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Recent studies on reservoir computing essentially involve a high-dimensional dynamical system as the
reservoir, which transforms and stores the input as a higher-dimensional state for temporal and nontemporal
data processing. We demonstrate here a method to predict temporal and nontemporal tasks by constructing
virtual nodes as constituting a reservoir in reservoir computing using a nonlinear map, namely, the logistic
map, and a simple finite trigonometric series. We predict three nonlinear systems, namely, Lorenz, Rössler, and
Hindmarsh-Rose, for temporal tasks and a seventh-order polynomial for nontemporal tasks with great accuracy.
Also, the prediction is made in the presence of noise and found to closely agree with the target. Remarkably,
the logistic map performs well and predicts close to the actual or target values. The low values of the root mean
square error confirm the accuracy of this method in terms of efficiency. Our approach removes the necessity
of continuous dynamical systems for constructing the reservoir in reservoir computing. Moreover, the accurate
prediction for the three different nonlinear systems suggests that this method can be considered a general one
and can be applied to predict many systems. Finally, we show that the method also accurately anticipates the
time series of the all the three variable of Rössler system for the future (self-prediction).

DOI: 10.1103/PhysRevE.110.034204

I. INTRODUCTION

Neural networks [also known as artificial neural networks
(ANNs)], deep neural networks (DNNs), and recurrent neural
networks (RNNs) are subsets of machine learning, and they
resemble the human brain by mimicking the way in which bio-
logical neurons process information within themselves [1–3].
Reservoir computing (RC) which is a RNN based frame-work,
is efficient in training to perform a given task [4–6]. In RC,
the network that is the hidden layer is not trained but only the
output or readout layer is trained. The computational effort
is considerably reduced in RC when compared with RNNs
and this makes it a highly efficient and practical approach
for various machine-learning tasks [7]. Reservoir computing
has been successfully applied in a wide range of applications,
including time series prediction [8], spatiotemporal prediction
[9], speech recognition [10], image classification [11], etc.
Also, chaotic signals that are overlaid are separated using RC.
Remarkably, the reservoir need not contain a large complex
network and it can be any kind of dynamical system, as long as
it is capable of transforming an input into higher-dimensional
state and as long as it can be perturbed by input and its
output observed. The dynamical system which is rich in its
dynamics can act like a high-dimensional system and encode
the inputs as a temporal pattern instead of multiplexing the
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input in state space as in conventional RC. In 2011, Appeltant
et al. showed that inputs can be multiplexed in time rather
than space by turning a single nonlinear node as a virtually
high-dimensional system [12]. By constructing a reservoir in
terms of virtual nodes they have demonstrated the speech
recognition task. Dion, Mejaouri, and Sylvestre have achieved
RC by constructing a network of virtual nodes multiplexed
in time by the dynamics of oscillating silicon beam which
exhibits Duffing nonlinearity and proved time series predic-
tion and spoken word recognition [13]. Haynes et al. have
shown that a single autonomous Boolean logic element can
be used as a physical system [14]. Jensen and Tufte have
employed Murali-Lakshmanan-Chua chaotic circuit to pro-
vide the nonlinear node and predicted nontemporal tasks [15].
Very recently, Mandal, Sinha, and Shrimali have proved that
a single forced driven pendulum can be considered as a single
node reservoir in RC and they have predicted the temporal and
nontemporal tasks with great accuracy [16].

In this article, following the general methodology for RC
[12–16] where the reservoir can be constructed by the virtual
nodes, we propose the interesting possibility that one can
use as RC just a nonlinear map or the map with a simple
trigonometric function, encoding the inputs as temporal pat-
terns instead of a continuous dynamical system. Also, we
prove the universality of this method by predicting both non-
temporal and temporal tasks. In the case of a nontemporal
task, we predict the nature of a polynomial function, and in a
temporal task, we predict three nonlinear chaotic systems that
include Lorenz, Rössler and Hindmarsh-Rose systems with
great accuracy. Also, we train the reservoir and predict the
time-series of the variables x, y, and z of the Rössler system
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by supplying x, y, and z, respectively, as inputs (closed-loop
prediction).

The paper is organized as follows: In Sec. II, the prediction
for the nontemporal task is discussed to predict a polynomial
function, and in Sec. III, the temporal task is explained to
predict three nonlinear systems, namely, the Lorenz, Rössler,
and Hindmarsh-Rose oscillators using the logistic map as a
reservoir for the prediction. We have also predicted the closed-
loop task for Rössler system and investigated the performance
of the RC against hyper-parameters. In Appendix A, both the
nontemporal and temporal tasks are predicted out by incorpo-
rating an additional simple trigonometric series function as a
reservoir, and in Appendix B the dynamical behavior of the
logistic map is briefly discussed for ready reference. Finally,
we present our conclusion in Sec. V.

II. PREDICTION FOR NONTEMPORAL TASK

For a nontemporal task we consider the prediction
of a seventh-degree polynomial f (x) = (x − 3)(x − 2)(x −
1)x(x + 1)(x + 2)(x + 3) for umin � x � umax. From a few
available samples (xi, f (xi )) [=(ui, vi ) for convenience]
between the chosen limits umin and umax, where i =
1, 2, 3, . . . , L, a state vector matrix R of the reservoir is
formed and then a weight matrix W corresponding to the lin-
ear transformation between the actual output and the reservoir
state vector matrix is determined by training the reservoir. Fur-
thermore, the polynomial is predicted for the complete set of
x values between umin and umax by using the obtained weight
matrix. Two row vectors u and v of size 1 × L are formed
from the samples (ui, vi ) as u = [u1, u2, . . . , ui, . . . , uL] and
v = [v1, v2, . . . , vi, . . . , vL]. The state vector matrix of the
reservoir is constructed by L column vectors corresponding
to each input ui, i = 1, 2, . . . , L. Each input is multiplexed,
forming virtual nodes, and state vector of size L × 1 corre-
sponding to each input is formed. For multiplexing, each input
element ui is supplied to the logistic map equation

