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Time-asymmetric fluctuation theorem and efficient free-energy estimation
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The free-energy difference �F between two high-dimensional systems is notoriously difficult to compute but
very important for many applications such as drug discovery. We demonstrate that an unconventional definition
of work introduced by Vaikuntanathan and Jarzynski (2008) satisfies a microscopic fluctuation theorem that
relates path ensembles that are driven by protocols unequal under time reversal. It has been shown before that
counterdiabatic protocols—those having additional forcing that enforces the system to remain in instantaneous
equilibrium, also known as escorted dynamics or engineered swift equilibration—yield zero-variance work
measurements for this definition. We show that this time-asymmetric microscopic fluctuation theorem can be
exploited for efficient free-energy estimation by developing a simple (i.e., neural-network free) and efficient
adaptive time-asymmetric protocol optimization algorithm that yields �F estimates that are orders of magnitude
lower in mean squared error than the generic linear interpolation protocol with which it is initialized.

DOI: 10.1103/PhysRevE.110.034121

I. INTRODUCTION

Free-energy differences �F = FB − FA between pairs of
potential-energy functions UA(x) and UB(x) are sought after
by physicists, chemists, and pharmaceutical scientists alike
[1–6]. Here, x ∈ Rd is the configuration space coordinate,
and the free energy for each potential is defined as FA,B =
−β−1 ln

∫
e−βUA,B (x) dx, where β = (kBT )−1 is inverse tem-

perature. For high-dimensional systems, �F can only be
calculated numerically through sampling methods, which can
be computationally costly and slow to converge [4]. Here we
present an adaptive method that greatly reduces the variance
of �F estimates based on a fluctuation theorem we derive.

One class of estimators takes work measurements as in-
put from protocols U (x, t ) that “switch” U (x, 0) = UA(x) →
U (x, t f ) = UB(x) in finite time t f . Because the work, tradi-
tionally defined for a trajectory X (t )|t∈[0,t f ] [7] as

Wtrad[X (t )] =
∫ t f

0

∂U

∂t
(X (t ), t ) dt (1)

satisfies the Jarzynski equality

〈e−βW 〉 = e−β�F , (2)

the Jarzynski estimator �̂F Jar = −β−1 ln(n−1
s

∑ns
i=1 e−βW i

trad )
may be applied to work measurements {W i

trad, |i = 1, . . . , ns}.
Unfortunately this estimator can be slow to converge, because
the average is often dominated by rare events.

*Contact author: adrizhong@berkeley.edu
†These authors contributed equally to this work.

Estimators that use bidirectional work measurements (i.e.,
those that also consider UB → UA switching processes)
generally have lower variance than unidirectional work esti-
mators [8]. In particular, Shirts et al. in Ref. [9] showed that,
if forward {W i

F |i = 1, . . . , ns} and reverse work measurements
{W i

R|i = 1, . . . , ns}, assumed here to be equal in number for
simplicity, are collected from forward and reverse protocols
satisfying Crooks Fluctuation Theorem

PF (+W ) = PR(−W )eβ(W −�F ), (3)

then the Bennett acceptance ratio estimator �̂F BAR [10], de-
fined implicitly as the �F satisfying

ns∑
i=1

1

1 + e−β(W i
F −�F )

−
ns∑

j=1

1

1 + e−β(W j
R +�F )

= 0, (4)

is the lowest-variance asymptotically unbiased estimator.
Bidirectional measurements of Wtrad for a pair of time-
reversal-symmetric forward and reverse protocols satisfy
Eq. (3) [11,12], but measurements can also be collected from
mixtures of different measurement-protocol pairs

PF (·) =
∑

i

αiP i
F (·) and PR(·) =

∑
i

αiP i
R(·), (5)

with
∑

i αi = 1, as long as each (P i
F ,P i

R) pair satisfies Eq. (3).
In this paper, we consider the nonstandard definition of

work introduced in Ref. [13], for which, remarkably, there
exists finite-time protocols that yield zero-variance work mea-
surements. Importantly, these zero-variance protocols include
a separate counterdiabatic forcing term that effectuates a
faster-than-quasistatic time evolution. We explicitly show that
this nonstandard definition of work satisfies the fluctuation
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theorem (3) for measurements that are produced from separate
forward and reverse protocols that are unequal under time
reversal. We demonstrate that the time-asymmetric fluctuation
theorem for this unconventional work may be exploited for ef-
ficient free-energy estimation by proposing an algorithm that
iteratively improves time-asymmetric protocols and uses mea-
surements collected across all iterations. On three examples of
increasing complexity, we show that 103 measurements made
under our adaptive protocol algorithm give �F estimates that
are a factor of ≈102–104 lower in mean squared error than
the same number of measurements made with the generic
time-symmetric linear interpolation protocol with which it
was initialized.

The first version of this paper was posted on arXiv in April
2023 [14]. Near-simultaneously, the preprint [15] was posted
on arXiv, in which the authors independently derived the same
theoretical results as we found for overdamped dynamics and
demonstrated through impressive numerical results the utility
of the time-asymmetric fluctuation theorem.

II. TIME-ASYMMETRIC WORK

For our setting we consider a time-varying potential energy
U0(x, t ) for t ∈ [0, t f ], that begins at U0(x, 0) = UA(x) and
ends at U0(x, t f ) = UB(x). To this we add an additional po-
tential U1(x, t ) that satisfies U1(x, 0) = U1(x, t f ) = 0. In the
overdamped limit, a trajectory X (t ) evolves according to the
Langevin equation

Ẋ (t ) = −∇(U0 + U1) +
√

2β−1η(t ) with X (0) ∼ ρA(·). (6)

Here, ρA(x) = e−β[UA(x)−FA] is the equilibrium distribution
for UA(x), and η(t ) is an instantiation of standard d-
dimensional Gaussian white noise specified by 〈ηi(t )〉 =
0 and 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′) [16]. (We consider under-
damped dynamics in Appendix C.)

In Ref. [13] the authors introduced an unconventional work
definition, which in our setting is the trajectory functional

W [X (t )] =
∫ t f

0

∂U0

∂t
− ∇U0 · ∇U1 + β−1∇2U1 dt (7)

(∇2 is the scalar Laplace operator), and demonstrated that, re-
markably, W [X (t )] = �F for every trajectory X (t ) if U1(x, t )
gives the counterdiabatic force for U0(x, t ), meaning

∂ρ0

∂t
= ∇ · (ρ0∇U1) for ρ0(x, t ) := e−β[U0(x,t )−F0(t )]. (8)

Here ρ0(x, t ) is the instantaneous equilibrium distribution
corresponding to U0(x, t ), with time-dependent free en-
ergy F0(t ) = −β−1 ln

∫
e−βU0(x,t ) dx satisfying F0(0) = FA and

F0(t f ) = FB. Counterdiabatic driving has been studied before
in various contexts [17–21]. Under these conditions, the time-
dependent probability distribution for Eq. (6) is always in
instantaneous equilibrium with U0(x, t ).

Indeed, expanding Eq. (8) yields

∂U0

∂t
− ∇U0 · ∇U1 + β−1∇2U1 = dF0

dt
, (9)

which, when plugged into Eq. (7), shows that the time-
asymmetric work W [X (t )] = ∫ t f

0 Ḟ0(t ) dt = F0(t f ) − F0(0) =
�F for every trajectory X (t ). With optimally chosen U0(x, t )

and U1(x, t ), the free-energy difference may be obtained
from simulating a single finite-time trajectory. Unfortunately,
Eq. (9) is typically infeasible to solve for multidimensional
systems, and to formulate the partial differential equa-
tion (PDE), Ḟ0(t ), and therefore �F , must already be known.

III. TIME-ASYMMETRIC MICROSCOPIC
FLUCTUATION THEOREM

In the late 1990s, Crooks [11,12] discovered that the mi-
croscopic fluctuation theorem

W [X (t )] = �F + β−1 ln
P[X (t )]

P̃[X̃ (t )]
(10)

is satisfied by the traditional work W = Wtrad. Here P[X (t )] is
the probability of observing a trajectory X (t ), and P̃[X̃ (t )]
is the probability of observing its time-reversed trajectory
X̃ (t ) = X (t f − t ) in a “reverse” path ensemble driven by the
protocol Ũ (x, t ) = U (x, t f − t ). In this section, we derive the
microscopic fluctuation theorem satisfied by the unconven-
tional work definition Eq. (7).

