution is given by

ih̄
∂

∂t
〈O〉 = 〈[O, H]〉, (2.1)
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FIG. 1. The typical schematic diagram of a Morse potential, with
a = 0.5 and φ0 = 1.

where H is the Hamiltonian of the system, which can be
written as

H = p2

2m
+ φ(x). (2.2)

We will subsequently set all energies E greater than −φ0

i.e., 0 > E > −φ0. For the rest of this paper, we set h̄ = 1
and proceed with our analysis. We can now write the dy-
namics of the mean values of the position and momentum
operators according to the procedure [4,16] introduced by
Ehrenfest, which leads to the following dynamics in an ar-
bitrary potential φ(x) for the mean position 〈x〉, the variance
V = 〈(x − 〈x〉)2〉 = 〈x2〉 − 〈x〉2, and the skewness S = 〈(x −
〈x〉)3〉 = 〈x3〉 − 〈x〉3 − 3〈x〉V . The mean acceleration comes
from d

dt 〈x〉 = 〈p〉
m and d

dt 〈p〉 = −〈 dφ

dx 〉 as

d2〈x〉
dt2

= − 1

m

〈
dφ

dx

〉
. (2.3a)

The dynamics of the variance is obtained from

dV

dt
= 1

m
〈xp + px〉 − 2

m
〈x〉〈p〉

and another derivative yields

d2V

dt2
= d2

dt2
(〈x2〉 − 〈x〉2)

= 2〈(�p)2〉
m2

− 2

m

[〈
x

dφ

dx

〉
− 〈x〉

〈
dφ

dx

〉]
, (2.3b)

where 〈(�p)2〉 = 〈p2〉 − 〈p〉2 represents the variance of the
momentum. Similarly, the dynamics of the skewness can be
obtained from

d2

dt2
(〈x3〉 − 〈x〉3) = 3

m2
〈xp2 + p2x〉 − 6

m2
〈x〉〈p〉2

− 3

m

[〈
x2 dφ

dx

〉
− 〈x〉2

〈
dφ

dx

〉]
. (2.3c)

It is apparent that unless we have the potential φ(x) involving
powers of x less than the cubic, the system cannot close. We
can invoke closure by expressing the moment 〈(x − 〈x〉)n〉

for n � 4 in terms of x, V , and S. We find that a very rea-
sonable picture of the quantum dynamics can be obtained
from the dynamical system described by the set of first-order
equations leading to second-order equations of Eqs. (2.3a)
and (2.3b).

It should be noted that the wave function ψ (x, t )—which
is the solution of the time-dependent Schrödinger equation for
a given Hamiltonian H—is a complex quantity that can be
written as ψ (x, t ) = f (x, t )eiη(x,t ), where, f (x, t ) and η(x, t )
are real functions. The former is the amplitude and the latter
the phase. The relation dV

dt = 〈xp+px〉
m − 2

m 〈x〉〈p〉 gives us,
in one dimension, access to information about the phase
of the wave function. It is important to write the average
energy E = 〈H〉, which is a constant of motion for a time-
independent Hamiltonian. From this relation, it follows that

E = 〈p2〉
2m

+ 〈φ(x)〉 = 〈(�p)2〉
2m

+ 〈p〉2

2m
+ 〈φ(x)〉. (2.4)

To find the quantum dynamics for any given potential φ(x),
we need to specify an initial wave function ψ0(x) at time
t = 0. This allows us to calculate all the moments at the
initial instant and we can use them to evaluate the constants
of integration as we track the evolution of the dynamical
systems. In general, the initial wave packet will be taken
to be ψ0(x) = 1

σ 1/2π1/4 e−(x−〈x〉)2/2σ 2
eikx. It gives a Gaussian

probability distribution centered around x = 〈x〉 with width σ

and momentum k. The calculation of moments as a function
of time do not reveal the exact shape of the wave packet but
gives a fair idea of what it looks like at later times. This is
how the techniques of nonlinear dynamics can be used to
extract useful information about the quantum dynamics.