ωn+1 = aiωn(1 − ωn), i = 1, 2, . . . L, (1)

via ai through the linear transformation

ai = amin +
(

amax − amin

umax − umin

)
(ui − umin). (2)

The quantities amin and amax in Eq. (2) can be chosen accord-
ingly for the best prediction and can also be chosen based
on the requirement of using chaotic or nonchaotic region,
in the bifurcation diagram of the logistic map (1), for better
prediction (see Fig. 1). Equation (1) is iterated for ω1, ω2, ...,
ωP corresponding to each ai. The initial value of ω = ω0 is
taken as 0.95 throughout this paper. P is a hyperparameter,
i.e., it can be tuned to enhance the accuracy in prediction.
Therefore, we can generate P number of ω for each ai as
ωi

1, ω
i
2, . . . , ω

i
P. The input ui is then multiplexed via ai by

ωi
1, ω

i
2, . . . , ω

i
P. A reservoir state vector (column vector) Yi

corresponding to ai with size (P × 1) is formed from the data
points ωi

1, ω
i
2, . . . , ω

i
P as

Yi = [
ωi

1, ω
i
2, . . . , ω

i
P

]T
. (3)

Similarly, the reservoir state vectors Y1,Y2, . . . ,YL for L in-
puts are computed corresponding to the choice of parameters
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FIG. 1. Bifurcation diagram of the logistic map. The vertical

dashed line separates the periodic region and chaotic region (a >

3.57). The periodic regions include period-1 region (1.0 < a <

3.0), period-2 cycle region (3.0 < a < 3.449), period-4 cycle region
(3.449 < a < 3.544112), and so on (see for example, Ref. [18]).

a1, a2, a3, . . . , aL, respectively, and they are stacked together
to from a reservoir state vector matrix R = [Y1,Y2, . . . ,YL]
with the size P × L as

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1
1 ω2

1 ω3
1 . . . ωL

1

ω1
2 ω2

2 ω3
2 . . . ωL

2

ω1
3 ω2

3 ω3
3 . . . ωL

3

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

ω1
P ω2

P ω3
P . . . ωL

P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

The linear transformation between the vector v and the
reservoir state vector matrix R is given by (see Fig. 2)

v = WnR, (5)

FIG. 2. A schematic diagram for training with the logistic map.
The input ui is linearly transformed into ai and then supplied to
the logistic map to form virtual nodes for the reservoir. Vi, i =
1, 2, . . . , L is the output generated from the reservoir. The iterated
values of the logistic map (ωi

k, k = 1, 2, . . . , P) are indicated as red
dots. Wk, k = 1, 2, . . . , P, are the components of the weight matrix
W . The black dotted lines inside the reservoir indicate the internal
computations of the reservoir.
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where Wn is the weight matrix for the nontemporal (n) task
case with size (1 × P) and it can be obtained from the reser-
voir state vector matrix R and the actual output vector v by
Eq. (5) as

Wn = vR−1 (6)

by employing the Moore-Penrose pseudoinverse [17].
Using the above weight matrix Wn, the polynomial f (x) can

be predicted for L new inputs u′ = [u′
1, u′

2, . . . , u′
L] for which

the output is unknown by

V = WnR′. (7)

The L elements of u′ can be random or uniform between
x = umin and x = umax. The matrix R′ in Eq. (7) is the reservoir
state vector matrix constructed for u′ by the same procedure
discussed above. We predict the polynomial f (x) for L (=100)
number of xs uniformly distributed between umin = −3 and
umax = +3. It is plotted in Fig. 3(a) in the absence of noise.
The parameters are kept as P = 100, amin = 2.1, and amax =
2.2. The solid blue line indicates the actual result and the red
open circles indicate the prediction that matches well with
the actual result. To verify the efficiency of this procedure in
prediction over noise, both the input and output of the sam-
ples (ui, vi) are supplied along with the strength of the noise
δ = 0.1 (i.e., the random noise is generated between −δ and
+δ using uniform distribution function). The weight matrix
Wn is then obtained corresponding to these noisy samples and
then the prediction is made for the uniformly distributed xs
(along with noise) between −3 and +3 as discussed before.
In Fig. 3(b), the predicted output plotted by red downward
triangles match well with the target values plotted by the blue
upward triangles. To confirm the prediction in the chaotic
region corresponding to amin = 3.8 and amax = 3.9, the poly-
nomial is predicted for P = 20 with the strength of the noise
being 0.1 and the result is plotted in Fig. 3(c). From Fig. 3 we
can clearly observe that the polynomial is accurately predicted
in both the cases of absence and presence of noise, for the bi-
furcation parameter a in the chaotic as well as the nonchaotic
regions. Statistically, the accuracy of the prediction with the
target is measured by the root mean square error (RMSE) ER:

ER =
√√√√ L∑

i=1

(vi − Vi )2/L, (8)

and the normalized root mean square error (NRMSE) ENR:

ENR = ER∑L
i=1 (Vi − Vavg)2/L

. (9)

The set vi is the actual output value set for the corre-
sponding predicted output set Vi. Vavg is the mean of the
output set Vi. In the above nontemporal task for predict-
ing the polynomial f (x) the values of (RMSE, NRMSE)
are calculated as (3.475 412 × 10−3, 2.305 818 × 10−6) and
(6.152 246 × 10−2, 3.976 396 × 10−5) corresponding to the
absence [Fig. 3(a)] and presence [Fig. 3(b)] of noise,
respectively, for the nonchaotic region and (6.689 998 ×
10−2, 4.1269 × 10−5) corresponding to the chaotic region
[Fig. 3(c)].
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FIG. 3. Prediction of the polynomial f (x) = (x − 3)(x − 2)(x −
1)x(x + 1)(x + 2)(x + 3) for x between −3 and +3 for (a) amin =
2.1, amax = 2.2, P = 100, δ = 0, (b) amin = 2.1, amax = 2.2, P =
100, δ = 0.1, and (c) amin = 3.8, amax = 3.9, P = 20, δ = 0.1. Here
L = 100, umin = −3, and umax = 3.