In our overdamped setting, the probability of realizing a
trajectory X (t ) from the dynamics Eq. (6) may be formally
expressed up to a normalization factor as

P[X (t )] = ρA(X (0))e−βS[X (t )], (11)

where

S[X (t )] = (I)
∫ t f

0

|Ẋ + ∇(U0 + U1)|2
4

dt, (12)

is the Onsager-Machlup action functional (see
Appendix A 1 for a quick review, also Ref. [22]). We
use (I) to indicate that the integral is taken in an Itô sense
(reviewed in Appendix A 2). After Eqs. (7) and (11) are
plugged into Eq. (10), straightforward manipulations under
the rules of stochastic calculus (see Appendix A 3) yield

P̃[X̃ (t )] = e−β{UA(X (0))−FA+S[X (t )]+W [X (t )]−�F }

= ρB
(
X̃ (0)

)
e−βS̃[X̃ (t )], (13)

where ρB(x) = e−β[UB (x)−FB] is the equilibrium distribution for
UB(x), and

S̃[X̃ (t )] = (I)
∫ t f

0

| ˙̃X + ∇(Ũ0 − Ũ1)|2
4

dt (14)

has the form of a path action, with Ũ0,1(x, t ) = U0,1(x, t f − t )
denoting the time-reversed potential energies. Equation (13)
gives the probability of observing the path X̃ (t ) under the
Langevin equation

˙̃X (t ) = −∇(Ũ0 − Ũ1) +
√

2β−1η(t ) with X̃ (0) ∼ ρB(·),
(15)

which differs from Eq. (6) by a minus sign on the U1 term. In
other words, the reverse path ensemble that satisfies Eq. (13)
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for the time-asymmetric work Eq. (7) is one that is driven
by a protocol Ũ0 − Ũ1 that is different from the time reversal
of the forward protocol U0 + U1. One can also verify that its
associated definition of work,

W̃
[
X̃ (t )

] =
∫ t f

0

∂Ũ0

∂t
− ∇Ũ0 · ∇(−Ũ1) + β−1∇2(−Ũ1) dt,

(16)

satisfies W̃ [X̃ (t )] = −W [X (t )], so the same optimal U0(x, t )
and U1(x, t ) satisfying Eq. (8) also give W̃ [X̃ (t )] = −�F for
every trajectory.

Through standard methods (see Appendix B), the fluctu-
ation theorem Eq. (3) follows directly from the microscopic
fluctuation theorem Eq. (10). Thus, the time-asymmetric work
[Eq. (7)] holds a deeper significance than how it may first
appear—it relates the forward and reverse path ensembles
given by Eqs. (6) and (15) that are driven by time-asymmetric
protocols.

Although much more involved, the time-asymmetric fluc-
tuation theorem may also be derived for underdamped
dynamics through similar techniques. We include our deriva-
tion in Appendix C.

Significantly, the time-asymmetric fluctuation theorem
may be exploited for efficient free-energy estimation. In par-
ticular, by considering optimizing two different protocols—
one for the forward dynamics and the other for the reverse
dynamics—the variance of �F estimates may be lowered by
orders of magnitude. We now propose our algorithm demon-
strating this.

IV. ALGORITHM

In this section we present an on-the-fly adaptive
importance-sampling protocol optimization algorithm, in-
spired by Ref. [23], that uses the previously collected
bidirectional samples (i.e., from both forward and reverse pro-
tocols) to iteratively discover lower-variance time-asymmetric
protocols. Exploiting the mathematical structure of the
Onsager-Machlup action, our algorithm requires minimal
computational overhead, solely the inclusion of easily com-
putable auxiliary variables in each trajectory’s time evolution.

Concretely, we consider the objective function

J = JF + JR = 〈W 〉F + 〈W̃ 〉R. (17)

Jensen’s inequality applied to Eq. (2) implies 〈W 〉F � �F
and 〈W̃ 〉R � −�F , with equality only for zero-variance op-
timal protocols.

Our simulations are performed using the Euler-Mayurama
method to discretize Eqs. (6) and (15). Instead of directly
discretizing Eq. (7), we measure for every trajectory the ex-
pression derived from Eq. (13),

W [X (t )] = UB(X (t f )) − UA(X (0)) + β−1 ln
P[X (t )|X (0)]

P̃[X̃ (t )|X̃ (0)]
,

(18)

with the correct discrete-path probabilities, so as to preserve
the fluctuation theorem Eq. (10). In our setting this may be
written as

W [X (t )] = {UB(X (t f )) + S̃[X̃ (t )]} − {UA(X (0)) + S[X (t )]}.
(19)

From now on we use Einstein notation, where repeated
upper and lower Greek indices signify summation. Let
{Uμ(x, t )|μ = 1, . . . , M} denote a set of time-dependent basis
functions. We used a linear parametrization of the forward and
reverse protocols UF = U0 + U1 and UR = U0 − U1:

UF,R(x, t ) =

⎧⎪⎨⎪⎩
UA(x) for t = 0

θ
μ
F,RUμ(x, t ) for t ∈ (0, t f )

UB(x) for t = t f ,

(20)

with parameters θ = (θF , θR) ∈ R2M , which explicitly shows
that the forward and reverse protocols are not constrained
to be equal under time reversal. Having unequal θF 
= θR

yields U1 
= 0, which gives a counterdiabatic driving that
is otherwise absent when forward and reverse protocols
are constrained to be equal. By minimizing the work un-
der this parametrization we find the parameters that yield
an approximation to the true counterdiabatic force [i.e., a
U1 that satisfies the PDE (9)]. Under this parametrization,
the Onsager-Machlup path action Eq. (12) and the time-
asymmetric work Eq. (19) are quadratic in θ :

S[X (t ); θ ] = θ
μ
F θν

F aμν + θ
μ
F bμ

+ θ -independent terms, (21)

W [X (t ); θ ] = −(
θ

μ
F θν

F aμν + θ
μ
F bμ + c

)
+ (

θ
μ
R θν

R ãμν + θ
μ
R b̃μ + c̃

)
, (22)

where

aμν[X (t )] = (I)
∫ t f

0

∇Uμ · ∇Uν

4
dt, bμ[X (t )] = (I)

∫ t f

0

Ẋ · ∇Uμ

2
dt, c[X (t )] = UA(X (0)),

ãμν[X (t )] = (BI)
∫ t f

0

∇Uμ · ∇Uν

4
dt, b̃μ[X (t )] = −(BI)

∫ t f

0

Ẋ · ∇Uμ

2
dt, and c̃[X (t )] = UB(X (t f )) (23)

are θ -independent functionals of the time-discretized trajec-
tory X (t ) [24]. Here, (BI) refers to a backwards Itô integral,
needed to write terms of the reverse ensemble S̃[X̃ (t )] as

a functional of X (t ). [Equations (21)–(23) apply for the
reverse path ensemble S̃[X̃ (t )],W̃ [X̃ (t )], through the transfor-
mation t → t f − t, {F, R} → {R, F }.] These variables a, ã ∈

034121-3



ZHONG, KUZNETS-SPECK, AND DEWEESE PHYSICAL REVIEW E 110, 034121 (2024)

RM×M , b, b̃ ∈ RM , and c, c̃ ∈ R are akin to the eligibility
trace variables (sometimes called “Malliavin weights”) used
in reinforcement learning policy-gradient algorithms [25–29],
which are dynamically evolved with each trajectory X (t ).

In the following two paragraphs we consider only the for-
ward ensemble for simplicity. When a trajectory X i(t ) is sam-
pled, we calculate not only its work W i = W [X i(t )] but also
its functional values (ai, bi, ci, ãi, b̃i, c̃i) [Eq. (23)], which
are saved alongside the protocol parameters θ i = (θ i

F , θ i
R)

employed to sample the trajectory. Given ns sampled tra-
jectories, the collected data {(W i, ai, bi, ci, ãi, b̃i, c̃i, θ i )}ns

i=1
may be used to construct a θ -dependent importance-sampling
estimator for 〈W 〉F :

ĴF (θ ) =
∑ns

i=1 ri
F (θ )wi

F (θ )∑ns
i=1 ri

F (θ )
, (24)

where the sum is over collected forward samples i, ri
F (θ ) is

the likelihood ratio (i.e., the Radon–Nikodym derivative)

ri
F (θ ) = P[X i(t ) from θ ]

P[X i(t ) from θ i]
= e−β(S[X i (t );θ]−S[X i (t );θ i]). (25)

Here, S[X i(t ); θ ] and wi(θ ) = W [X i(t ); θ ], defined in
Eqs. (21) and (22), are the path action and time-asymmetric
work for the trajectory X i(t ) as if it were sampled under θ

instead of the protocol θ i it was actually sampled under. Pro-
tocols may now be optimized by using Eq. (24) as a surrogate
objective function, which yields a newly optimized protocol
θ∗ that can be used to iteratively sample even-lower-variance
trajectories.