We begin by discussing the dynamics for the particle in the
Morse potential, as described in Eq. (1.1) when the energy
E is close to (but greater than) −φ0. For later use, we define
the quantity �E = (E + φ0)/φ0, which is much smaller than
unity when E is close to −φ0. The quantity �E equals unity
when E = 0. For E close to −φ0 (or �E � 1), we can expand
the potential φ(x) of Eq. (1.1) as

φ(x) = −φ0 + 1

2
ω2x2 − μ

3
x3 + λ

4
x4 + · · · , (2.5)

where ω2 = 2φ0a2, μ = 3φ0a3, and λ = 7φ0a4/3. Using
Eqs. (2.3a)–(2.3b) and Eq. (2.4), we get

d2〈x〉
dt2

+ ω2〈x〉 = μ〈x〉2 − λ〈x〉3 + μV − 3λV 〈x〉 − λS

(2.6)

and

d2V

dt2
+ 4ω2V = 4φ0�E − 2ω2〈x〉2 + 4μ〈x〉3

3

+ 8μV 〈x〉 + 10μS

3
− 2〈p〉2

m2

− 2λ[K + 3S〈x〉 + 3V 〈x〉2], (2.7)

where S is the skewness defined earlier and K = 〈(x − 〈x〉)4〉
is the kurtosis of the distribution at any time. To write the
dynamics of Eq. (2.3c) in terms of quantities already used, we
need an approximation in the treatment of 〈xp2 + p2x〉 there.
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We use the relation E = 〈 p2

2m + φ(x)〉 to write Eq. (2.3c) to the
lowest order as

d2S

dt2
= 12〈x〉

[
E

m
− 〈p〉2

2m2

]
− 9ω2[S + 3V 〈x〉 + 〈x〉3]

+ 7μ[K + 4S〈x〉 + 6V 〈x〉2 + 〈x〉4]

− 3μ[V 2 + 2V 〈x〉2 + 〈x〉4]. (2.7a)

Neglecting μ,

d2S

dt2
= 12〈x〉

[
E

m
− 〈p〉2

2m2

]
− 9ω2[S + 3V 〈x〉 + 〈x〉3]. (2.8)

We note that the fixed point (i.e., stationary) value of 〈p〉 is
zero and that of the variance is V0 = �E/ω2 from Eq. (2.7),
working to the lowest order. Using these values, we find from
Eq. (2.8) that the fixed point value of the skewness S is

S0 = −5x0(�E )/3ω2. (2.9)

Here x0 is the fixed point value of 〈x〉 and for μ � 1 (first de-
parture from simple harmonic dynamics), x0 = μV0/ω

2, and
leads to a nonzero skewness. This is the major result coming
from the low-energy dynamics and will be compared with
the numerical solution of the Schrödinger equation dynamics
carried out in Sec. III.

Treating the Morse potential as a set of anharmonic correc-
tions on a simple harmonic form gives the significant result
that the dynamics will acquire skewness even if one begins
with a Gaussian wave packet. However, we anticipate that
the dimensionless ratio S0/x3

0 � 1 and the inevitable skew-
ness in the dynamics will be numerically small. We will see
later that this fact is borne out by a numerical integration of
the Schrödinger equation. Hence, at higher energies, where
the full form of the potential is essential, we can make the
assumption of the Gaussian shape being retained at all times
and, accordingly, we consider the wave function to have the
form

ψ (x, t ) = 1

π1/4σ 1/2
e−(x−〈x〉)2/2σ 2

eik(t )x

= 1

(2πV (t ))1/4
e−(x−〈x〉(t ))2/4V (t )eik(t )x, (2.10)

where 〈x〉(t ), V (t ) and k(t )(= d〈x〉(t )/dt ) are the mean po-
sition, variance, and momentum at time t , respectively. We
introduce the dimensionless variables y = a〈x〉 and u = 2a2V
along with a dimensionless time τ = ta

√
2φ0 and use the

above wave function in Eq. (2.10) to calculate the averages
in Ehrenfest equations. The expectation values in Eqs. (2.3a)
and (2.3b) are now evaluated to obtain the dynamical
system,

d2y

dτ 2
= [

e(u−2y) − e( u
4 −y)]. (2.11a)

and,
d2u

dτ 2
= κ

2u
− 2u

[
2e(u−2y) − e( u

4 −y)
]
, (2.11b)

where κ = 2a2/m2φ0 is the dimensionless control parame-
ter (a measure of the quantum fluctuations relative to the
strength of the Morse potential). However, we want the av-
erage energy (a constant of motion determined by the initial
conditions) to be the relevant control parameter. Accordingly,

we turn to Eq. (2.4) and using the wave function of Eq. (2.10)
write it as

E = k2

2
+ κ

8u
+ eu − 2eu/4. (2.12a)

To make our calculations more tractable, we approximate
the third and fourth terms on the right-hand side of Eq. (2.12a)
with a single expression −e−u/2 which is correct to O(u2), i.e.,
for reasonably localized packets. Thus, we get