Here, one may note that the prediction for f (x) has been
done with amin = 2.1 and amax = 2.2 in the nonchaotic re-
gion and amin = 3.8 and amax = 3.9 in the chaotic region.
The input is supplied through the small window (i.e., �a =
amax − amin = 0.1) of the parameter a of the logistic map.
The parameter window is small and cannot be increased more
than 0.1 while maintaining the RMSE below 1.0 for better
prediction.

We also note that the parameter window can be increased
and the polynomial function can be predicted over a wider
range of a, including the chaotic regime, by forming a sim-
ple finite series of trigonometric functions from the values
obtained through the logistic map (ωi, i = 1, 2, . . . , P). The
details are given in Appendix A.

Furthermore, the performance of the reservoir over the
strength of noise in predicting the polynomial is investigated
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FIG. 4. Variation of RMSE with respect to the strength of noise
for the nonchaotic (red) and chaotic (blue). Here, umin = −3.2 and
umax = 3.2.

by plotting the RMSE against the strength of noise for amin =
2.1 and amax = 2.2 while P = 100 and for amin = 3.8 and
amax = 3.9 while P = 20 in Fig. 4. It clearly shows that,
when the logistic map operates in the chaotic and nonchaotic
regions, the value of the RMSE is maintained below 1.0 as
long as the strength of the noise is below 0.36 and 0.62,
respectively. Beyond these strengths the error increases con-
siderably.

III. PREDICTION FOR TEMPORAL TASK

In this section we perform the temporal task of predict-
ing the time series of one variable of a nonlinear system by
supplying the time series of another variable of the same sys-
tem as input. We consider three different nonlinear systems,
namely, the Lorenz, Rössler, and Hindmarsh-Rose oscillators,
and predict their y(t ) variable from that of x(t ). This tem-
poral task of predicting the time series requires a sequential
form of input of the past data to predict the future. For this
temporal task, let the total number of samples available for
training be L and the samples be given by (xi(t ), yi(t )), where
i = 1, 2, . . . , L. For convenience let (ui, vi ) = (xi(t ), yi(t )).
Unlike the nontemporal task that we discussed in the previous
section, these samples (ui, vi ) are sequential data correspond-
ing to time t = t1, t2, t3, ...,tL. Here the ui and vi can be
denoted as inputs and outputs, respectively, and their cor-
responding state vectors are given by the row vectors u =
[u1, u2, . . . , uL] and v = [v1, v2, . . . , vL]. The reservoir state
vector Zi corresponding to the input ui is constructed as Zi =
[g0Yi−m, . . . , gm−1Yi−1, gmYi]T along with m previous inputs
to bring the effect of past memory in prediction. Here, the
finite memory parameter m is a hyperparameter. Also, Yk ,
k = i − m, i − m + 1, . . . , i, corresponding to the input uk ,
k = i − m, i − m + 1, . . . , i, is similarly constructed as a col-
umn vector with size (P × 1) by Eq. (3), using Eqs. (1) and
(2), in the same way explained above for the nontemporal
task. Here gj , j = 1, 2, . . . , m are the weights assigned to Yk ,
k = i − m, i − m + 1, . . . , i. The values of gj are uniformly
distributed in the range [0,1] and hence g0 = 0 and gm = 1.
Therefore, the size of the reservoir state vector Zi for the tem-
poral task is (mP × 1). Similarly, all the reservoir state vectors
Z1, Z2, . . . , ZL corresponding to the inputs ui, i = 1, 2, . . . , L,
respectively, are obtained and the reservoir state vector matrix
R is formed by staking them together as R = [Z1, Z2, . . . , ZL].
Since g0 = 0 the reservoir state vector matrix R is constructed

for the samples (ui, vi ), i = 1, 2, . . . , L as

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1Y2−m g1Y3−m g1Y4−m . . . g1YL−m+1

g2Y3−m g2Y4−m g2Y5−m . . . g2YL−m+2

g3Y4−m g3Y5−m g3Y6−m . . . g3YL−m+3

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

gm−2Y−1 gm−2Y0 gm−2Y1 . . . gm−2YL−2

gm−1Y0 gm−1Y1 gm−1Y2 . . . gm−1YL−1

gmY1 gmY2 gmY3 . . . gmYL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

with the size of (mP × L). Using the above matrix R the
weight matrix Wt for this temporal (t ) task can be obtained
as

Wt = vR−1. (11)

The size of the weight matrix Wt is (1 × mP). After obtaining
the weight matrix Wt , the outputs corresponding to the new set
of sequential data inputs u′ = [u2, u3, . . . , uL+1] are predicted
for the output V = [V2,V3, . . . ,VL+1] using the relation

V = Wt R
′. (12)

Here R′ is the revised reservoir state vector matrix for the new
set of inputs. Similarly, the process is repeated to predict the
outputs for the successive set of sequential inputs.