Of course, the quality of the importance-sampling estimate
Eq. (24) degrades the further away the input θ is from the
set of θ i under which samples were collected. One common
heuristic of this degradation is the effective sample size [30]

neff
F (θ ) =

[∑ns
i=1 ri

F (θ )
]2∑ns

i=1 ri
F (θ )2 , (26)

ranging from 1 (uneven ri
F values, high degradation) to ns

(equal ri
F values, low degradation).

We now state our algorithm (pseudocode given in Algo-
rithm 1): at each iteration, an equal number of independent
forward and reverse trajectories are simulated through Eqs. (6)
and (15) using the UF ,UR specified by current parame-
ters θcurr, with the time-asymmetric work W and auxiliary
variables (a, b, c, ã, b̃, c̃) of each trajectory dynamically cal-
culated; then the protocol is updated through solving the
nonlinear constrained optimization problem

θnext = argminθ

{
Ĵ (θ )

∣∣{neff
F (θ ), neff

R (θ )
}
� f ns

}
, (27)

for which there are efficient numerical solvers (e.g., SLSQP
[31] pre-implemented in SciPy [32]). Here, Ĵ (θ ) = ĴF (θ ) +
ĴR(θ ), neff

F (θ ) and neff
R (θ ) are constructed with the ns forward

and ns reverse samples collected over all iterations, and f ∈
[0, 1) is a hyperparameter specifying the constraint strength:
the fraction of total samples we are constraining neff

F,R to be
greater than or equal. Finally, �̂F BAR is calculated with the
bidirectional work measurements collected across all itera-
tions using Eq. (4), which is permitted by the satisfaction of
Eq. (5).
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FIG. 1. (a) The potentials UA(x) (solid red) and UB(x) (dashed
blue) are obtained by linearly biasing a double well (dotted pur-
ple). (b) �̂F BAR mean squared error from 1000 bidirectional
measurements drawn solely from the naive protocol (red circles), cu-
mulatively from protocols that are adaptively optimized (“learning”)
with our algorithm (purple squares), and solely from the last-iteration
(“optimized”) protocols (blue stars) for various protocol times t f .
(c) Single-trial PF (W ) (red, right of the dashed vertical line) and
PR(−W̃ ) (blue, left of the dashed vertical line) work distributions
for 1000 measurements from the naive protocol (unfilled), and adap-
tively optimized protocols (filled) for t f = 2, the analytic ground
truth �F = 0 shown as a gray dashed line. Measurements made
with protocol optimization have significantly more overlap, leading
to lower estimator error. (d) Forward protocols λA(t ) [blue, going
from λA(0) = 1 to λA(t f ) = 0] and λB(t ) [red, going from λB(0) =
0 to λB(t f ) = 1] at various iterations of protocol optimization for
t f = 2. Shaded region represents variability across 100 independent
trials. In the optimized last-iteration protocol, λA(t ) + λB(t ) (giving
the energy scale) is greatly reduced at intermediate times, while
λB(t ) − λA(t ) (giving the linear bias) is time-asymmetrically shifted.
The reverse protocols (not shown here) are similar, see Fig. 4

V. NUMERICAL EXAMPLES

In this section we report the performance of our algorithm
for three test model systems.

We chose our basis set in order to represent protocols of
the form

U (x, t ) = λA(t )UA(x) + λB(t )UB(x) + λC (t )UC (x), (28)

where UC (x) is an additional quasicounterdiabatic potential

UC (x) = −c · x with c = 〈x〉B − 〈x〉A

t f
(29)

that provides a spatially uniform forcing proportional to
the difference in equilibrium mean positions 〈x〉A,B =∫

xρA,B(x) dx [33], which is needed to, e.g., spatially translate
an equilibrium distribution (see Appendix A in Ref. [34]). The
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FIG. 2. (a) A Rouse polymer is stretched from a collapsed
state to an extended one. (b) �̂F BAR mean squared error verses
protocol time, points colored as in Fig. 1. (c) For moderate pro-
tocol times (t f = 0.5τR displayed here) the optimized protocol
(λA(t ), λB(t ), λC (t )) learned in 44 iterations is the counterdiabatic
protocol Eq. (31). Here, λC (t ) is drawn with the dashed purple lines.
(d) Single-trial bidirectional work samples from the naive protocol
(W and −W̃ dotted purple) and adaptively optimized protocols (W
red starting above zero, −W̃ blue starting below zero) for t f = 0.5τR.
Vertical line demarcates start of protocol optimization. The analytic
ground truth value �F is shown as a horizontal line. (e) Work distri-
butions corresponding to the samples in panel (d). The ground truth
is indicated by the triangular arrow. Cumulative measurements made
under protocol optimization (filled) have dramatically greater over-
lap than measurements made under the naive protocols (unfilled),
leading to lower estimator error.

basis set is given by

{
U
(x)pm

(
2t

t f
− 1

)∣∣∣∣
 ∈ {A, B,C}, 0 � m � mmax

}
, (30)

where pm(·) denotes the mth Legendre polynomial.
For all numerical examples, mmax = 4 was used; we found

that using a larger mmax did not substantially improve per-
formance, while drastically increasing computational runtime
(see discussion section below, where we discuss how com-
putational runtime scales with number of parameters). The
algorithm was initialized with 120 bidirectional samples
drawn from a generic naive linear interpolation protocol
λA(t ) = 1 − t/t f , λB(t ) = t/t f , λC (t ) = 0 for both UF and UR.
At each iteration Eq. (27) was solved for nmb = 20 indepen-
dently subsampled minibatches of size nmb

s = 80 with f =
0.3; the protocol was then updated to the minibatch-averaged
θnext; finally, 20 additional bidirectional samples were drawn
with the new protocol. In total, 44 iterations were performed,
giving 1000 bidirectional samples.

A. Linearly biased double well

The first system we consider is a one-dimensional quar-
tic double well with a linear bias [Fig. 1(a)]. The potentials
are UA(x) = E0[(x2 − 1)2/4 − x], UB(x) = E0[(x2 − 1)2/4 +
x] (cf. Ref. [35] for optimal protocols minimizing 〈Wtrad〉F ).
We set UC (x) = 0 because UB(x) − UA(x) is already linear in
x. We use β = 1, E0 = 16, and a time step �t = 1 × 10−3τ ,
where τ = 1 is the natural timescale (here the length scale,
inverse temperature, and friction coefficient are all unity 
 =
β = γ = 1).

Figure 1(b) displays the �̂F BAR estimator mean squared
error for 1000 bidirectional work measurements collected
solely from the naive protocol (red), the 1000 measurements
collected cumulatively over on-the-fly protocol optimization
(purple), and 1000 measurements collected solely from the
last iteration (blue). Each dot represents the empirical aver-
age over 100 independent trials. Note that the mean squared
error is up to 1600 times lower under protocol optimization
compared with under the naive protocol (obtained at t f =
0.2). For t f � 10 the algorithm does not converge within the
1000 measurements (see Fig. 4), leading to less improve-
ment. Figure 1(c) shows that bidirectional work measurements
collected under the protocol optimization algorithm have
significantly more overlap than measurements collected from
the naive protocol, leading to reduced estimator error. Fig-
ure 1(d) gives snapshots on how the optimal protocol is
adaptively learned. Note that the optimized time-asymmetric
protocols feature discontinuous jumps occurring at t = 0 and
t = t f , which has been observed to be ubiquitous for time-
symmetric protocols [35–44] (also see Ref. [45] for a recently
proposed explanation for this phenomenon).