E � k2

2
+ κ

8u
− e−u/2, (2.12b)

where k is the momentum of the wave packet. It must be
mentioned that, without loss of generality, we set m = 1
and φ0 = 1 from Eq. (2.12a) for the rest of this paper. The
averages have been carried out by using the standard defini-
tion: 〈Ô〉 = ∫ ∞

−∞ ψ∗(x, 0)Ôψ (x, 0)dx with ψ (x, 0) given by
Eq. (2.4), where Ô is any observable such as the energy E
or the potential φ. It must also be noted that for our system
E as given by Eq. (2.4) is a constant of motion. Furthermore,
approximating eu − 2eu/4 with −e−u/2 is justified when u < 1.
This is because when we expand eu − 2eu/4 and −e−u/2 in a
series, the terms up to first order in u are equal. The higher
order terms would be smaller and thus can be neglected as
long as u < 1. Substituting Eq. (2.12b) in (2.12b) for κ makes
the evolution of u be governed by

d2u

dτ 2
= 4

[
E − k2

2
+ e−u/2

]
− 2u

[
2e(u−2y) − e( u

4 −y)
]
. (2.13)

Between Eqs. (2.11a) and (2.13), we have a dynamical sys-
tem controlled by dimensionless parameter E ′ = (E − k2

2 ) =
−(|E | + k2

2 ) = −ε. The magnitude of ε is less than unity in
our range of interest.

To explore the dynamics, we need the fixed point of the
system governed by Eqs. (2.11a) and (2.13). The stationary
condition d2y

dτ 2 = 0 for Eq. (2.11a) is

y0 = 3u0/4. (2.14a)

Similarly, using the stationarity in Eq. (2.13), we get

u0e−u0/2 = 2(−ε + e−u0/2). (2.14b)

The value of u0 is found from the intersection of the two
curves representing the two sides of Eq. (2.14b). We find the
linearized equations around the stationary point as follows:

d2(δy)

dτ 2
= e−u0/2

[
−δy + 3

4
(δu)

]
(2.15a)

and
d2(δu)

dτ 2
= 6u0e−u0/2(δy)

−
[

κ

2u2
0

+ e−u0/2

(
2 + 7

2
u0

)
(δu)

]
.

(2.15b)
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From here, we find the characteristic equation for the eigenvalues λ as

λ2 +
[

e−u0/2 + κ

2u2
0

+ e−u0/2

(
2 + 7

2
u0

)]
λ +

[
e−u0/2

(
κ

2u2
0

)
+

{
e−u0 (2 + 7

2
u0)

}
− 9

2
u0e−u0

]
= 0. (2.16a)

The eigenvalues around the fixed point are found to be

2λ = −
[

e−u0/2 + κ

2u2
0

+ e−u0/2

(
2 + 7

2
u0

)]

±
√[

e−u0/2 + κ

2u2
0

+ e−u0/2

(
2 + 7

2
u0

)]2

− 4

[
e−u0/2

(
κ

2u2
0

)
+

{
e−u0

(
2 + 7

2
u0

)}
− 9

2
u0e−u0

]
. (2.16b)

From here, the condition for stability of the solution is found
to be

ε <

[
u0

4

(
3 + 7

2
u0

)
+ 1

]
e−u0/2. (2.17)

To conclude this section, we would like to mention that
Eq. (2.13)—which is an approximation of Eq. (2.11b) via
Eq. (2.12b)—was introduced to establish the energy E of the
system as an appropriate control parameter. Having achieved
this goal, from now on we will not be using the approxi-
mated Eq. (2.13). Instead, we will use Eq. (2.11b) along with
Eq. (2.11a) in the subsequent section.

III. NUMERICAL RESULTS

In this section, we report results obtained via direct
numerical integration of the time-dependent Schrödinger
equation with a Morse potential. We start with an initial
Gaussian wave packet and use the Crank-Nicolson algorithm
[32] to obtain the wave packet ψ (x, t ) at later time t . Before
implementing the algorithm, we need to specify the initial
Gaussian wave packet. At time t = 0, we take the wave packet
to have the form

ψ (x, 0) = 1

π1/4σ 1/2
e−x2/2σ 2

eikx. (3.1)

This packet has the initial expectation values 〈x〉 = 0, V =
〈x2〉 − 〈x〉2 = σ 2/2, and 〈p〉 = k. From Eq. (2.12b), the aver-
age energy E for this packet is

〈E〉 = (1 + 2k2σ 2)

4σ 2
− e−a2σ 2/2. (3.2)

In what follows, we will keep σ = 1.0, a = 0.5, and vary the
total energy by varying the momentum k at t = 0. Our aim
is to calculate the probability P(x0) of the particle staying
within a distance x0 of to the right of the origin using the
time-dependent Schrödinger equation.

