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Statistical physical view of statistical inference in Bayesian linear regression model
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This paper considers similarities between statistical physics and Bayes inference through the Bayesian linear
regression model. Some similarities have been discussed previously, such as the analogy between the marginal
likelihood in Bayes inference and the partition function in statistical mechanics. In particular, this paper considers
the proposal to associate discrete sample size with inverse temperature [C. H. LaMont and P. A. Wiggins,
Phys. Rev. E 99, 052140 (2019)]. The previous study suggested that incorporating this similarity motivates
the derivation of analogs of thermodynamic functions such as energy and entropy. The study also anticipated
that those analogous functions have potential to describe Bayes estimation from physical points of view and
to provide physical insights into mechanisms of estimation. This paper incorporates a macroscopic perspective
as an asymptotics similar to the thermodynamic limit into the previous suggestion. Its motivation stems from
the statistical mechanical concept of deriving thermodynamic functions that characterize macroscopic properties
of macroscopic systems. This incorporation not only allows analogs of macroscopic thermodynamic functions
to be considered but also suggests a candidate for an analog of inverse temperature with continuity, which is
partly consistent with the previous proposal to associate the discrete sample size with inverse temperature. On
the basis of this suggestion, we analyze analogs of macroscopic thermodynamic functions for a Bayesian linear
regression model which is the basis of various machine learning models. We further investigate, through the
behavior of these functions, how Bayes estimation is described from the perspective of physics and what kind of
physical insight is obtained. As a result, the estimation of regression coefficients, which is the primary task of
regression, appears to be described by the physical picture of balance between decreasing energy and increasing
entropy as in equilibrium states of thermodynamic systems. More specifically we observe the physical view of
Bayes inference as follows: the estimation succeeds where the effect of decreasing energy is dominant at low
temperature. On the other hand, the estimation fails where the effect of increasing entropy is dominant at high
temperature.

DOI: 10.1103/PhysRevE.110.034118

I. INTRODUCTION

Interdisciplinary studies have made progress in physics and
machine learning [1,2]. The studies arise in the application
of machine learning techniques to issues in physics such as
detection of phase transition [3–5], neural network based ap-
proaches to quantum many-body systems [6–8], and neural
network representation of potential-energy surfaces [9,10].
Another direction is to apply methods from physics to prob-
lems in machine learning and related fields such as statistical
learning and information theory [11–13]. For example, we
mention statistical mechanical analysis of the Hopfield model
[14,15], storage capacity of neural networks [16,17], and the
performance of error-correcting code [18,19]. Applications of
the maximum entropy principle in physics [20,21] to machine
learning and related areas have also been influential. The prin-
ciple was applied to construction of the prior distribution in
Bayes inference [22–25], natural language processing [26,27],
and density estimation [20,28]. The task of density estimation
was also addressed by a field-theoretic approach [29–33].

Studies of importing physical methods into machine learn-
ing are performed through similarities between quantities in
machine learning and those in physics. In particular, pre-
vious studies have indicated similarities between statistical

physics and Bayes inference, which is a framework to execute
machine learning and statistical inference. For example, a fre-
quently employed analog is between the marginal likelihood
in Bayes inference and the partition function in statistical
mechanics [2,12,30]. In addition, several studies have been
concerned with finding an analog which plays the role of
temperature in Bayes inference or models. References [25,34]
proposed that sample size corresponds to inverse temperature.
The correspondence was also indicated in decision making
associated with immune response [35] and network models
for various memory strategies [36]. Our attention is drawn
to what this correspondence provides. Reference [25] antic-
ipated it as follows: Incorporating the correspondence allows
us to define analogs of thermodynamic functions such as free
energy, energy, and entropy for the Bayesian model under
consideration. By analyzing properties of those analogous
functions, we have the prospect of gaining new insights and
into the mechanisms of estimation, learning, and inference
associated with the Bayesian model under consideration from
physical points of view.