B. Rouse polymer

Next we consider a (N + 1)-bead Rouse polymer
[Fig. 2(a)] with stiffness k and intrinsic energy given
by URouse(x0, x1, . . . , xN ) = ∑N−1

n=0 (k/2)(xn+1 − xn)2

from harmonic bonds between adjacent beads [46,47].
We estimate �F between a collapsed state (fixing
x0 = xN = 0) and an extended state (fixing x0 = 0, xN = λ f ),
so our configuration space is x ∈ RN−1 with potential
energies UA(x1, . . . , xN−1) = URouse(0, x1, . . . , xN−1, 0) and
UB(x1, . . . , xN−1) = URouse(0, x1, . . . , xN−1, λ f ). Equilibrium
averages 〈xn〉A = 0, 〈xn〉B = nλ f /N give UC (x) = −(λ f /

Nt f )
∑N

n=1 nxn, and the analytic ground truth free energy (i.e.,
the true free-energy difference against which we can compare
algorithm estimates) is given by �F = FB − FA = kλ2

f /(2N ).
It may be verified that, for this problem, the time-varying
potential energies

U0(x, t ) =
(

1 − t

t f

)
UA(x) +

(
t

t f

)
UB(x),

U1(x, t ) = UC (x) (31)

solve Eq. (9) and are thus counterdiabatic.
We use β = k = 1, N = 20, and time step �t = 2.5 ×

10−5τR, where τR = βN2/π2 is the Rouse relaxation time
[46]. Initial conditions for ρA(x) and ρB(x) were drawn from a

034121-5



ZHONG, KUZNETS-SPECK, AND DEWEESE PHYSICAL REVIEW E 110, 034121 (2024)

normal-modes basis as described in Appendix D. Figure 2(b)
shows an improvement of up to 8300 (for t f = 0.5τR) in
�̂F BAR mean squared error between naive and optimized pro-
tocols. The counterdiabatic solution Eq. (31) corresponds to
λA(t ) = (1 − t/t f ), λB(t ) = t/t f , and λC (t ) = 1, which what
the algorithm learns for t f = τR as depicted in Fig. 2(c). (This
was generally the case for t f � 0.5τR. For t f < 0.5τR the
algorithm learns a suboptimal local solution that still provides
some improvement, see Fig. 5.) Figure 2(d) shows single-
trial traces of bidirectional work measurements for the naive
protocol (purple) and adaptively optimized protocols (red for
W , blue for −W̃ ), for t f = 0.5τR. The protocol converges
in ≈20 iterations (requiring ≈500 measurements), and then
consistently gives work measurements closely centered at the
ground truth free energy (gray horizontal line). Histograms
of these traces (filled) are shown in Fig. 2(e), exhibiting a
remarkable increase in the overlap compared with their naive
counterparts (unfilled).

C. Worm-like chain with attractive linker

We now consider a (N + 1)-bead worm-like chain model
(WLC) in two dimensions with an added Lennard-Jones in-
teraction between the first and last beads (similar to the
third example of Ref. [48]). Fixing (x0, y0) = (0, 0), the con-
figuration space is �φ ∈ RN , where φn is the angle of the
nth bond with respect to the x axis, with (xn( �φ), yn( �φ)) =
(
∑n

m=1 cos φm,
∑n

m=1 sin φm). The angular potential Uφ =
k
∑N−1

n=1 [1 − cos(φn+1 − φn)] penalizes the bending of adja-
cent bonds, and ULJ = 4εLJ[(σLJ/rN )12 − (σLJ/rN )6] specifies
the interaction between first and last beads, where rN =
(x2

N + y2
N )1/2 is the end-to-end distance. We take k = 6, β =

1, εLJ = 8, σLJ = 4, and N = 15.
Figure 3(a) displays the conditioned free energy

F (R/N ) := −β−1 ln ρeq(rN = R), where ρeq is the
equilibrium probability of observing the end-to-end distance
under U = Uφ + ULJ [49] (constructed from 107 equilibrium
samples of Uφ , obtained with the Metropolis-adjusted
Langevin Algorithm [50], that were reweighted by ULJ).
F (R/N ) exhibits a deep well for RA ≈ 21/6σLJ (trapped or
bent state) and a shallow well at large RB ≈ 0.9N (free
or relaxed state), separated by a barrier; their difference
in value �F ≈ 4.18 may be calculated by estimating the
�F between UA( �φ) = Uφ + ULJ + (kext/2)(rN − λi)2 and
UB( �φ) = Uφ + ULJ + (kext/2)(rN − λ f )2 for λi = 21/6σLJ,
λ f = 0.9N , and kext 
 1.

We calculate the �F between UA and UB for kext =
200. We use time step �t = 1.41 × 10−4τLJ, where τLJ =
(εLJ/σ

2)1/2 is the Lennard-Jones timescale. We use UC ( �φ) =
−∑

n cnrn, radially pulling on each individual bead, con-
structed with cn = (〈rn〉B − 〈rn〉A)/t f from equilibrium sam-
ples of ρA and ρB. Figure 3(b) displays single-trial work
histograms for t f = 0.71τLJ, showing that work measure-
ments made under our protocol optimization algorithm are
much closer to the ground truth �F ≈ 4.18 (numerically ob-
tained via the Metropolis-adjusted Langevin Algorithm, see
previous paragraph), as opposed to using the naive protocol.
Figure 3(c) shows the updating �̂F BAR estimator over 100
independent trials converges substantially faster to the ground

FIG. 3. Worm-like chain with an attractive linker. (a) Numeri-
cally obtained ground truth free-energy surface relative to its value at
RA = 21/6σLJ; the left well corresponds to the ends of the chain bound
to one another and the right well corresponds to a nearly straight
configuration, with a free-energy difference �F ≈ 4.18. (b) Work
distributions before (unfilled) and during (filled) optimization for
t f = 0.71, the ground truth shown as a gray dashed line. (Same
coloring as Fig. 1.) (c) The �̂F BAR estimator updated over the 1000
samples converges to the ground truth value (dashed blue line) much
more quickly under protocol optimization than under the naive proto-
col. At 1000 samples the protocol optimization free-energy estimate
was �̂F = 3.94 ± 0.11, while for the naive protocol was �̂F =
3.52 ± 1.48 (cf. ground truth value of �F = 4.18). It took 200 total
samples for the mean squared error to drop below 1.00(kBT ) under
protocol optimization

truth. With 1000 bidirectional samples under the naive pro-
tocol the mean squared error is 1.62(kBT ); under protocol
optimization, only 160 samples (i.e., just after two iterations
of protocol optimization) are required to have a smaller mean
squared error. Over various t f , the mean squared error is up to
120 times lower under protocol optimization compared with
under the naive protocol, see Fig. 7.

VI. DISCUSSION

In this paper, we derived the time-asymmetric micro-
scopic fluctuation theorem for the unconventional work
introduced by Ref. [13]. We then demonstrated its practical
utility for free-energy estimation by presenting an adaptive
time-asymmetric protocol optimization algorithm, whose ef-
fectiveness we illustrated with three toy models of varying
complexity. Time-asymmetric protocols have been considered
before [34,51,52], but we use �̂F BAR on bidirectional work
measurements from adaptive time-asymmetric protocols. A
clear next step is to test our algorithm on more physically
realistic systems. This work should be straightforward to
implement with JAX-MD [53]. In principle our algorithm
should work with underdamped dynamics [51], and it should
also be possible to adaptively optimize the protocol time t f

and sampling ratio nF /nR. Another future direction to pursue
is to differentially weight early versus later samples in the
estimator to account for differences in the variance of work
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measurements, as the algorithm more closely approximates a
counterdiabatic protocol.

The fast convergence in our method comes from exploiting
of the quadratic structure of the Onsager-Machlup path action
to construct Ĵ (θ ), which allows all samples to be used in each
optimization step. Typically the most computationally expen-
sive step in a molecular-dynamics simulation is calculating
potential-energy gradients ∇U to evolve X (t ), which does not
need to be repeated to evolve (aμν, bμ, . . .). A valid critique
of our algorithm is that the number of auxiliary variables
included with each trajectory scales quadratically with the
number of basis functions, becoming prohibitively large when
considering, for example, a separate control force on each
particle of a many particle system. However, we have shown
that a small number of basis functions to represent Eq. (28)
already produces a substantial improvement in efficiency for
our three examples. That said, it is straightforward to add
additional basis functions [cf. Eq. (2) of Ref. [54]], which
may be useful for more complex and realistic systems. It
would be interesting to apply recent methods [55] to learn
the optimal set of additional basis functions, that apply force
along specific coordinates: bonds, angles, native contacts and
other collective variables to further improve performance for
larger-scale systems.

