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We report higher-order coupling induced stable chimeralike state in a bipartite network of coupled phase os-
cillators without any time-delay in the coupling. We show that the higher-order interaction breaks the symmetry
of the homogeneous synchronized state to facilitate the manifestation of symmetry breaking chimeralike state.
In particular, such symmetry breaking manifests only when the pairwise interaction is attractive and higher-order
interaction is repulsive, and vice versa. Further, we also demonstrate the increased degree of heterogeneity
promotes homogeneous symmetric states in the phase diagram by suppressing the asymmetric chimeralike state.
We deduce the low-dimensional evolution equations for the macroscopic order parameters using Ott-Antonsen
ansatz and obtain the bifurcation curves from them using the software XPPAUT, which agrees very well with
the simulation results. We also deduce the analytical stability conditions for the incoherent state, in-phase and
out-of-phase synchronized states, which match with the bifurcation curves.
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I. INTRODUCTION

The chimera state is an intriguing collective phenomenon
observed in an ensemble of identical nonlinear dynamical
systems characterized by regular and complex topological
structures. In the nonlinear dynamics literature, the coexist-
ing synchronized and asynchronized domains of oscillators
constituting an ensemble is referred to as a chimera state.
Such an emerging phenomenon was initially reported in a net-
work of nonlocally coupled phase oscillators [1]. Eventually,
distinct chimera states have also been identified across vari-
ous coupling configurations including local [2,3] and global
[4–6] coupling configurations. Furthermore, chimera states
have been documented in a wide variety of dynamical sys-
tems spreading across distinct disciplines including chemical
[7–10], optical [11,12], mechanical [13–15], electrical [16],
neuronal networks [17–22], and other domains [23–25]. The-
oretical investigations on chimera states encompass various
mathematical frameworks [26–28]. Notably, the Ott-Antonsen
approach [29] is one of the most frequently employed math-
ematical frameworks to theoretically deduce their existence
conditions and accompanied bifurcation curves involving a
large network of phase oscillators. Remarkably, experimental
observations of the chimera state have also been reported in
distinct disciplines [30,31] after decades of theoretical explo-
ration of the paradigm of chimera.

Initial investigations on chimera states are primarily cen-
tered only around nonlocally coupled phase oscillators with
closed end boundary conditions, that is, ring configura-
tions [32]. As in-depth investigations on chimera states have
evolved along with its potential applications in a plethora
of real-world systems [33], this intriguing phenomenon has
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been explored across diverse network structures including
complex networks [34], multilayer networks [35–38], two-
and three-dimensional architectures [39–43], and hierarchical
layouts [44–47]. Among the complex interactions observed in
real-world systems, the bipartite network emerges as a promi-
nent structure in complex network systems providing another
avenue for investigating various self-organizing collective pat-
terns. In this configuration, nodes from one group exclusively
interact only with nodes from a different group without any
intragroup interactions. Such a topological structure has been
identified in various networks such as author’s collaboration
network [48], club member activities network [49], investor-
company network [50], and so on. Notably, chimera states
have also been reported in bipartite networks [51,52]. In par-
ticular, Punetha et al. [51] demonstrated that chimera state can
manifest in a bipartite network only in the presence of time
delay in the interaction among the phase oscillators. However,
later investigations revealed chimera states in bipartite net-
work with nonlocal coupling [52,53]. Specifically, in-phase
chimera, antiphase chimera, and syn-desyn chimera states are
reported in nonlocally coupled phase oscillators [53] and in
nonlocally coupled FitzHugh-Nagumo oscillators [52].

For a long time, chimera and chimeralike states are re-
ported in network configurations that are limited to feature
only pairwise interactions [15,28,45,54–59]. Nevertheless,
the collective dynamics of many real-world systems are
influenced not just by pairwise interactions but also by
multicomponent interactions, commonly facilitated through
simplicial complexes, known as higher-order interactions
[60]. Various practical scenarios that exemplify this include
coauthorship graphs in science [61], structural [62], and func-
tional [63] brain networks, as well as protein interaction
networks [64]. Such network structures cannot be adequately
described solely through pairwise interactions; higher-order
interactions are essential for a comprehensive understanding.
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Notably, higher-order interactions are shown to play a cru-
cial role in facilitating the self-organizing collective dynamics
of networks of coupled oscillators. For instance, inclusion
of higher-order interactions results in phenomena such as
explosive synchronization [65] and abrupt synchronization,
accompanied by multistability [66], which are otherwise not
observed purely with pairwise interactions. The phase lag
parameter usually plays a significant role in the manifesta-
tion of chimera states in networks of phase oscillators [67].
However, recently, it has been shown that higher-order in-
teractions can induce chimera states even in the absence
of phase lag parameter [68]. Further, recent investigations
have employed higher-order interactions in understand-
ing its impact on the chimera states in various network
configurations [69–71].

