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Media with correlated disorder display unexpected transport properties, but it is still a challenge to design
structures with desired spectral features at scale. In this work, we introduce an optimal formulation of this
inverse problem by means of the nonuniform fast Fourier transform, thus arriving at an algorithm capable of
generating systems with arbitrary spectral properties, with a computational cost that scales O(N log N ) with
system size. The method is extended to accommodate arbitrary real-space interactions, such as short-range
repulsion, to simultaneously control short- and long-range correlations. We thus generate the largest-ever stealthy
hyperuniform configurations in 2d (N = 109) and 3d (N > 107) and demonstrate the flexibility of the approach
by generating structures with designed spectral features at scale. By an Ewald sphere construction we link
the spectral and optical properties at the single-scattering level and show that stealthy hyperuniform structures
generically display transmission gaps, providing a concrete example of fine-tuning of a physical property. We
also show that large 3d power-law hyperuniformity in particle packings leads to single-scattering properties
nearly identical to those of simple hard spheres. Finally, we demonstrate generalizations of the approach to
impose features in either continuous or discrete real space, using constraints in either continuous or discrete
reciprocal space. In particular, enforcing large spectral power at peaks with the right symmetry leads to the
nondeterministic generation of quasicrystalline structures in 2d and 3d . This technique should become an
essential tool to embed, and understand the role of, long-range correlations in disordered metamaterials.
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I. INTRODUCTION

The study of condensed matter is often facilitated by the
periodicity of atomic structures. For instance, photonic band
gaps in crystals can be predicted by Bloch’s theorem [1].
In contrast, analytic models are still being developed to un-
derstand the emergent optical properties of disordered media
[2,3], i.e., materials that do not exhibit conventional forms
of long-range order. Among disordered materials, systems
with correlated disorder, whose structures are non-Poissonian
random point patterns, have garnered attention following
experimental and computational reports of unconventional
scattering properties: structural coloration [4,5], isotropic
band gaps [6,7], or Anderson localization [8,9].

Beyond condensed matter, correlated point patterns are
crucial to computer graphics [10,11], and various protocols
have been introduced to impose prescribed spatial correla-
tions between points [10–12]. These strategies amount to an
optimal sampling problem: Given some natural image, where
should a finite number of sample points be placed in order
to minimize aliasing errors? A common answer is to use
blue-noise sampling [10], i.e., point patterns with highly sup-
pressed long-ranged pair correlations but no clear periodicity.
In. practice, the best such point patterns have strictly zero
low-frequency content [12].

*These authors contributed equally to this work
†Contact author: sm7683@nyu.edu

Physicists refer to such point patterns as disordered hy-
peruniform structures [13]. It has been argued that these
structures exhibit photonic band gaps and localization due to
their suppressed long-range density fluctuations [6–9,14,15].
To produce hyperuniform point patterns with prescribed cor-
related disorders, the best-known algorithm relies on the
collective coordinate approach [16,17], which minimizes dif-
ferences between an observed structure factor and a desired
one using gradient optimization. These algorithms suffer from
a major drawback: Their algorithmic complexity is O(N2)
[18] or even O(N3) [16,17] in the number, N , of points. Con-
sequently, the vast majority of hyperuniform systems studied
in the literature contain modest numbers of points (102 to 104

points [16,17,19], more recently up to ∼106 points using a
massively parallel GPU implementation [18]), and were over-
whelmingly limited to one specific kind of hyperuniformity to
make calculations tractable [9,18,20]. These limitations have
also critically affected the scale of additively manufactured
hyperuniform materials, typically a few hundreds of particles
only [6,7,21], which is particularly problematic in 3d [15,22]
as the linear size of the system reaches only tens of particles
across. This raises the question of whether the structures used
in past studies truly encoded hyperuniformity, an inherently
long-range property.

In this paper, we introduce a powerful optimization al-
gorithm, sketched in Fig. 1(a), that can generate spectrally
shaped disordered point structures with arbitrary spectral fea-
tures [see Figs. 1(b)–1(e)]. In short, the algorithm resorts to
nonuniform fast Fourier transforms (nuFFTs) to efficiently
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(a) (b)

(e)(d)(c)

FIG. 1. Fast reciprocal-space correlator (FReSCo): (a) Sketch of the implementation of our algorithm. A point pattern ρ0(r) is subjected to a
nuFFT transformation, so that a loss can be computed from the difference between the observed k-space structure, S(k), and a target function,
S0(k). The gradient of this loss is obtained as another nuFFT, so that each iteration of the optimization can be performed in O(N log N )
operations. (b) Example output of the algorithm: We show a small portion of an N = 109 point pattern, as well as the final structure factor.
[(c)–(e)] A few example outputs imposing a variety of target structures to smaller systems (N = 5 × 107 points): From left to right, a pinwheel,
a 10-petaled flower structure factor, and the lightness scale of Van Gogh’s The Starry Night [23]. In each panel, we show a portion of the final
point pattern (top left), structure factor (top right), forward scattering transmission, T (k, θ ), as a function of the magnitude, k, and orientation,
θ , of an incoming wave (bottom left), and scattered intensity, Is(k, θs ) (bottom right) for an upward incident wave vector, as a function of the
incident frequency, k, and of the scattered direction, θs.

compute the structure factor S(k) of a point pattern ρ(r).
The distance from S(k) to a prescribed target S0(k) then
defines a loss function. Crucially, we show that the gradient
of this loss can also be written as a nuFFT, so that the cost
of one step in a minimization procedure scales quasilinearly
in the system size, O(N log N ). This cost function can be
jointly optimized with additional physical constraints, such as
short-ranged pair repulsion, with no increase in computational
complexity.

We demonstrate its application for as many as 109 points
[Fig. 1(b)], outperforming (by at least three orders of magni-
tude) all previously published methods possessing the same
specificity in k space for point patterns [16–18]. The tar-
get structure factor, S0, can be chosen at will as long
as the number of k-space features being constrained does
not exceed the number of degrees of freedom. We show
a few smaller (N = 5 × 107) examples in Figs. 1(c)–1(e),
where we embed a pinwheel (c), a 10-fold flower (d),
or Van Gogh’s The Starry Night (e) [23] into the struc-
ture factor. We also show [Figs. 1(c)–1(e)] that the optical

properties of such structures can be characterized in the
single-scattering regime on the scale of realistic devices,
without assuming periodicity. We show the forward-scattered
transmission pattern, T , of these structures against the wave
vector of an incoming plane wave, as well as the intensity,
Is, of the scattered field in each direction, for an upward
incident wave, across frequencies (see precise definitions
below).

In the following, we highlight the range of applications of
this algorithm. We show that unquestionably stealthy hyper-
uniform systems (i.e., with hyperuniform density fluctuations
scalings spanning over three decades; see Appendix F) have
transmission gaps even at the single-scattering level. However,
we show that particle systems with power-law behavior in
S (like particles at jamming [24] or critical absorbing-state
models [25,26]) have single-scattering properties indistin-
guishable from equilibrium hard spheres. We finally discuss
extensions of fast reciprocal-space correlator (FReSCo), e.g.,
one that produces quasicrystalline structures [27] from very
few constraints.
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II. ALGORITHM

Consider a set of N points at d-dimensional positions,
r1, . . . , rN ∈ Rd , each carrying a weight cn ∈ C. One may
define a density field as the sum of N Dirac deltas, ρ(r) ≡∑

n cnδ(r − rn). In Fourier space, ρ̂ (k) = ∑
n cn exp(ik · rn),

so that one may define the structure factor,

S(k) ≡ |̂ρ (k)|2
N

, (1)

which encodes the two-point correlations of ρ [28]. FReSCo
implements a minimization protocol against a loss, LS , de-
fined as the least-squares error between S(k) and a prescribed
target, S0(k), in a finite region K of reciprocal space:

LS[(r1, c1), . . . , (rN , cN )] =
∑
k∈K

w(k)L[S(k), S0(k)], (2)

where w(k) is a weighting function, and

L[S(k), S0(k)] =
{

[(S(k) − S0(k))/S0(k)]2 if S0(k) �= 0

S(k)2 otherwise
(3)

penalizes the relative distance to S0(k). We choose w(k) ∼
|k|−(d−1) when S0(k) has pronounced radial symmetry around
k = 0, so that k-space constraints are equally strong on ev-
ery spherical shell. For instance, this applies to the structure
factors of Figs. 1(b)–1(d), while for panel (e) we choose
w(k) = 1 (parameters for the runs are given in Appendix A).