As mentioned at the end of the introduction, our re-
sults were independently derived in Ref. [15] within a
machine-learning context. It is noteworthy that stochastic
thermodynamics has shown to be a useful theoretical frame-
work not only for nonequilibrium statistical physics, but also
for machine learning in flow-based diffusion models [56–59].
In particular, we recognize significant ties between our work,
and that of “stochastic normalizing flows” [60], wherein
authors also consider constructing counterdiabatic protocols
under the name “deterministic invertible functions.” It can be
shown that counterdiabatic protocols are perfect stochastic
normalizing flows, and they report (after sufficient neural-
network training) excellent numerical results for sampling
and free-energy estimation. The primary difference is that,
in their work, they fix U0 = (1 − t/t f )UA + (t/t f )UB and use
a neural-network ansatz, whereas here we use an adaptive
importance sampling algorithm with a linear spatiotemporal
basis ansatz for both U0 and U1. Likewise, we note that
Ref. [61] explores time-asymmetric Markovian processes for
sampling, building off of entropy-regularized optimal trans-
port wherein solutions of the continuous-time Schrödinger
bridge problem involve asymmetrically controlled diffusion
processes [62] (see also Refs. [63,64]). This is intriguing
because solving for optimal time-symmetric protocols has
been shown to be equivalent to solving the continuous-time
formulation [65] of standard optimal transport [35,66–69]. In
light of all this, we suspect deep theoretical connections be-
tween stochastic thermodynamics and machine learning may
be further uncovered through the time-asymmetric fluctuation
theorem.

Documented code for this project may be found
online [70].
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APPENDIX A: MICROSCOPIC FLUCTUATION THEOREM

1. The Onsager-Machlup action

For overdamped Langevin dynamics for X (t ) ∈ Rd ,

Ẋ (t ) = −∇U (X (t ), t ) +
√

2β−1η(t ) with X (0) ∼ ρ(·),
(A1)

where η(t ) is an instantiation of standard Gaussian white noise
with statistics 〈ηi(t )〉 = 0 and 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′), and
ρ(·) is its initial distribution, the formal expression for the
probability of a path’s realization is (up to a multiplicative
factor)

P[X (t )] = ρ(X (0))e−βS[X (t )]. (A2)

Here S[X (t )] is the Onsager-Machlup path action functional

S[X (t )] = (I)
∫ t f

0

|Ẋ (t ) + ∇U (X (t ), t )|2
4

dt, (A3)

which comes from the path discretization into N time steps
with time step �t = t f /N : X (t ) → [X0, X1, . . . , XN ], with
Xn ≈ X (tn), N = t f /�t , and tn = n�t , generated from Euler-
Maruyama dynamics,

X0 ∼ ρ(·), (A4)

Xn+1 = Xn − ∇U (Xn, tn)�t +
√

2β−1�Bn, (A5)

where �Bn ∼ N (0,�t Id ) is a d-dimensional Gaussian ran-
dom variable (i.e., Brownian increment) [22].
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FIG. 4. (a) For the linearly biased double well, ensemble-averaged work across 100 trials, as a function of sample number. Same coloring
as Fig. 4(d). Parameter optimization begins at 120 samples, and happens every 20 samples. The rows correspond to protocol times t f =
0.2, 5.0, 20.0, and 50.0, respectively. Convergence is slower for larger t f ; for t f = 50.0 the protocol may not have converged within 1000
samples. (b) The forward protocols UF (·, t ) = λA(t )UA(·) + λB(t )UB(·) after 1000 samples. Same coloring as Fig. 1(d). Rows correspond to
the same t f . (c) The reverse protocols UR(·, t ) = λ̃A(t )UA(·) + λ̃B(t )UB(·) after 1000 samples. The reverse protocols appear to satisfy λ̃A(t ) =
λB(t f − t ) and λ̃B(t ) = λA(t ), which is due to the symmetry of UA(·) and UB(·) in the problem.

The probability of the realization of a particular path is then

P (X0, X1, . . . , XN ) = P (X0)P (X1|X0)P (X2|X1) · · ·P (XN |XN−1)

= ρ(X0)
N−1∏
n=0

(4πβ−1�t )−d/2 exp

(
−|Xn+1 − Xn + ∇U (Xn, tn)�t |2

4β−1�t

)

∝ ρ(X0) exp

(
−β

N−1∑
n=0

|(Xn+1−Xn

�t

) + ∇U (Xn, tn)|2
4

�t

)
, (A6)

where the normalization factor (4πβ−1�t )−Nd/2 is hidden in the last line.
Taking N → ∞ with �t = t f /N → 0, the sum within the exponential becomes

N−1∑
n=0

∣∣(Xn+1−Xn

�t

) + ∇U (Xn, tn)
∣∣2

4
�t −→ (I)

∫ t f

0

|Ẋ (t ) + ∇U (X (t ), t )|2
4

dt = S[X (t )], (A7)

which yields the formal expression Eq. (A2).

2. Stochastic integrals and Itô’s formula

Here we briefly review the rules of stochastic calculus. For a stochastic path (i.e., a “Brownian motion”) X (t )|t∈[0,t f ]

from Eq. (A1) and some vector-valued function b(x, t ), the three following choices for the time-discretization of the integral
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FIG. 5. (a) For the Rouse polymer, ensemble-averaged work across 100 trials, as a function of sample number. Parameter optimiza-
tion begins at 120 samples, and happens every 20 samples. Same coloring as Fig. 4(d). The rows correspond to protocol times t f =
0.05τR, 0.12τR, 0.25τR, and 1.23τR, respectively. Unlike for the double well, convergence here is slower for smaller t f . (b) The forward
protocols UF (·, t ) = λA(t )UA(·) + λB(t )UB(·) + λC (t )UC (·) after 1000 samples. Same coloring as Fig. 4(c). Rows correspond to the same t f .
For t f = 0.05τR and t f = 0.12τR, the protocol has not yet converged to the counterdiabatic solution λA(t ) = (1 − t/t f ), λB(t ) = t/t f , λC = 1.
(c) The reverse protocols UR(·, t ) = λ̃A(t )UA(·) + λ̃B(t )UB(·) + λ̃C (t )UC (·) after 1000 samples. The reverse protocols appear to satisfy
λ̃A(t ) = λB(t f − t ), λ̃B(t ) = λA(t ), and λ̃C (t ) = −λC (t ), which is due to the symmetry of UA(·), UB(·), and UC (·) in the problem.

∫ t f

0 b(X (t ), t ) · Ẋ (t ) dt :

N−1∑
n=0

b(Xn, tn) · �Xn,

N−1∑
n=0

b
(
Xn+ 1

2
, tn+ 1

2

) · �Xn,

and

N−1∑
n=0

b(Xn+1, tn+1) · �Xn

[here �Xn = (Xn+1 − Xn), Xn+ 1
2

= (Xn + Xn+1)/2, and
tn+ 1

2
= (tn + tn+1)/2] do not necessarily converge to the

same value under the N → ∞, �t = t f /N → 0 limit.
This is in contrast with the case where X (t )|t∈[0,t f ]

is continuously differentiable, e.g., the solution of a
well-behaved deterministic differential equation, in which
case the above three time discretizations do converge to the
same integral value under the limit [71].