In this work, we report the phenomenon of higher-order
(triad) interaction induced stable chimeralike state in a bipar-
tite network of coupled phase oscillators. We establish the
transition from synchronized state to chimeralike state us-
ing the numerically estimated macroscopic order parameters.
In particular, when the pairwise interaction is an attractive
coupling, the bipartite network exhibits transition from in-
phase synchronized (symmetric) state to symmetry-breaking
chimeralike state as a function of repulsive higher-order inter-
action. In contrast, when the pairwise interaction is a repulsive
coupling, the bipartite network exhibits transition from out-of-
phase synchronized (symmetric) state to symmetry-breaking
chimeralike state as a function of attractive higher-order inter-
action. Otherwise, in-phase (out-of-phase) synchronized state
is observed for attractive (repulsive) higher-order interaction
for attractive (repulsive) pairwise coupling, which will be
evident in the two-parameter phase diagrams. The symmetric
state is characterized by the macroscopic order parameters
r1 = r2 of both populations, while the symmetry-breaking
state is characterized by r1 �= r2. The symmetric synchronized
states lose their stability via a pitchfork bifurcation leading
to a symmetry-breaking chimeralike state. A saddle-node bi-
furcation gives rise to symmetric synchronized states at large
magnitudes of higher-order interaction, which coexists with
the chimeralike states. In addition, we show that increase in
the degree of heterogeneity of the phase oscillators, in terms
of frequency distribution of the phase oscillators, promotes the
homogeneous (symmetric) dynamical state in a large region
of the parameter space. We also deduce the low-dimensional
evolution equations for the macroscopic order parameters us-
ing the Ott-Antonsen ansatz and show that the bifurcation
curves obtained from them using the XPPAUT software match
very well with the simulation boundaries. Furthermore, we
also deduce the analytical stability conditions for incoherent
state, in-phase, and out-of-phase synchronized states via a
linear stability analysis about appropriate equilibrium points,
which exactly match with the bifurcation curves obtained
using the XPPAUT software.

The plan of the paper is as follows. In Sec. II, we intro-
duce the model of a bipartite network of phase oscillators
with both pairwise and higher-order interaction. We deduce
the low-dimensional evolution equations for the macroscopic
order parameters using the Ott-Antonsen ansatz in Sec. III.
We demonstrate our findings in Sec. IV. Finally, we provide
our summary and conclusion in Sec. V.

II. BIPARTITE NETWORK

We consider a bipartite network with two populations,
each containing N phase oscillators. θσ

k represents phase of
kth oscillator in the population σ . The governing evolution
equation for the kth oscillator is represented as

θ̇ σ
k = ωσ

k + A

Nσ ′

Nσ ′∑
j=1

sin
(
θσ ′

j − θσ
k

)

+ B

N2
σ ′

Nσ ′∑
j=1

Nσ ′∑
l=1

sin
(
2θσ ′

j − θσ ′
l − θσ

k

)
. (1)

The indices σ = 1, 2 represent the population indices when
σ ′ = 2, 1. Heterogeneity within a population is characterized
by ωk , which is sampled from a Lorentzian frequency distri-
bution function g(ω) [56] with zero mean (ω0 = 0) and width
D > 0. The parameters A and B govern the degree of pairwise
and higher-order (triad) interactions, respectively. Nσ ′ denotes
the number of oscillators in the population σ ′.

III. REDUCED LOW-DIMENSIONAL DYNAMICS

Now, we proceed to deduce the low-dimensional evolution
equations corresponding to the macroscopic order parameters
from the above discrete system of equations (1) constituting
the bipartite network. In the thermodynamic limit Nσ → ∞,
the system described by Eq. (1) is reduced using the Ott-
Antonsen ansatz [29]. Note that the Ott-Antonsen reduction
has already been employed in bipartite networks [53,72] and
in networks with higher-order interactions [68,73–77]. Let
f σ (θ : ω, t ) be the probability density function, representing
the fraction of oscillators with phases between θ and θ + dθ

and natural frequency ω at time t . Since the number of oscilla-
tors at a given frequency ω is conserved, the dynamics of the
probability density function f σ (θ : ω, t ) is governed by the
continuity equation

∂ f σ

∂t
+ ∂

∂θ
( f σvσ ) = 0, (2)

where vσ (θ, t ) represents the phase velocity, as defined in
Eq. (1), which can be expressed as

vσ (θ, t ) = ωσ
k + 1

2i

[
H1e−i(θσ

k ) − H∗
1 ei(θσ

k ) + H2e−i(θσ
k )

−H∗
2 ei(θσ

k )], (3)

where the symbol ∗ represents the complex conjugate, H1 =
A

∑Nσ ′
j=1

e
iθσ ′

j

Nσ ′ = Az(σ ′ )
1 , and H2 = B

∑Nσ ′
j=1

e
i2θσ ′

j

Nσ ′

∑Nσ ′
l=1

e−iθσ ′
l

Nσ ′ =
Bz(σ ′ )

2 z∗(σ ′ )
1 . Now, using the Ott-Antonsen ansatz, the proba-

bility density function f σ (θ : ω, t ) can be represented as

f σ (θ : ω, t ) = g(ω)

2π

[
1 +

( ∞∑
n=1

an
σ (ω, t )e(inθ ) + c.c.

