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Effective phase diffusion for spin phase evolution under random nonlinear magnetic field
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The general theoretical description of spin self-diffusion under a nonlinear gradient magnetic field is proposed,
which extends the effective phase diffusion method for a linear gradient field. Based on the phase diffusion,
the proposed method reveals the general features of phase evolutions in nonlinear gradient fields. There are
three types of phase evolutions: phase diffusion, float phase evolution, and shift evolution based on the starting
position. For spin diffusion near the origin of the nonlinear field, these three phase evolutions significantly
affect the nuclear magnetic resonance (NMR) signal. The traditional methods have difficulties in handling these
three-phase evolutions. Notably, the phase from float phase evolution is missed or misplaced in traditional
methods, which leads to incorrect NMR signal attenuation or phase shift. The method here shows that the
diffusing and float phase evolutions come from the first and second derivatives of the gradient field. Based
on these three phase evolutions, the phase variance and corresponding NMR signal attenuation are obtained, as
demonstrated by calculating the phase diffusions under both parabolic and cubic fields. The results indicate
that signal attenuation obeys Gaussian attenuation for a short time, then changes to follow Lorentzian or
Mittag-Leffler function attenuations as time increases, significantly different from Gaussian attenuation. For
spins starting diffusion far away from the origin of the field gradient, the signal attenuation is Gaussian, but
the float phase still has an important effect on the total phase shift of even-order gradient fields, which could
be used to measure the diffusion coefficient directly. Random walk simulations were performed, which support
the obtained theoretical results. General theoretical expressions are obtained, which can handle random order
nonlinear gradient fields. The results could help develop advanced experimental techniques based on a nonlinear
gradient field in NMR and magnetic resonance imaging.
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I. INTRODUCTION

Employing a magnetic field gradient to measure diffusion
can be tracked back to Hahn [1], who observed the influ-
ence of molecule diffusion under a gradient field upon echo
amplitudes. The pulsed-field gradient (PFG) technique has
broad applications in nuclear magnetic resonance (NMR) and
magnetic resonance imaging (MRI) [2–6]. Under the gradient
field, spins precess with position-dependent frequencies, and
thus, their accumulated phases vary in different locations,
which enables the gradient field to encode the spatial infor-
mation for MRI experiments. Additionally, because different
spin quantum coherences evolve at different frequencies in the
gradient field, employing appropriate dephasing and rephas-
ing gradient pulses in combination can selectively refocus the
desired coherence pathway, which makes the gradient field
an essential tool for selecting the coherence transfer pathway
in modern NMR experiments. Furthermore, diffusing spins
move around randomly, and their phase evolutions depend on
their diffusion paths. Due to diffusion, the phase spreading of
the spin system cannot be refocused even when dephasing and
refocusing gradient pulses are employed. The phase spreading
results in signal attenuation in NMR and MRI experi-
ments [5–7]. Different spin phase distribution corresponds to
different types of signal attenuations. The diffusion coefficient
can be extracted by analyzing signal-intensity data in PFG
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diffusion experiments. The differences in diffusion parameters
can be used as important contrast factors to build imaging
for clinical studies such as acute stroke [8]. The accuracy of
the analysis of PFG diffusion experimental data relies on the
appropriate theoretical expressions [5–7].

Nonlinear gradient fields are encountered in many sit-
uations [9–13]. Common PFG experiments employ linear
gradient fields. However, a linear gradient field is an ideal sit-
uation. In actual samples, the internal local magnetic fields in
many systems, such as porous materials, are often inhomoge-
neous. Additionally, the imperfections of the external field, the
eddy currents, and the sample susceptibilities and shape re-
sult in inhomogeneous magnetic fields. These inhomogeneous
fields are often nonlinear. The magnetic field inhomogeneity
can significantly affect experimental results. It can result in ar-
tifacts in diffusion-based imaging and poor spatial resolution
in MRI [12,14] and complicates the interpretation of NMR
relaxation and diffusion results [15,16]. Nonlinear gradient
theories are necessary to interpret the effects of the nonlinear
gradient field on experiments.

Although many theoretical efforts have been made to in-
vestigate the nonlinear gradient field [9–12,17,18], due to
its complexity, the currently available theoretical results are
incredibly insufficient. First, there are some apparent discrep-
ancies in existing theoretical results. Even in the simplest
nonlinear field, the parabolic field, the signal attenuations,
and corresponding phase variances reported in the literature
for spins starting diffusion from the origin of the parabolic
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field are different. Under a constant parabolic gradient field,
Ref. [12] gives a signal attenuation exp[− 7

6 (γ g2)2D2δ4] cor-
responding to a phase variance 7

3 (γ g2)2D2δ4, where γ is the
gyromagnetic ratio, g2 is the gradient field coefficient, D is
the diffusion coefficient, and δ is the gradient pulse length. In
contrast, the Green function method gives a signal attenuation
exp[− 2

3 (γ g2)2D2δ4] [10], corresponding to a phase variance
4
3 (γ g2)2D2δ4. For two gradient pulse experiments, Ref. [10]
does not give the free diffusion results but yields a signal
attenuation exp[− 4

3 (γ g2)2R2
pDδ3], corresponding to a phase

variance 8
3 (γ g2)2R2

pDδ3 for a short time diffusion restricted
inside a pore size Rp; when Rp is infinite, the phase variance,
however, cannot be reduced to 44

3 (γ g2)2D2δ4 for free diffu-
sion, as presented in Ref. [12].

Secondly, many of the available theoretical results have
obvious limits. References [10,12] only treat the simplest
nonlinear field n = 2, the parabolic field. Additionally, the
results in Ref. [12] are limited to diffusion starting from the
origin. Meanwhile, diffusion near the origin is a challenge
to many other methods. In nonorigin position z0, the time-
dependent position z(t ) can be approximately treated as z0

when z0
2 � 2Dt . However, such an approximation for z(t )

is not appropriate for diffusion near the origin. Meanwhile,
Refs. [10,18] do not directly treat the free diffusion under the
parabolic field for the typical two-pulse sequences but extract
the free diffusion results from restricted diffusion by setting
Rp as infinite. Considering the discrepancies mentioned in
the previous paragraph, directly obtaining the theoretical free
diffusion result under two pulses is desirable.

Thirdly, there are some obvious challenges in the reported
results. In Ref. [12], the attenuation expression from two
pulses with a delay time cannot be reduced to the result of
two pulses without delay. Additionally, in Ref. [10], an extra
oscillatory phase term g2Dt2 is presented, but other methods
do not have such a term. Reference [10] hinted that such an
oscillatory term results from the rapidly varying gradient field,
which is unclear, particularly for the two-pulse experiment
with a delay. The gradient field is off during the delay be-
tween pulses. This oscillatory term will be clearly obtained
in the theoretical derivation in this paper, and a much clearer
physical picture can be obtained.

Considering the difficulties of existing theories, it is neces-
sary to develop new theoretical treatments to understand the
nonlinear gradient field better. In this paper, a versatile the-
oretical method for spin diffusion under a nonlinear gradient
field is proposed. The order of the gradient field can be any
integer or noninteger, namely, a real number or even a frac-
tion. Additionally, the field can be a multiple-order gradient
field, and the gradient pulse shape can be random rather than
rectangular.

