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Inhomogeneity effects on earthquake fault events
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We present a detailed analysis of the dynamical behavior of an inhomogeneous Burridge-Knopoff model, a
simplified mechanical model of an earthquake. Regardless of the size of seismic faults, a soil element rarely has
a continuous appearance. Instead, their surfaces have complex structures. Thus, the model we suggest keeps the
full Newtonian dynamics with inertial effects of the original model, while incorporating the inhomogeneities of
seismic fault surfaces in stick-slip friction force that depends on the local structure of the contact surfaces as
shown in recent experiments. The numerical results of the proposed model show that the cluster size and the
moment distributions of earthquake events are in agreement with the Gutenberg-Richter law without introducing
any relaxation mechanism. The exponent of the power-law size distribution we obtain falls within a realistic
range of value without fine tuning any parameter. On the other hand, we show that the size distribution of both
localized and delocalized events obeys a power law in contrast to the homogeneous case. Thus, no crossover
behavior between small and large events occurs.
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I. INTRODUCTION

Earthquakes are among systems in nature whose dynamics
present self-organized critical behavior which results from
large critical fluctuations since such systems are in a perpetual
critical steady state. Driven at a critical threshold of instability,
they trigger events of a wide range of sizes that follow a
power-law behavior [1].

Earthquake faults result from the fact that the surface of
two moving tectonic plates, when they come in contact with
each other, is imperatively driven toward a slipping instability,
triggering events of different magnitudes m that are distributed
according to the Gutenberg-Richter (GR) law [2], which states
that the number of earthquakes of magnitude greater than or
equal to m is given by

log10 N (m) = a − Bm, (1)

where a and B are positive parameters that differ from one
region to another, and generally B is in the range 0.6 � B �
1.3 [3,4].

The Burridge-Knoppof (BK) model is the simplest con-
tinuum model that may describe qualitatively the mean
characteristics of the earthquake faults. It has been inten-
sively studied numerically in one dimension [5–10]. Carlson
and Langer showed that the model exhibits three kinds of
sleeping events, namely the smallest ones involving motions
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at small length scale, large localized events, and delocalized
great events [6]. The moment distribution of localized events
P(M ) ∼ M−b is consistent with the GR law with b ≈ 2, es-
pecially for high values of the weakening velocity parameter
on which the friction force depends. The moment distribu-
tion of the delocalized event does not present any power-law
behavior. On the other hand, Xia and co-workers [10] have
studied numerically the BK model in one dimension, and their
results show that the cluster size distribution n(s) for large
events depends on the time step and there is a small range of s
that poorly exhibits power-law scaling with exponent b ≈ 2.5.
Assuming a long stress transfer, Xia et al. [9] showed that
the statistical properties are different from the original BK
model and they depend either on the range of the stress and the
friction force characteristics. Inspired by the BK model and
the idea of self-organized criticality, different nonconservative
self-organized critical models have been elaborated based on
cellular automaton (CA) rules [11–13]. Such models were
able to reproduce the power-law behavior but the scaling-law
exponent depends strongly on the elastic parameter α and the
real exponent is obtained only around α = 0.2. We point out
that a robust scaling law was observed only when an internal
relaxation process has been incorporated [13].

In reality, the friction law depends on the composition
of fault rocks, which rarely have a homogeneous appear-
ance [14–19]. Thus, in the present paper, we suggest a more
realistic BK model by taking into account the inhomogeneities
located at the surface of the tectonic plates. Such inhomo-
geneities have a relevant impact on the friction force which
leads to different statistical properties of different events.
Thus, in Sec. II, the inhomogeneous BK model we suggest and
its associated parameters are presented. A theoretical analysis
of the inhomogeneity effect on the three categories of events is
provided in Sec. III. The results of our numerical simulations
which include the cluster size and the moment cumulative
distributions are presented in Sec. IV. Finally, Sec. V is
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dedicated to the conclusion where a brief summary of the
main results is given.

II. DEFINITION OF THE MODEL AND ITS
MAIN CHARACTERISTICS

As in the original model [20], the system we consider
consists of a chain of N blocks of mass m joined to each
other by springs of strength kS and linked to a fixed plate by
leaf springs of strength kL. The blocks are in contact with a
surface which moves at relative velocity v causing a velocity-
weakening stick-slip friction force that is the origin of the
system instability. Unlike the version of the BK model where
the system is uniform with no spatial parameters, variations,
or stochastic elements [6], we introduce a friction force that
depends locally on the structure of the substrate.