Therefore, for trajectories X (t )|t∈[0,t f ] obtained through the
stochastic differential equation Eq. (A1), we must define each

of these as distinct integrals;

(I)
∫ t f

0
b(X (t ), t ) · Ẋ dt := lim

N→∞

N−1∑
n=0

b(Xn, tn) · �Xn,

(S)
∫ t f

0
b(X (t ), t ) · Ẋ dt := lim

N→∞

N−1∑
n=0

b
(
Xn+ 1

2
, tn+ 1

2

) · �Xn,

and

(BI)
∫ t f

0
b(X (t ), t ) · Ẋ dt := lim

N→∞

N−1∑
n=0

b(Xn+1, tn+1) · �Xn,

which are the Itô, Stratonovich, and backward Itô integrals,
respectively. They are related to one another by Itô’s lemma
[72]

(I)
∫ t f

0
b(X (t ), t ) · Ẋ + β∇ · b(X (t ), t ) dt

= (S)
∫ t f

0
b(X (t ), t ) · Ẋ dt

= (BI)
∫ t f

0
b(X (t ), t ) · Ẋ − β∇ · b(X (t ), t ) dt . (A8)

The Stratonovich integration convention (i.e., with the
time-symmetric midpoint-rule discretization) is particularly
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FIG. 6. (a) For the worm-like chain, ensemble-averaged work across 100 trials, as a function of sample number. Parameter optimization
begins at 120 samples, and happens every 20 samples. The rows correspond to protocol times t f = 0.07τLJ, 0.28τLJ, 1.41τLJ, and 7.07τLJ,
respectively. It appears convergence is reached rapidly, within the 1000 samples for all cases. Same coloring as Fig. 4(d). (b) The forward
protocols UF (·, t ) = λA(t )UA(·) + λB(t )UB(·) + λC (t )UC (·) after 1000 samples. Same coloring as Fig. 4(c). Rows correspond to the same t f .
For small t f , the protocol has reduced magnitude. This corresponds to lowering the potential, or raising the temperature [i.e., smaller βU (·, t )].
(c) The reverse protocols UR(·, t ) = λ̃A(t )UA(·) + λ̃B(t )UB(·) + λ̃C (t )UC (·) after 1000 samples. Due to the intrinsic asymmetry of the problem
between pulled and collapsed states, the resulting reverse protocols do not obey the symmetries observed in the double-well and Rouse polymer
problems.

convenient because ordinary calculus rules (e.g., the chain
rule, product rule, etc.) apply.

FIG. 7. Performance plot for the worm-like chain, same coloring
as Fig. 1(b). That the mean squared error for protocol learning is near
equal to the optimized protocol implies convergence occurs quickly
within protocol optimization, cf. Fig. 6(a). At t f = 0.07τLJ, the MSE
is 123.3 times lower under protocol optimization than under the naive
protocol.

Note that the three separate time-discretizations of inte-
grals of the form

∫ t f

0 f (X (t ), t ) dt :

N−1∑
n=0

f (Xn, tn)�t,
N−1∑
n=0

f (Xn+ 1
2
, tn+ 1

2
)�t,

and

N−1∑
n=0

f (Xn+1, tn+1)�t,

do converge to the same value under the N → ∞
with �t = t f /N → 0 limit, thus (I)

∫ t f

0 f (X (t ), t ) dt =
(S)

∫ t f

0 f (X (t ), t ) dt = (BI)
∫ t f

0 f (X (t ), t ) dt .

3. Microscopic fluctuation theorem derivation

Here, we use the stochastic calculus reviewed above to
derive Eq. (10), i.e., the equivalence of its first and sec-
ond lines. We start by manipulating the expression within
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the exponent

UA(X (0)) + S[X (t )] + W [X (t )] = UB
(
X
(
t f
)) + (I)

∫ t f

0

{ |Ẋ + ∇(U0 + U1)|2
4

− (Ẋ + ∇U1) · ∇U0 + β−1∇2(U1 − U0)

}
dt

= UB(X (t f )) + 1

4
(I)

∫ t f

0
|Ẋ |2 dt + 1

4
(I)

∫ t f

0
|∇(U1 − U0)|2 dt + 1

2
(I)

∫ t f

0
Ẋ · ∇(U1 − U0)

+ 2β∇2(U1 − U0) dt

= UB(X (t f )) + 1

4
(BI)

∫ t f

0
|Ẋ |2 dt + 1

4
(BI)

∫ t f

0
|∇(U1 − U0)|2 dt + 1

2
(BI)

∫ t f

0
Ẋ · ∇(U1 − U0) dt

= UB
(
X
(
t f
)) + (BI)

∫ t f

0

|Ẋ + ∇(U1 − U0)|2
4

dt

= UB
(
X̃ (0)

) + (I)
∫ t f

0

| − ˙̃X + ∇(Ũ1 − Ũ0)|2
4

dt

= UB
(
X̃ (0)

) + S̃[X̃ (t )], where S̃[X̃ (t )] = (I)
∫ t f

0

| ˙̃X + ∇(Ũ0 − Ũ1)|2
4

dt . (A9)

The first equality comes from using Ito’s lemma
U0(X (t f ), t f ) − U0(X (0), 0) = (I)

∫ t f

0 ∂tU0 + Ẋ · ∇U0 +
β−1∇2U0 dt . The second equality follows from standard
algebraic manipulation. The third equality comes from
converting the forward Itô integrals (I) to backward Itô
integrals (BI) using Itô’s formula (A8). The fourth equality
results from standard algebraic manipulation. The fifth
equality comes from the time-reversal transformation
t → t f − t , with the backward Itô integral becoming a
forward Itô integral under time reversal.

Finally, we plug in the above to the first line of Eq. (13) to
obtain

P̃[X̃ (t )] = e−β{UA(X (0))−FA+S[X (t )]+W [X (t )]−�F }

= e−β{UB(X̃ (0))−FB+S̃[X̃ (t )]}

= ρB(X̃ (0))e−βS̃[X̃ (t )], (A10)

thus completing our derivation.

APPENDIX B: DERIVING THE FLUCTUATION THEOREM
FROM THE MICROSCOPIC FLUCTUATION THEOREM

In this section we derive the Crooks Fluctuation Theorem

PF (+W )

PR(−W )
= e+β(W −�F ) (B1)

from the microscopic fluctuation theorem

P[X (t )]e−βW [X (t )] = P̃
[
X̃ (t )

]
e−β�F . (B2)

We begin by recalling that PF (·), giving the probability of
observing a particular work value in the forward ensemble, is
defined as

PF (w) = 〈δ(W − w)〉F

=
∫

DX (t )P[X (t )]δ(W [X (t )] − w), (B3)

where we write w to distinguish the argument of PF (·) from
the path-functional work W = W [X (t )]. Here DX (t ) denotes
an integral over all paths X (t )|t∈[0,t f ], P[X (t )] is the probabil-
ity of its realization, and δ(·) is the Dirac δ function. Plugging
Eq. (B2) into the above expression, we get

PF (w) =
∫

DX (t )P̃[X̃ (t )]e+β{W [X (t )]−�F }δ(W [X (t )] − w)

= e+β(w−�F )
∫

DX (t )P̃[X̃ (t )]δ(W [X (t )] − w)

= e+β(w−�F )
∫

DX̃ (t )P̃[X̃ (t )]δ(−W̃ [X̃ (t )] − w)

= e+β(w−�F )PR(−w), (B4)

where in the second line we pull out the exponential using the
Dirac δ function, in the third line we consider the coordinate
change X (t ) → X̃ (t ) [using also W̃ [X̃ (t )] = −W [X (t )], see
Eq. (16) and the text that follows it in the main text], and
in the fourth line we have recognized that the path integral
expression is equivalent to the probability of observing the
work value −w in the reverse path ensemble.

APPENDIX C: TIME-ASYMMETRIC FLUCTUATION
THEOREM FOR UNDERDAMPED DYNAMICS

In this section, we generalize the time-asymmetric fluctua-
tion theorem to underdamped dynamics. To begin, we review
three types of dynamics: overdamped, underdamped, and de-
terministic.

At inverse temperature β, overdamped Langevin dynamics
for a stochastic trajectory X (t ) ∈ Rd are given by the over-
damped Langevin equation

Ẋ = −μ∇xU0(X (t ), t ) +
√

2μβ−1η(t ), (C1)

where μ is the mobility, and η(t ) is an instantiation of
standard d-dimensional Gaussian white noise, i.e., with statis-
tics 〈ηi(t )〉 = 0, 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′). Note that, for
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ALGORITHM 1. Time-asymmetric protocol optimization via adaptive importance sampling.