)]
, (4)

where c.c. denotes the complex conjugate. By employing
Eq. (3) and Eq. (4) in Eq. (2), one can obtain the evolution
equation for the Fourier coefficient aσ (ω, t ) as

ȧσ + iωaσ + a2
σ

2
(H1 + H2) − 1

2
(H∗

1 + H∗
2 ) = 0. (5)
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Substituting H1 and H2 in Eq. (5), one can obtain

ȧσ + iωaσ + a2
σ

2

(
Az(σ ′ )

1 + Bz(σ ′ )
2 z∗(σ ′ )

1

)
−1

2

(
Az∗(σ ′ )

1 + Bz∗(σ ′ )
2 z(σ ′ )

1

) = 0. (6)

In the continuum limit, z(σ )
1 can be represented as

z(σ )
1 =

∫ ∞

−∞

∫ 2π

0
g(ω) f σ (θ : ω, t )eiθ dω dθ,

=
∫ ∞

−∞
g(ω)a∗

σ (ω, t ) dω.

We use the Lorentzian distribution function g(ω) =
D/π

(ω−ω0 )2+D2 with a mean of zero (ω0 = 0) for the frequency

distribution function g(ω). This formulation allows z(σ )
1 to be

calculated analytically using Cauchy’s residue theorem [78].
The above integral can be evaluated by closing the contour
with a semicircle of infinite radius in the lower half of the
complex plane and calculating the residue at the enclosed
pole, which results in z(σ )

1 = a∗
σ (−iD, t ).

Similarly, z(σ )
2 can be represented as

z(σ )
2 =

∫ ∞

−∞

∫ 2π

0
g(ω) f σ (θ : ω, t )ei2θ dω dθ,

=
∫ ∞

−∞
g(ω)a∗2

σ (ω, t ) dω,

= a∗2
σ (−iD, t ),

= z2(σ )
1 .

Using ω = −iD in Eq. (6), one can obtain the dynamics of
aσ (ωp, t ) from Eq. (5), which can be expressed as

ȧσ + i(−iD)aσ + a2
σ

2

(
Aa∗

σ ′ + Ba∗2
σ ′ aσ ′

)
−1

2

(
Aaσ ′ + Ba2

σ ′a∗
σ ′

) = 0. (7)

The above equation can be represented in terms of the macro-
scopic parameters rσ and φσ using aσ = rσ (t )e−iφσ (t ). Substi-
tuting a1 = r1(t )e−iφ1(t ) and a2 = r2(t )e−iφ2(t ) in Eq. (7), one
can deduced the evolution equations for r1, r2, φ1, and φ2 as

ṙ1 = −Dr1 +
(
1 − r2

1

)
2

[
Ar2 cos(φ1 − φ2)

+Br3
2 cos(φ1 − φ2)

]
, (8a)

ṙ2 = −Dr2 +
(
1 − r2

2

)
2

[
Ar1 cos(φ1 − φ2)

+Br3
1 cos(φ1 − φ2)

]
, (8b)

φ̇1 = −
(
r2

1 + 1
)

2r1

(
Ar2 sin(φ1 − φ2)

+Br3
2 sin(φ1 − φ2)

)
, (8c)

φ̇2 =
(
r2

2 + 1
)

2r2

(
Ar1 sin(φ1 − φ2)

+Br3
1 sin(φ1 − φ2)

)
. (8d)

We also introduce a new parameter ψ = φ1 − φ2 to denote
the phase difference between the populations. Consequently,
the discrete system of equations (1) can be expressed in its
reduced form as

ṙ1 = −Dr1 +
(
1 − r2

1

)
2

[
Ar2 cos ψ + Br3

2 cos ψ
]
, (9a)

ṙ2 = −Dr2 +
(
1 − r2

2

)
2

[
Ar1 cos ψ + Br3

1 cos ψ
]
, (9b)

ψ̇ = −
(
r2

2 + 1
)

2r2

(
Ar1 sin ψ + Br3

1 sin ψ
)

−
(
r2

1 + 1
)

2r1

(
Ar2 sin ψ + Br3

2 sin ψ
)
. (9c)

Now, the dynamics of the above system of low-dimensional
evolution equations governing the macroscopic order param-
eters are expected to faithfully mimic the dynamics of the
original discrete system of equations (1).