We consider the time-averaged effects, i.e., instead of con-
sidering the integral P(x0, t ) = ∫ x0

−∞ | ψ (x, t ) |2 dx, we work
with

P(x0) = lim
T →∞

1

T

∫ T

0
dt

∫ x0

−∞
|ψ (x, t )|2dx. (3.3)

Here, in Eq. (3.3) we have used T = 105 to produce our
results in Fig. 2. Here, the choice of T = 105 is not critical
as any large value of T will suffice, i.e., our results would
not change if we use, say, T = 155 instead of T = 105. An

essential feature of the quantum dynamics that we want to
capture, by using the dynamical systems approach, is the issue
of escaping from the potential well. This escape occurs in the
dynamical system when the fixed point becomes unstable. For
the Schrödinger equation description, this means that starting
with an initial wave packet localized in the classical domain,
we calculate the probability for finding the wave packet at
a certain distance x0 beyond the classical domain after a
long time. We do this by numerically integrating the time-
dependent Schrödinger equation to calculate the probability
P (x0 = 4) defined in Eq. (3.3). The point x0 = 4 is beyond
the classical domain for all negative energies except those
very close to E = 0, as can be seen from Fig. 1. Hence, a
value of P (x0 = 4) close to unity implies that the quantum
particle has not strayed too far from the classical domain,
whereas P(x0 = 4) < 1/2 certainly means that on an average
the particle is far beyond the classical limit most of the time.

In Fig. 2, we show the probability of the particle being
confined within the Morse potential as a function of the mo-
mentum k, which is a measure of the energy E of the particle.

FIG. 2. The probability of the wave packet for staying within the
position coordinate x0 = 4.0, i.e., P(x0 = 4), has been plotted as a
function of k. This plot is obtained by solving the time-dependent
Schrödinger equation numerically (see text for details). We observe
the slope increasing until about k � 0.8 beyond which the slope is
independent of k. We observe an analogous behavior—described in
detail in the text—via our semiclassical approach using dynamical
systems.
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Here, in Fig. 2, a more negative value of the slope implies that
the probability of staying within x0 = 4 is decreasing more
rapidly as we increase k. We see that in the initial stages the
probability drops slowly as k is increased. This is true until
around k = 0.3 and then there is a region where the slope
changes with increasing energy and then becomes indepen-
dent of energy at approximately k = 0.8. A transition happens
in the quantum dynamics in the region 0.3 < k < 0.8. In
the subsequent paragraph, we will describe a corresponding
behavior of the system using the dynamical systems approach.

To check for an analogous behavior with our semiclassical
[33] setup using a dynamical system approach, we perform the
following task. We solve the two coupled equations (2.11a)
and (2.11b) numerically for the mean and variance. For a
given set of parameters and initial conditions, the variables
oscillate with finite amplitudes as shown in Figs. 3(a) and
3(b). However, there is a critical value of k between 0.77 and
0.78, beyond which the dynamical quantities y = a〈x〉 and
u = 2a2V start to diverge [Fig. 3(c)]. As mentioned above,
in Fig. 2, the slope becomes independent of the energy at
approximately around k = 0.8. Intriguingly, our semiclassical
setup loses its stability at approximately the same value of
k. Thus, we obtain a behavior analogous to escape, at the
value of k between 0.77 and 0.78, via our dynamical sys-
tems approach. As soon as the fixed point becomes unstable,
the dynamical system trajectory escapes to infinity. Since we
have no control over the system anymore, a small variation of
the initial condition (i.e., the energy) may lead to the particle
escaping the potential from the right or left intersection point
of the curve representing the Morse potential and the line cor-
responding to the constant energy. This is shown in Fig. 3(c),
where, corresponding to two different initial conditions, the
particle escapes from the right or left. Hence, in conclusion,
the dynamical system, at this order, is capable of describing
quantum tunneling till a critical value of k, beyond which
more modes have to be introduced in the system to give a
better description.