Gradients of this loss can be written both with respect to
weights and positions, with either periodic or free boundary
conditions (see Appendix B). We first focus on the op-
timization of continuous positions with periodic boundary
conditions and cn = 1, a problem formally equivalent to that
introduced in the collective coordinate approach [16–18]. In
that case, ρ(r) is real valued and S(k) = S(−k), a property
known in crystallography as Friedel’s law [29], so that only
centrosymmetric S are realizable. For instance, embedding
The Starry Night [23] in the ky < 0 half-plane leads to its
inversion being constrained for ky > 0 in Fig. 1(e). Using
Eq. (1), the gradients of the loss function can be written as
Fourier transforms (see Appendix B),

∂LS

∂rn
= Re

[∑
k

C(k)cn exp(−ik · rn)

]
= cnRe[Ĉ(rn)], (4)

where C(k) = −4ikw(k)[S(k) − S0(k)]̂ρ (k)/N are coeffi-
cients of a Fourier series and Ĉ is the Fourier transform of
C.

This rewriting of the gradient constitutes the core idea
behind FReSCo. Previous algorithms [16–18] explicitly com-
puted the gradient of the loss as a double sum over particles,
requiring O(N2) operations per k, with a number of con-
straints scaling linearly in N , resulting in O(N3) operations
per gradient evaluation in a brute-force approach [16,17] or
O(N2) if the Fourier transform of the density field is precom-
puted [18]. In our approach, in total, one FFT is required to
compute LS and d additional FFTs are required for the gradi-
ent of LS . We therefore bypass the double sum and bring down
the number of operations to that of a single FFT, O(N log N ),
for both loss and gradient calls. As these are the most costly

steps in calculating the loss, they dominate the cost of the
whole minimization, which also scales like O(N log N ) (see
benchmarks in Appendix D), nearly N times faster per step
than previous implementations, meaning that a full minimiza-
tion is many orders of magnitude faster at the values of N we
explore. To compute FFTs, we rely on the Flatiron Institute
nonuniform fast Fourier transform (FINUFFT) implementa-
tion of nonuniform fast Fourier transforms [30,31]. With the
state-of-the-art optimizations built into FINUFFT, the compu-
tational speed increase is enormous, enabling the generation
of correlated disordered systems up to N = 109 on CPUs
[Fig. 1(b)], the main limitation being memory requirements.
The optimization is performed by feeding the configuration
and gradient to L-BFGS [32], a quasi-Newton method, with a
maximal step size and a backtracking line search [33]. An effi-
cient and easy-to-use. implementation of FReSCo is publicly
available [34].

III. STRUCTURE AND SCATTERING

To characterize the optical behavior of systems at scale
without introducing artificial periodicity, we proceed as fol-
lows. First, like in experiments [7], we cut the optimized
point patterns into disks to avoid anisotropy coming from the
shape of the medium; then we use the Ewald sphere con-
struction [1] on the resulting object by means of FINUFFT
transformations [see sketch in Fig. 2(a)]. We remind that
the Ewald sphere construction is equivalent to the far-field
single-scattering response in the Supplemental Material (SM)
[35] and illustrate the technique in Fig. 2(b). In short, at
single-scattering level, for an incident wave vector kinc, the
far-field intensity scattered with wave vector ksca is propor-
tional to S(q) at q = ksca − kinc [2]. Therefore, we read off the
single-scattering response at any given frequency, and in any
observation direction, by drawing a sphere centered at −kinc

with radius k = |kinc| = |ksca|. In Fig. 2(b), we illustrate this
procedure and show the scattered intensity profile, Is, for a
single incident illumination direction against the wave-vector
magnitude k (radial direction) and the observation direction θs

(orthoradial direction). In order to account for a finite detec-
tion width, we also define a normalized 2d transmission,

T (kinc) =
∫
F\0 S[kê(θ + ϑ ) − kê(θ )]dϑ∮
C\0 S[kê(θ + ϑ ) − kê(θ )]dϑ

, (5)

where the angle ϑ between the incident and scattered waves is
integrated over the forward half-circle F ⊂ C around the in-
cident direction θ , and the normalization is the total scattered
intensity on the full circle, C, removing from both integrals
the direction ϑ = 0 [that reduces to the peak S(0) = N]. We
extend this definition to 3d by replacing ϑ by a solid angle
and the (half-)circle by a (half-)sphere.

In Fig. 2(c), we show one example of the possibilities
offered by FReSCo: a spiral-shaped domain of zeros in the
structure factor of N = 5 × 107 particles leads to fringes of
low scattered intensities in a range of frequencies and to a
spiral-shaped transmission pattern. This example and those of
Fig. 1(c) demonstrate that achieving fine control over S(q) in
large point patterns enables the design of intricate scattering
behaviors.
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(a)

(b)

(c)

(d) (e) (f)

FIG. 2. Ewald sphere construction and single scattering. (a) Sketch of single-scattering analysis. From an optimized structure, we cut the
central disk and then measure its single-scattering properties. To an incoming wave vector, kinc, we associate the far-field, normalized scattered
intensity, Is, in direction θs. (b) Illustration of the Ewald circle construction on a 2d triangular lattice. From the structure factor S(q) (left)
evaluated at q = ksca − kinc, we obtain Is (middle) which, once integrated, yields the transmission, T , as a function of the incident wave vector
(right). (c) Example of an optimized 2d point pattern (N = 5 × 107) with a spiral of zeros in its S(q). (d) Structure factor, S(q), and [(e) and (f)]
transmission, T , results for generated stealthy hyperuniform structures, for (e) N = 5 × 107 in 2d and (f) N = 5 × 106 in 3d (right). In (d)–(e),
we indicate the values kb (shorter red arrow) and k f (longer green arrow) above which back- and forward-scattering develop, respectively,
based on the Ewald construction. In (c) and (e), K = 5050 and plots are shown up to kmax = 4500. In (f), K = 142, kmax = 130, and θ sweeps
one arbitrary circle.
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We take advantage of this approach to study stealthy hype-
runiform structures, systems with S(k) = 0 in a disk of radius
K , at scale. In Fig. 2(d) we show a typical structure factor
and, in Figs. 2(e)–2(f), transmission plots, T (k, θ ). On S(q),
we highlight two special values of k. The first such value,
kb = K/2, separates the domain k < kb in which the sys-
tem is transparent (up to multiple scattering effects [20,22])
from the domain k > kb in which the system backscatters,
as the back of the Ewald circle overlaps with high values
of S(q). The second special value, k f = K/

√
2, separates the

regimes kb < k < k f , where only backscattering happens, and
k > k f , where forward-scattering sets in, down to narrower
and narrower angles as the frequency increases. Therefore,
one expects a trough of lower forward-scattered transmission
at intermediate kb < k < k f , suggestive of an isotropic band
gap, in a stealthy hyperuniform configuration. This picture is
confirmed in the transmission plot of Fig. 2(e), obtained for
a 2d configuration with N = 5 × 107 points, where we report
these values, and in Fig. 2(f), obtained for a 3d configuration
with N = 5 × 106 points.