IV. RESULTS

Now, we will numerically solve the original discrete sys-
tem of equations (1) using the Runge-Kutta fourth-order
integration scheme with a step size of 0.01. We have fixed the
number of oscillators in each population as N1 = N2 = 2000.
The dynamics of the bipartite network (1) without the higher-
order interaction are clearly disseminated by Punetha et al.
[51], where they have clearly established that the bipartite
network fails to exhibit any chimeralike state in the absence
of time delay in the coupling. We have numerically calcu-
lated time-averaged order parameter rσ = 1

N | ∑ j ei(θσ
j )| along

with the time-averaged phase φσ = arg( 1
N

∑
j eiθσ

j ). We have
depicted the absolute difference between the time-averaged
order parameters rσ ∀ σ , defined as 〈r〉 = |〈r1〉 − 〈r2〉|, and
the difference between the time-averaged phases φσ ∀ σ , de-
fined as 〈ψ〉 = |〈φ1〉 − 〈φ2〉|, in Fig. 1 as a function of the
higher-order coupling strength B. Here, the angular brackets
correspond to the time average. We have fixed the width of the
frequency distribution D = 0.02, which determines the degree
of heterogeneity.

The absolute difference between the time-averaged order
parameters 〈r〉 (line connected by open circles) and the differ-
ence between the time-averaged phases 〈ψ〉 (line connected
by filled squares) are depicted in the left and right columns of
Fig. 1, respectively. It is evident from Fig. 1(a) that 〈r〉 takes
the null value in the range of B ∈ [0,−0.5593] corroborating
that both populations of the bipartite network are synchro-
nized. We have fixed the pairwise coupling strength as A =
0.5. Note that the numerical order parameters r1 and r2 for
B = −0.25, which quantify the degree of synchrony within
the populations, become r1 = r2 asymptotically as shown in
the left inset of Fig. 1(a). However, the finite value of 〈r〉 for
B < −0.5593 elucidates that both populations evolve in asyn-
chrony with each other. Nevertheless, the asymptotic values
of the order parameters r1 ≈ 0 and r2 ≈ 1 for B = −0.75 [see
the right inset of Fig. 1(a)] confirm that the collective state is a
chimeralike state in the latter range of B. It is to be noted that
we have unraveled the higher-order (triad) induced chimera-
like state in a bipartite network. The difference between the
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FIG. 1. Dynamical transitions as a function of higher-order (triad) interaction B. Left column: The absolute difference between the time
averaged order parameters 〈r〉 (line connected by open circles). Right column: The time-averaged phase difference 〈ψ〉 (line connected by
filled circles). First row: Pairwise coupling strength A = 0.5. Second row: Pairwise coupling strength A = −0.5. The order parameters r1, and
r2, qualifying the degree of synchronization, are depicted in the inset of left column, whereas the order parameters φ1 and φ2, quantifying the
overall phases of both populations, are depicted in the inset of right column. The width of the frequency distribution, which determines the
degree of heterogeneity, is fixed as D = 0.02.

time-averaged phases 〈ψ〉, corresponding to Fig. 1(a), is de-
picted in Fig. 1(b). The null value of the time-averaged phase
difference in the entire range of the higher-order coupling
strength B corroborates that the two populations are in phase
synchronized state characterized by 〈φ1〉 = 〈φ2〉. The instan-
taneous phases φ1 and φ2 for B = −0.25 [see the inset of
Fig. 1(b)] elucidate that both populations evolve in phase with
each other.

Now, we have fixed the pairwise coupling strength as
A = −0.5 and depicted the dynamical transitions in Figs. 1(c)
and 1(d) as a function of the higher-order interaction in the
range of B ∈ [0, 1]. It is clear from the figure that 〈r〉 = 0
in the range of B ∈ [0, 0.5593] corroborating that both pop-
ulations evolve in synchrony. Asymptotic values of r1 and r2

in the left inset of Fig. 1(c) for B = 0.25 confirm that both
populations are synchronized. However, the finite value of
〈r〉 for B > 0.5593 elucidates that the populations are not in
synchrony in the latter range of B. Note that r1 ≈ 1 and r2 ≈ 0
asymptotically as illustrated in the right inset of Fig. 1(c) for
B = 0.75, which indicates that the macroscopic dynamical
state is a chimeralike state with coexisting synchronized pop-
ulation and desynchronized population of bipartite network.
The time-averaged phase difference 〈ψ〉, corresponding to
Fig. 1(c), is depicted in Fig. 1(d), which takes the value 〈ψ〉 =
3.14159 corroborating that synchronized state is out-of-phase
synchronized state in the entire explored range of B. Further,
the instantaneous phases φ1 and φ2 for B = 0.25 [see the inset
of Fig. 1(d)] illustrate that both populations evolve out of

phase with each other. It is to be noted that when the pairwise
coupling is an attractive coupling as in Fig. 1(a), the observed
dynamical transitions manifest only when the higher-order
interaction is a repulsive interaction and vice versa. Oth-
erwise, only in-phase (out-of-phase) synchronized state is
observed for positive (negative) values of B for attractive
(repulsive) pairwise coupling, which will be evident in the
two-parameter phase diagrams.