Given the suggestion associated with temperature, several
interests arise. The first is to bring a macroscopic perspective
into the previous suggestion and perform the analysis with
an analog of inverse temperature. More precisely, we are
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concerned with investigating the analogs of thermodynamic
functions with macroscopic properties of the Bayesian linear
regression model. Statistical mechanics essentially deals with
macroscopic systems that are huge enough to be described
by thermodynamics. It especially provides the procedure for
obtaining thermodynamic functions that characterize macro-
scopic properties of macroscopic systems from a microscopic
point of view. The previous study suggested that analogous
thermodynamic functions for Bayes models can be derived
by using the correspondence between sample size and inverse
temperature together with other similarities [25]. However it
has not been taken into account that thermodynamic func-
tions provided by statistical mechanics are physical quantities
which characterize macroscopic properties, obtained as a re-
sult of applying statistical mechanics to macroscopic systems.
This point motivates us to incorporate the macroscopic per-
spective into the previous suggestion. The second interest
is the difference that the inverse temperature is a continu-
ous quantity while the sample size is discrete. The third,
together with the above interests, is to analyze thermodynamic
functions with macroscopic properties of the Bayesian linear
regression model, which is the basis of various machine learn-
ing methods; from the behavior of those analogous functions
we would like to discuss how Bayes estimation is described
from the physical perspective and what kind of physical in-
sight is obtained.

This paper addresses these issues through a Bayesian linear
regression model with the following steps: First, we scrutinize
an asymptotic limit in (Bayes) statistics that suggests the
model is macroscopic or an infinite system, i.e., an analog of
thermodynamic limit to extract macroscopic properties of the
model. For the linear regression model, simultaneous limits
of the sample size and the number of parameters, with their
ratio converging to some constant, was used a the context
reminiscent of thermodynamic limit [37,38]. A similar limit
operation is also used with various names in statistics, such
as the Kolmogorov limit [39] and general asymptotics [40].
Such a limit is employed to investigate the analogous ther-
modynamic functions with macroscopic properties, expecting
it to imply that the model is macroscopic. In that case, we
indicate that the ratio emerging from the limit appears to be a
candidate for analogous inverse temperature with continuity.
Next, combining this analogous inverse temperature with the
other similarities we calculate analogs of free energy, energy,
and entropy for the Bayesian linear regression model. Then
we observe properties of these analogous functions in terms of
analogous temperature dependence and equations which hold
between them. Finally, based on these properties, we investi-
gate what kind of physical insight can be obtained regarding
the estimation mechanism of Bayesian linear regression.

As a result of the above analysis, we see the following.
In thermodynamic systems, the equilibrium state with mini-
mum free energy at a given temperature is determined by the
balance between the effect of decreasing energy and that of
increasing entropy. We observe that estimation of Bayesian
linear regression is also understood in a similar picture us-
ing the analogous thermodynamic functions as follows: The
estimation that succeeds in the regression task is understood
as an equilibrium state dominated by decrease in energy at
low temperatures. Alternatively, the estimation failing in the

task implies an equilibrium state dominated by increase in
entropy at high temperature. Furthermore, there appears to be
a singularity between these estimations in the sense that the
analog of free energy becomes nondifferentiable together with
discontinuity in those of energy and entropy.

The structure of the paper is as follows: In Sec. II, the
Bayesian linear regression model and distribution for data
are provided. In Sec. III, the similarities between Bayes
inference and statistical mechanics are summarized. In par-
ticular, we explain details of the asymptotic limit called, e.g.,
Kolmogorov asymptotics in a context reminiscent of the ther-
modynamic limit. In Sec. IV, we calculate the analogs of free
energy, energy, and entropy in accordance with the statistical
mechanical prescriptions. In Sec. V, we see properties of
those analogous functions and examine what kind of physical
insight we gain for the Bayesian linear regression model from
those properties. In Sec. VI, we discuss our results.

II. MODEL SETTING

A. Bayesian linear regression model

Let {(yμ, xμ); μ = 1, . . . , M} be a set consisting of inde-
pendent observations with sample size M, where yμ ∈ R is
a response variable and xμ ∈ RN represent N-dimensional
explanatory variables. A linear regression models the response
and explanatory variables together with regression coeffi-
cients w = (w1, . . . ,wN )T ∈ RN as follows:

yμ = wTxμ + εμ, μ = 1, . . . , M, (2.1)

where εμ is frequently assumed to be independently and iden-
tically distributed (i.i.d.) like N (εμ|0, σ 2). Here, N (εμ|0, σ 2)
represents normal distribution with mean zero and variance
σ 2. Equation (2.1) is also expressed in multivariate style as
follows:

y = Xw + ε, (2.2)

where y = (y1, . . . , yM )T ∈ RM consists of the observations of
response variable and we define X = (x1, . . . , xM )T ∈ RM×N ,
termed design matrix arraying explanatory variables. The sec-
ond term, ε = (ε1, . . . , εM )T, is an error vector.