This method extends the effective phase diffusion equation
method developed in Ref. [7]. Based on random walk theo-
ries, the phase diffusion approach is a powerful theoretical
tool for spin dynamics, as spin phase evolution is a natu-
ral phase random walk process in many NMR phenomena.
Phase-diffusion-based methods have recently been applied to
describe the phase evolution of spin coherence affected by
a linear PFG [7,19], NMR relaxation [20], or NMR chemi-
cal exchange [21]. Compared with traditional NMR theories,

phase-diffusion-based methods possess certain advantages.
They directly handle the phase evolution process in phase
space, and the phase distribution can often be obtained. For
example, a widely used PFG approximation for normal diffu-
sion is the Gaussian phase distribution (GPD) approximation
[5,6]; in contrast, for normal diffusion, the GPD is an exact
solution from the phase diffusion equation [7]. Additionally,
directly handling the phase evolution process in phase space
often reduces the degree of solving complexity for analyzing
NMR phenomena. Therefore, the phase diffusion methods can
be straightforwardly applied to solve anomalous diffusions in
PFG experiments [7], anomalous exchange processes [21],
and fractional NMR relaxation [20], which are challenges
to conventional theories. Furthermore, directly handling the
phase evolution process in phase space can help reveal fea-
tures that the traditional real-space methods cannot find. In
Ref. [22], the phase and time coupling are handled by a
coupled phase random walk, which gives a striking coupling
constant in the spectral density expression for NMR relax-
ation. In Ref. [21], the phase diffusion method found that,
when the exchange time follows a distribution, the exchange
time constant is twice as fast as the traditional result based on
a single exchange time.

The result in this paper clearly shows three types of phase
evolutions in nonlinear gradient field experiments: phase dif-
fusion, float phase evolution, and shift evolution based on
the starting position. Except for the shift phase evolution,
traditional theories do not have a clear concept of the other
two types of phase evolutions, although the Green function
method indicates an extra oscillatory term in the magnetiza-
tion. Reference [10] explains that the oscillatory term results
from rapidly varying magnetic field and magnetization. The
method here clearly shows that the diffusing phase evolution
comes from the first derivative of the gradient field, while the
float phase evolution comes from the second derivative. The
extra oscillatory term for the parabolic field comes from the
accumulating phase from the float phase evolution. It affects
magnetization regardless of whether there is a delay between
gradient pulses. The float phase evolution can also be either
a drift motion (in the parabolic field) or a diffusion (in the
nonparabolic field).

Based on the effective phase diffusion, the phase diffusion
coefficient, phase variance, and corresponding NMR signal
attenuation can be calculated, which is demonstrated by cal-
culating the phase diffusions under the parabolic and cubic
fields. The signal attenuation obeys Gaussian attenuation for
a short time, then changes to Lorentzian or Mittag-Leffler
function (MLF) attenuation when time increases, significantly
different from the Gaussian attenuation. The non-Gaussian
attenuations come from Lorentzian or long-tailed phase distri-
butions. The results of this paper will help us to understand the
cause of the discrepancies in existing theoretical results and
provide many theoretical expressions that are not available
from currently reported theories. The nonlinear gradient has
some properties that are not available via a linear gradient field
[23]. For diffusion near the origin of the nonlinear gradient
field, the higher the order of the nonlinear gradient field,
the higher the order of diffusion coefficients and gradient
pulse duration the signal attenuation depends on, which has
advantages over the linear gradient field because it is relatively
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sensitive to changes of diffusion coefficients, delays, and pulse
lengths. Hence, the theoretical results can help develop ad-
vanced experimental techniques based on a nonlinear gradient
field.

II. THEORY

A. Phase random walk under a general nonlinear field

We first consider the one-dimensional anomalous diffusion
with a nonlinear magnetic field B(z, t ) = B0 + Bg(z), Bg(z) =∑

n�1 gn(t ) fn(z), where B0 is the exterior magnetic field, z
is the position, gn(t ) is the coefficient of the nonlinear field
[5–7], and fn(z) are position z-dependent functions, such as zn,
z1/n, or even polynomial expressions. Note that fn(z) are basis
functions used in the expansion of the nonlinear component
of the field B(z, t ) and not necessarily power functions. Here,∑

n�1 gn(t ) fn(z) rather than gf (z) is employed because its
derivation results are more general.

The magnetic field exerts a torque on each spin moment.
The torque changes the spin angular momentum direction,
which leads the spin to precess about the magnetic field with
Larmor frequency ω(z, t ) = γ B(z, t ). In a rotating frame with
angular frequency ω0 = γ B0, a diffusing spin at position z(t )
has a time-dependent angular frequency γ g(t )Bg[z(t )], and its
phase accumulated along the diffusion path is [7]

φ(t ) =
∫ t

0
γ Bg[z(t ′)]dt ′ =

∫ t

0
γ

∑
n�1

gn(t ′) fn[z(t ′)]dt ′, (1)

where φ(t ) is the net-accumulated phase. The range of φ(t ) is
−∞ < φ(t ) < ∞ rather than −π � φ(t ) � π , and cos[φ(t )]
is the projection factor of the spin magnetization to the ob-
serving coordinate axis. Assuming the initial signal S(0) = 1,
the NMR signal comes from the ensemble contribution of all
spins by averaging over all possible phases [5–7]:

S(t ) =
∫ ∞

−∞
P(φ, t ) exp (+iφ)dφ, (2)

where S(t ) is the signal intensity at time t , and P(φ, t ) is
the accumulating phase probability distribution function. In
a symmetric phase distribution system, Eq. (2) can be further
written as S(t ) = ∫ ∞

−∞ P(φ, t ) cos(φ)dφ. For simplicity, only
diffusion with a symmetric probability distribution in real
space is studied here, while the phase distribution is not neces-
sarily symmetric. The self-diffusion process can be described
by a random walk, which consists of a sequence of indepen-
dent random jumps with waiting times �t1, �t2, �t3, …, �tm,
and corresponding displacement lengths �z1, �z2, �z3, …,
�zm. Thus, t j = ∑ j

i=1 �ti, z(t j ) = z0 + ∑ j
i=1 �zi. Based on

the random walk, Eq. (1) can be rewritten as [7]

φ(t ) =
m∑

i=1

γ�tiBg[z(ti )]

=
∑
n�1

m∑
i=1

γ�tign(ti ) fn[z(ti )]

=
∑
n�1

m∑
i=1

γ�tign(ti )

⎛
⎝ i∑

j=1

�h j + h0

⎞
⎠, (3a)

where

fn[z(ti )] =
i∑

j=1

�h j + h0,

h0 = fn(z0),

�h j ≈ f ′
n[z(t j−1)]�z j + 1

2
f ′′
n [z(t j−1)](�z j )

2

+ · · · + 1

m!
f m
n [z(t j−1)](�z j )

m + · · · , (3b)

where a Taylor expansion is used for obtaining �hj . Usually,
the jump length is small and (�z j )2 is much smaller than
|�z j |. However, the accumulated effect of (�z j )2 in the ran-
dom walk path can often be comparable with that of �z j . For
the higher orders, (�z j ) m, m � 3, which is negligible in both
the single step and the accumulated effect. Therefore, only
�h j ≈ f ′

n[z(t j−1)]�z j + 1
2 f ′′

n [z(t j−1)](�z j )2 will be consid-
ered here.