This result constitutes the largest-scale direct check that
stealthy hyperuniform systems do feature isotropic transmis-
sion gaps in 2d and 3d , as well as the largest 3d hyperuniform
systems altogether [15,36,37]. Note that a smaller angular
integration domain in T (i.e., a smaller detector) leads to
a broader transmission trough, [kb; k f + ε] with ε � 0. By
integrating over the full half-disk or half-sphere we are thus
reporting the narrowest observable transmission gap; see Ap-
pendix G. Interestingly, numerical evidence of band gaps
as well as experimental and numerical reports of transmis-
sion gaps were made for 2d stealthy hyperuniform systems
[6–9,14,18,19]. However, to the best of our knowledge, no
past work has clearly discussed that even at the level of single
scattering—which cannot support a band gap (a low value of
the density of optical states in the bulk of the system [8,9])—
stealthy hyperuniform structures should exhibit an isotropic
trough of lower transmission for a range of k. Since the vast
majority of experimental studies on these systems have relied
on small sample sizes, often using low index contrasts [6,7]
and small detection angles, it may very well be that the re-
ported low transmissions did not even require an actual band
gap.

Furthermore, numerical reports of band gaps in these sys-
tems have often (with some notable exceptions [8,9]) relied
on frequency-domain finite-difference band predictions for
small periodicized systems [6,7,14], so that it is not clear
whether these estimates truly captured the consequences of
hyperuniformity (a long-range property).

In future work we will conduct a systematic study of
large-scale structures designed by FReSCo, in particular hy-
peruniform ones, at the multiple scattering level to clearly
establish the origin of low transmission in correlated disor-
dered systems.

IV. DISORDERED HYPERUNIFORM STRUCTURES

A. Point patterns

We now focus on the quality of our disordered hyperuni-
form structures. From a k-space perspective, hyperuniformity

(a) (b)

(d)(c)

FIG. 3. Hyperuniform point patterns. [(a) and (b)] Number
fluctuations against measurement window size (main panel) and
structure factor (inset) for stealthy hyperuniform systems. We indi-
cate the stealthy �−(d+1) (dark blue) and Poisson �−d (gray) scalings
as solid lines, as well as a Poisson structure factor S(k) = 1 in the
inset. [(c) and (d)] Same plots for power-law hyperuniform structures
with exponents α ∈ {0.125, 0.25, 0.5} in (c) 2d and (d) 3d . We show
next to each curve the expected power law, �−(d+α), in the main
panels, and S(k) ∼ kα in the insets, with solid lines. Across (a)–(d),
we show the radius K of the constrained disk in Fourier space, and the
corresponding length scale � = 2π/K , as dashed lines. In all panels,
N = 5 × 107.

is associated with an anomalous decay of the structure factor,
S(k), at long range, or S(k) → 0 when |k| → 0. How the
structure factor decays depends on the class of hyperuniform
system [13]. We investigate two types of disordered hyper-
uniformity: stealthy and power law. Stealthy hyperuniformity
occurs when S(k) = 0 for |k| < K , like the examples of
Figs. 1(b) and 2(d), while power-law hyperuniformity implies
S(k) ∼ |k|α for |k| < K and α > 0.

While the structure factors of the hyperuniform point pat-
terns considered in the literature appeared consistent with a
power law for a few k vectors [17,36], it is not obvious that
density fluctuations were actually suppressed at long range,
due to their limited sizes, particularly in 3d . Concretely, hy-
peruniformity is achieved only if the variance in the number
of points sampled across spheres grows slower than their vol-
ume, s2 ≡ 〈N2〉/〈N〉2 − 1 ∼ �−β , with d � β � d + 1, while
in an uncorrelated point pattern s2 ∼ �−d . In the following,
we show that FReSCo is able to generate structures for which
these power laws are verified over several decades of �. In
Figs. 3(a) and 3(b), we show the radially averaged structure
factors (insets) and the associated number fluctuations, shown
as the reduced variance, s2, against the radius of a measure-
ment sphere (main panels) for N = 5 × 107 in 2d and 3d ,
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respectively. These disordered stealthy hyperuniform config-
urations are orders of magnitude larger than any previous
realization [9,14–21], as well as the most solid evidence of
stealthy hyperuniformity in a system being associated with a
s2 ∼ �−(d+1) decay of number fluctuations.

Inspired by critical configurations of absorbing-phase
models [25,26] and jammed packings [24], we also design
power-law hyperuniform point patterns by constraining the
structure factor S(k) ∼ |k|α such that the structure factor at the
largest wave-vector magnitude being constrained is S(K ) = 1.
We minimize 10 configurations of N = 5 × 107 point systems
for power laws α ∈ {0.125, 0.25, 0.5}. Figures 3(c) and 3(d)
depict the final structure factors (insets) and the associated
number fluctuations against � (main panels) in 2d and 3d ,
respectively. The decay in the variance matches the predicted
trends, s2 ∼ �−(d+α) [12,13], decades beyond the length scale
2π/K . We stress that this is by far the largest, and most
rigorous, test of the real-space properties of power-law hy-
peruniform point patterns reported to date.

B. Particle packings

Thus far, we only constrained Fourier-space properties of
point patterns, so there was no notion of excluded volume:
Two points could come arbitrarily close together. This gener-
ically precludes the fabrication of raw point patterns without
the use of arbitrary geometric transformations [6]. In order to
generate more physical systems, in line with previous works
[38], we introduce a hybrid loss that combines the structure
factor loss, Eq. (2), with a repulsive pair potential Urep,

L = LS +
∑
m<n

Urep(rm − rn). (6)

This variant of FReSCo is sketched in Fig. 4(a). As long as the
potential is finite ranged, computing the loss or its gradient
still takes O(N log N ) operations. One may also introduce
polydispersity into the system by specifying individual par-
ticle diameters in Urep, in which case, to get the correct
definition of S for homogeneous polydisperse spheres, each
particle should be weighed by the ratio of its d-dimensional
volume, Vn, to the mean volume, 〈V 〉, i.e., cn = Vn/〈V 〉 in
Eq. (4) [39]. Here we choose a monodisperse Hertzian poten-
tial, Urep(r) ∝ (r − σ )2.5, with σ the repulsive diameter. We
also adjust the prefactor of the power law and the extent, K ,
of the domain in which we constrain the structure factor such
that the target, S0(K ), smoothly interpolates the Percus-Yevick
approximation for the structure factor of hard-sphere liquids
in 3d [28] and a similar approximation in 2d [40]. Results thus
obtained are shown in Fig. 4, in both 2d [Fig. 4(b)] and 3d
[Fig. 4(c)]. Our results show that arbitrary long-range features
can still be achieved in the presence of short-range constraints
like excluded volume, which guarantees the fabricability of
structures with actual physical objects.

We also generate the single-scattering Ewald transmissions
of these 3d configurations. In Fig. 4(d) we show the resulting
THS for an equilibrium hard-sphere configuration (obtained
using event-chain Monte Carlo methods [41]) at φ = 0.25
and, in Fig. 4(e), the relative change between THS and the
transmission, T , of power-law hyperuniform structures [same
as in Fig. 4(d)], radially averaged over incoming angles.

(a)

(b) (c)

(e)(d)

FIG. 4. Hyperuniform particle packings. (a) Sketch of the al-
gorithm in the presence of both real- and reciprocal-space loss
functions. From arbitrary initial conditions, we jointly optimize for
prescribed features in k-space and short-range repulsion. [(b) and (c)]
Structure factors of hyperuniform monodisperse (b) disk packings
(φ = 0.6) and (c) sphere packings (φ = 0.25). Insets depict packings
of the hyperuniform α = 0.5 power-law systems. Structure factors
are averaged over 10 realizations. (d) Forward-scattered transmission
for equilibrium hard spheres at φ = 0.25 up to kmax = 200 and (e)
relative change of forward-scattered transmission between 3d power-
law hyperuniform structures of panel (c) and the starting equilibrium
hard-sphere configuration. In (b), N = 5 × 107, and N = 4 × 106 in
(c)–(e).

Power-law hyperuniformity, even in such large systems, does
not significantly affect the scattering properties of hard-sphere
systems in the single-scattering limit, as the largest relative
change is only a few percentages. Thus hyperuniformity per
se, as realized in critical systems like jammed packings, is
not a necessary condition to observe a transmission gap in
the single-scattering regime. This result is reminiscent of past
work on stealthy hyperuniform structures [19].