A primary task of linear regression is to estimate the regres-
sion coefficients w ∈ RN in Eq. (2.2) given the data (y, X ).
Bayes inference can be used as one of methods to perform
this task. The method requires a likelihood function and prior
distribution for w. The likelihood function is given as

p(y|X ,w) = (2πσ 2)−M/2 exp

(
− 1

2σ 2
‖y − Xw‖2

)
, (2.3)

where ‖ · ‖ means Euclidean norm. This study equips the
regression coefficients with following prior distribution:

p(w) = (2π )−N/2 exp
(− 1

2‖w‖2
)
. (2.4)

The posterior distribution is constructed using Bayes’s for-
mula from the above likelihood function and prior distribution
as follows:

p(w|y, X ) = p(y|X ,w)p(w)

p(y|X )
, (2.5)
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where the denominator is expressed as

p(y|X ) =
∫

dw p(y|X ,w)p(w). (2.6)

Equation (2.6) is called evidence or marginal likelihood in
Bayes inference. The primary task of Bayesian linear re-
gression is achieved by estimating the regression coefficients
w based on Eq. (2.5). We note that this paper employs the
common notation p(·) for the likelihood function, prior distri-
bution, and posterior distribution. The details of distribution
are distinguished by arguments.

B. Probability distribution of data

We set up probability distribution associated with data
(y, X ) in Eqs. (2.1)–(2.3) and (2.5), considering (y, X ) as
random variables. This situation is not realistic in practical
data analysis. However, such a setup is required to address the
subject of this paper explained in Sec. I and to carry out the
theoretical analysis in later sections.

In general, it is not necessarily the case that the response
variable and explanatory variables are linearly connected as
in Eqs. (2.1) and (2.2). However, we assume this is the case
using true regression coefficients v ∈ RN as follows:

yμ = vTxμ + εμ, μ = 1, . . . , M, (2.7)

where εμ is distributed like εμ ∼ N (εμ|0, ς2). As with
Eq. (2.2) from Eq. (2.1), Eq. (2.7) is denoted as

y = Xv + ε. (2.8)

Next, we set distribution for data (y, X ). The notation p(·)
is used for the distribution associated with the Bayesian model
in Sec. II A. To distinguish from that notation, we employ r(·)
for the distribution that represents the data generation process.
A conditional distribution of y ∈ RM given X ∈ RM×N and
v ∈ RN is assumed as follows:

r(y|X , v) = (2πς2)−M/2 exp

(
− 1

2ς2
‖y − Xv‖2

)
. (2.9)

Further, we set the true regression coefficients v ∈ RN to be
distributed as

r(v) = (2π )−N/2 exp
(− 1

2‖v‖2
)
. (2.10)

Finally, each row of the design matrix is assumed to distribute
according to N-dimensional multivariate normal distribution
with mean vector 0N and covariance matrix IN/N . In this case,
the distribution for the design matrix X is

r(X ) =
M∏

μ=1

(
N

2π

)N/2

exp

(
−N

2
‖xμ‖2

)
. (2.11)

Using Eqs. (2.9)–(2.11), the joint probability distribution
of data (y, X ) together with the true regression coefficients
v ∈ RN is given as follows:

r(y, X , v) = r(y|X , v)r(X )r(v). (2.12)

C. Estimation error and asymptotics

As an estimation error that measures whether the task of
Bayesian linear regression is successful or not, one employs

the mean squared error (MSE) per N as follows:

MSE = lim
N,M→∞

1

N
Er(y,X ,v)[‖v − Ep(w|y,X )[w]‖2], (2.13)

where Ep(w|y,X )[w] means the mean of the posterior dis-
tribution [Eq. (2.5)], which is also the Bayes estimate of
the regression coefficients w ∈ RN . We recall that v ∈ RN

represents the true regression coefficients set in Sec. II B.
Equation (2.13), also called the Bayes risk aside from the
asymptotic limit, is a measure of whether the estimation of
regression coefficients w as Ep(w|y,X )[w] is successful or not.
The case of MSE ∼ 0 means success of the regression task,
while MSE � 0 indicates failure of the task as the value of it
is away from zero.