At time ttot, the end of the gradient pulse, by interchang-
ing the order of the summarization of the time and space as
proposed in Ref. [7], we have

φ(ttot ) =
∑
n�1

⎧⎨
⎩

m∑
j=1

[Kn(ttot ) − Kn(t j−1)]�h j + Kn(ttot ) h0

⎫⎬
⎭,

(4)

where

Kn(t ) =
∫ t

0
γ gn(t ′)dt ′. (5)

When n = 1, K1(t ) is the wave number for the linear gra-
dient field [5–7]. Substituting Eq. (3b) into Eq. (4), we have

φ(ttot ) = φD(ttot ) + φfloat (ttot ) + φshift,z0 (ttot )

=
m∑

j=1

⎧⎨
⎩

∑
n�1

[Kn(ttot ) − Kn(t j )] f ′
n[z(t j )]

⎫⎬
⎭�z j

+ 1

2

m∑
j=1

⎧⎨
⎩

∑
n�1

[Kn(ttot ) − Kn(t j )] f ′′
n [z(t j )]

⎫⎬
⎭(�z j )

2

+
∑
n�1

Kn(ttot ) fn(z0). (6a)

where φD(ttot ), φfloat (ttot ), and φshift,z0 (ttot ) correspond to the
first, second, and third terms in the last line of Eq. (6a). Note
that t j−1 is replaced with t j in Eq. (6a) because their difference
is negligible. The f ′

n[z(t )] and f ′′
n [z(t )] are correlated based on

the same path of a particle when n �= 2.
In Eq. (6a), the first term φD(ttot ) is an obvious random

phase walk, as it is modified by the random �z j , while the sec-
ond term φfloat (ttot ) could either be a drift diffusion if f ′′

n [z(t j )]
is a constant, as in the parabolic field case, or a random walk
if f ′′

n [z(t j )] is a z(t j )-dependent function, as in the cubic field
case, which could be solved by the effective phase diffusion
method presented in Ref. [7] or the method developed in this
paper. The term float is used here because, compared with the
first term, the random walk steps in the second term keep the
jump direction for a relatively long time, which is a sense
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of drift motion. The third term φshift,z0 (ttot ) in Eq. (6a) for
K (ttot ) �= 0 is a phase shift depending on (z0)n. When the spins
start the diffusion from the origin z0 = 0, φshift,z0 (ttot ) = 0.

Practical pulse gradient experiments often employ both
dephasing and refocusing gradient pulses, where K (ttot ) = 0.
When K (ttot ) = 0, Eq. (6a) reduces to

φ(ttot ) = φD(ttot ) + φfloat (ttot )

= −
m∑

j=1

⎧⎨
⎩

∑
n�1

Kn(t j ) f ′
n[z(t j )]

⎫⎬
⎭�z j

− 1

2

m∑
j=1

⎧⎨
⎩

∑
n�1

Kn(t j ) f ′′
n [z(t j )]

⎫⎬
⎭(�z j )

2. (6b)

When fn(z) = z, f ′′
n [z(t j )] = 0, Eqs. (6a) and (6b) repro-

duce the results for the linear gradient field presented in
Ref. [7].

The effective phase diffusion coefficient for the first term
φD(ttot ) in Eqs. (6a) and (6b) is

Dφ (t ) =
⎧⎨
⎩

∑
n�1

[Kn(ttot ) − Kn(t )] f ′
n[z(t )]

⎫⎬
⎭

2

〈[�z(t )]2〉
2�t

=
⎧⎨
⎩

∑
n�1

[Kn(ttot ) − Kn(t )] f ′
n[z(t )]

⎫⎬
⎭

2

D. (7)

By averaging over all possible z(t ) of the spin system, we
have

Dφ (t ) =
〈{∑

n�1

[Kn(ttot ) − Kn(t )] f ′
n[z(t )]

}2〉
D, (8a)

where〈{∑
n�1

[Kn(ttot ) − Kn(t )] f ′
n[z(t )]

}2〉

=
∫ ∞

−∞
P(z, t )

{∑
n�1

[Kn(ttot ) − Kn(t )] f ′
n[z(t )]

}2

dz. (8b)

The phase variance from the phase diffusion is [7]

〈φD(ttot )
2〉 = 2

∫ ttot

0
Dφ (t )dt . (9)

The second term φfloat (ttot ) in Eqs. (6a) and (6b) can be
rewritten as

φfloat (ttot ) =
m∑

j=1

⎧⎨
⎩

∑
n�1

[Kn(ttot ) − Kn(t j )] f ′′
n [z(t j )]

⎫⎬
⎭D�t j,

(10)

where D = (�z j )2

2�t j
is used. We can define a float velocity as

vfloat (t ) =
∑
n�1

[K (ttot ) − K (t )] f ′
n[z(t )]D. (11)

Note D exists both in Dφ (t ) and vfloat (t ). In Dφ (t ), D
comes from �z j, which is the fundamental diffusion parame-
ter determining the random walk, while D in vfloat (t ) comes
from (�z j )2, which is just a positive constant to modify∑m

j=1{
∑

n�1[Kn(ttot ) − Kn(t j )] f ′′
n [z(t j )]}. If f ′′

n [z(t )] depends
on z(t ), the

∑m
j=1{

∑
n�1[Kn(ttot ) − Kn(t j )] f ′′

n [z(t j )]} will be
treated as a random walk process, demonstrated in the cubic
field in Sec. II B 2.

However, whether the second term is a drift motion or a
diffusion, we can still define

φfloat (ttot ) =
∫ ttot

0
vdrift (t )dt . (12)

When f ′′
n [z(t )] is an even function or z2

0 � 2Dt,

〈φfloat (ttot )〉 =
∫ ttot

0
[Kn(ttot ) − Kn(t )]〈 f ′′

n [z(t )]〉Ddt, (13)

which can be either positive or negative, while when f ′′
n [z(t )]

is an odd function and z2
0 < 2Dt,

〈φfloat (ttot )〉± = cn,±,z0

∫ ttot

0
[Kn(ttot ) − Kn(t )]〈| f ′′

n [z(t )]|〉Ddt,

(14)

where cn,±,z0 is introduced because, in results from cases
with odd n, the diffusion paths of some particles can cover
both positive and negative regions when z0 is near the origin,
which reduces the individual integral and the total average.
Here, cn,±,z0 could be positive or negative depending on the
pulse sequence and z0. However, |c(t )| should be ∼1, as the
z(t )’s of a particle from different instants are correlated. The
〈φfloat (ttot )〉 and 〈φfloat (ttot )〉± can help us to understand better
the phase change due to the second term in Eqs. (6a) and (6b).

The phase variance 〈[φfloat (ttot )]2〉 can be calculated based
on the effective phase diffusion or drift motion. Based on the
effective phase diffusion,

〈[φfloat (ttot )]
2〉 =

〈{∫ ttot

0
[Kn(ttot ) − Kn(t )] f ′′

n [z(t )]Ddt

}2〉
,

if f ′′
n [z(t )] depends on z(t ), (15a)

where D is not the phase diffusion coefficient. The phase
diffusion coefficient should be obtained based on the integral∫ ttot

0 [Kn(ttot ) − Kn(t )] f ′′
n [z(t )]Ddt , which can be seen more

clearly in Eq. (39d). Based on a drift evolution,

〈[φfloat (ttot )]
2〉 = [〈φfloat (ttot )〉]2,

if f ′′
n [z(t )] does not depend on z(t ). (15b)

Equations (13) and (15b) will be used to calculate
[〈φfloat (ttot )〉]2 for a drift evolution, and Eq. (15a) will be
calculated based on the effective phase diffusion method.

From the third term in Eq. (6a), we see

φshift,z0 (ttot ) =
∑
n�1

Kn(ttot ) fn(z0). (16)

In the above, the general expressions for phase diffusion
under a random nonlinear gradient field are obtained based on
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the effective phase diffusion method.