V. FRESCO VARIANTS

So far, we only constrained nonuniform point positions
with uniform k-space constraints (NUwU), but the same
approach can be used with nonuniform k-space constraints
(NUwNU). Furthermore, one may instead optimize the
weights carried by uniform (on-grid) points, either with uni-
form (UwU) or nonuniform (UwNU) constraints in k space.
These variants, whose gradients are derived in Appendix B,
are illustrated with simple examples in Fig. 5. In UwU, while
the real and Fourier spaces contain the same number of pixels
[hence we are free to constrain the whole S(k)], we only
constrain the modulus of a subset of k vectors, so that one
may generate first guesses in phase retrieval problems [42],
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FIG. 5. Variations of FReSCo. We optimize the weights carried by a uniform (U) grid, or the positions of nonuniform (NU) sets of points in
real space, while imposing constraints on a uniform grid or a nonuniform set of points in k space. Thus, we obtain four variants of the FReSCo
algorithm: uniform real space with uniform k-space constraints (UwU), uniform real space with nonuniform k-space constraints (UwNU),
nonuniform real space with uniform k-space constraints (NUwU), and nonuniform real space with nonuniform k-space constraints (NUwNU).
Small example systems are provided (grid size 403 × 403 for uniform cases, N ∼ 2000 points for nonuniform cases); see Appendix C for
further analysis. In UwU and UwNU, we control the range of values of pixels via an external potential, and the total mass via a constraint on
S(k = 0), see Appendix B. Problems in which positions and weights are optimized simultaneously will be considered in future work.

textures with suitable properties [43], or random fields with
suitable correlations [44]. In both UwNU and NUwNU, one
may impose Fourier constraints at any continuous value, with
free boundary conditions instead of periodic ones. In particu-
lar, we can impose constraints of the form S0 = ∑

p Nδ(k −
kp) on sets of wave vectors kp, to impose Bragg-like peaks
at arbitrary continuous positions. When choosing minimal
sets of kp with specific discrete rotational symmetries that
are not attainable with simple crystals [29], we observe the
emergence of a full quasicrystalline structure, which we now
investigate.

VI. QUASICRYSTALLINE STRUCTURES

In Fig. 6, we explore more discrete symmetries. Instead
of imposing repulsive interactions, we repeat several cycles
of FReSCo minimization, removing at each iteration points
that overlap exactly with others, and replace them with new
points drawn uniformly in a box [−L/2; L/2]d , maintaining
total occupancy N . For N ≈ 10 000 points in 2d , imposing
8-, 10-, or 12-fold symmetries leads to point patterns with
quasicrystalline characteristics [27], namely aperiodicity in
real space (second column), and a peaked structure factor
(third column). We also show that, like quasicrystals [45], our
structures display strong local bond-orientational order, as can
be seen from the 2d histograms of nearest neighbor vectors

(third column), that feature very narrow peaks, a sign that
the long-range orientational order from our constraints reach
all the way down to short ranges (see SM [35] for additional
data).

Likewise, we show (last two rows) that we can im-
pose icosahedral or dodecahedral peak arrangements in 3d .
Like previously reported 3d quasicrystals, they display five-
and sixfold aperiodic orders in projected views [45] (sec-
ond column), with associated peaked structure factors [27]
(third column) and peaked nearest-neighbor vector distribu-
tions on the sphere, here shown as stereographic projections
(fourth column). We show additional projections for these
3d structures in SM [35], highlighting that icosahedral and
dodecahedral structures display similar rotational symmetry
axes in spite of their different local structure, as they are dual
of one another. For all structures, we also show (rightmost col-
umn) that we observe the expected anisotropic transmission
patterns of quasicrystalline structures [7]. It is interesting that
imposing only n peaks of intensity O(N ) with the right sym-
metry around the origin in Fourier space is sufficient to obtain
quasicrystalline order. Indeed, as discussed in Appendix H,
imposing a peak of intensity N at specific wav vectors in S(k)
implies that integer-coefficient linear combinations of these
wave vectors will also have N-high peaks, but the most intense
quasicrystalline peaks are in general not strictly N high, just
O(N ) [27], so that the constraint on linear combinations is
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FIG. 6. Generation of special symmetries using NUwNU. From left to right, sketches of the constrained peaks in S(k), portion of the output
point pattern, intensity map of the structure factor, density map of the distribution of Voronoi nearest neighbors, and Ewald transmission plot
(all in log-intensity) for systems of N ≈ 104 particles constrained with NUwNU to maximize peak height at specific locations in k space. Each
row shows one specific type of imposed n-fold symmetry: From top to bottom, we show 8-fold, 10-fold, and 12-fold symmetry in 2d , then
icosahedral and dodecahedral peak arrangements in 3d . In the structure factor, we highlight constrained peaks in 2d . In 3d , we replace the 2d
panels by close equivalents. The point patterns are projected onto the xy plane, orthogonal to a long diagonal of the polyhedra (the full system
is shown in inset), and the structure factor is accordingly in the kz = 0 plane, where we highlight the lowest-order, implicitly constrained,
peaks, and the Ewald construction is obtained by scanning only xy (azimuthal) orientations. The full distribution of Voronoi nearest neighbors
is replaced by the distribution of bond orientations to nearest neighbors on a stereographic projection of the sphere.

much weaker. Our optimization approach thus enables the
nondeterministic generation of aperiodic structures with cus-
tom photonic properties and free boundary conditions. This
dramatically expands the design space for aperiodic struc-
tures, heretofore mostly limited to deterministic examples,
e.g., to promote Anderson localization [46].

VII. ITERATIVE CONSTRAINTS
FOR ADAPTIVE SAMPLING

Finally, our approach provides a way of designing opti-
mal sampling strategies for Monte Carlo integrations, as the
spectral content of a point pattern directly determines their
mean-square error [12]. So far, a lot of attention has been
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devoted to blue noise, often in the form of stealthy hyperuni-
form point patterns, for integration [10,12,47–50]. However,
for applications such as real-time rendering of dynamical vir-
tual scenes, it is essential to generate adaptive point patterns
that have suitable properties in terms of both spatial and tem-
poral correlations to effectively handle motion [11,51].

FReSCo, with its remarkable speed, provides an effective
tool to address this problem. To demonstrate this, we impose
approximately 800 frames from a Lumière film [52] as a
sequence of structure factor constraints S0(k). Specifically, by
using the point pattern for frame i as the initial condition for
the subsequent minimization at frame i + 1, we encode the
film in trajectories of N = 300 000 points in 2d (see video in
SM [35] and Appendix I for further details).

VIII. CONCLUSIONS

We have demonstrated a highly efficient generative algo-
rithm, FReSCo, that precisely embeds k-space features into
point patterns up to previously inaccessible scales and that
can be combined to short-range interactions like excluded
volume. This paves the way to exploring novel wave transport
properties, like new structurally colored coatings [5]. Future
work will focus on the systematic characterization of large-
scale structures designed by FReSCo at the multiple scattering
level, thus enabling a comprehensive analysis of the factors
that give rise to photonic band gaps and Anderson localization
in correlated disordered media [8,9,20]. As only a handful
of systems have been studied so far, our approach paves the
way for the discovery of yet unknown structures with these
properties.

More generally, one may impose more complicated real-
space interactions—e.g., constraints onto the real-space pair
correlation function like in reverse Monte Carlo [53] [see
Appendix B for a formulation of FReSCo that optimizes
the real-space pair correlation function g(r)] or potentials
that favor local orientational order (such as three-body terms,
e.g., Stillinger-Weber-type potentials [54]). These extensions
would clarify the role of local orientational order in wave
transport [4,36] and facilitate fabrication, as tetrahedral or-
der is often imposed a posteriori [6,36,37]. Our algorithm
may be generalized to include higher-order correlations, for
instance three- and four-body correlations that are also com-
putable in O(N log N ) using FFTs [55]. Furthermore, using
automatic differentiation [56], our loss can guide the design
of interactions realizing the self-assembly of spectrally shaped
structures.