The equations of motion of the model are given by

mẍ j = kS (x j+1 − 2x j + x j−1) − kLx j − F (v + ẋ j ), (2)

where x j is the displacement of block j ( j = 1, 2, . . . , N)
relative to its equilibrium position and the friction law F is
assumed to be of the form

F (ẋ) = Frφ(ẋ/
−
v), (3)

where φ is a vanishing function,

φ(y) = sgn(y)

1 + |y| , (4)

Fr is a random amplitude of mean E(Fr ) = F0 and variance
var(Fr ) = σ 2 that follows a Gaussian distribution law, and
−
v is the velocity dependence of F at which the friction is
considerably reduced. After an appropriate rescaling,

τ = ωpt, u j = D0x j, (5)

where ωp = √
kL/m is the period of a moving single block

in the absence of friction and D0 = F0/KL presents the
maximum averaged displacement before slipping, Eq. (2) is
rewritten in the scaled form,

ü j = l2(u j+1 − 2u j + u j−1) − u j − η jφ(2αν + 2αu̇ j ), (6)

where

l2 = kS/kL, ν = −
v/(ωpD0), 2α = ωpD0/

−
v, (7)

are the parameters that govern the system dynamics, and
η = Fr

F0
is a random variable with mean E(η) = 1 and variance

σ ′2 = σ 2

F 2
0

. As it was pointed out by Carlson and Langer [6], the
delocalized large events happen when the slipping time, i.e.,
ω−1

p , is very small compared to the loading time, i.e., D0/v.
Thus, the dynamics of such an event should be analyzed in the
continuum limit where the spacing blocks a are small enough
(a → 0). Defining new length dimension variables s = ja and
ξ = 
a, Eq. (6) is rewritten as

ü = ξ 2 ∂2u

∂s2
− u − ηφ(2αν + 2αu̇). (8)

Following the wave propagation equation, ξ is viewed as
a sound speed. Since for small events, called microscopic
events, few blocks are displaced and the variation of their dis-
placement uj is small, the spacing a between blocks remains

fixed. Consequently, to study the dynamics of such events we
have to consider Eq. (6) in its discrete form.

III. INHOMOGENEITY EFFECTS ON DIFFERENT
EVENTS

As mentioned above, the events are divided into micro-
scopic, localized, and delocalized depending on the parameter
ν, the ratio of the slipping time, and the loading time. The
microscopic events consist of a few connected blocks that slip
as a whole between stuck blocks on either side. By shifting to
a frame of reference whose origin is the center of mass of the
group of n blocks and following the analysis of Carlson and
Langer [6], the motion equation of the displacement Wn in the
new frame of reference is

Ẅn = −�2
nWn + ντ + 1 − 1

n

∑
j

η jφ(2αẆn), (9)

with the initial conditions Wn = Ẇn = 0 for τ = 0. Equa-
tion (9) is the same as the one of the homogeneous models [6]
with a friction term that may be considered as an average
on the different blocks’ friction inhomogeneity represented
by the stochastic parameter η j . For small events, the variation
of the displacements u j is very small and so Ẇn is small
enough to allow the linearization of  by assuming that 2αẆn

is small. Then Eq. (9) can be rewritten for small n as

Ẅn − 2α̃Ẇn + �2
nWn

∼= ντ + 1 − η̃, (10)

with

α̃ = α

n

∑
j

η j, and η̃ = 1

n

∑
j

η j . (11)

Since for small n, α̃ is small enough that α̃ � �n, then the
solution of Eq. (10) [given in the Supplemental Material,
Eq. (S1) [21]] becomes

Wn(τ, η̃) = ν

�2
n

[
τ − sin(τ�n)

�n

]
+ (η̃ − 1)

�2
n

[cos(τ�n) − 1].