If Bg(z) =
∑
n�1

gn(t )zn, namely, fn(z) = zn,

which is a nonlinear gradient field with multiple integer orders
whose f ′

n[z(t )] and f ′′
n [z(t )] are

f ′
n[z(t )] = {[z(t )]n}′ = n[z(t )]n−1,

f ′′
n [z(t )] = {[z(t )]n}′′ = n(n − 1)[z(t )]n−2. (17)

Currently, the frequently encountered gradient field is the
integer-order gradient field. However, it may be desirable to
develop the fraction-order gradient field, which could pro-
vide different features for gradient experiments. If Bg(z) =∑

n�1 gn(t )|z|1/n, namely, fn(z) = |z|1/n, which is a fraction-
order gradient field whose f ′

n[z(t )] and f ′′
n [z(t )] are

f ′
n[z(t )] = [|z(t )|1/n]

′ = z(t )[|z(t )|](1/n)−2

n
,

f ′′
n [z(t )] = [|z(t )|1/n]

′′ = − (n − 1)[|z(t )|](1/n)−2

n2
. (18)

These f ′
n[z(t )] and f ′′

n [z(t )] can be substituted into the
corresponding expressions to calculate the phase evolution
results. From the derivation, gn fn(z) can be a random gradient
function determined by real applications.

For simplicity, we will focus on the phase diffusion under
a single-order nonlinear gradient field B(z, t ) = B0 + gn(t )zn,
where n is an integer, in the rest of this paper. An even-order
gradient field, the parabolic gradient field (n = 2), and an
odd-order gradient field, the cubic gradient field (n = 3), will
be used as examples for the calculations in this paper. The
parabolic field has been studied in many reports [10,12,13].

B. Phase diffusion under B(z, t ) = B0 + gn(t )zn

The results in the previous section can be applied
to a single-order nonlinear gradient field B(z, t ) = B0 +
Bg(z), Bg(z) = gn(t )zn. From Eqs. (8), (11), and (16), we have
the following:

φshift,z0 (ttot ) = Kn(ttot )(z0)n, (19)

Dφ (t ) = 〈([Kn(ttot ) − Kn(t )]{[z(t )]n}′)2〉D
= n2[Kn(ttot ) − Kn(t )]2

〈
[z(t )]2n−2

〉
D, (20)

vfloat (t ) = [K (ttot ) − K (t )]{[z(t )]n}′′D
= [Kn(ttot ) − Kn(t )]n(n − 1)[z(t )]n−2D. (21)

(i) When n is even, {[z(t )]n}′′ is an even function, or z2
0 �

2Dt, from Eqs. (12) and (21), we have

〈φfloat (ttot )〉 =
∫ ttot

0
vfloat (t )dt

=
∫ ttot

0
[Kn(ttot ) − Kn(t )]n (n − 1)〈[z(t )]n−2〉Ddt .

(22)

(ii) When n is odd, {[z(t )]n}′′ is an odd function, and z2
0 <

2Dt , from Eqs. (12) and (21), we have

〈φfloat (ttot )〉± = cn,±,z0

∫ ttot

0
[Kn(ttot ) − Kn(t )]n(n − 1)

× 〈[z(t )]n−2〉Ddt . (23)

The total phase variance can be calculated based on:

〈[φ − φshift,z0 (ttot )]
2〉 = 〈[φfloat (ttot ) + φdiff (ttot )]

2〉
= 〈[φfloat (ttot )]

2〉 + 〈[φD(ttot )]
2〉

+ 2〈φfloat (ttot )〉〈[φD( ttot )]〉
≈ 〈[φfloat (ttot )]

2〉 + 〈[φD(ttot )]
2〉. (24)

The NMR signal is the average magnetization for spins
starting from z0. When n �= 2, φfloat (ttot ) follows a certain type
of distribution. If we assume that φ − φshift,z0 (ttot ) follows a
Gaussian distribution, we have

S(ttot ) = exp[iφshift,z0 (ttot )]|S(ttot )|, (25a)

where

|S(ttot )| = exp

(
{〈[φfloat (ttot )]2〉 + 〈[φD(ttot )]2〉}

2

)
,

n �= 2, GPD. (25b)

When n = 2, φfloat (ttot ) does not follow a distribution. If we
assume that φD(ttot ) follows a Gaussian distribution, we have

S(ttot ) ≈ exp{i[φfloat (ttot ) + φshift,z0 (ttot )]}|S(ttot )|, (26a)

where

|S(ttot )| = exp

{
−〈[φD(ttot )]2〉

2

}
, n = 2, GPD. (26b)

However, the correlation between the coefficients of the
individual jump steps of the phase diffusion φfloat (ttot ) and
φD(ttot ) may make the diffusion deviate from Gaussian dif-
fusion. Other types of distributions, such as the Lorentzian
or long-tailed phase distribution, could be assumed. The
linewidth of the distribution could be

ϒ (ttot ) =
⎧⎨
⎩

1
π

√
{〈[φfloat (ttot )]2〉+〈[φD (ttot )]2〉}

2 , n �= 2,

1
π

√
〈[φD (ttot )]2〉

2 , n = 2.
(27)

The amplitude of the signal attenuation |S(ttot )| in
Eqs. (26a) and (26b) will be replaced as

|S(ttot )| =
⎧⎨
⎩

exp [−ϒ (ttot )], Lorentzian phase distribution,

Eα[−ϒ (ttot )],
long − tailed fractional phase
distribution .

(28)

where Eα[−ϒ(ttot )] is a Mittag-Leffler-type attenuation. From
our simulation, the signal attenuation for both parabolic field
and cubic field at short times is Gaussian, and then it changes
to Lorentzian at intermediate times; at both intermediate times
and long times, it obeys Mittag-Leffler-type attenuation. In

Eq. (27),
√

{〈[φfloat (ttot )]2〉+〈[φD (ttot )]2〉}
2 or

√
〈[φD (ttot )]2〉

2 is used to
obtain ϒ(ttot ), which is based on the following considerations:
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TABLE I. Three different field gradient pulses.

Kn(ttot ) �= 0, diffusion under π

2 − δ rf pulse sequence with a steady gradient field, ttot = δ

Kn(ttot ) − Kn(t ) = γ gnδ−γ gnt
K (ttot ) = 0, diffusion under π

2 − δ−π − δ rf pulse sequence with a steady gradient field (PGSE or PGSTE, � = δ), ttot = 2δ

−Kn(t ) =
{−γ gnt, 0 � t � δ,

−γ gn(2δ−t ), δ � t � 2δ.

K (ttot ) = 0, diffusion under pulsed gradient field (PGSE or PGSTE, � � δ), ttot = � + δ

−Kn(t ) =
⎧⎨
⎩

−γ gnt, 0 � t � δ,

−γ gnδ, δ � t � �,

−γ gn(� + δ−t ), � � t � � + δ.

First, the width of the half maximum is ϒ(ttot ) in a Lorentzian
distribution, while in a Gaussian distribution, it is proportional

to
√

{〈[φfloat (ttot )]2〉+〈[φD (ttot )]2〉}
2 or

√
〈[φD (ttot )]2〉

2 . Here, ϒ(ttot ) can
provide a signal attenuation that agrees with the simulations.
Additionally, the diffusion here is somewhat like the diffu-
sion along a curvilinear path, which gives a MLF-type PFG

signal attenuation based on phase variance
√

〈[φD (ttot )]2〉
2 [24].

Similar phase variance dependence may be possible, although
the situation is different here, where the diffusion coefficient
distribution is affected by the curvilinear path. With more
effort, theoretical signal attenuation may be derived based on
the curvilinear path-dependent diffusion coefficient.