Finally, the fast optimization provided by FReSCo could
have a significant impact on real-time rendering relying on
Monte Carlo integration.
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APPENDIX A: ALGORITHM PARAMETERS

The size of the domain in which the optimization is
performed, NK = |K|, counted in number of discrete wave
vectors, is limited in practice by the number of degrees
of freedom, dN , for N points embedded in d-dimensional
space. This constraint often leads to defining a ratio χ ≡
NK/[2d (N − 1)] [9,16–18], where the two stems from
Friedel’s law and the N − 1 come from removing global
translations from the available degrees of freedom, as S is
translation invariant. Optimizations with χ < 1 are in theory
possible, while those with χ � 1 are overconstrained and
cannot necessarily be achieved [68]. Past work has also shown
using other algorithms that, even for χ < 1, high values of χ

lead to large changes in S beyond the constrained region, go-
ing as far as near-crystallization [16]. In practice, these effects
remain weak using χ � 0.5 [16] in 2d space. In this work, we
always set χ ≈ 0.4, so that the number of constrained k-space
features scales linearly with N .

The bulk of the computations consists of Fourier trans-
forms between uniform and nonuniform spaces [Fig. 1(a)].
We use the FINUFFT framework which provides transforms
of three types and is highly optimized for multithreaded CPU
computations [30,31]. Type-1 refers to a nonuniform to uni-
form transform [e.g., real space points to a k-space grid as
used in the calculation of the structure factor in Eq. (1)]. Type-
2 refers to a uniform to nonuniform transform [e.g., k-space
grid to known points in real space as used in the calculation
of the loss gradient in Eq. (4)]. Type-3 refers to a nonuniform
to nonuniform transform (e.g., real space points to specific
points in k space, with free boundary conditions, as used in the
calculation of the Ewald sphere or in NUwNU, see below).

The termination criterion for optimization throughout the
text was a threshold value of 10−39 on the gradient. In the
special case of stealthy hyperuniform systems, this criterion
achieves low-k values, S ∼ 10−25–10−20. Lower values such
as those reported in Ref. [18] can be attained within the
powerful framework of FReSCo using a different termination
value and higher precision arithmetics, but such small values
are not realistic in any practical realization (see Appendix E
for a detailed discussion of this point).

APPENDIX B: ANALYTICAL GRADIENTS

We here show how one may write the gradient of the
structure factor loss, LS , analytically as a Fourier series for
all four constructions UwU, UwNU, NUwU, and NUwNU. In
Eq. (1) we introduced the structure factor

S(k) ≡ |̂ρ (k)|2
N
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associated to a d-dimensional density field describing N
points with complex-valued weights (c1, . . . , cN ) at positions
(r1, . . . rN ) in Rd ,

ρ(r) =
N∑

n=1

cnδ(r − rn), (B1)

through its Fourier transform,

ρ̂(k) =
N∑

n=1

cn exp(ik · rn). (B2)

For simplicity, in the following, we absorb the normaliza-
tion by S0 in Eq. (3) into the weighting function W (k) =
w(k)/S0(k)2 if S0(k) �= 0 and W (k) = w(k) otherwise, so that
at every point we can rewrite the loss, Eq. (2), as

LS =
∑
k∈K

W (k)[S(k) − S0(k)]2. (B3)

We first restrict ourselves to the case of real-valued weights
and write the gradient of this loss with respect to one of the
weights, cn ∈ R, corresponding to the optimization of a real-
valued field at fixed mesh positions,

∂LS

∂cn
=

∑
k∈K

2W (k)[S(k) − S0(k)]
∂S(k)

∂cn
. (B4)

The corresponding derivative of the Fourier transform of the
density field, Eq. (B2), then reads

∂ρ̂ (k)

∂cn
= eik·rn , (B5)

Recalling that, in general, the structure factor can be written
as

S(k) = |̂ρ (k)|2/ρ0 = ρ̂ (k )̂ρ †(k)/ρ0, (B6)

where ρ0 = ∑
j |c j |2, we may write the gradient components

of S as:

∂S

∂cn
= 1

ρ0
[̂ρ †(k)eik·rn + ρ̂ (k)e−ik·rn ] − 2cn |̂ρ(k)|2

ρ2
0

. (B7)

The first two terms in this expression may be simplified by
noticing that they are the sum of a number with its conjugate,
so that

∂S

∂cn
= 2

ρ0
Re[̂ρ (k)e−ik·rn ] − 2cn

ρ0
S(k). (B8)

Injecting this expression into Eq. (B4), one may find that the
gradient can be calculated by taking the real part of a Fourier
transform:

∂LS

∂cn
= Re

[∑
k∈K

Ccn (k)e−ik·rn

]
− Fcn = Re[Ĉcn (rn)] − Fcn ,

(B9)

where Ccn (k) = 4W (k)[S(k) − S0(k)]̂ρ (k)/ρ0 are coeffi-
cients of a Fourier series, Ĉcn is the Fourier transform of Ccn ,
and Fcn = 4cn

ρ0

∑
k∈K W (k)S(k)[S(k) − S0(k)].

Likewise, we write the gradient of the loss with respect
to one of positions, rn, corresponding to the optimization of

continuous positions with fixed complex weights,

∂LS

∂rn
=

∑
k∈K

2W (k)[S(k) − S0(k)]
∂S(k)

∂rn
. (B10)

Using the definition of S again, coupled with the derivative of
the Fourier transform of the density field:

∂ρ̂ (k)

∂rn
= ikcneik·rn , (B11)

the gradient components of S can be recast as

∂S

∂rn
= ik

N
[cnρ̂

†(k)eik·rn − c†
nρ̂ (k)e−ik·rn ]. (B12)

Once again, this expression may be simplified by noticing that
it is the sum of a number with its conjugate, so that

∂S

∂rn
= 2Re

[
− ikc†

n

N
ρ̂ (k)e−ik·rn

]
. (B13)

Injecting this expression into Eq. (B10), one recovers Eq. (4)
of the main text:

∂LS

∂rn
= Re

[∑
k

Crn (k)c†
n exp(−ik · rn)

]
= Re[c†

nĈrn (rn)],

(B14)

where Crn (k) = −4ikw(k)[S(k) − S0(k)]̂ρ (k)/N are coeffi-
cients of a Fourier series, and Ĉrn is the Fourier transform of
Crn .

From Eqs. (B9) and (B14), we define four variants of our
optimization algorithm depending on the structure of k-space
constraints and of the density field that are considered. While
it is in principle possible to simultaneously optimize weights
and nonuniform positions, we leave that possibility for future
work and only consider optimization of either weights or
positions.

1. UwU: Uniform real space with uniform k-space constraints

First, consider the case of a density field constrained to
a square grid, also called a uniform sampling of space [11].
In that case, one may optimize the weights at each point so
as to obtain a square-grid meshing of a field with desirable
correlations. In particular, if the system is defined with peri-
odic boundary conditions, then one may impose features at k
vectors also lying on a grid or in other words use a uniform
constraint. We therefore call this variant UwU, uniform real
space density with uniform k-space constraints. Since both the
real-space density field and the Fourier-space constraints are
uniform, this is the only scenario in which one may compute
both the loss and its gradient with usual discrete Fourier trans-
form algorithms.

2. UwNU: Uniform real space with
nonuniform k-space constraints

Consider the case of a uniform density field, but with
free boundary conditions, so that one may impose nonuni-
form Fourier constraints at arbitrary continuous positions, or
UwNU. This case (UwNU) utilizes one FINUFFT Type-2
transformation (uniform to nonuniform) to calculate S(k) and
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one FINUFFT Type-1 transformation (nonuniform to uni-
form) to calculate the gradient of the loss.