In Eq. (2.13) the following asymptotic limit is included:

N, M → ∞, α(M, N ) = M/N → α ∈ (0,∞), (2.14)

where M represents the sample size and N is the number of
parameters to be estimated, that is, the number of regression
coefficients. We scrutinize this asymptotic limit in statistics
so that the model becomes macroscopic or infinite. A detailed
explanation of Eq. (2.14) is needed because it differs from the
standard asymptotic limit in which one takes the infinite limit
of M with N fixed or tending to zero [40–43]. The asymptotics
of Eq. (2.14) taking the infinite limit of both N and M has
various names in statistics. In linear discriminant analysis, it
is called Kolmogorov asymptotics [39] or double asymptotics
[44,45]. Reference [40] terms it general asymptotics in the
context of constructing an estimator for a covariance matrix
[46]. Additionally, the asymptotic limit and data correspond-
ing to it are also called “large M, large N” and vice versa
[41,42,47–49], in contrast with “large M, small N” or “large
M, fixed N” which are the settings of classical asymptotics.
In statistics, the asymptotics with infinite limit for N as well
as M has been used to analyze asymptotic properties where
N is comparable to M [40–43]. For example, the large N
scenario was adopted to analyze the asymptotic properties of
robust estimates for regression problems [50]. The asymp-
totics was also used for the following issues in statistics in
terms of random matrices: the convergence of the empirical
distribution associated with eigenvalues of random matrix
[51], the estimation of a covariance matrix and its eigenvalues
[47,48], the establishment of a test statistic and its asymptotic
distribution to test mutual independence of random vectors
[52], limiting behavior of largest and smallest eigenvalues of
a covariance matrix [53–55], and limiting behavior of linear
spectral statistics associated with a covariance matrix [56].

III. SIMILARITIES BETWEEN BAYES INFERENCE
AND STATISTICAL MECHANICS

We summarize similarities between Bayes inference and
statistical mechanics used in this paper in Table I. As a pri-
mary analogy, the evidence or marginal likelihood in Bayes
inference has often been used as an analog of the partition
function in statistical mechanics [2,12,30], i.e.,

ZB = p(y|X ), (3.1)

where p(y|X ) is Eq. (2.6). The use of this correspondence in
the present model implies regarding w ∈ RN and Eq. (2.5) as
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TABLE I. The analogs between Bayes inference and statistical mechanics are summarized primarily according to [25,34] except for
Eq. (2.14). Equation (2.14) has been considered a counterpart of the thermodynamic limit in the context of linear regression problems, its
applications, and variations associated with it [15,16,19,37,38,57,58]. There are several points to note for Eq. (2.14). In statistics, the sample
size M and the number of parameters N are often denoted as n and p, respectively. This is also the case for the term “large-M, large-N”. In
statistics, it is often assumed that N/M rather than M/N converges to some constant. Although we adopt the latter, it does not affect results
within this study.

Quantity in Bayes inference Name or concept in Bayes inference Analog in statistical mechanics

w ∈ RN in Eq. (2.5) regression coefficients microstate or configuration
Eq. (2.5) posterior distribution canonical ensemble
Eq. (2.6) marginal likelihood or evidence partition function
Eq. (2.12) population distribution or true distribution for data quenched randomness
Eq. (2.14) Kolmogorov asymptotics [39] thermodynamic limit
ditto double asymptotics [44,45] ditto
ditto general asymptotics [40] ditto
ditto large M, large N [41,42,47,48] ditto
ditto limit in issues of statistics with random matrices [51–56] ditto

microstate or configuration and ensemble, respectively. The
subscript in the left-hand side of Eq. (3.1), the initial of Bayes,
is meant to emphasize that it is just an analog corresponding
to the partition function.

An additional similarity is that one treats the Bayesian
linear regression model as a random system quenched by
the random variables associated with data; that is, (y, X , v)
is regarded as quenched randomness. In the present case,
Eq. (2.12) is regarded as the distribution of quenched
randomness.

Furthermore, a similarity between sample size and inverse
temperature was pointed out in [25,34], and Ref. [25] pro-
posed that this similarity can be used to derive analogs of
thermodynamic functions. In the previous study [25], the
concept that statistical mechanics provides thermodynamic
functions which characterize macroscopic properties was not
taken into consideration. As mentioned in Sec. I, this mo-
tivates us to bring the macroscopic perspective into Bayes
inference and to perform the analysis with analogous inverse
temperature.