(12)

Equation (12) contains two contributions. The first one is none
other than the solution of the homogeneous model [6], which
we find for η̃ = 1, while the second contribution results from
inhomogeneities. Averaging over such inhomogeneities that
are distributed according to a Gaussian distribution law of
mean μ and standard deviation σ , we obtained

Wn(τ ) = ν

�2
n

[
τ − sin(�nτ )

�n

]

−
σ√
2π

e− μ2

2σ2 − μ

2

[
1+ erf

(
μ

σ
√

2

)] + 1

�2
n

[cos(�nτ )− 1].

(13)

We note that the solution of the homogeneous model is found
for μ = 1 and σ = 0, where the second term of Eq. (13)
vanishes. The distance that the group of blocks travels during
a time interval δτ = 2π/�n before coming to rest is

δWn = 2πν

�3
n

, (14)
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and the average speed is given by

δWn

δτ
= ν

�2
n

≡ nν

2l2
. (15)

We remark that the average displacement Wn in Eq. (13)
depends on the inhomogeneity distribution while the average
speed of the n blocks in Eq. (15) does not depend on it. This
is due to the fact that for a small group of blocks undergoing
small periodic events with brief sticks, the contribution of the
average friction oscillates along this period of time δτ leading
to a vanishing contribution of its variation.

The localized and delocalized events are described in the
continuum limit rather than the discrete version of the equa-
tion of motion. Writing u(s, τ ) = uε (s) + u(s, τ ) [6] where
uε (s) is the solution of a stationary state that corresponds to
a balance between coupling, pulling forces, and the maximum
of the friction force, and assuming that u̇ 	 ν, the system
dynamical equation that we have to solve is

ü − ξ 2 ∂2u

∂s2
+ u = 1 − η(s)φ(2αν + 2αu̇)

∼= 1 − η(s)(1 + 2αu̇), (16)

with the initial conditions

u(s, 0) = 0, u̇(s, 0) = ω0δ(s − s0), (17)

where s0 is the position of the initial triggered slipping event
generated by simultaneous small pulses and ω0, which is
proportional to ν, is the slipping speed of such events [6].
After laborious calculations (see some steps in Supplemental
Material Sec. S2 [21]), the solution we find,

u̇(s, η, τ ) = 1
2ω0eα̃τ [δ(s − s0 + ξτ ) + δ(s − s0 − ξτ )],

(18)

is analogous to the one of the homogeneous model [6], except
that α̃ is a random parameter that is distributed according to a
Gaussian law leading to a random exponential growth of the
velocity pulses. Averaging over the disorder of friction force
we obtain

u̇(s, τ ) = 1

4
ω0eατ+ (σατ )2

2

[
erf

(
σ 2ατ + μ

σ
√

2

)
+ 1

]

× [δ(s − s0 + ξτ ) + δ(s − s0 − ξτ )], (19)

which consists of the propagation of advanced and retarded
waves away from the source point s0 at the sound speed ξ . We
note that even if the solution of the system dynamical Eq. (19)
is qualitatively similar to the one of the homogeneous case,
the amplitude of the pulse velocities is larger than the one of
the uniform system. As a result, φ decreases and the effect
of frictional instabilities increases considerably the amplifica-
tion of the spatial irregularities, leading to an increase of the
slipping zone. Thus, the average size of the localized events
becomes larger than the one of the homogeneous model. Such
a case is depicted in Figs. S1(a) and S1(b) [21]. The increase
of the localized event size may dislodge blocks located at
the neighbor of the initial slipping zone, which may lead
to the appearance of relatively large localized events. As a
consequence, the power law of the size and the moment dis-
tributions will be quantitatively improved as we will see in the
numerical simulations discussed in Sec. IV.

On the other hand, the delocalized events result from the
fact that the pulses grow enough to dislodge blocks far from
the initially slipping zone. One can see from Eq. (19) that
the ratio between velocity amplitudes of the inhomogeneous

and homogeneous cases denoted Ru̇ is 1 < Ru̇ < 2e
ατσ2

2 . Thus,
the pulses will overflow the slipping zone more than in the
homogeneous case. As a result, the average size of delocal-
ized events will be greater than the one of a uniform system
and their frequency will increase, which will have an impact
on the size and moment distributions of these large events
that will exhibit a power-law distribution (see Sec. IV), un-
like the homogeneous case where the distribution of large
events does not present a such behavior [6] [Figs. S1(c)
and S1(d) [21]].