A. Lorenz system

The Lorenz system, governed by the equations

ẋ = 10(y − x),

ẏ = x(28 − z) − y,

ż = xy − (8/3)z, (13)

is predicted for the variable y(t ) from the input x(t ). The
predictions are shown from t = 50 to t = 100 in Figs. 5(a)
and 5(b) in the absence and presence of noise, respectively,
where the actual output i.e., target is plotted in green solid
line and the prediction is plotted as red dashed line. The
strength of the noise has been taken as 0.01. The predic-
tion is made with the choice of the parameters as amin = 1,
amax = 2, umin = −17, umax = 17, P = 3, and m = 100. The
training is done from t = 40.00 to t = 49.99 with 1000 data
points and the prediction is made from t = 50.00 to t = 99.99
as shown in Figs. 5(a) and 5(b). From Figs. 5(a) and 5(b)
we can observe that the prediction is good and matches
well with the target. The root mean square error (RMSE) is
calculated for the prediction between the times t = 50 and
t = 1000 (95 000 data points) as 1.541 608 × 10−3 in the
absence of noise and 7.168 561 × 10−2 in the presence of
noise. The initial conditions for training as well as prediction
are (x∗, y∗, z∗) = (25, 18, 120) and the time step is kept as
0.01 for the generation of input x(t ) and prediction of output
y(t ). It has been verified that the prediction is made even
after t = 1000 with good accuracy. We have also indicated
the (rescaled) Lyapunov time tL = tλmax, where λmax is the
maximal Lyapunov exponent, in each of the panels of Fig. 5
and also in Figs. 6 and 7 below for other systems.
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FIG. 5. Prediction of Lorenz system for y(t ) from the input x(t )
for the strengths of (a) δ = 0 and (b) δ = 0.01. Here, amin = 1,
amax = 2, umin = −17, umax = 17, P = 3, and m = 100. In each of
the figures, we have also indicated the Lyapunov time tL = t · λmax,
where λmax = 0.906 is the maximal Lyapunov exponent of the
Lorenz system [19].

B. Rössler system

The Rössler system, governed by the equations

ẋ = −y − z,

ẏ = x + 0.2y,

ż = 0.2 + z(x − 5.7), (14)

is predicted and plotted in Figs. 6(a) and 6(b) in the absence
and presence of the noise, respectively, for the parame-
ters amin = 1, amax = 2, umin = −10, umax = 12, P = 3, and
m = 100. Here the strength of the noise is 0.01. In both
the figures the target is plotted by solid green line and the
prediction is plotted by dashed red line between the times
t = 500.0 and t = 999.9. The training was made with 1000
data points between the times t = 400.0 and t = 499.9. Fig-
ures 6(a) and 6(b) imply that the prediction is great for
both the cases of absence and presence of noise. The initial
conditions (x∗, y∗, z∗) = (0.1, 0.2, 0.3) are taken for the train-
ing and prediction. The time step is maintained as 0.1. The
root mean square error for the predictions between t = 500
and t = 10000 with 95 000 data in the absence and pres-
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FIG. 6. Prediction of Rössler system for y(t ) from the input x(t )
for the strength of (a) δ = 0 and (b) δ = 0.01. Here, amin = 1, amax =
2, umin = −10, umax = 12, P = 3, m = 100, and λmax = 0.0714 [19].

ence of the noise are calculated as 4.660 823 × 10−2 and
5.376 042 × 10−2, respectively.

C. Hindmarsh-Rose system

The Hindmarsh-Rose (HR) system, governed by the
equations

ẋ = y + 3x2 − x3 − z + 3.25,

ẏ = 1 − 5x2 − y,

ż = 0.006[4(x + 1.6) − z], (15)

is predicted for the time between t = 500.0 and t = 999.9
in Fig. 7(a) for the absence of noise and in Fig. 7(b) for the
presence of noise. The strength of noise is kept here as 0.01.
The target is plotted by solid green line and the prediction
is plotted by red dashed line. The parameters were chosen
as amin = 1, amax = 2, umin = −1.2, umax = 1.8, P = 5, and
m = 100. Also, the time step and the initial conditions for
the training and prediction are taken as 0.1 and (x∗, y∗, z∗) =
(−1.6, 4.0, 2.75) and 0.1, respectively. The training was done
with 1000 data points between the times t = 400.0 and t =
499.9. The prediction is satisfactory, as shown in Figs. 7(a)
and 7(b), and the root mean square error for the predictions
between t = 500 and t = 10 000 (95 000 data) is determined
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FIG. 7. Prediction of Hindmarsh-Rose system for y(t ) from the
input x(t ) for the strength of (a) δ = 0 and (b) δ = 0.01. Here, amin =
1, amax = 2, umin = −1.2, umax = 1.8, P = 5, m = 100, and λmax =
0.018 [20].

as 1.032 240 × 10−3 for the prediction without noise and
1.464 032 × 10−2 with noise.

In the nontemporal task the predictions were made with
good accuracy for the parameter window �a = 0.1 since the
error in the prediction becomes large when �a > 0.1. How-
ever, in temporal cases, where the nonlinear systems were
predicted with amax = 2, amin = 1, and �a = 1, the parameter
window can be increased up to four. This implies that the
temporal cases can be predicted accurately with the parameter
a in the periodic as well as chaotic ranges of the logistic map.
We have predicted the three nonlinear systems for the differ-
ent ranges of parameter window (i) (amin, amax) = (1, 2), (ii)
(amin, amax) = (3, 3.4), and (iii) (amin, amax) = (3.6, 4) corre-
sponding to the regions (logistic map) of period-1, period-2
cycle and chaos in the presence and absence of noise and the
results are listed in Table I. The RMSE values listed in Table I
confirms the accuracy in the prediction of the three nonlinear
systems for the larger parameter windows of a, i.e., in the
periodic and chaotic regions of the logistic map.