3. NUwU: Nonuniform real space with
uniform k-space constraints

If we now optimize real-space positions, resulting in a
nonuniform set of real positions with periodic boundary con-
ditions, and therefore use uniform Fourier-space constraints,
then we get NUwU. This case (NUwU) utilizes one FINUFFT
Type-1 transformation (nonuniform to uniform) to calculate
S(k) and d FINUFFT Type-2 transformations (uniform to
nonuniform) to calculate the gradient of the loss (one for each
dimension of k).

4. NUwNU: Nonuniform real space with
nonuniform k-space constraints

Finally, we may optimize nonuniform real-space positions,
but this time with free boundary conditions, leading to arbi-
trary nonuniform Fourier-space constraints and to NUwNU.
This case (NUwNU) utilizes one FINUFFT Type-3 transfor-
mation (nonuniform to nonuniform) to calculate S(k) and d
additional FINUFFT Type-3 transformations to calculate the
gradient of the loss (one for each dimension of k).

5. Pair correlation function optimization

Our optimization strategy can be generalized to optimize
the real-space pair correlation function g(r). For a real-valued
density field generated by a spatially uniform process inside
a cubic box with sidelength L, the pair correlation function is
defined [28] as

g(r) ≡ Ld

∫
dd r1dd r2ρ(r1)ρ(r2)δ(r − r12)

(
∫

dd r1ρ(r1))(
∫

dd r2ρ(r2))
, (B15)

which tends to 1 as the density fields at positions r1 and r1 + r
become independent, usually as r → ∞. This expression can
be simplified using the definition of the density field of a point
pattern, and excluding the i = j point from the sum per the
usual convention [28], yielding

g(r) = Ld

N2cn
2

∑
i �= j

cic jδ(r − ri j ), (B16)

where we defined the arithmetic average of the weights, cn ≡∑
n cn/N . This last expression can be written as an inverse

Fourier transform of S(k) − 1, namely

g(r) = 1

n0cn
2

∫
F

dd k
(2π )d

[S(k) − 1]e−ik·r, (B17)

where the integral is computed over the whole Fourier domain
F and n0 is the spatially averaged number density, n0 = N/Ld .
Note that in the standard setting of liquid theory, ∀n, cn = 1
so that the prefactor simply becomes 1/n0, yielding the more
usual relation between S and g [28]. For compactness, we
henceforth define ρ0 = n0cn

2.
The associated loss term can be written as a sum over a

discrete set R of constrained real-space distances x instead of

reciprocal-space wave vectors,

Lg ≡
∑
x∈R

Wg(x)[g(x) − g0(x)]2, (B18)

where Wg is a weight function that can for instance select
short-range order to be jointly optimized with some longer-
range property in S. The gradient of this loss term with respect
to the position rn of particle n can be expressed as

∂Lg

∂rn
=

∑
x∈R

2Wg(x)[g(x) − g0(x)]
∂g

∂rn
(x). (B19)

Since we optimize structures in finite periodic boxes, the
integral in Eq. (B17) reduces to a discrete Fourier transform,

g(r) = Re

{
Vk

ρ0

∑
k

[S(k) − 1]e−ik·r
}

, (B20)

where Vk = (1/L)d is the discretization volume used when
switching to a discrete Fourier transform. As a result, one may
express the gradient of g with respect to the position rn of
particle n as

∂g

∂rn
(x) = Re

[
Vk

ρ0

∑
k

∂S(k)

∂rn
e−ik·x

]
. (B21)

The gradient of Lg can then be expressed as

∂Lg

∂rn
= 2Vk

ρ0
Re

{∑
k

∂S(k)

∂rn

∑
x∈R

Wg(x)[g(x) − g0(x)]e−ik·x
}

.

(B22)

Finally, one may define

G(k) ≡ 2
∑
r∈R

Wg(x)[g(x) − g0(x)]e−ik·x (B23)

such that

∂Lg

∂rn
= Vk

ρ0
Re

[∑
k

∂S(k)

∂rn
G(k)

]
. (B24)

All in all, introducing the weight cn of each point again,

∂Lg

∂rn
= − 2Vk

ρ0N
Re

[∑
k

ikc†
nρ(k)G(k)e−ik·rn

]
. (B25)

This last expression can be evaluated using two Fourier trans-
forms. As Eqs. (B20) and (B25) can be evaluated using regular
FFTs, the loss minimization in g(r) may thus be performed in
O(N log N ) time as well (per iteration).

In Fig. 7, we show an example output of this strategy,
using g0(r � σ ) = 0 as a target and 2001 × 2001 Fourier
modes in an N = 10 000 point pattern with σ an exclusion
diameter. The result does exhibit a hard-disk-like structure
factor [Fig. 7(b)] and pair correlation function [Fig. 7(c)],
although it is less ordered than equilibrium hard disks, as
highlighted by the comparison to Percus-Yevick curves. This
indicates that our optimization does not sample hard disk
configurations uniformly like equilibrium simulations would.
Note, however, that, due to the finite number of modes, the
evaluation of g via an inverse Fourier transformed displays
aliasing errors: A perfect step function cannot be represented
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FIG. 7. Constraining the pair correlation function g(r) using
modified NUwU. (a) A point pattern obtained by constraining
g0(r < σ ) = 0 for an exclusion diameter σ such that φ = 0.7. Disks
are drawn with diameter σ with transparency to highlight over-
laps remaining in the final system. (b) The radial structure factor
of the point pattern (solid line) compared to the structure factor
of the Percus-Yevick solution for ideal hard disks (dashed line).
(c) The pair correlation function of the point pattern calculated
using radial binning, compared with the Percus-Yevick prediction.
(d) A zoomed in portion of the pair correlation function used during
minimization (calculated using the Fourier transform of the structure
factor). Due to the Fourier transform using only a finite number of
modes, the g(r) that is used to minimize exhibits aliasing, resulting
in imperfect minimization.

with any finite number of Fourier modes, leading to rippling
[11]. In Fig. 7(d), we highlight this by showing a zoom onto
the early values of the final g(r), which is not exactly zero
[this can also be seen in Fig. 7(a) in the form of a small
number of overlaps]. In the inset, we show the corresponding
zoom onto the center of the 2d g(r), which shows that these
overlaps actually lie on a discrete grid due to aliasing. Note
that this issue is likely to be worse in sharp features like the
hardcore repulsion we show here but should not be as much of
an issue when imposing smoother features, i.e., features with
less high-frequency content (ideally band-limited features).

APPENDIX C: UNIFORM FIELDS WITH k-SPACE
CONSTRAINTS (UwU and UwNU)

While our work focuses on nonuniform real space systems
(i.e., point patterns), our methodology is easily extendable to
uniform systems (e.g., discretized density fields) using the
same tools. Using the UwU and UwNU protocols, we can
generate density fields with k-space properties analogous to
those of point patterns we have shown elsewhere in this paper
(Fig. 8). It is important to note that, in the UwU case, the
k space is exactly as large as the real space. If one were
to fully constrain k space (i.e., constrain both the complex
phase and magnitude of ρ̂(k) at every grid coordinate), then
a single inverse Fourier transform could be used to find a
corresponding real space structure rather than a minimization
protocol.

However, UwU as defined in this paper only constrains
the structure factor [i.e., the modulus |̂ρ|(k)] over a set of
wave vectors that does not have to cover the whole sys-
tem. It may therefore be used to find uniform real space
systems with complete freedom over the phase degree of
freedom, and underconstrained power spectra, such as those
depicted in Fig. 8. In particular, this could be used to gen-
erate first guesses to initialize phase retrieval algorithms in
the context of image reconstruction, see, e.g., Refs. [42,69],
to generate textures with suitable properties [43,70], or to
generate discretized versions of random fields with suitable
correlations [44].