IV. NUMERICAL RESULTS

The system dynamical Eq. (6) is solved numerically for
different values of α, ν, and 
 with system size N = 1500 and
open boundary conditions, i.e., the end blocks of the chain are
stuck, to discard any finite-size effect.

The events that mostly occur in the BK model are slip-
ping as a cluster of blocks. These are divided into “stuck”
or “slipped,” namely that the block is considered stuck if its
speed is less than a parameter v0. A random amplitude of
the friction force is assigned to each block according to a
Gaussian distribution whose mean and variance are μ and
σ , respectively. Note that the friction force is renewed af-
ter each slip event. We initially started the system in a full
stuck configuration with small random displacements to all
blocks. Finally, we accumulate data after the system reaches
ten loading periods 2

ν
. After reaching a steady state, the system

presents a variety of different events with different sizes. The
numerical data we obtained have been analyzed in terms of
event size s, the number of connected blocks that move during
an event, and the moment M, which is the analogous measure
of a seismic event size. It depends on the net displacement of
block i, δui, defined as follows,

M =
∑

i

δui, (20)

where the sum is seized from all the blocks moving during
the event. In order to estimate correctly the exponent of the
power-law behavior of the moment distribution, we use the
moment cumulative distribution P (M ) to eliminate fluctua-
tions. Following an analysis of measuring power laws [22], it
has been shown that the cumulative distribution follows the
same power-law behavior as the one of the original distribu-
tion, but with an exponent β = b − 1.

The cluster size distribution and the moment distribution
with various values of σ and α, for ł = 10, ν = 0.01, and
N = 1500, are represented in Figs. 1 and 2. As shown ana-
lytically, the average velocity of small events does not depend
on the friction force randomness [Eq. (15)]. Such a result is
in good agreement with the obtained numerical results (see
Figs. 1 and 2) since the moment and the size distributions for
the small event do not depend on the randomness character.
We remark that both localized and delocalized events exhibit
a power-law behavior for all values of α 
= 0 and σ 
= 0.
The distributions of the homogeneous system are found for
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FIG. 1. The cluster size distribution n(s) as a function of s for different values of σ and α. All plots have been relocated vertically to ensure
clarity.

σ = 0 and they do not present any power-law behavior for
α < 1, which is consistent with those in Ref. [6] and shown
numerically in Refs. [9,10]. The simulation results show that
for low values of the standard deviation σ � 1 and α > 1,
there is two regions corresponding to localized and delocal-
ized events that both present a power-law behavior but with
different exponents as shown in Figs. 1(a) and 1(b). Such
a result reveals that the crossover between those events still
remains as in the homogeneous case [6] but with identical
behavior for both events, unlike the homogeneous case where
a pronounced peak was observed in the delocalized event dis-
tribution [6]. Thus, a small amount of heterogeneity allows for
the restoration of the power-law behavior for delocalized large
events. For σ > 1 both event distributions present the same
exponent b.

Assuming that there exists a limit moment Ml that delimits
the scaling region, we may show that such a limit is rejected to

infinity in the BK model with heterogeneous friction. Indeed,
as it was defined by Carlson and Langer [6], Ml is given by

Ml = 2
∫ ξl /2

0
δU (�s)d (�s), (21)

where ξl = 2�s is the length of the unstable localized slipping
region. After some calculations using Eq. (17) (see Sec. S3 of
the Supplemental Material [21]), we get

Ml � 2νa

4α
2
e

α
2ξ

ξl + σ 2

16α
e3α

ξl
ξ . (22)

After a development of the ratio ξl/ξ , we obtain

Ml � 2ξ

α
+ σ 2

16α

(
6ξ

νa

)6

. (23)
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FIG. 2. The cumulative distribution of the moment P (M ) as a function of M for different values of σ and α. All plots have been relocated
vertically to ensure clarity.

The first term in Eq. (23) is the Ml of the homogeneous
model. The last term, which is of order O{[ξ/(νa)]6}, is so
wide that it discards the limit moment to infinity.