The absolute differences between the time-averaged order
parameters 〈r〉 are depicted as a function of the higher-order
coupling strength B in Fig. 2(a) for the pairwise coupling
strength A = 0.5 and for different degrees of heterogeneity de-
termined by D. The transition from synchrony to chimeralike
state onsets at Bc = −0.5593 for D = 0.02 (see the line con-
nected by unfilled circles). However, it is evident from the fig-
ure that the critical value of the higher-order coupling strength
Bc required to facilitate onset of chimeralike state increases
in magnitude upon increasing the degree of heterogeneity.
For instance, Bc = −0.7265 for D = 0.05, Bc = −0.8196 for
D = 0.06, and Bc = −0.9478 for D = 0.07. Thus, it is ev-
ident that increase in the degree of heterogeneity increases
the spread of symmetric (homogeneous synchronous) state
to a large range of the higher-order coupling strength among
the bipartite network by decreasing the spread of symmetry-
breaking (chimeralike) state. The critical value of the higher-
order coupling strength Bc that breaks the symmetry among
the dynamical states is shown as a function of D for three dis-
tinct values of the pairwise coupling strength in Fig. 2(b). The
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FIG. 2. Interplay between the heterogeneity and higher-order interaction. (a) Dynamical transitions as a function of higher-order coupling
strength B for different degrees of heterogeneity and for A = 0.5, and (b) critical values of higher-order coupling strength Bc as a function of
D for different degrees of pairwise coupling strength.

symmetric state prevails below (or to the right of) the curves in
the (D, Bc) parameter space, whereas the symmetry-breaking
state prevails above (or to the left of) the curves in the (D, Bc)
parameter space. For the pairwise coupling strength A = 0.1,
the maximum degree of heterogeneity required to break the
symmetric state is D ≈ 0.023 in the explored range of B. For
A = 0.3, it is D ≈ 0.055, whereas for A = 0.5, the maximum
degree of heterogeneity increases to D ≈ 0.07 in the explored
range of B. From these results, it is evident that increase in the
degree of pairwise coupling strength increases the degree of
heterogeneity required to break the symmetric of the homo-
geneous synchronized state and consequently decreases the
spread of the latter favoring the symmetry-breaking (chimera-
like) state in the (D, Bc) parameter space.

One parameter bifurcation diagrams as a function
of the higher-order coupling strength B for increasing
degree of heterogeneity D is depicted in Fig. 3. Solid line
corresponds to the stable steady states, whereas dashed
dotted line corresponds to the unstable steady states
that are obtained from the evolution equations for the
macroscopic order parameters using the software XPPAUT

[79]. Open circles connected by dotted lines are obtained
directly from the numerical simulation of original discrete
systems of bipartite network (1). One-parameter bifurcation
diagram for the pairwise coupling strength A = 0.5 and
D = 0.02 is shown in Fig. 3(a). Note that the pairwise
coupling now corresponds to an attractive coupling, whereas
the higher-order coupling is a repulsive coupling. The
homogeneous synchronous state (SY1), characterized by
the macroscopic order parameters r1 = r2, is stable in the
range of B ∈ [0,−0.5593], which loses its stability via a
pitchfork bifurcation (PB) at B = −0.5593 resulting in the
manifestation of symmetry-breaking steady (chimeralike)
states, characterized by r1 �= r2. The chimeralike state (CH1)
is stable for B < −0.5593 as indicated by the solid (red) lines
corresponding to the inhomogeneous steady states. Note that a
saddle-node bifurcation (SN) at B = −0.873939 has resulted
in a homogeneous stable steady state, which corresponds
to the second synchronized state indicated by SY2. SY1 is
characterized by the macroscopic order parameter ψ = 0
elucidating that the synchronized state SY1 is an in-phase
synchronized state in concurrence with the numerical order
parameters depicted in Figs. 1(a) and 1(b). Similarly, SY2 is

characterized by the macroscopic order parameter ψ = π cor-
roborating that the synchronized state SY2 is an out-of-phase
synchronized state as observed numerically in Figs. 1(c) and
1(d). It is also to be noted that CH1 and SY2 states coexist for
B < −0.873939 leading to the emergence of bistable states.