1: inputs β,UA(x), UB(x); step size dt , number of time steps N , basis functions {Uμ(x, n)|n=1,..,N }, initial guess θinit

2: parameters Samples per iteration Ns, minibatches per iteration Nmb, minibatch size nmb
s , constraint strength f

3: given Methods DrawSampleA(), DrawSampleB() that return equilibrium samples from ρA, ρB

4: output Iteratively updated �̂F estimate
5:
6: function RunTrajFparameters θ = (θF , θR ) � Euler-Maruyama method
7: Obtain x0 ← DrawSampleA()
8: Initialize x, aμν, bμ, ãμν, b̃μ ← x0, 0, 0, 0, 0
9: for n = 1, ..., N do
10: Evaluate ∇Uμ ← ∇Uμ(x, n) for each μ

11: Calculate dx ← −θ
μ
F ∇Uμdt + √

2β−1 dB, where dB ∼ N (0, dt × Id ) is a d-dimensional normal random variable
12: Evaluate ∇Ũμ ← ∇Uμ(x + dx, n) for each μ

13: Evolve x ← x + dx
14: Evolve aμν, bμ ← aμν + ∇Uμ · ∇Uν dt/4, bμ + ∇Uμ · dx/2
15: Evolve ãμν, b̃μ ← ãμν + ∇Ũμ · ∇Ũν dt/4, b̃μ − ∇Ũμ · dx/2 � This holds because dx̃ = −dx.
16: end for
17: Evaluate c, c̃ ← UA(x0),UB(x)
18: Calculate W ← −(

θ
μ
F θν

F aμν + θ
μ
F bμ + c

) + (
θ

μ
R θν

R ãμν + θ
μ
R b̃μ + c̃

)
19: return W, aμν, bμ, c, ãμν, b̃μ, c̃, θ

20: end function
21:
22: function RunTrajRparameters θ = (θF , θR )
23: Obtain x̃0 ← DrawSampleB()
24: Initialize x̃, ãμν, b̃μ, aμν, bμ ← x̃0, 0, 0, 0, 0
25: for n = 1, ..., N do
26: Evaluate ∇Ũμ ← ∇Uμ(x̃, N + 1 − n) for each μ � because ∇Ũμ(·, n) = ∇Uμ(·, N + 1 − n)
27: Calculate dx̃ ← −θ

μ
R ∇Ũμdt + √

2β−1 dB, where dB ∼ N (0, dt × Id ) is a d-dimensional normal random variable
28: Evaluate ∇Uμ ← ∇Uμ(x̃ + dx̃, N + 1 − n) for each μ

29: Evolve x̃ ← x̃ + dx̃
30: Evolve ãμν, b̃μ ← ãμν + ∇Ũμ · ∇Ũν dt/4, b̃μ + ∇Ũμ · dx̃/2
31: Evolve aμν, bμ ← aμν + ∇Uμ · ∇Uν dt/4, bμ − ∇Uμ · dx̃/2
32: end for
33: Evaluate c̃, c ← UB(x̃0),UA(x̃)
34: Calculate W̃ ← −(

θ
μ
R θν

R ãμν + θ
μ
R b̃μ + c̃

) + (
θ

μ
F θν

F aμν + θ
μ
F bμ + c

)
35: return W̃ , ãμν, b̃μ, c̃, aμν, bμ, c, θ

36: end function
37:
38: function UpdateThetaforward samples SF , reverse samples SR

39: Initialize Sθ,mb ← {}
40: repeat Nmb times � Use larger Nmb for larger |SF |.
41: Randomly select Smb

F ⊂ SF of size nmb
s without replacement

42: Randomly select Smb
R ⊂ SR of size nmb

s without replacement
43: θ∗ ← argminθ

{
ĴF

(
θ ;Smb

F

) + ĴR

(
θ ;Smb

R

) | neff
F

(
θ ;Smb

F

)
� f nmb

s , neff
R

(
θ ;Smb

R

)
� f nmb

s

}
44: Sθ,mb.insert(θ∗)
45: end
46: return mean(Sθ,mb)
47: end function
48:
49: procedure Main
50: Initialize parameters θ ← θinit and sample arrays SF ,SR ← {}, {}
51: repeat
52: repeat Ns � Use Nmb + Ns on first iteration.
53: SF .insert(RunTrajF(θ ))
54: SR.insert(RunTrajR(θ ))
55: end
56: Update estimate �̂F ← �̂F BAR(SF ,SR)
57: θ ← UpdateTheta(SF ,SR)
58: until out of computer time
59: endprocedure
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generality, the mobility is not set to one, in contrast with the
main text.

On the other hand, underdamped dynamics for position and
momentum variables X (t ) ∈ Rd , P(t ) ∈ Rd are given by the
underdamped Langevin equation

Ẋ = P(t )

m
,

Ṗ = −∇xU0(X (t ), t ) − γ P(t ) +
√

2γ β−1ζ (t ), (C2)

where m is the mass, γ is the friction coefficient, and ζ (t )
is also an instantiation of standard d-dimensional Gaussian
white noise with 〈ζi(t )〉 = 0, 〈ζi(t )ζ j (t ′)〉 = δi jδ(t − t ′) [73].
Importantly, this underdamped dynamics has the Hamiltonian

H (x, p, t ) = |p|2
2m

+ U0(x, t ). (C3)

Note that taking the limit γ → 0 reproduces standard Hamil-
tonian mechanics.

Finally, we explicitly write out the deterministic dynamics
under a flow field b1(x, p, t ) ∈ R2d that applies to both posi-
tion and momentum variables

Ẋ = bx
1(X (t ), P(t ), t ),

Ṗ = bp
1(X (t ), P(t ), t ). (C4)

This vector flow field b1 is a generalization of the time-
asymmetric (gradient) force provided by −∇U1 in the main
text.

1. Generalized Langevin dynamics

For our derivation, we define a hybridized Langevin equa-
tion that combines all of the above three dynamics:

Ẋ = bx
1(X (t ), P(t ), t ) + P(t )

m
+ {−μ∇xU0(X (t ), t ) +

√
2μβ−1η(t )},

Ṗ = bp
1(X (t ), P(t ), t ) − ∇xU0(X (t ), t ) − γ P(t ) +

√
2mγ β−1ζ (t ),

with X (0), P(0) ∼ ρA, (C5)

where ρA is the equilibrium distribution corresponding to
the Hamiltonian HA(x, p) = H (x, p, 0) at time t = 0, to be
specified below. By considering m, μ, and γ as independent
parameters, overdamped dynamics are reproduced by taking
the limit γ → 0, m → ∞ with the assumption bx

1(x, p, t )
has no p dependence, while underdamped dynamics are re-
produced under the limit μ → 0, with further taking γ → 0
yielding deterministic Hamiltonian dynamics.

2. Time-asymmetric work and path action

In this general setting, we consider protocols that “switch”
the Hamiltonian between

H (x, p, 0) = HA(x, p) = |p|2
2m

+ UA(x)

→ H
(
x, p, t f

) = HB(x, p) = |p|2
2m

+ UB(x),

by switching the potential energy U (x, 0) = UA(x) →
U (x, t f ) = UB(x). The equilibrium distributions for HA and
HB are given by ρA(x, p) = e−β[HA(x,p)−FA] and ρB(x, p) =
e−β[HB (x,p)−FB], with FA = −β−1 ln

∫
e−βHA dxdp and FB =

−β−1 ln
∫

e−βHB dxdp denoting the equilibrium free energy.
For ease of notation, from here on out we denote a phase-
space trajectory with variable Z (t ) := (X (t ), P(t )) [not to be

confused with the partition function exp(−βF ) often denoted
by the same variable].

The unconventional work for a stochastic trajectory
Z (t )|t∈[0,t f ] is given by

W [Z (t )] =
∫ t f

0

∂H

∂t
+ b1 · ∇H − β−1∇ · b1 dt (C6)

(we use notation b1 · ∇H = bx
1 · ∇xH + bp

1 · ∇pH and ∇ ·
b1 = ∇x · bx

1 + ∇p · bp
1) [13], while the probability of observ-

ing the trajectory under Eq. (C5) is

P[Z (t )] = ρA(Z (0))e−βS[Z (t )], (C7)

with the path action given by the Itô integral

S[Z (t )] = (I)
∫ t f

0

|Ẋ − bx
1 − P/m + μ∇xU0|2

4μ

+
∣∣Ṗ − bp

1 + ∇xU0 + γ P
∣∣2

4mγ
dt .

This may be seen by considering the probability of obtaining
the particular realization of the noise terms η(t ) and ζ (t ) that
produce the trajectory Z (t ) = (X (t ), P(t )).