D. Simultaneous prediction of y(t ) and z(t ) from x(t )

In the previous sections, only the y(t ) of the three nonlinear
dynamical systems was predicted from the input x(t ). Here,
we intend to predict the variables y(t ) and z(t ) simultaneously
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FIG. 8. Prediction of Hindmarsh-Rose system for y(t ) and z(t )
from the input x(t ) without noise. Here, amin = 3.6, amax = 4, umin =
−1.2, umax = 1.8, P = 5, and m = 100.

from x(t ). The procedure for this simultaneous prediction is
given below: To obtain the weight matrix for this prediction
the row vector v in Eq. (11) can be replaced by a matrix
[vy, vz]T with two row vectors vy and vz having output ele-
ments [vy

1, v
y
2, . . . , v

y
L] and [vz

1, v
z
2, . . . , v

z
L] corresponding to

y(t ) and z(t ), respectively. The reservoir state vector matrix
R is constructed from the input vector u = [u1, u2, . . . , uL]
corresponding to x(t ) as before. After finding the weight
matrix Wt (with size 2 × mP), both the variables y(t ) and
z(t ) are predicted for the input u′ = [u2, u3, . . . , uL+1] by the
relation given by Eq. (12) for the output V = [V y,V z]T . Here
V y = [V y

2 ,V y
3 , . . . ,V y

L+1] and V z = [V z
2 ,V z

3 , . . . ,V z
L+1] are the

output vectors corresponding to y(t ) and z(t ), respectively.
The y(t ) and z(t ) variables of the Hindmarsh-Rose system
are predicted from the input x(t ) in the absence of noise
and plotted in Fig. 8 for amin = 3.6, amax = 4, umin = −1.2,
umax = 1.8, P = 5, and m = 100. The figure confirms that
the prediction is good and the RMSEs are determined to
be 2.922 806 × 10−4 and 3.059 959 × 10−4 for y(t ) and z(t ),
respectively. We have also predicted the self-prediction of x(t )
of the Rössler system from the same input x(t ) by logistic
map and trigonometric series function (for details see the
Appendix A).
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TABLE I. RMSE and NRMSE values for the three dynamical systems for different ranges of (amin, amax) in the presence (δ = 0.01) and
absence of noise. Here the values of P, m, umin, and umax for the Lorenz, Rössler, and Hindmarsh-Rose systems are the same as those used in
Figs. 5, 6 and 7, respectively.

Dynamical RMSE NRMSE
system (amin, amax) (δ = 0) (δ = 0)

Lorenz (1, 2) 1.541 608 × 10−3 2.338 873 24 × 10−5

Lorenz (3.0, 3.4) 8.999 47 × 10−4 1.365 392 63 × 10−5

Lorenz (3.6, 4) 7.703 143 × 10−4 1.168 721 92 × 10−5

Rössler (1, 2) 4.660 823 × 10−2 2.00 382 9 × 10−3

Rössler (3.0, 3.4) 4.772 730 × 10−2 2.051 973 54 × 10−3

Rössler (3.6, 4) 4.744 061 × 10−2 2.039 633 65 × 10−3

Hindmarsh-Rose (1, 2) 1.032 240 × 10−3 3.776 521 43 × 10−4

Hindmarsh-Rose (3.0, 3.4) 1.538 142 × 10−3 5.627 398 88 × 10−4

Hindmarsh-Rose (3.6, 4) 2.299 932 × 10−3 8.414 395 63 × 10−4

Dynamical RMSE NRMSE
system (amin, amax) (δ = 0.01) (δ = 0.01)

Lorenz (1, 2) 7.168 561 × 10−2 1.087 678 029 × 10−3

Lorenz (3.0, 3.4) 7.286 838 × 10−2 1.105 775 391 6 × 10−3

Lorenz (3.6, 4) 7.221 521 × 10−2 1.095 984 716 1 × 10−3

Rössler (1, 2) 5.376 042 × 10−2 2.311 640 6 × 10−3

Rössler (3.0, 3.4) 5.529 051 × 10−2 2.377 155 42 × 10−3

Rössler (3.6, 4) 5.481 263 × 10−2 2.356 409 5 × 10−3

Hindmarsh-Rose (1, 2) 1.464 032 × 10−2 5.377 810 48 × 10−3

Hindmarsh-Rose (3.0, 3.4) 1.378 490 × 10−2 5.063 578 96 × 10−3

Hindmarsh-Rose (3.6, 4) 1.440 286 × 10−2 5.269 065 93 × 10−3

E. Self-prediction (or) closed-loop prediction

Next, by making use of the above procedure, the time-
series of x(t ), y(t ), and z(t ) of the Rössler system are predicted
by using the same x(t ), y(t ), and z(t ) variables, respectively,
as input. The results are presented in Figs. 9(a), 9(b), and 9(c),
respectively, with the strength of noise δ = 0.01. Here the tar-
get is plotted as green line and the prediction is plotted as red
dashed line. For x(t ) and y(t ), the training is made with 5000
data points collected between t = 10.0 and t = 509.9 with the
time-space 0.1 and the prediction is made from t = 510.1 to
t = 810.0 with the weight matrix Wt obtained at t = 510.0.
The weight matrix Wt is determined by Wt = vR−1 using the
reservoir state vector matrix R formed with the inputs from
t = 10.0 to t = 509.9 and the outputs v from t = 10.1 to
t = 510.0. In Fig. 9(a), a close prediction with the target up to
t = 690 is observed for x(t ) for P = 20, amin = 3, amax = 3.5,
umin = −10, and umax = 15. The RMSE and NRMSE are
determined as 4.272 064 × 10−1 and 1.701 691 × 10−2, re-
spectively, for the prediction between t = 510.1 and t = 610.
Similarly, as may be observed from Fig. 9(b), the variable
y(t ) is also closely predicted up to t = 680 with P = 35,
amin = 3.6, and amax = 4, umin = −15, and umax = 15. The
RMSE and NRMSE are measured as 4.350 448 × 10−1 and
1.946 701 × 10−2, respectively, for the prediction between
t = 510.1 and t = 610. The z(t ) variable is predicted from
t = 600.1 to t = 700 with P = 2, amin = 1, and amax = 2,
umin = −1, and umax = 25 from the training of 5000 data
points between t = 100.0 and t = 599.9. The result is plotted
in Fig. 9(c), where we can see that the prediction matches