A bifurcation diagram similar to Fig. 3(a) is observed in
Fig. 3(b) for A = −0.5 and D = 0.02. Note that the pairwise
coupling now corresponds to a repulsive coupling, whereas
higher-order coupling is an attractive coupling. Now, out-
of-phase synchronized state (SY2) is observed in the range
B ∈ [0, 0.5593], which loses its stability via a pitchfork bifur-
cation resulting in the symmetry-breaking chimeralike state
(CH2), which is stable for B > 0.5593. The in-phase synchro-
nized state (SY1) manifests via a saddle-node bifurcation at
B = 0.873939. It is to be noted that the symmetry-breaking
chimeralike state (CH2) manifests from the out-of-phase syn-
chronized state (SY2), which coexists with the SY1 state
in the range B ∈ [0.8739, 1]. In contrast, in Fig. 3(a), the
chimeralike state (CH1) manifested from the destabiliza-
tion of the in-phase synchronized state. Now, one-parameter
bifurcation diagram for A = 0.5 and increased degree of
heterogeneity D = 0.05 is illustrated in Fig. 3(c). The out-
of-phase synchronized state (SY2) loses its stability and
completely whipped off from the bifurcation diagram, while
the range of stable homogeneous in-phase synchronous state
is increased with decrease in the spread of chimeralike (CH1)
state as observed in Fig. 2(a). Further increase in the de-
gree of heterogeneity to D = 0.07, for the same pairwise
coupling strength, the spread of the symmetric in-phase syn-
chronous state is increased further [see Fig. 3(d)] as observed
in Fig. 2(a) for D = 0.07 at the expense of the spread of
the symmetry-breaking chimeralike state (CH1). Thus, the
increased degree of heterogeneity promotes the symmetric
homogeneous in-phase synchronized state. Similar results are
also observed as a function of attractive higher-order coupling
strength for the repulsive pairwise coupling strength, where
the symmetric homogeneous state, characterized by r1 = r2,
is an out-of-phase synchronized state (SY2).

One-parameter bifurcation diagrams, obtained both from
the evolution equation for the macroscopic variables (9) and
from the original discrete model (1), are plotted in Fig. 4 as a
function of the pairwise coupling strength A for two different
D. The higher-order coupling strength is fixed as B = −0.948.
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FIG. 3. One-parameter bifurcation diagrams as a function of the higher-order coupling strength B for increasing degree of heterogeneity
D. (a) and (b) D = 0.02, (c) D = 0.05, and (d) D = 0.07. The pairwise coupling strength is A = −0.5 in (b) and 0.5 in all other subfigures.
Solid line corresponds to the stable steady states, whereas dashed dotted line corresponds to the unstable steady state that are obtained from the
evolution equations (9) for the macroscopic order parameters using the software XPPAUT. Open circles connected by dotted lines are obtained
directly from the numerical simulation of original discrete systems of bipartite network (1). PB corresponds to the pitchfork bifurcation, while
SN corresponds to the saddle-note bifurcation.

The dynamical states, their transitions and involved bifurca-
tions are the same as in Fig. 3. Note that here incoherent
state in the range of A ∈ [0, 0.033) coexists with the SY2,
the latter of which loses its stability via a SN bifurcation at
A = 0.5585 [see Fig. 4(a) for D = 0.02]. SY1 coexists with
SY2 in the range of A ∈ [0.033, 0.0859] and then loses its
stability via a PB bifurcation leading to the manifestation of
symmetry-breaking state (CH1). Note that CH1 coexists with
SY2 in the range of A ∈ (0.0859, 0.8956], which loses its
stability via a second PB bifurcation at A = 0.8956 resulting
in the reemergence of SY1 state. Similar dynamical transitions
are observed for increased degree of heterogeneity in Fig. 4(b)
for D = 0.05. Note that the range of incoherence state, SY1

state are increased with decrease in the spread of SY2 and
CH1 states, thereby corroborating that increased heterogene-
ity facilitates the homogeneous (symmetric in-phase) states to
a large range of the parameters as observed in Fig. 2(a) and
Fig. 4.