3. Derivation of microscopic fluctuation theorem

As with the detailed derivation for the overdamped case in
Appendix A, we manipulate the sum

HA(Z (0)) + S[Z (t )] + W [Z (t )] = HB
(
Z
(
t f
)) + (I)

∫ t f

0

|Ẋ − bx
1 − P/m + μ∇xU0|2

4μ
+ |Ṗ − bp

1 + ∇xU0 + γ P|2
4mγ

− (Ż − b1) · ∇H − β−1
(∇ · b1 + μ∇2

x H + mγ∇2
pH

)
dt
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= HB(Z (t f )) + (I)
∫ t f

0

|Ẋ |2
4μ

+
∣∣Ṗ∣∣2
4mγ

dt + (I)
∫ t f

0

∣∣ − bx
1 − P/m + μ∇xU0

∣∣2
4μ

+
∣∣ − bp

1 + ∇xU0 + γ P
∣∣2

4mγ
dt + 1

2
(I)

∫ t f

0
Ẋ ·

(−bx
1 − P/m + μ∇xU0

μ

)
+ Ṗ ·

(−bp
1 + ∇xU0 + γ P

mγ

)
dt + (I)

∫ t f

0

(
bx

1 − Ẋ
) · ∇xU0 + (

bp
1 − Ṗ

) · (P/m)

− β−1
{∇x · (bx

1 + μ∇xU0
) + ∇p · [p

1 + mγ (P/m)
]}

dt . (C8)

The first equality comes from plugging in the work and path action definitions and applying the total time derivative with Itô’s
lemma HB(Z (t f )) − HA(Z (0)) = (I)

∫ t f

0 ∂t H + Z · ∇H + β−1(μ∇2
x H + mγ∇2

pH ) dt [here the divergence terms come from the
Gaussian white noise on X (t ) and P(t ), see Appendix A], while the second equality is obtained by expanding out each of the
squared terms.

Continuing with our derivation, we insert ∇x · p = ∇p · ∇xU0 = 0 into the integral, as well as apply the following two
algebraic manipulations:

(I)
∫ t f

0

∣∣ − bx
1 − P/m + μ∇xU0

∣∣2
4μ

+
∣∣ − bp

1 + ∇xU0 + γ P
∣∣2

4mγ
dt + (I)

∫ t f

0
bx

1 · ∇xU0 + bp
1 · (P/m) dt

= (I)
∫ t f

0

| − (
bx

1 + P/m
) + μ∇xU0|2

4μ
+ [

bx
1 + (P/m)

] · ∇xU0 − (∇xU0 − bp
1

) · (P/m) +
∣∣(−bp

1 + ∇xU0
) + γ P

∣∣2
4mγ

dt

= (I)
∫ t f

0

∣∣bx
1 + P/m + μ∇xU0

∣∣2
4μ

+
∣∣ − bp

1 + ∇xU0 − γ P
∣∣2

4mγ
dt, (C9)

and

1

2
(I)

∫ t f

0
Ẋ ·

(−bx
1 − P/m + μ∇xU0

μ

)
+ Ṗ ·

(−bp
1 + ∇xU0 + γ P

mγ

)
dt − (I)

∫ t f

0
Ẋ · ∇xU0 + Ṗ · (P/m) dt

= 1

2
(I)

∫ t f

0

(−Ẋ
) ·

(
bx

1 + P/m + μ∇xU0

μ

)
+ Ṗ ·

(−bp
1 + ∇xU0 − γ P

mγ

)
dt , (C10)

ultimately yielding

HA(Z (0)) + S[Z (t )] + W [Z (t )]

= HB
(
Z
(
t f
)) + (I)

∫ t f

0

|Ẋ |2
4μ

+
∣∣Ṗ∣∣2
4mγ

dt + (I)
∫ t f

0

∣∣bx
1 + P/m + μ∇xU0

∣∣2
4μ

+
∣∣ − bp

1 + ∇xU0 − γ P
∣∣2

4mγ
dt

+ 1

2
(I)

∫ t f

0

(−Ẋ
) ·

(
bx

1 + P/m + μ∇xU0

μ

)
+ Ṗ ·

(−bp
1 + ∇xU0 − γ P

mγ

)
− 2β−1

{
μ∇x ·

(
bx

1 + μ∇xU0 + P/m

μ

)
− mγ∇p ·

(−bp
1 − γ P + ∇xU0

mγ

)}
dt (C11)

= HB(Z (t f )) + (BI)
∫ t f

0

|Ẋ |2
4μ

+
∣∣Ṗ∣∣2
4mγ

dt + (BI)
∫ t f

0

∣∣bx
1 + P/m + μ∇xU0

∣∣2
4μ

+
∣∣ − bp

1 + ∇xU0 − γ P
∣∣2

4mγ
dt

+ 1

2
(BI)

∫ t f

0

(−Ẋ
) ·

(
bx

1 + P/m + μ∇xU0

μ

)
+ Ṗ ·

(−bp
1 + ∇xU0 − γ P

mγ

)
dt

= HB(Z (t f )) + (BI)
∫ t f

0

| − Ẋ + bx
1 + P/m + μ∇xU0|2

4μ
+ |Ṗ − bp

1 + ∇xU0 − γ P|2
4mγ

dt (C12)

= HB(Z̃ (0)) + (I)
∫ t f

0

∣∣ ˙̃X + b̃x
1 − P̃/m + μ∇xŨ0

∣∣2
4μ

+
∣∣ ˙̃P + b̃p

1 + ∇xŨ0 + γ P̃
∣∣2

4mγ
dt =: HB(Z̃ (0)) + S̃[Z̃ (t )]. (C13)

Here, in the second equality we use Itô’s lemma to transform from forward to backward Itô integrals; in the third equality
we express the terms back into the squared expression; and in the fourth equality we perform the time-reversal change of
variables X̃ (t ) = X (t f − t ), P̃(t ) = −P(t f − t ) with b̃x

1(x, p, t ) = bx
1(x,−p, t f − t ), Ũ0(x, t ) = U0(x, t f − t ), and b̃p

1(x, p, t ) =
−bp

1(x,−p, t f − t ), which transforms the backward Itô integral back into a forward Itô integral.
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Here, S̃[Z̃ (t )] is the path action for the generalized Langevin dynamics,

˙̃X = −b̃x
1(X̃ (t ), P̃(t ), t ) + P̃(t )

m
+ {−μ∇xŨ0(X̃ (t ), t ) +

√
2μβ−1η(t )},

˙̃P = −b̃p
1(X̃ (t ), P̃(t ), t ) − ∇xŨ0(X̃ (t ), t ) − γ P̃(t ) +

√
2mγ β−1ζ (t ), (C14)

which from inspection differs from Eq. (C5) by having minus
signs in front of the bx

1 and bp
1 terms. After specifying the

initial conditions X̃ (0), P̃(0) ∼ ρB, we have a path ensemble
for which the probability of observing a particular trajectory
Z̃ (t )|t f

t=0 satisfies

P̃[Z̃ (t )] = ρB(Z̃ (0))e−βS̃[Z̃ (t )]

= e−β{HB(Z̃ (0))−FB+S̃[Z̃ (t )]}

= e−β{HA(Z (0))+S[Z (t )]+W [Z (t )]−FB}

= ρA(Z (0))e−β{S[Z (t )]+FA−FB+W [Z (t )]}

= P[Z (t )]e−β{W [Z (t )]−�F }, (C15)

namely, the time-asymmetric microscopic fluctuation theorem
for the generalized dynamics Eq. (C5).

APPENDIX D: INITIAL SAMPLES FOR ROUSE POLYMER
FROM NORMAL-MODE DECOMPOSITION

For the Rouse polymer, random samples may be drawn by
exploiting a normal-mode decomposition. We can write

UA,B(x1, x2, . . . , xN−1)

= Ū

(
x1 − λi, f

N
, x2 − 2λi, f

N
, . . . , xN−1 − (N − 1)λi, f

N

)
+ kλ2

i, f

2N
, (D1)

where Ū (�y) = �yT K�y/2 with

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2k −k
−k 2k −k 0

−k . . .
. . . −k

0 −k 2k −k
−k 2k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (D2)

Then, we can do an eigenmode decomposition of K ,
writing

Ū (�y) = Û (�z) =
N−1∑
n=1

κnz2
n

2
,

where

κn = 2

[
1 − cos

(
πn

N

)]
, (D3)

zn =
√

2

N

N−1∑
m=1

sin

(
2πnm

N

)
ym. (D4)

Finally, for an individual initial condition, we draw the
normal random variable zn ∼ N (μ = 0, σ 2 = (βκn)−1) for
each n because ρ̂(�z) ∝ ∏

exp(−βκnz2
n/2); then we convert

from �z to �y coordinates via

yn =
√

2

N

N−1∑
m=1

sin

(
2πnm

N

)
zm, (D5)

before finally adding xn = yn + nλi, f /N to get our initial con-
dition.

Incidentally, the kλ2
i, f /2N in the expression comparing

UA,B(�x) to U (�y) is, up to an additive constant, the free energy
FA or FB.
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