well with the target up to t = 630 and then a deviation starts
to appear. For this prediction, the memory stack in the col-
umn vector of the reservoir state vector matrix R is formed
with 1000 entries (i.e., m = 1000) with the memory weights
0.001, 0.002, . . . , 1.0, instead of m = 100 considered for pre-
dicting x(t ) and y(t ). The RMSE and NRMSE are determined
as 1.147 877 and 1.520 118 × 10−1 for the prediction between
t = 600.1 and t = 630.0.

F. Higher-dimensional system

The applicability of our methodology of reservoir is further
verified for the four-dimensional chaotic system considered
by Qi et al. [21] as given below:

ẋ1 = a(x2 − x1) + x2x3x4,

ẋ2 = b(x1 + x2) − x1x3x4,

ẋ3 = −cx3 + x1x2x4,

ẋ4 = −dx4 + x1x2x3. (16)

In Figs. 10(a), 10(b), and 10(c) the variables x2, x3, and x4

are predicted from the inputs x1, x2, and x3, respectively for
the duration of time from t = 10 to t = 15.0. For the given
inputs the above system is numerically solved with the initial
conditions (0.1,0.2,0.3,0.4) for (x1, x2, x3, x4) and for a = 35,
b = 10, c = 1, and d = 25. The step size for time is kept
as 0.001. The training is done from t = 9.000 to 9.999
with L = 1000 data points and the prediction is shown
from 10.0 to 15.0. The values of P, amin, amax, umin,
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FIG. 9. Prediction of Rössler system for (a) x(t ) when P = 20,
amin = 3, amax = 3.5, umin = −10, umax = 15, m = 100, and L =
5000, (b) y(t ) when P = 35, amin = 3.6, amax = 4, umin = −15,
umax = 15, m = 100, and L = 5000, and (c) z(t ) when P = 2,
amin = 1, amax = 2, umin = −1, umax = 25, m = 1000, and L =
5000, from the inputs x(t ), y(t ), and z(t ), respectively, for a strength
of noise of 0.01.

and umax are kept as 3, 3.6, 3.9, −6, and 10, respec-
tively. Here, the strength of noise is taken as zero. From
Fig. 10 we can observe that the predictions for x2, x3,
and x4 are exact. The accuracy is maintained for a long
time and the (RMSE, NRMSE) are determined for the
time period between t = 10.0 to t = 100.0 as (3.766 656 ×
10−2, 1.074 041 × 10−2), (2.549 922 × 10−2, 0.098 767 49 ×
10−2) and (2.098 983 × 10−3, 1.652 17 × 10−3), respectively.

IV. PERFORMANCE OF RESERVOIR COMPUTING

The performance of the reservoir against the hyperpa-
rameters amin, amax, P, and L are discussed here for both

-4

-2

 0

 2

 4

 9  10  11  12  13  14  15

x
2

t

target
prediction

 7.8

 8.2

 8.6

 9

 9.4

 9.8

 9  10  11  12  13  14  15
x

3
t

target
prediction

 0

 1

 2

 3

 4

 9  10  11  12  13  14  15

x
4

t

target
prediction

(a)

(b)

(c)

FIG. 10. Prediction of the four-dimensional system for the vari-
able (a) x2 from the input x1, (b) x3 from the input x2, and (c) x4

from the input x3. Here P = 3, L = 1000, amin = 3.6, amax = 3.9,
umin = −6, umax = 10, and m = 100.

the temporal and nontemporal tasks. In Figs. 11(a)–11(c),
for the prediction of the seventh-degree polynomial function
discussed in Sec. II, the logarithmic values of RMSE are
plotted against the upper limit of bifurcation value of the
logistic map amax, the number of iterations of the logistic
map P and the length of the inputs L, respectively, for the
noise strength 0.1, L = 100 and umin = −3.2, umax = 3.2.
In Fig. 11(a) log10(RMSE) is plotted for different values of
amin, 1.0 (red), 2.0 (blue), 3.2 (magenta), and 3.5 (black) for
P = 100 and 3.5 (green) for P = 20. From Fig. 11(a), we can
observe that if the value of a is in the nonchaotic region, the
error in the prediction increases when the difference between
amax and amin increases. If a is in the chaotic region, the error
becomes large when P is large and can be reduced by decreas-
ing the value of P. In Fig. 11(b), the log10(RMSE) is plotted
against the number of iterations P for (amin, amax): (2.1,2.2),

034204-8



RESERVOIR COMPUTING WITH LOGISTIC MAP PHYSICAL REVIEW E 110, 034204 (2024)

-2
 0
 2
 4
 6
 8

 10
 12

 1  1.5  2  2.5  3  3.5  4

lo
g

1
0
(R

M
S

E
)

amax

-1

 0

 1

 2

 3

1 20 40 60 80 100

lo
g

1
0
(R

M
S

E
)

P

-1
 0
 1
 2
 3
 4
 5

2 20 40 60 80 100

lo
g

1
0
(R

M
S

E
)

L

(a)

(b)

(c)

FIG. 11. log10(RMSE) of the polynomial prediction task against
(a) amax when P = 100 and L = 100, (b) logistic map iteration
length P when amin = 2.1, amax = 2.2 (red); amin = 3.57, amax =
3.58 (blue); and amin = 3.8, amax = 3.9 (magenta), and (c) input
length L when P = 100 and amin = 2.1, amax = 2.2. Here, umin =
−3.2, umax = 3.2, and the noise strength is 0.1.