Next, we have depicted the two-parameter phase diagrams
in the (B, A) parameter space in Fig. 5 for two different D
for a global perspective of the observed dynamical states,
their bistability, dynamical transitions, and accompanied bi-
furcation curves. The homogeneous SY1 and SY2 states are
indicated by yellow shaded region and region with brown
diagonal lines, respectively. The inhomogeneous CH1 and
CH2 states are represented by the green shaded region and

FIG. 4. One-parameter bifurcation diagrams as a function of the pairwise coupling strength A for increasing degree of heterogeneity D.
The higher-order coupling strength is fixed as B = −0.948. (a) D = 0.02, and (b) D = 0.05. The other details are the same as in Fig. 3.
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FIG. 5. Two-parameter phase diagrams in the (B, A) parameter space for different degrees of heterogeneity. (a) D = 0.02, and (b) D = 0.05.
Refer text for more details.

pink checked region, respectively. Incoherent state (DSY) is
indicated by a light gray checked region between the parallel
horizontal red lines about A = 0. The bistability between CH1
and SY2, denoted by the region R1, is enclosed by a line
connecting open circles. The bistability between SY1 and
SY2, denoted by the region R2, is enclosed by a line connect-
ing filled triangles. The bistability between DSY and SY2,
denoted by the region R3, is enclosed by a line connecting
black open squares. Similarly, the bistability between DSY
and SY1, denoted by the region R4, is enclosed by a line
connecting open squares. The bistability between CH2 and
SY1, denoted by the region R5, is enclosed by a line connect-
ing open circles. The dynamical states and their transitions
in the phase diagrams are the same as observed in the one-
parameter bifurcation diagrams. In particular, for B = −0.948
[see Fig. 5(a) for D = 0.02], one can observe the dynamical
transition discussed in Fig. 4(a) in the range of A ∈ [0, 1].
Similarly, for A = 0.5, one can observe the dynamical tran-
sition demonstrated in Fig. 3(a) in the range of B ∈ [−1, 0]
and for A = −0.5, one can observe the dynamical transi-
tion in Fig. 3(b) in the range of B ∈ [0, 1]. Note that when
the pairwise coupling is an attractive coupling, the observed
dynamical transitions manifest only when the higher-order
interaction is repulsive in nature and vice versa. Otherwise,
it is evident that only in-phase (out-of-phase) synchronized
state is observed for positive (negative) values of B for attrac-
tive (repulsive) pairwise coupling as pointed out above while
explaining Fig. 1.

The solid (cyan) line, corresponding to the pitchfork bi-
furcation curve, encompassing CH1 (CH2) state across which
SY1(SY2) loses stability is obtained from the evolution equa-
tions for the macroscopic order parameters using the XPPAUT

software. Similarly, the slanting (red) lines, corresponding to
the saddle-node bifurcation curve, across which SY2 loses its
stability in the range of B ∈ [−1, 0] and SY1 loses its stability
in the range of B ∈ [0, 1] in Fig. 5(a) are also obtained using
the XPPAUT software. The shaded regions are obtained by nu-
merically solving the discrete model (1). Note that the XPPAUT

bifurcation curves exactly match the simulation boundaries. A
similar phase diagram is observed in Fig. 5(b) for D = 0.05,
where the spread of homogeneous synchronized states are
increased due to increased heterogeneity at the cost of the
spread of symmetry-breaking chimeralike states. Now, one
can deduce the analytical stability condition across which the

in-phase (SY1) and out-of-phase synchronized (SY2) state
lose their stability using a linear stability analysis of the evo-
lution equations for the macroscopic order parameters about
appropriate fixed points. To identify the in-phase synchro-
nized region, set r1 = r2 = r and ψ = 0 in Eqs. (9a) and (9b).
The fixed points can be obtained, by solving the resulting
evolution equations for the macroscopic order parameters, as

r2 = B − A +
√

(A + B)2 − 8BD

2B
. (10)

A linear stability analysis of Eqs. (9) around the fixed point
r1 = r2 = r and ψ = 0 yields a characteristic equation. Using
one of the Routh-Hurwitz stability criterion, namely det(J ) =
0, where J represents the Jacobian of (9), one can obtain the
stability condition for the fixed point as an algebraic expres-
sion involving A, B, and D as√

(A + B)2 − 8BD(A2B + A3 + AB2 − 6ABD − 2B2D

+B3) + 10A2BD − 2A3B − A4 + 4AB2D

+2AB3 − 16B2D2 − 6B3D + B4 = 0. (11)

One can get five distinct solutions upon solving the above
equation for B. Two among the solutions turn out to be the
stability condition for the in-phase synchronized state in the
(B, A) parameter space. One corresponds to the pitchfork bi-
furcation curve, which is depicted as a line connecting open
stars in Fig. 5 in the range of B ∈ [−1, 0], while the other
corresponds to the saddle-node bifurcation curve, which is
depicted as a line connecting filled stars in Fig. 5 in the range
of B ∈ [0, 1]. The stability condition for the out-of-phase syn-
chronized state is obtained by setting r1 = r2 = r and ψ = π

in Eqs. (9a) and (9b). Now, one can deduce the fixed points,
by imposing the above conditions on the macroscopic order
parameters, as

r2 = B − A −
√

(A + B)2 + 8BD

2B
. (12)