We calculate the phase diffusion under three different
gradient pulses: (a) Kn(ttot ) �= 0, diffusion under π

2 − δ ra-
diofrequency (rf) pulse sequence with a steady gradient field;
(b) Kn(ttot ) = 0, diffusion under π

2 − δ−π − δ rf pulse se-
quence with a steady gradient field (PGSE or PGSTE, � =
δ); and (c) Kn(ttot ) = 0, diffusion under pulsed gradient field
(PGSE or PGSTE, � � δ). The Kn(ttot ) − Kn(t ) or Kn(t ) val-
ues are listed in Table I.

One even-order field, the parabolic field n = 2, and one
odd-order field, the cubic field n = 3, will be used as examples
for the theoretical calculations.

1. Parabolic field n = 2, an even gradient field f ′′
n[z(t )] does not

depend on z(t )

Based on Eqs. (15)–(18), we get

φshift,z0 (ttot ) = K2(ttot )z
2
0, (29)

Dφ (t ) = 4[K2(ttot ) − K2(t )]2〈[z(t )]2〉D 〈[z(t )]2〉=z2
0+2Dt→ Dφ (t )

= 4[K2(ttot ) − K2(t )]2(z2
0 + 2Dt

)
D, (30)

vfloat (t ) = 〈[K (ttot ) − K (t )]{[z(t )]2}′′〉D
= 2[K (ttot ) − K (t )]D. (31)

Because {[z(t )]2}′′ = 2, a constant, it is not necessary to
consider the distribution for vfloat (t ). Equations (30) and (31)
can be substituted into Eqs. (9) and (12) to calculate the float
phase and the phase variance. For K (ttot ) = 0, diffusion under
pulsed gradient field (PGSE or PGST, � � δ), ttot = � + δ,
we have

φfloat (ttot ) = −2γ g2Dδ�, (32)

and

〈[φD(ttot )]
2〉 = 8(γ g2)2D2

{
�2δ2 − δ4

2
+ 1

6
[(� + δ)4

− 6(� + δ)2�2 + 8(� + δ)�3 − 3�4]

}

+ 8(z0)2(γ g2δ)2D

(
� − 1

3
δ

)
. (33a)

Under short gradient pulse (SGP) approximation,

〈[φD(ttot )]
2〉SGP ≈ 8(γ g2)2D2�2δ2 + 8(z0)2(γ g2δ)2D�.

(33b)

For z0 = 0,

〈[φD(ttot )]
2〉 = 8(γ g2)2D2

{
�2δ2 − δ4

2
+ 1

6
[(� + δ)4

− 6(� + δ)2�2 + 8(� + δ)�3 − 3�4]

}
,

(34a)

and

〈[φD(ttot )]
2〉SGP ≈ 8(γ g2)2D2�2δ2. (34b)

The signal is

S(ttot ) = exp{−i2γ g2Dδ�}|S(ttot )|, (35)

where |S(ttot )| is described by Eq. (26b) for GPD and Eq. (28)
for Lorentzian and long-tailed phase distributions.

The calculated φD(ttot ), φfloat (ttot ), and φshift,z0 (ttot ) with
various conditions and the corresponding magnetizations for
NMR or MRI gradient experiments affected by the parabolic
field are listed in Table II. The results for � � δ can be
reduced to the result for � = δ presented in Table II.

2. Cubic field n = 3, an odd gradient field f ′′
n[z(t )] depends on z(t )

Based on Eqs. (8) and (16), we get

φshift,z0 (ttot ) = K3(ttot )z
3
0, (36)

Dφ (t ) = 9[K3(ttot ) − K3(t )]2〈[z(t )]4〉D[z(t )]4=12Dtz2
0+12(Dt )2+z4

0−−−−−−−−−−−−−−−−−−−−→

Dφ (t ) = 9[K3(ttot ) − K3(t )]2
[
12Dtz2

0 + 12(Dt )2 + z4
0

]
D.

(37a)
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TABLE II. Effective phase diffusion under parabolic gradient field n = 2.

z0 �= 0 z0 = 0

K2(ttot ) �= 0, diffusion under π

2 − δ rf pulse with a steady gradient field, ttot = δ

φfloat ( ttot ) γ g2Dδ2

〈[φD( ttot )]2〉 8
3 (z0)2(γ g2)2Dδ3 + 4

3 (γ g2)2D2δ4 4
3 (γ g2)2D2δ4

〈[φ − (z0)2γ g2δ]
2〉 (γ g2)2D2δ4 + 8

3 (z0)2(γ g2)2Dδ3 + 4
3 (γ g2)2D2δ4 (γ g2)2D2δ4 + 4

3 (γ g2)2D2δ4** replicates the result in
Ref. [12]

S(ttot ) exp{i[γ g2Dδ2 + (z0)2γ g2δ]}exp{−〈[φD( ttot )]
2〉/2},

which replicates Eq. (3.9) in Ref. [10]
exp{iγ g2Dδ2}exp[− 2

3 (γ g2)2D2δ4]

K2(ttot ) = 0, diffusion under π

2 − δ−π − δ rf pulse with a steady gradient field (� = δ), ttot = 2δ

φfloat ( ttot ) −2γ g2Dδ2

〈[φD( ttot )]
2〉 16

3 (z0)2(γ g2)2Dδ3 + 32
3 (γ g2)2D2δ4 32

3 (γ g2)2D2δ4

〈φ2〉 4(γ g2)2D2δ4 + 16
3 (z0)2(γ g2)2Dδ3 + 32

3 (γ g2)2D2δ4 4(γ g2)2D2δ4 + 32
3 (γ g2)2D2δ4, which agrees with

Ref. [12]

S(ttot ) exp{i2γ g2Dδ2}exp{−〈[φD( ttot )]
2〉/2} exp{i2γ g2Dδ2}exp[− 16

3 (γ g2)2D2δ4]; Ref. [12] reported
exp[− 22

3 (γ g2)2D2δ4] = exp[−〈φ2〉/2]; Ref. [10]
reported exp[− 2

3 (γ g2)2D2δ3].

K2(ttot ) = 0, diffusion under pulsed gradient field (PGSE or PGST, � � δ), ttot = � + δ

φfloat ( ttot ) −2γ g2Dδ�

〈[φD( ttot )]2〉 Eq. (32a) Eq. (32b)

〈φ2〉 4(γ g2)2D2δ2�2 + 〈[φD( ttot )]2〉 4(γ g2)2D2δ2�2 + 〈[φD( ttot )]2〉; Ref. [12] gives
6(γ g2)2D2δ2�(�− 2

3 δ)

S(ttot ) exp{i2γ g2Dδ�}|S( ttot )|, Eqs. (33a), (33b), and (35) exp{i2γ g2Dδ�}|S( ttot )|, Eqs. (34a), (34b), and (35)

For z0 = 0 and z0
2 � 2Dt, Dφ (t ) can be approximated as

Dφ (t ) =
{

108[K3(ttot ) − K3(t j )]2D3t2, z0 = 0,

9(z0)4[K3(ttot ) − K3(t j )]2D, z0 � 2Dt .
(37b)

It is not difficult to calculate 〈[φD(ttot )]2〉 based on Eq. (9).
Note 〈[z(t ) − Z0]4〉 �= {[z(t ) − z0]2}2

.

〈[φD(ttot )]
2〉

= 2
∫ ttot

0
9[K3(ttot ) − K3(t )]2

[
12Dtz2

0 + 12(Dt )2+z4
0

]
Ddt .