Furthermore, UwNU can be used to impose peaked fea-
tures at continuous values onto uniform systems with free
boundary conditions: This could, for instance, be useful to
generate nonrepeating random textures. In Fig. 8, we illus-
trate UwNU by constraining six peaks forming a hexagon
as well as the central peak, such that they are all O(N )
with N the number of pixels of the real field. As the ra-
dius of the hexagon is varied, we see that the field forms
various valid lattices of the triangular family that feature a
hexagon of like-valued peaks: namely a triangular lattice (first
and third row from the top) and a Kagome-like structure
composed of triangular-shaped peaks forming a honeycomb
lattice (second and fourth row). These fields are all valid
solutions for our constraint here as, unlike in NUwNU, the
number and the spatial extents of real-space peaks are not
constrained.

APPENDIX D: BENCHMARK OF FReSCo

We collect data for full minimization (“wall”) times
elapsed during the generation of stealthy disordered hyperuni-
form point patterns, power-law hyperuniform point patterns,
and power-law hyperuniform disk or sphere packings in 2d
and 3d , all starting from independent Poisson point processes
(Fig. 9). Point patterns were minimized to a root-mean-square
error of 10−39 on the gradient, while particle packings were
minimized to a root-mean-square error of 10−10 on the gra-
dient, using L-BFGS [32] with a maximal step size and a
backtracking line search [33]. All systems demonstrate large-
N scaling very near N log N for total times (dashed black
lines) as the system size increases. Note that this scaling is
observed for full minimization procedures, which is a stronger
result than the scaling of individual iterations, that is, N log N
by definition.

To emphasize this point, we also show the number of
required iterations as a function of N . Since a single min-
imization step is guaranteed to scale like O(N log N ), the
overall scaling is that of the number of function evaluations
multiplied by N log N . Therefore, we want to show that the
number of function evaluations, nev, is sublinear in N to
demonstrate that FReSCo overall outperforms previous N2 or
N3 algorithms. We show that the scalings are systematically
sublinear for all tested systems, with scalings nev � O(N

1
5 )

for stealthy hyperuniform point patterns, nev � O(N
1
8 ) for

power-law hyperuniform point patterns, and nev � O(N
1
2 ) for

power-law hyperuniform particle packings. All minimizations
were here performed on a single CPU node (a 24-core Intel
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FIG. 8. Example systems generated using UwU (left) and UwNU (right). Density fields of 403 × 403 are generated using UwU (left) and
UwNU (right) protocols. UwU (left) systems are generated to exhibit varying degrees of stealthiness, as demonstrated in the varying radius of
S(k) = 0 in the structure factor. The larger the radius, the more uniform the system appears. UwNU (right) systems are generated to exhibit
sixfold symmetry, imposing only the peaks of the innermost hexagon (marked with red circles). As the radius of the innermost hexagon or
peaks changes, we sometimes get a Kagome-like tiling instead of a triangular lattice.

Cascade Lake Platinum 8268 chip), parallelized over multiple
cores. The number of cores used for all systems of Fig. 9 are
given in detail in Table I.

APPENDIX E: ROBUSTNESS OF STEALTHY
HYPERUNIFORMITY AGAINST NOISE

One of the main motivations for using disordered material
structures in applications such as photonics where crystalline
structures already perform well is that disordered structures
can be more resilient to defects. Here we take minimized
point patterns (N = 5 × 107) and displace each point using
a Gaussian random normal distribution of mean μ = 0 and
standard deviation σ = Lδ/N

1
d , where δ is a fraction of the

average interparticle distance (Fig. 10). Doing so, one expects
the new low-k structure factor to be, at every point, the max-
imum of the power spectrum of the noise (which here grows

like k2) and of the original structure factor [71]. In the stealthy
hyperuniform case, we show that, although we are able to
minimize the structure factor down to a magnitude of ∼10−24

at its minimum value, it only takes a noise corresponding to
δ = 10−9 to raise that value. For the case of a N = 5 × 107

point pattern, this δ value results in a standard deviation of
σ ≈ 1.4 × 10−13L, which implies that the noise level would
be equivalent to sub-Angstrom displacements in a L = 1 km
size device with typical interparticle spacing d ≈ 10 cm. In
practice, the difference in S(k) magnitude between, say, 10−6

and 10−24 is irrelevant for any realistic fabrication process.
Furthermore, most practical applications likely do not need
such high precision in S(k) in practice. We demonstrate this
by showing the effect of Gaussian noise on a highly detailed
structure factor (in linear intensity scale), namely a The Starry
Night [23] structure factor point pattern (N = 5 × 107). We
observe that long-range correlations are well preserved up to
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FIG. 9. Performance benchmarks. Total CPU time (in seconds) utilized for full minimization plotted against system size N in a log-log
scale in 2d [(a)–(c)] and 3d [(g)–(i)]. Alongside, (d)–(f) and (j)–(l) are plots of the total number of function evaluations used to achieve the
termination condition for minimization. Systems generated are stealthy disordered hyperuniform point patterns [(a) and (d) as well as (g) and
(j)], power-law hyperuniform point patterns [(b) and (e) as well as (h) and (k)], and power-law hyperuniform disk or sphere packings [(c) and
(f) as well as (i) and (l)]. On each plot of CPU time, a reference line representing O(N log N ) scaling is plotted for comparison, as well as the
best-case scaling per iteration of previous methods O(N2) (note that this does not take into account the scaling of number of evaluations in
previous methods). On each plot of the number of function evaluations, an overestimate of the large-N scaling is plotted as a guide.

high values of the noise, while short-range correlations are
washed out earlier. The effect of noise for δ = 0.1 is only
somewhat noticeable, corresponding to a standard deviation of
σ ≈ 1.4 × 10−5L. This implies that a L = 1 mm device with
d ≈ 100 nm distance between particles would be resilient to
10-nm-scale defects.

APPENDIX F: SIZE MATTERS: S AND NUMBER
FLUCTUATION BEHAVIOR IN SMALL SYSTEMS

From each of the systems minimized for the benchmark
in Fig. 9, we evaluate the reduced number variance s2 ≡
〈N2〉/〈N〉2 − 1, with averages performed over a set of circular

FIG. 10. Effect of Gaussian random noise on structure factor. Left: Angular averaged structure factors (log scale) of a N = 5 × 107 stealthy
hyperuniform point pattern subjected to varying degrees of Gaussian noise (σ = Lδ/N

1
d ). Right: The 2d structure factor (linear scale) of a

N = 5 × 107 The Starry Night structure factor point pattern subjected to varying degrees of Gaussian noise (σ = Lδ/N
1
d ).
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TABLE I. Number of cores used for each system shown in the
benchmark of Fig. 9.

No. cores No. cores No. cores No. cores
N (2d Points) (2d Packings) (3d Points) (3d Packings)

102 2 2 2 2
2 × 102 2 2 2 2
5 × 102 2 2 2 2
103 2 2 4 4
2 × 103 2 2 4 4
5 × 103 2 2 4 4
104 4 4 8 4
2 × 104 4 6 8 4
5 × 104 8 8 8 4
105 12 12 12 4
2 × 105 12 16 12 4
5 × 105 12 24 12 4
106 24 32 24 4
2 × 106 24 32 24 4
5 × 106 24 48 24 6
107 24 48 48 8
2 × 107 24 48 48 12
5 × 107 48 48 48 24

or spherical sample volumes with radii � ∈ [10−5L, 0.5L] for
2d systems [Figs. 11(a)–11(f)] and � ∈ [10−4L, 0.5L] for 3d
systems [Figs. 11(g)–11(l)]. We observe hyperuniform scaling
for nearly four decades in 2d and at least two decades in
3d for systems containing N = 5 × 107 points. In contrast,
for our smallest systems, we only observe about one decade
of hyperuniform scaling in 2d (N = 100) and less than one
decade in 3d (N = 200). We note that the power-law scaling
in the hyperuniform disk packing in Figs. 11(c)–11(f) appears
to exhibit a broader crossover region, i.e., that follows neither
of the asymptotic scalings, between the Poissonian scaling
and the large-scale scaling imposed by the power law in S(k).
We believe this to be an effect of the treatment of the points
as particles with pair repulsion at a somewhat high packing
density φ = 0.6, as we do not observe any deviation in the
corresponding 3d case for a comparatively dilute packing
fraction φ = 0.25, Figs. 11(i) and 11(l).