As mentioned above, a linear stability analysis of Eqs. (9)
about these fixed points, using the Routh-Hurwitz stability
criterion [det(J ) = 0], results in the algebraic expression in-
volving A, B, and D represented as√

(A + B)2 + 8BD(A2B + A3 + AB2 + 6ABD + 2B2D

+B3) + 10A2BD + 2A3B + A4 + 4AB2D

−2AB3 + 16B2D2 − 6B3D − B4 = 0. (13)
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Again, one can get five distinct solutions upon solving the
above equation for B. Two among the solutions turn out to
be the stability condition for the out-of-phase synchronized
state in the (B, A) parameter space. One corresponds to the
pitchfork bifurcation curve, which is depicted as a line con-
necting open stars in Fig. 5 in the range of B ∈ [0, 1], while the
other corresponds to the saddle-node bifurcation curve, which
is depicted as a line connecting filled stars in Fig. 5 in the
range of B ∈ [−1, 0].

It is also possible to deduce the stability condition for the
desynchronized state by performing a linear stability analysis
about the fixed points r1 = r2 = 0 and ψ = 0. Imposing ψ =
0 in Eqs. (9a) and (9b) results in

ṙ1 = −Dr1 + 0.5
(
1 − r2

1

)(
A r2 + B r3

2

)
, (14a)

ṙ2 = −Dr2 + 0.5
(
1 − r2

2

)(
A r1 + B r3

1

)
. (14b)

A linear stability analysis of the above evolution equa-
tions for r1 and r2 about the fixed point r1 = r2 = 0 yields
the eigenvalues

λ = −2D ± A

2
, (15)

which leads to the condition for the stability of the desynchro-
nized state, by setting λ = 0, as

A = ± 2D. (16)

Now, substituting D = 0.02(D = 0.05) into Eq. (16), we
find that the desynchronized region is bounded by A =
± 0.04(A = ± 0.1). This analytical condition perfectly aligns
with the numerical and XPPAUT boundaries encompassing the
stable region of desynchronized state, represented by the two
horizontal parallel red lines, in [Figs. 5(a) and 5(b)]. It is also
to be noted that all the deduced analytical stability curves
match exactly with the simulation boundaries and XPPAUT

bifurcation curves.

V. CONCLUSION

We have considered a bipartite network of phase os-
cillators with both pairwise and higher-order interactions.
We have elucidated that the higher-order interaction facil-
itates the manifestation of stable chimeralike state in the
bipartite network of phase oscillators by breaking the sym-
metry of the homogeneous synchronized states. In particular,
we have demonstrated that the bipartite network exhibits
a transition from in-phase synchronized (symmetric) state
to symmetry-breaking chimeralike state as a function of
repulsive higher-order interaction when the pairwise inter-
action is an attractive coupling. In contrast, we have shown
that the bipartite network exhibits transition from out-of-
phase synchronized (symmetric) state to symmetry-breaking

chimeralike state as a function of attractive higher-order
interaction when the pairwise interaction is a repulsive
coupling. We have also illustrated that only in-phase (out-of-
phase) synchronized state is observed for attractive (repulsive)
higher-order interaction for attractive (repulsive) pairwise
coupling using the two-parameter phase diagrams. Increasing
the degree of heterogeneity of the phase oscillators using
the Lorentzian distribution function g(ω), we found that the
symmetric homogeneous synchronized states are stabilized
to a large region of the parameter space by destabilizing
the symmetry-breaking chimeralike states, elucidating hetero-
geneity promotes homogeneity [80]. We have also shown that
increase in the degree of pairwise coupling strength increases
the degree of heterogeneity required to break the symmetric
state and consequently decreases the spread of the latter favor-
ing the symmetry-breaking (chimeralike) state in the (D, Bc)
parameter space.

We have also deduced the low-dimensional evolution equa-
tions corresponding to the macroscopic order parameters from
the original discrete system of bipartite network using the
Ott-Antonsen ansatz. We have demonstrated that both in-
phase and out-of-phase synchronized states lose their stability
via a pitchfork bifurcation curve resulting in two distinct
chimeralike states. Further, we have shown that a saddle-node
bifurcation results in the manifestation of symmetric syn-
chronized states, which coexist with the symmetry-breaking
chimeralike state. The bifurcation curves obtained from the
evolution equations for the macroscopic order parameters
using XPPAUT are found to match very well with the sim-
ulation results. Furthermore, we have analytically deduced
the stability conditions for the incoherence state, in-phase,
and out-of-phase synchronized states using a linear stability
analysis of the evolution equations for the macroscopic order
parameters, which are found to agree with the bifurcation
curves obtained using XPPAUT. We strongly believe that the
current results will enhance our understanding of the onset
of chimera and chimeralike state in an important class of
complex network, namely bipartite network, and will create
new avenues to identify its potential application in such a
network.
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