The crossover observed in the size distribution cannot be
clearly identified in the moment distribution because two
different events with different sizes may have the same mo-
ment. Thus, the moment associated with both events exhibits
a power-law behavior with the same exponent b (Fig. 2) for
all values of σ except for low values of α where the scaling
region is not accurately defined for σ = 0 and large values
of σ in Fig. 2(d). The size distribution power-law exponent
we found is in agreement with the one of the GR law b ∼ 2
for all values of σ and α > 1 while it exhibits larger values
for small standard deviations and relatively lower values of α

[Fig. 1(c)]. For very low values of α, the scaling region of the
size distribution is relatively reduced since this one presents

a small region of medium events that are almost equally
distributed and the localized and delocalized events exhibit a
power-law distribution where the exponent is greater than the
GR exponent, b ∼ 2.7. We note that in our model, the scaling
law is maintained even if the largest slipping speed is less
than the speed v̄, i.e., α < 1, which characterizes the velocity
dependence of the friction force. Since the heterogeneity of
the friction force prevents the localized events to be extended
and run into each other as what happens for the uniform
system [6], the frequency of localized events will increase,
leading to a power-law distribution rather than a quasiuniform
distribution observed for homogeneous friction force [6]. It
is worthwhile to note that the obtained results in Figs. 1 and
2 are in agreement with the results of a recent experimental
study of laterally heterogeneous faults [23] for which the fail-
ure strength and stability of experimental faults are reduced
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FIG. 3. b vs α for different values of σ .

significantly compared to identical but homogeneous mixed
gouges, by introducing simple heterogeneous structures into
the fault zone. Consequently, that affects the slipping speed
of the blocks and then new events will appear. Thus, the sizes
of the events will increase and so will the scaling range. On the
other hand, Carlson and Langer [6] have performed numerical
simulations on a system of size N = 100, and the exponent B
of the GR power law they obtain for the homogenous model
(σ = 0) is slightly different from the one we obtained. Such
a difference may result from the fact that the exponent B
depends on the fault region and the finite-size effects [4].

The variation of the size distribution exponent b vs α

is shown in Fig. 3. Compared to the homogeneous model
(σ = 0), it is clear that the range of the parameter α where the
exponent is constant and in excellent agreement with the GR
law is enlarged for different values of σ . As mentioned above,
such a result is due to the fact that the size of localized events
may not extend for a nonuniform system as it was shown
experimentally [23] and the statistics of medium events will
increase as new localized events are triggered. Opposite to
the homogeneous model, the scaling law persists even for low
values of α < 1, and the corresponding exponents differ more
or less from the GR law exponent depending on the standard
deviation of inhomogeneities (see Fig. 3).

V. CONCLUSION

Since real earthquake faults present different irregularities,
especially a nonuniform friction force at the fault surface,
we presented a detailed analysis of spatial inhomogeneity
effects on the different events by considering the simple
Burridge-Knopoff model with a stochastic friction force. The
dynamical equations of microscopic, localized, and delocal-
ized events have been studied analytically to illustrate the
effects of friction force inhomogeneities on their propagating
motions. Numerical simulations showed that the size and the
moment distributions are in good agreement with the GR
law for both localized and large delocalized events for all
values of the model parameter α, in contrast to the homoge-
neous case where the size distribution of delocalized events
is not part of the scaling region. We showed that depending
on the parameter α, the region where the exponent of the
moment distribution agrees with the one of the GR law is
enlarged. On the other hand, even for very low values of α, the
scaled law is maintained with relatively higher values of the
corresponding exponent. Such a result is in agreement with
what was found using a rigorous mathematical analysis of the
experimental catalogs where it was shown that the GR law
exponent is not constant and depends on the fault region [4].
Following the obtained results and the numerical analysis we
performed (Fig. S1 [21]), its worthwhile to mention that it
seems that the inhomogeneous model we suggest may exhibit
some kind of temporal clustering before and after the main
shock, as it was observed in Fig. S1 [21]. However, it will
be interesting to see if the model exhibits a sequence of
foreshocks and aftershocks without introducing any relaxation
mechanism [24]. Despite those results, improvements remain
to make the model more realistic, because real earthquake
faults are two-dimensional (2D) rather than one-dimensional
systems. The two-dimensional BK model has already been
studied by Mori and Kawamura [25,26]; they found that the
exponent of the GR power law depends on the parameter α,
so it is desirable to study the 2D version of the model with the
introduction of the heterogeneity in a future work.
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