(3.57,3.58), and (3.8,3.9) by the red, blue, and magenta lined
points, respectively, while L = 100. From Fig. 11(b) we can
identify that, if a is in the nonchaotic region, i.e., amin = 2.1,
amax = 2.2, the error reduces drastically once the value of P
increases above 10, whereas in the region which is identified
as the edge of chaos (amin = 3.57, amax = 3.58) or in the
chaos region (amin = 3.8, amax = 3.9), the error reduces ini-
tially with P and then increases considerably while increasing
the value of P. In Fig. 11(c), where log10(RMSE) is plotted
against the number of input length L for P = 100, amin = 2.1,
and amax = 2.2, we observe that the error can be minimized
when the length of the input L is increased above 40.

To investigate the performance of the reservoir for the
temporal task, Fig. 12(a) is plotted for the RMSE (for the
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FIG. 12. Prediction of y from x from the Lorenz system for
(a) RMSE against amax when P = 3 and L = 1000, (b) log10(RMSE)
against P for L = 1000 when (i) amin = 1, amax = 2 (red), (ii) amin =
3.57, amax = 3.58 (blue), and (iii) amin = 3.8, amax = 3.9 (magenta),
and (c) log10(RMSE) against L when P = 3 and amin = 1, amax = 2.
Here, umin = −17, umax = 17 and the noise strength is 0.01.

prediction of y from x of the Lorenz system) against amax

for different values of amin = 1.5 (red), 3.2 (blue), 3.5 (ma-
genta), and 3.6 (black) while P = 3, L = 1000, umin = −17,
and umax = 17. From Fig. 12(a) we can understand that the
error is small and there is no impact on the RMSE by chang-
ing the values of amin and amax. Figures 12(b) and 12(c)
are plotted for log10(RMSE) against P when L = 1000 and
L when P = 3, respectively, for umin = −17 and umax = 17.
In Fig. 12(b) the red, blue, and magenta lined points corre-
spond to the nonchaotic region (amin = 1, amax = 2), edge of
chaos (amin = 3.57, amax = 3.58), and chaotic region (amin =
3.8, amax = 3.9), respectively. From Fig. 12(b) we can ob-
serve that irrespective to the region of a the error in the
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FIG. 13. The schematic diagram for training with trigonomet-
ric function. The input ui is linearly transformed into ai and then
is supplied into logistic map to form a time varying function. Vi,
i = 1, 2, . . . , L is the output generated from the reservoir. The Wk ,
k = 1, 2, . . . , P are the components of the weight matrix W . The
black dotted lines inside the reservoir indicate the internal compu-
tations of the reservoir.

prediction becomes very small at low values of P and gets
enhanced slightly for large values of P. Figure 12(c), which
has been plotted for amin = 1 and amax = 2, confirms that
the error drastically reduces when the length of the input L
increases above 300.

V. CONCLUSION

We have successfully demonstrated that both temporal and
nontemporal tasks can be predicted well by constructing a
reservoir using the well-known nonlinear map, that is the
logistic map, or the map with a simple trigonometric series
(when needed) in reservoir computing. The logistic map is
used to transform the input into a higher-dimensional system
by constructing virtual nodes. We have predicted a seventh-
order polynomial for nontemporal tasks and three nonlinear
systems, namely, the Lorenz, Rössler, and Hindmarsh-Rose
oscillators, for temporal tasks with a logistic map. The poly-
nomial is accurately predicted in the absence and presence
of noise, with the root mean square error of 3.475 412 ×
10−3 and 6.152 246 × 10−2, respectively. Also, we have pre-
dicted the three nonlinear dynamical systems for the variable
y(t ) from the input x(t ) in the presence and absence of
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FIG. 14. The prediction of polynomial f (x) = (x − 3)(x −
2)(x − 1)x(x + 1)(x + 2)(x + 3) between −3 and +3 in the absence
of noise with amin = 3 and amax = 3.5. Here L = 100, P = 100,
umin = −3, and umax = 3.
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FIG. 15. Prediction of Rössler system for x(t ) from the input
x(t ) for the strength of noise 0.01 by (a) trigonometric function with
P = 5, N = 100, tN = 10, amin = 1, and amax = 3.5.