Additionally, we can go one step further and compute the
time evolution of the Gaussian wave packet via the dynam-
ical system approach and by direct numerical integration of
Schrödinger’s equation. Thus, the potency of our dynamical
systems approach is brought out by comparing the evolution
of the wave packet at every time step in the semiclassical and
quantum domains. We set out by computing the mean and
the variance of the Gaussian wave packet from the dynamical
system description by numerically integrating Eqs. (2.11a)
and (2.11b). From these two moments, we can reconstruct
the Gaussian wave packet at each time step. Thus, we obtain
the time evolution of the wave packet via our dynamical
systems approach. We compare this result by obtaining the
time evolution of the Gaussian wave packet from numerical
integration of the Schrödinger’s equation (see Supplemental
Material [34]).

In the movies in the Supplemental Material [34], we tag
the peak of both wave packets in each video (corresponding
to k = 0.1 and k = 0.5). Let us denote the time period of the
wave packet in Ref. [34], obtained via direct numerical simu-
lation of the time-dependent Schrödinger equation, as Tqm. Let
us also denote the absolute value of the difference in the time
period of the two wave packets—obtained via semiclassical

(a)

(b)

(c)

FIG. 3. (a) The variation of 〈x〉 as a function of time t has been
shown for the momentum k = 0.1 corresponding to lower energy
of the wave packet. This has been obtained by solving the coupled
system as described in Eqs. (2.11a) and (2.11b), respectively. The
maximum displacement is within the classical domain. (b) Same
as in Fig. 3(a) but for the momentum k = 0.77 corresponding to
higher energy of the wave packet. The higher energy leads to higher
amplitudes of oscillations. (c) The variation of 〈x〉 as a function
of time t blows up at k = 0.78. In this case, the particle escapes
from the potential well. This gives us an estimation of the energy
value of the particle, beyond which it escapes from the Morse po-
tential. This k value is quite consistent with the results as obtained
from the direct quantum mechanical analysis, as shown in Fig. 2.
As observed in the two subpanels, the particle escapes towards
the right of the potential (indicated by the subpanel on the right)
when the initial mean 〈x〉 = 0, while the initial variance V = 0.72
and the particle escapes towards the left (indicated by the sub-
panel on the left) when the initial mean 〈x〉 = 0 and the initial
variance V = 0.74.
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(a)

(b)

FIG. 4. (a) The oscillations of 〈x〉 as a function of time t has
been shown for different values of k, as obtained from the dynamical
system. The small oscillation (purple curve) one is for k = 0.1 and
the large oscillation (green curve) one is for k = 0.5. The effect of
changing k is moderate. (b) The oscillations of the square root of
variance

√
V as a function of time t for different values of k. The

small oscillation (purple curve) is for k = 0.1 and the large oscilla-
tion (green curve) one is for k = 0.5. Note that the maximum value
of (〈x〉 + √

V ) can be as large as 2.25 at k = 0.1, which corresponds
to an energy of E � −0.6. This is the maximum displacement that
the particle can have from x = 0 at this energy. It can be seen from
Fig. 1 that at E = −0.6, the range of the classical particle is less than
2, which makes the phenomena of quantum tunneling apparent in the
dynamical system.

FIG. 5. The oscillations of 〈x〉 as a function of time t as obtained
from the quantum mechanical consideration and the correspond-
ing semiclassical results have been shown for a particular value of
k = 0.1. This has been plotted here for a comparison between the
semiclassical and quantum results. The solid line (purple) denotes
the classical results while the dotted curve (green) is for the quantum
mechanical results.

(a)

(b)

FIG. 6. (a) The probability |ψ |2 has been plotted with respect
to the position coordinate at different times. The time-evolved
Gaussians are obtained by solving the time-dependent Schrodinger
equation, in each cases. The wave packet has been released from the
origin with k = 0. The blue one is observed at time t = 0, while the
yellow one is being observed at later t = 105 time steps and the red
one is at t = 155 time steps. We observe that significant skewness
has not been developed, even after longer time. Thus, the assumption
of ignoring the skewness in our analysis is justified, as mentioned
in the text. (b) The skewness (S) has been plotted as a function of
k (measurement of energy) values numerically from the quantum
mechanical considerations. As can be seen, the increase is parabolic
in k which is linear in �E and confirms the prediction of Eq. (2.9).

and quantum dynamics—for a particular value of k as |�t |.
We compute the quantity |�t |/Tqm for k = 0.1 and k = 0.5
to estimate how well our dynamical systems approach agrees
with direct numerical simulations. From Ref. [34], we observe
that |�t | = 4 units when k = 0.1 while |�t | = 10 units when
k = 0.5. Furthermore, we obtain |�t |/Tqm ≈ 0.06 when k =
0.1 and |�t |/Tqm ≈ 0.16 when k = 0.5. The |�t |/Tqm value
for k = 0.1 shows that the time period of the two wave packets
does not differ by much. For k = 0.5, the value of |�t |/Tqm

is greater than the value at k = 0.1. Still, the relative differ-
ence in the time period between the two wave packets when
k = 0.5 is about 16%. This shows that our dynamical systems
approach does a reasonably good job of approximating the
dynamics of the wave packet over a range of k values, with
the approximation being better at lower values of k.