(38)

Here, {[z(t )]3}′′ = 6z(t ) can be substituted into Eq. (10) to
give

φfloat (ttot ) =
m∑

j=1

[K3(ttot ) − K3(t j )]6z(t j )D�t j

=
m∑

j=1

6[K3(ttot ) − K3(t )][z(t ) − z0]D�t j

+
m∑

j=1

6[K3(ttot ) − K3(t )]z0D�t j

= φfloat,d (ttot ) + φfloat,s(ttot ), (39a)

where

φfloat,d (ttot ) =
m∑

j=1

6[K3(ttot ) − K3(t )][z(t ) − z0]D�t j, (39b)

and

φfloat,s(ttot ) =
m∑

j=1

6[K3(ttot ) − K3(t )]z0D�t j . (39c)

By setting Z (t ) = z(t ) − z0, γ ′ = 6D, g′(t ) =
[K3(ttot ) − K3(t )],

φfloat,d (ttot ) =
∫ ttot

0
γ ′g′(t )Z (t )dt . (39d)

Because Z (t ) is the diffusing distance from the starting
point in the new relative reference, the phase evolution of∫ ttot

0 γ ′g′(t )Z (t )dt can be calculated based on the effective
phase diffusion method, where

∫ ttot

0 γ g(t )Z (t )dt has been
obtained or based on Eqs. (7) and (9) presented in this
paper. Note, in the calculation, K ′

3(ttot ) �= 0 for K ′
3(t ) =∫ t

0 γ ′g′(t ′)dt ′.
The calculated results are listed in Table III.
The signal affected by the cubic field is

S(ttot ) =
{

exp[i(z0)3K3(ttot )]|S(ttot )|, K3(ttot ) �= 0,

|S(ttot )|, K3(ttot ) = 0,
(40)

where |S(ttot )| is described by Eq. (25b) for GPD and Eq. (28)
for Lorentzian and long-tailed phase distributions. From
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TABLE III. Effective phase diffusion under cubic gradient field n = 3.

z0 �= 0 z0 = 0

K3(ttot ) �= 0, diffusion under π

2 − δ rf pulse with a steady gradient field, ttot = δ

〈[φfloat (ttot )]2〉 (3γ g3z0Dδ2)2 + 18
5 (γ g3)2D3δ5, 〈[φfloat,d (ttot )]2〉 =

18
5 (γ g3)2D3δ5, 〈[φfloat,s(ttot )]2〉 = (3γ g3z0Dδ2)2

18
5 (γ g3)2D3δ5

〈[φD( ttot )]2〉 6(z0)4(γ g3)2Dδ3 + 18(z0)2(γ g3)2D2δ4 + 36
5 (γ g3)2D3δ5

〈[φ − (z0)3γ g3δ]
2〉 〈[φdrift (ttot )]2〉 + 〈[φD( ttot )]2〉

S(ttot ) exp[i(z0)3K3(ttot )] |S( ttot )| exp
[− 54

5 (γ g3)2D3δ5
]

K3(ttot ) = 0, diffusion under π

2 − δ−π − δ rf pulse with a steady gradient field (� = δ), ttot = 2δ

〈[φfloat (ttot )]2〉 [φfloat,d (ttot )]2 + 〈[φfloat,s(ttot )]2〉, 〈[φfloat,d (ttot )]2〉 =
276
5 (γ g3)2D3δ5, 〈[φfloat,s(ttot )]2〉 = (6γ g3z0Dδ2)2

276
5 (γ g3)2D3δ5

〈[φD( ttot )]2〉 [ 792
5 D3δ3 + 144(z0)2D2δ2 + 12(z0)4Dδ](γ g3δ)2 792

5 (γ g3)2D3δ5

〈φ2〉 〈[φdrift (ttot )]
2〉 + 〈[φD( ttot )]

2〉
S(ttot ) |S(ttot )|

K3(ttot ) = 0, diffusion under pulsed gradient field (PGSE or PGST, � � δ), ttot = � + δ

〈[φfloat (ttot )]2〉 ≈ [φfloat,d (ttot )]2 + 〈[φfloat,s(ttot )]2〉, 〈[φfloat,d (ttot )]2〉 =
2(γ g3)2D3( 3

5 δ5 − 3�δ4 + 18�2δ3 + 12�3δ2), 〈[φfloat,s(ttot )]
2〉

= (6γ g3z0D�δ)2

2(γ g3)2D3( 3
5 δ5 − 3�δ4 + 18�2δ3 + 12�3δ2)

〈[φD(ttot )]2〉 [− 108
5 D3δ3 + 36D3�δ2 + 72�2D3δ + 72�3D3 − 36(z0)2D2δ2

+ 72(z0)2�D2δ−6(z0)4Dδ + 108(z0)2�2D2

+ 18(z0)4D�](γ g3δ)2

[− 108
5 D3δ3 + 36D3�δ2 + 72�2D2δ

+ 72�3D3](γ g3δ)2

〈φ2〉 〈[φfloat (ttot )]2〉 + 〈[φD(ttot )]2〉
S(ttot ) |S(ttot )|

Table III, we can obtain the total phase variance by the SGP
approximation as

〈[φ(ttot )]
2〉SGP ≈ [72�3D3 + 72(z0)2�D2δ − 6(z0)4Dδ

+ 108(z0)2�2D2 + 18(z0)4D�](γ g3δ)2

+ 24(γ g3δ)2D3�3 + (6γ g3z0D�δ)2, (41)

which can be substituted into Eqs. (25a), (25b), and (28) to
obtain the corresponding SGP signal.

III. SIMULATION

Numerical simulation has been a convenient tool for ver-
ifying the theoretical results of PFG diffusion under the
influence of linear gradient fields [25]. Here, one-dimensional
discrete random walk simulations were performed to verify
the theoretical results obtained in this paper. In the simula-
tion, the jump length is ε, the jump waiting time is τ , and
real-space diffusion constant D = ε2

2τ
. The accumulating spin

phase associated with the diffusion path is recorded based on∑m
i=1 γ�tign(ti )zn. The PFG signal attenuation in the simula-

tion can be obtained by averaging over all the walkers in the
simulation [25].

The simulation counts the frequency of the particles ap-
pearing in each range of the coordinate in the phase space at
the last record time of each random walk. The frequency is
then divided by the width of the range to give the average

frequency. The average frequency divided by the total number
of random walks gives the probability distribution function.
A similar strategy has been applied to obtain the real-space
probability density distribution in Ref. [26]. For each simula-
tion, the total time span for each random walk is 4000τ , and
20 k repetitions of random walks are used.

IV. RESULTS AND DISCUSSION

An effective phase diffusion method for describing non-
linear gradient field experiments has been developed in this
paper. Compared with traditional methods, this method has
obvious advantages: First, it can treat random shape gradient
pulses with random-order gradient fields, including integer
orders, noninteger orders, or even fraction orders, while some
traditional methods, such as the Green function method [10]
and the method in Ref. [12], currently only deal with the
parabolic field n = 2. Second, it reveals that three signif-
icantly different types of virtual phase evolutions φD(ttot ),
φfloat (ttot ), and φshift,z0 (ttot ) exist in nonlinear gradient field
experiments. For n = 2, the float phase φfloat (ttot ) is a drift
motion, which changes the final phase shift of the signal but
does not affect its amplitude, while for n �= 2, φfloat (ttot ) is
a random walk, which affects the total phase variance and,
consequently, the signal amplitude. Third, the approximate
total phase variances can be obtained, and their correspond-
ing signal attenuations agree with the simulations. Fourth,
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this method can handle diffusion starting from any location,
the origin, or any other place. Theoretical treatment of the
diffusion starting from the origin is more complicated than
that from nonorigin sites because [z(t )]n cannot be approxi-
mated as zn

0, which is a barrier that many traditional theoretical
methods cannot overcome. However, diffusion starting from
or near the origin is an important part of the nonlinear gradient
field phenomenon.