noise with a strength of 10−2. The root mean square er-
rors for the Lorenz, Rössler, and Hindmarsh-Rose systems,
are determined as 1.541 608 × 10−3, 4.660 823 × 10−2, and
1.032 24 × 10−3, respectively, in the absence of noise. The
same errors are determined as 7.168 561 × 10−2, 5.376 042 ×
10−2, and 1.464 032 × 10−2, respectively, in the presence of
noise strength 10−2. The low values of the root mean square
error for both the temporal and nontemporal tasks confirm
that the accuracy of the above method is quite satisfactory and
that it can be employed as an effective reservoir in reservoir
computing. We have also, predicted the time-series of x, y,
and z variables of the Rössler system under the closed-loop
task i.e., without taking the true values of other inputs as
input, and have obtained the RMSE as 4.272 064 × 10−1,
4.350 448 × 10−1 and 1.147 877, respectively. The method
has also been demonstrated well for the four-dimensional
system [Eq. (16)]. The parameter window for the input is
increased by constructing a simple trigonometric series for
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FIG. 16. The iterated values of ωn from logistic map equa-
tion Eq. (1) when (a) a = 2.0, (b) a = 3.2, (c) a = 3.5, (d) a = 3.55,
(e) a = 3.6, and (f) a = 3.8 while ω0 = 0.95.
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time multiplexing the input with virtual nodes. The time series
of x(t ) of the Rössler system is predicted with good accuracy
by the logistic map as well as with the trigonometric series.
Also, the self-prediction of the remaining two state variables
y(t ) and z(t ) of the same system and the three state variables
of the other two nonlinear systems are verified (results not
shown here) by the logistic map and trigonometric series.
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APPENDIX A: MULTIPLEXING WITH A SIMPLE
TRIGONOMETRIC SERIES

In Sec. II the polynomial was predicted with the parameter
window �a = 0.1 and it was mentioned that the error will
become large when the range is increased further. If there is
a requirement for supplying large number of data as input the
parameter window should be large enough to accommodate
the inputs and it will be preferable if the value of �a is �0.5.
Here, we discuss a methodology to increase the size of the pa-
rameter window to predict the polynomial in the nontemporal
task by constructing a simple trigonometric function formed
by the iterated values of logistic map ωi

1, ω
i
2, . . . , ω

i
P corre-

sponding to each input ui. The input ui is then multiplexed in
time via ai by a simple trigonometric series function given by
(see Fig. 13)

yi(t ) =
k=P∑
k=1

sin
(
ωi

kt
)
. (A1)

From Eq. (A1), one can collect N data points yi
1, yi

2, . . . , yi
N

for yi(t ) at t = t j , where j = 1, 2, . . . , N corresponding to
ui. Here the step size (t j+1 − t j ) is given by tN/N , and t0 =
0 and tN are the initial and final values of t , respectively.
N is the total number of data points we intend to collect
corresponding to each ui or ai for the prediction. Here, tN
and N are the hyperparameters. t0 is taken as zero for this
entire work. A reservoir state vector (column vector) Yi cor-
responding to ai and ui is formed with size (N × 1) from
the data points yi

1, yi
2, . . . , yi

N as Yi = [y1
i , y2

i , . . . , yN
i ]T . After

constructing the reservoir state vectors Y1,Y2, . . . ,YL corre-
sponding to u1, u2, . . . , uL (L inputs) using Eq. (A1), they
are stacked together to from a reservoir state vector matrix

R = [Y1,Y2, . . . ,YL] with the size N × L as

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
1 y2

1 y3
1 . . . yL

1

y1
2 y2

2 y3
2 . . . yL

2

y1
3 y2

3 y3
3 . . . yL

3

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

y1
N y2

N y3
N . . . yL

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)

From the reservoir state vector matrix R and the output
vector v the weight matrix Wnt for the nontemporal task is
obtained by using Eq. (6) and the output is predicted as
given by Eq. (5). The polynomial f (x) is predicted based
on this procedure and plotted in Fig. 14 without noise for
the parameter window �a = 0.5. The parameters are amin =
3.0 and amax = 3.5, P = 5, N = 100, t0 = 0, and tN = 10.
The solid blue line is for target and the red open circle
is for prediction. The RMSE is determined as 6.896 466 ×
10−2. This procedure of trigonometric series can also
be used to predict temporal tasks with reservoir matrix
constructed by R = [Z1, Z2, . . . , ZL] similar to the construc-
tion procedure used for temporal task discussed in Sec. III
above. Here the reservoir state vector Zi corresponding to
the input ui is given by Zi = [g0Yi−m, . . . , gm−1Yi−1, gmYi]T

along with m previous inputs, where Yi = [yi
1, yi

2, . . . , yi
N ]T .

The data points yi
1, yi

2, . . . , yi
N for the input ui are obtained

from Eq. (A1) instead of ωi
1, ω

i
2, . . . , ω

i
P obtained from

logistic map.
By making use of this procedure, the time series of x(t )

of the Rössler system is predicted by using the same x(t )
as an input. The training is made with the 5000 data points
collected between t = 10.0 and t = 509.9 with the time-space
0.1 and the prediction is made from t = 510.0 to t = 609.9
with the weight matrix Wt obtained at t = 509.9. The weight
matrix Wt is determined by Wt = vR−1 using the reservoir
state vector matrix R formed with the inputs from t = 10.0
to t = 509.9 and the outputs v from t = 10.1 to t = 510.0.
The close prediction with the target is shown in Fig. 15 where
the target is plotted by green line and the prediction is plotted
by red dashed line for N = 100, tN = 10, P = 5, amin = 1,
amax = 3.5 along with the noise strength 0.01. The RMSE and
NRMSE are determined as 0.735 332 and 2.794 308 8 × 10−2,
respectively.

APPENDIX B: DYNAMICAL BEHAVIOUR
OF THE LOGISTIC MAP [18]

The iterated values of logistic map equation ωn+1 =
aωn(1 − ωn), where n = 0, 1, 2, . . . , P, are plotted in Fig. 16
for a = 2.0, 3.2, 3.5, 3.55, 3.6, and 3.8 while P = 50. As
we can see from Fig. 16(a), after transients, the variable
ωn exhibits fixed-point values while a = 2.0. Figures 16(b),
16(c), and 16(d) exhibit 2-periodic, 4-periodic, and 8-periodic
oscillations, respectively, corresponding to a = 3.2, 3.5, and
3.55. Figures 16(e) and 16(f) exhibit a chaotic nature when
a = 3.6 and 3.8.
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