We can further compare the two wave packets from
Ref. [34]. To this end, let us denote the maximum displace-
ment (from the origin and in the direction of the positive
x axis) of the peak of the wave packet obtained via direct
numerical simulations by Xqm. Let us also denote the absolute
value of the difference in the maximum displacement (again
from the origin and in the direction of the positive x axis) of
the peak of the two wave packets —obtained via semiclassical
and quantum dynamics—for a particular value of k as |�x|.
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We calculate the quantity |�x|/Xqm for k = 0.1 and k = 0.5.
We find that |�x| = 0.13 units when k = 0.1 while |�x| =
0.36 units when k = 0.5. We also get |�x|/Xqm ≈ 0.01 when
k = 0.1 while |�x|/Xqm ≈ 0.03 when k = 0.5. This again
indicates that our dynamical system approach works well for
a range of k values, with the approximation being better for
low k values.

Further, we wish to explore the nature of oscillations of
〈x〉 and V as a function of time t for different values of k,
from our dynamical system approach and establish that the
data exhibits tunneling. Hence, we have plotted the required
oscillations of 〈x〉 and V with respect to time for k = 0.1 and
k = 0.5. In Figs. 4(a) and 4(b), we have plotted 〈x〉 and V as
obtained from the dynamical system approach. We note that
changing k is equivalent to changing the energy of the system.
We now look at the values of 〈x〉 and V at the same instant of
time from Figs. 4(a) and 4(b) and form the sum (〈x〉 + √

V ).
It is clear from this analysis that at several instants of time this
sum exceeds the bound of the classical domain[see the caption
of Fig. 4(b)].

In Fig. 5, we compare the results obtained from the quan-
tum mechanical consideration and the corresponding results
obtained from our dynamical systems approach to check
that how much our dynamical systems approach can capture
the actual scenario, obtained from the quantum mechanical
results. Thus, 〈x〉 has been plotted against time t for a par-
ticular value of k = 0.1. We observe that the frequencies of
these two results matches reasonably well. However, there
is difference in the amplitudes. The complete scenario of
these two results have been shown in the movie, as described
in Ref. [34].

We would like to end this section by discussing our results
on the skewness that the wave packet develops. Furthermore,
we would like to justify our assumption of ignoring the
skewness in our semiclassical calculations on the basis of
the results obtained from direct numerical simulation of the

time-dependent Schrödinger’s equation. In Fig. 6(a), we plot
the skewness for k = 0 at different times. We notice that the
skewness has not developed significantly even though the
wave function is observed for long time intervals, such as 105

and 155 time steps. Thus, it justifies the assumption of ignor-
ing the skewness in our theoretical analysis. In Fig. 6(b), we
plot the skewness (S) as a function of k (measure of energy)
numerically from the quantum mechanical considerations to
show how the skewness develops with increasing energy of
the wave packet. As anticipated, the skewness is small and
increases linearly with �E [quadratic with k in Fig. 6(b)].

IV. CONCLUSION

In this paper, we have looked at the dynamics of a wave
packet in a one-dimensional Morse potential from the usual
quantum mechanical approach and also by writing a dynam-
ical system involving the moments of different powers of
the position operators. The dominant and unusual feature of
the quantum dynamics is, however, the phenomena of tun-
neling. An unexpected feature, which our solution of the
time-dependent Schrödinger equation for the Morse poten-
tial revealed, was the existence of a characteristic energy for
which the tunneling probability of a particle, initially quite
localized within the well of the Morse potential, suddenly
increases. Interestingly, our technique of writing a dynamical
system correctly shows a runaway instability at that energy.
Below that energy, our dynamical system shows the expected
behavior of the particle primarily oscillating about a shifted
center and making excursions outside the classically allowed
region. Consequently, we feel that the techniques used in the
study of dynamical systems can be effectively employed for
studying quantum dynamics.
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