These three types of virtual phase evolutions φD(ttot ),
φfloat (ttot ), and φshift,z0 (ttot ) are significantly different. Here,
φD(ttot ) and φfloat (ttot ) result from f

′
n[z(t )] and f ′′

n [z(t )], the
first and second derivatives of the gradient field, respectively.
Also, φfloat (ttot ) could either be a drift motion or a phase
diffusion. When f ′′

n [z(t )] is a constant, it is a drift motion,
such as in the parabolic field case. However, it is a phase
random walk when f ′′

n [z(t )] is a z(t )-dependent function, such
as in the cubic field case. The φshift,z0 (ttot ) is a z0-dependent
nonrefocusing phase for K (ttot ) �= 0, a pure phase shift in the
final signal.

Recognizing and distinguishing the three types of phase
evolutions are essential to determining the correct NMR sig-
nal expression. The reported literature does not have clear
concepts of these three types of phase evolutions. The effect
of φfloat (ttot ) is missed or misplaced in the NMR signal ex-
pression in traditional theoretical results, which can lead to
the wrong signal phase or amplitude. The effects of φfloat (ttot )
on the NMR signal are significantly different between the
drift motion and the phase random walk. In the drift mo-
tion, as shown in Eqs. (26a) and (26b), φfloat (ttot ) affects
the signal phase but not the signal attenuation amplitude.
In contrast, the phase random walk contributes to the total
phase variance which affects the signal attenuation ampli-
tude, as shown in Eqs. (25a) and (25b). Figure 1 shows
that, at small attenuation, for spins starting diffusion from
the origin of the nonlinear gradient field, the signal atten-
uation amplitude in the parabolic and cubic fields based
on the expressions listed in Tables II and III is in good
agreement with simulations. For the parabolic field, both the
theoretical and simulation results in this paper indicate that
the drift phase does not affect the amplitude of the signal
attenuation, while Ref. [12] does not distinguish φfloat and
φD and gives exp[− 7

6 (γ g2)2D2δ4] and exp[− 22
3 (γ g2)2D2δ4]

for signal attenuation in one- and two-pulse experiments, re-
spectively. These expressions overcount the signal attenuation
and disagree with the simulations, as shown in Figs. 1(a)
and 1(b), while exp{−〈[φD (ttot )]2〉

2 }, exp[− 2
3 (γ g2)2D2δ4], and

exp[− 16
3 (γ g2)2D2δ4] obtained in this paper agree with the

simulation. The differences in the phase variances between
the results in Ref. [12] and this paper are equal to (γ g2)2D2δ4

and 4(γ g2)2D2δ4 for one- and two-pulse sequences, respec-
tively, which exactly equal 〈[φfloat (ttot )]2〉. Therefore, the total
phase variance in Ref. [12] should include both 〈[φfloat (ttot )]2〉
and 〈[φfloat (ttot )]2〉, which misplace the drift phase and
thus lead to the overcounted signal attenuation. Reference
[10] gives exp[ig2Dδ2 − 2

3 (γ g2)2D2δ4] for the NMR signal
expression, the same as the result for one gradient field pulse
sequence obtained in this paper. From the above discussion,
it is clear that the discrepancy between Refs. [10] and [12]
results from situations where φfloat (ttot ) is placed in the NMR

signal expression, in the phase shift, or the attenuation. Except
for the parabolic field, exp{−〈[φfloat (ttot )]2〉+〈[φD (ttot )]2〉

2 } should be
used as the signal attenuation expression; note it needs to
replace φfloat with φfloat,d in even-order field where φfloat,s only
affects phase shift.

The φfloat (ttot ) results in the oscillatory phase term in the
parabolic field. Traditional methods employing the effective
gradient [10,18] often deal with the first derivative of the field
but are seldom aware of the effect of the second derivative
of the magnetic field on the signal. The effect of φfloat (ttot )
has appeared in Ref. [10] but only in the case of diffusion
under a constant gradient pulse, where an extra oscillatory
phase term ig2Dt2 is presented, which is the same as φfloat (ttot )
for the Kn(ttot ) �= 0 case in Table II. However, Ref. [10] does
not have similar oscillatory terms in the results of two-pulse
experiments with K (ttot ) = 0. From Table II, for K (ttot ) = 0,
the phase shifts from φfloat (ttot ) are −2γ g2Dδ�. The same
result as −2γ g2Dδ� has also been obtained in Ref. [27] by
averaging (summarizing) all possible phases along the dif-
fusion paths. However, Ref. [27] only obtained the average
phase shift for diffusion starting from the origin, which can
be generalized to starting from a random position, as shown
in Appendix. The results clearly show that φfloat (ttot ) are
−2γ g2Dδ�, which does not depend on the starting position
z0. Here, −2γ g2Dδ� reduces to −2γ g2Dδ2 when � = δ. It
is essential to include φfloat (ttot ) in analyzing the NMR signal.
It is possible to use φfloat,s(ttot ) or φfloat (ttot ) = −2γ g2Dδ� to
measure the diffusion coefficient in the even-order field for a
short time. Reference [27] has employed the parabolic field
to measure the diffusion coefficient of anisotropic diffusion.
When time increases, the phase distribution is asymmetric, as
shown in Fig. 2. The asymmetry should come from the corre-
lation between the consecutive jumps; the phase jump length
is z(t ) dependent. Along the spin diffusion path in real space,
a step with long z(t ) is followed by another step with long
z(t ), which modifies the phase jump lengths. In the real NMR
signal, the measured phase shift is not the average phase but is
the phase of the average magnetization vector, which depends
on arctan 〈sin(−φ)〉

〈cos(−φ)〉 . In addition to the float phase φfloat (ttot ), the
shift due to the asymmetry around the phase distribution peak
affects the total phase shift for S(ttot ) in Eqs. (26a) and (35).
However, an analytical expression for the shift due to both
the float phase evolution and the asymmetry is not currently
available.

The phase distributions in even and odd gradient fields are
different. Figure 2 shows that the phase distribution is asym-
metric in the parabolic field. The left side of the distribution
peak looks Gaussian, but the right side looks like a Lorentzian
or long-tailed distribution. Meanwhile, the phase distribution
in the cubic field is Lorentzian or long tailed. The phase
shifts obtained in even-order gradient fields are all positive or
negative and symmetric around the origin of the gradient field.
However, the populations of phase distribution on different
sides of the distribution peak are asymmetric. While the phase
shifts under odd-order gradient fields are asymmetric around
the origin of the gradient field, their populations of phase
distribution are symmetric around the distribution peak.

The Lorentzian or long-tailed phase distribution shown in
Fig. 2 results in non-Gaussian signal attenuation. Unlike the
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. Comparison of theoretical nuclear magnetic resonance (NMR) signal attenuations with random walk simulations. Diffusion
affected by the parabolic field, where (a)–(c) g2 = 16 T/cm2 and (d)–(f) g3 = 704 T/cm3. �−δ = 20 ms is used for (c) and (f), and
γ = 2.675 × 108 rad/s/T, D = 2 × 10−9 m2/s is used for (a)–(f). The signal attenuation obeys Gaussian attenuation for a short time, then
changes to Lorentzian or Mittag-Leffler function (MLF) attenuations.

linear gradient field, for diffusion starting from the origin, the
attenuation deviates from Gaussian when the diffusion time is
not short. As shown in Fig. 1, the Gaussian attenuation only
works for a very short period. After that period, the attenuation
changes to Lorentzian and MLF attenuation [7]. The theoreti-
cal values of MLF attenuation are evaluated based on the Pade
approximation [28]. Equation (28) for Lorentzian and MLF
attenuation is not from directly theoretical derivation but is
proposed based on the phase distribution of the simulation.