APPENDIX G: EFFECT OF DETECTION WIDTH ON
PERCEIVED TRANSMISSION GAPS

Throughout the text, we show results for T obtained by
integrating over a full half-circle or half-sphere. In practice,
any experimental result would be performed using a smaller

(a)

(b)

(c) (f) (i) (l)

(k)(h)(e)

(d) (g) (j)

FIG. 11. Hyperuniform scaling across system sizes in 2d and 3d . Reduced number variance plots for stealthy disordered hyperuniform
point patterns (top), power-law hyperuniform point patterns (middle), and power-law hyperuniform sphere packings (bottom). Plots on the
left are plotted against the radius of the sample circle as a fraction of box length, showing a much narrower range of hyperuniform scaling
in smaller systems. Plots on the right depict the data rescaled by N

1
d , showing the Poissonian scaling at short length scales transitioning to

hyperuniform scaling at large length scales.
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(a) (b) (c) (d)

FIG. 12. Effects of varying aperture in stealthy hyperuniform systems. (a) Sketch of the effect of aperture in 2d . Depending on the aperture
angle 0 � 2ψ � π used for detection, the onset of forward scattering, and therefore the end of the transmission trough is observed at different
frequencies. [(b)–(d)] Illustration: T obtained for a stealthy hyperuniform system (N = 4 × 107, K = 3000), plotted up to kmax = 5000, for
2ψ = π (b), 2ψ = 3π/4 (c), and 2ψ = π/2 (d). The dashed gray circle in panels (b)–(d) represents the same frequency as the one represented
as a dashed gray circle in (a).

detection width, so that the integration domain F in the
definition of T should be replaced by a finite angular region.
We argue that this has a particular importance in the context
of stealthy hyperuniform systems. To do so while preserv-
ing axial symmetry in the detection, we introduce a variant
of T ,

Tψ (kinc) =
3d

∫
Fψ\0 S[kê(θ + ϑ, φ + ϕ) − kê(θ, φ)]dϑdϕ∮
S\0 S[kê(θ + ϑ, φ + ϕ) − kê(θ, φ)]dϑdϕ

,

(G1)

Tψ (kinc) =
2d

∫
Fψ\0 S[kê(θ + ϑ ) − kê(θ )]dϑ∮
C\0 S[kê(θ + ϑ ) − kê(θ )]dϑ

, (G2)

where Fψ is a forward cone with half-aperture angle ψ . In the
limit ψ = π/2, in both 2d and 3d , the cone becomes a half
circle or sphere, and the previous definition is recovered.

We sketch the effect of the aperture ψ in Fig. 12(a): As the
aperture angle is reduced from π/2, the smallest frequency
at which forward scattering reaches the detector is pushed
to higher and higher frequencies. More precisely, the onset
is expected at k f (ψ ) = K/

√
2(1 − cos ψ ), so that k f (π/2) =

K/
√

2 as in the main text, and k f (0) → ∞, so that the width
of the observed trough is unbounded from above. To illustrate
this, we show intensity maps for this quantity, for a few
values of ψ , in Figs. 12(b)–12(d), in a stealthy hyperuni-
form system of N = 4 × 107 particles with K = 3000. We
indeed observe that switching from ψ = π/2 to ψ = π/4
leads to a roughly twofold change in the value of k f , leading
to a large change in the perceived width of the transmission
trough.

APPENDIX H: SATURATING PEAKS AND ECHOES IN
NUwNU CONSTRAINTS

Here we show that constraining a set of Nk peaks to their
maximum real value, S(k j ) = N , j = 1, . . . , Nk , also implic-
itly constrains peaks at all integer linear combinations of the
k j at which the original constraints are imposed. This can be
shown analytically: Starting from the expression for the struc-
ture factor of a point pattern with positions rn, n = 1, . . . , N

at the specified coordinates k j ,

S(k j ) ≡ |̂ρ (k j )|2
N

= N, (H1)

where

ρ̂(k j ) ≡
N∑

n=1

exp(ik j · rn). (H2)

Viewing the definition of ρ̂(k j ) as a sum of N unit length
vectors in the complex plane, it can be concluded that in
order to get |̂ρ (k j )| = N , all such unit-length vectors must
point in the same direction. This means that, given one of
the Nk vectors k j at which the constraint is imposed, all N
dot products k j · rn = ζ + 2πm with ζ ∈ [−π ; π ) a constant
and m ∈ Z, meaning that the dot products all represent the
same phase angle (accounting for shifts of integer multiples
of 2π ). In real space, this means that the projections of the
points positions onto the direction of k are a subset of sites
on a periodic 1d lattice with period λ = 2π/|k|. However,
this does not guarantee generically that all k j · r are the same,
i.e., it is possible that k j · rn �= kl �= j · rn (they can project to
different sites of the 1d lattice).

Given the above constraint, the structure factor at a k-space
coordinate s = ∑

j Cjk j, with Cj ∈ Z an arbitrary linear com-
bination of the constrained k j , reads

ρ̂(s) =
N∑

n=1

exp(is · r) ≡
N∑

n=1

exp

⎛⎝i
∑

j

Cjk j · rn

⎞⎠. (H3)

For any two generic points rn and rm and one specific k j , we
showed that k j · rn = k j · rm + 2πc for some c ∈ Z. We then
have

exp(iCjk j · rn) = exp(iCj (k j · rm + 2πc))

= exp(iCjk j · rm) exp(i2πcCj )

= exp(iCjk j · rm), (H4)

as cCj ∈ Z. All terms in Eq. (H3) are thus equal, so that we
may write ρ̂(s) in terms of only one point coordinate r1 then
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FIG. 13. Construction and example frames of spectral movie.
Left: Frames from source video L’Arrivée d’un Train en Gare de La
Ciotat [52]. Middle: Minimized point patterns (N = 300 000) from
imposing the source video frame as a constraint in S(k), with an
inset showing a zoomed-in region of the point pattern. Right: The
calculated structure factor of the resulting minimized point pattern.
The video is also available.

use the definition of s,

ρ̂(s) = N
∏

j

exp(iCjk j · r1) = N exp(is · r1), (H5)

so that, finally,

S(s) = N. (H6)

In other words, we have shown that any set of N-high peaks
imposed into the structure factor has N-high echoes, located
at all integer linear combinations of the imposed peaks.

Due to the limitations of dimensionality, one cannot en-
force arbitrarily many peaks of intensity N in S. In fact,
the greatest number of peaks one can arbitrarily impose that
will reach an exact value of S(k) = N is d , the number of
dimensions, resulting in only the primitive Bravais lattices
(generically monoclinic in 2d and triclinic in 3d). With our
algorithm, overconstrained cases such as crystals with motifs
of more than one atom or quasicrystals seek to maximize
the value of all peaks. Thus, we still observe quasicrystalline
structures emerge from our NUwNU protocol.

APPENDIX I: ENCODING MOVIES INTO
SUCCESSIVE S(k)

As we have demonstrated the ability to encode images into
the structure factor of point patterns, here we encode a movie
by an iterative minimization process (Fig. 13). We impose
each frame extracted from the movie L’Arrivée d’un train
en gare de La Ciotat (“The Arrival of a Train at La Ciotat
Station”) [52] (962 × 720 px) as constraints S0(k) on systems
of N = 300 000 points in 2d . The full 810 frame video de-
picting the simultaneous evolution of the point pattern and its
measured structure factor is available as video in SM [35]. The
point pattern based on frame 0 was minimized from a Poisson
random initial condition, while all subsequent points patterns
are minimized using the point pattern encoding the previous
frame as an initial condition. By performing this successive
minimization, we can encode the movie into discrete point tra-
jectories. Due to the similarity between successive frames in a
single-take sequence shot, successive minimizations are faster
than minimizations from random configurations and point tra-
jectories themselves are seemingly close to continuous. This
opens up the possibility of smoothly evolving adaptive point
patterns with spectrally shaped disorder.
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