The Mittag-Leffler attenuation is very close to the
Lorentzian attenuation at small attenuation. This phenomenon
is reasonable because, in a short time, ϒ(ttot ) is small, and

the Mittag-Leffler function Eα[−ϒ(ttot )] ≈ exp[− ϒ(ttot )
�(1+α) ]. For

long times, the Mittag-Leffler function attenuates slower than
the exponential function. Traditional methods often assume a
GPD, which has difficulty in interpreting the signal attenua-
tion affected by a nonlinear field. In this paper, Eα[−ϒ(ttot )]
rather than Eα[−�(1 + α)ϒ(ttot )] is used for the attenua-
tion because ϒ(ttot ) rather than �(1 + α)ϒ(ttot ) is obtained
from the phase variance. Currently, it is unsure what value
of the derivative order α should be used. From simulation,
α = 0.75 in Figs. 1(a) and 1(b), 0.5 in Fig. 1(c), and 0.3 in
Figs. 1(d)–1(f). The deviation from Gaussian should result
from the correlation between the jump steps mentioned above.
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(a) (b)

FIG. 2. Phase distribution of spin diffusion under the parabolic and cubic fields from simulation: (a) asymmetric distribution in a constant
parabolic field g2 = 16 T/cm2 and (b) Lorentzian or long-tailed distribution in a pulsed cubic field g3 = 704 T/cm3. Other parameters are
�−δ = 20 ms, δ = 10 ms, γ = 2.675 × 108 rad/s/T, and D = 2 × 10−9 m2/s.

Additionally, the asymmetry causes more complicated devia-
tion in the even-order gradient field. Currently, for nonlinear
gradient field, it is still a challenge to directly derive non-GPD
and the corresponding signal attenuations, such as Lorentzian
and MLF attenuations. It still needs more research efforts.

Although the long-time phase distribution deviates from
the Gaussian distribution, Eqs. (9), (24), and (39d) are still
good approximation for obtaining the phase variance because
the phase diffusion could be viewed as a multiple-component
diffusion. Each of the diffusions obeys a Gaussian diffusion.
The phase diffusion coefficient is the average of the diffusion
coefficients of all diffusion components. Thus, the Lorentzian
or MLF attenuation signal attenuation based on the total vari-
ance still shows good agreement with the simulation.

When z0
2 � 2Dt , the signal attenuation is Gaussian, as

shown in Fig. 3. The Gaussian attenuation is reasonable be-
cause the jump length modifier [z(t )]n ≈ zn

0, which is constant
at each jump step, and the random walk can be approxi-
mated as a Gaussian random walk. As the measured NMR
phase depends on arctan 〈sin(−φ)〉

〈cos(−φ)〉 , the contribution to the total
phase depends on how the final phase appears in the phase
region between −π and π , rather than the absolute phase

values. Therefore, for spins starting diffusion far away from
the origin, the effect of the float phase on the total phase
shift still cannot be neglected for an even-order gradient field,
although its absolute value is smaller than that of the diffusion
phase.

The nonlinear gradient field has certain advantages
because 〈[z(t )]2(n−1)〉 = 2 × 1√

4πDt
(2n−3)!!

2n( 1
4Dt )

n−1

√
π
1

4Dt
∝ (Dt )n−1,

which can be substituted into Eqs. (9) and (20) to yield
〈φ2〉 ∝ Dntn+2. Therefore, for an n-order nonlinear gradient
field, the phase variance for the spins starting diffusion from
the origin should be closely related to 〈φ2〉 ∝ Dntn+2. Such a
higher-exponent dependence could provide increased contrast
factors for diffusion coefficient and time in NMR and MRI.
These dependencies are different at the origin and nonorigin
positions. Selecting origin or nonorigin positions should be
based on the need for specific experiments.

In these results, the signal expression S(ttot ) describes spins
starting diffusion from the same position z0. In actual applica-
tions, this could be obtained by selective pulses or specific
samples. In typical experiments, the signal should come from
diffusion starting from all places in the sample. The total

(a) (b)

FIG. 3. Signal attenuation under the parabolic and cubic fields for z0
2 � 2Dt from the simulation: (a) parabolic field g2 = 0.4 ×

10−4 T/cm2, (b) cubic field g3 = 1.5 × 10−6 T/cm3. Other parameters are z0 = 0.1 m, �−δ = 20 ms, = 2.675 × 108 rad s−1 T−1, and
D = 2 × 10−9 m2/s.
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signal will be Swhole sample(ttot ) ∝ ∫ zb

za
Sz(ttot )dz, where Sz(ttot )

is the signal S(ttot ) presented in this paper.
In this paper, the focus is on providing general theoretical

expressions for nonlinear gradient fields. The parabolic and
cubic fields are used as examples, and simulations are used to
verify the theoretical results. Further, the general expressions
can be applied to calculate the signal attenuation for nonorigin
z0

2 ∼ 2Dt , which is not pursued here. More efforts can be
applied to use this method to investigate various situations,
such as higher-order gradient fields. Additionally, this method
can be extended to handle fractional diffusion. In the prac-
tical application of the parabolic field, x2, y2, and z2 could
coexist [27], which can be calculated straightforwardly by the
method proposed here. This method provides a broader view
of phase evolution under the influence of a nonlinear gradient
field, including various aspects: phase diffusion coefficient,
phase variance, phase distribution, and signal attenuation.
This method is versatile. The results can help develop ad-
vanced nonlinear gradient experimental techniques for NMR
and MRI.

APPENDIX: ACCUMULATED PHASE SHIFT FOR SPIN
STARTING FROM RANDOM POSITION

In Ref. [27], the phase shift from the origin is obtained
by averaging all possible phases along the diffusion paths,

which is

〈φ〉 =
∫ ttot

0
γ g2(t )

(∫ ∞

−∞
[z(t )]2 1√

4πDt
exp

{
− [z(t )]2

4Dt

})
dt,

(A1)

which gives −2γ g2Dδ� for K2(ttot ) = 0, diffusion under
pulsed gradient field (PGSE or PGST, � � δ), ttot = � + δ.
Equation (A1) can be generalized to all spins starting diffusion
from a random position as

〈φ〉 =
∫ ttot

0
γ g2(t )

(∫ ∞

−∞
[z(t )]2 1√

4πDt
exp

{
− [z(t ) − z0]2

4Dt

})
dt

=
∫ ttot

0
γ g2(t )

{∫ ∞

−∞
[(z0)2 + 2Dt]

}
dt

K2(ttot )=0→

− 2γ g2Dδ�. (A2)

Therefore, 〈φ〉 is always −2γ g2Dδ� regardless of the
starting position in the parabolic field, which agrees with
φfloat (ttot ) obtained in this paper. This generalization strategy
can be applied to obtain the phase shifts affected by different
order gradient fields. The average phase shift exists in all
even-order gradient fields which, however, is not the measured
phase shift in NMR experiments. The measured phase shit is
the phase of the averaged magnetization vector, depending on
arctan 〈sin(−φ)〉

〈cos(−φ)〉 .
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