Equation (2.14) was considered to be similar to the ther-
modynamic limit in the context of linear regression problems
[37,38]. The asymptotic limit has also been used, in a style
similar to the thermodynamic limit, for other models and
applications of linear regression models [15,16,19,57,58].
Accordingly, this paper employs Eq. (2.14) to investigate
analogs of thermodynamic functions with macroscopic prop-
erties, expecting the asymptotic limit to imply that the model
becomes macroscopic. Reference [39] in statistics indicated
that the converged value of ratio α in Eq. (2.14) becomes
a new parameter of asymptotic theory. The parameter α is
expected to play some role as an analog in statistical me-
chanics, considering the indication by Ref. [39] and that we
are focusing on similarities between Bayes inference and
statistical mechanics. This paper suggests that the parameter
appears to be a candidate for an analog of inverse temperature
with continuity. The suggestion fulfills the second interest,
as mentioned in Sec. I, of seeking an alternative analog
of inverse temperature with continuity instead of discrete
sample size.

We explain reasons leading up to our suggestion in detail.
One expects that the parameter α is treated as a continuous
variable in (0,∞) ⊂ R with the following explanations. Al-
though α(M, N ) = M/N ∈ Q>0 ⊂ (0,∞) before taking the
limit is discrete as a positive rational number for finite positive
integers M, N ∈ Z>0, the set of values of α(M, N ) would
become dense in (0,∞) as M, N → ∞. In this case, we would
treat α as being a continuous variable in (0,∞). This property
does not contradict the property of inverse temperature in
statistical mechanics. Furthermore, the ratio α(M, N ) = M/N
before the limit measures the sample size M per parameters
N , which is partly consistent with the previous proposal to
associate the sample size with inverse temperature [25,34].
For these reasons, adopting Eq. (2.14) considered as the coun-
terpart of thermodynamic limit suggests that α is the candidate
expected to play the analogous role of inverse temperature.

We further explain the physical motivation for introducing
the analogous inverse temperature. When one sees the minus
log-likelihood per sample size as an analogous Hamiltonian,
i.e., H = −M−1 ln p(y|X ,w), M appears in the argument of
the exponential function as follows:

ZB =
∫

dw exp (−M H)p(w) (3.2)

in the correspondence shown in Eq. (3.1). References [25,34]
explained that this appearance of M in Eq. (3.2) is the physical
motivation to propose it as analogous inverse temperature.
In the case of incorporating the macroscopic perspective as
analogous thermodynamic limit, the argument of the exponen-
tial function should (asymptotically) be of the form “N times
something” like

ZB =
∫

dw exp [N × {−α(M, N )H}]p(w). (3.3)

This is for the thermodynamic limit of analogous free energy
per N to exist, shown in Eq. (3.4) shortly. The appearance
of α(M, N ) as in Eq. (3.3) means that its convergence, α,
appears (asymptotically) to be the candidate for analogous
inverse temperature instead of M.
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The above analogs, summarized in Table I, between Bayes
inference and statistical mechanics lead us to realize an equiv-
alent of free energy (density) as follows:

fB(α) = − lim
N,M→∞

1

αN
Er(y,X ,v)[ln ZB] (3.4)

where Er(y,X ,v)[·] expresses that the expectation value is taken
with respect to r(y, X , v) [Eq. (2.12)] [59].

This paper has focused on the sample size ↔ in-
verse temperature correspondence. We note that another
analog of inverse temperature using an external parameter
that extends Bayesian model was also proposed (see the
Appendix).

IV. ANALOGS OF THERMODYNAMIC FUNCTIONS
AND ESTIMATION ERROR

A. Analog of free energy

We calculate Eq. (3.4) using a replica method with replica
symmetry. References [11,57,58] are referred to for this cal-
culation and that of Eq. (2.13). For the sake of simplicity,
we focus on the calculation result in the case of σ, ς ∼ 0 in
Eqs. (2.3) and (2.9). The result is as follows:

fB(α) = min
Q,q,m,Q̃,q̃,m̃

fB(Q, q, m, Q̃, q̃, m̃), (4.1)

where fB on the right side in the sense of nonminimum analo-
gous free energy is

fB(Q, q, m, Q̃, q̃, m̃) = 1

2

{
ln[2π (Q − q)] + 1 − 2m + q

Q − q

}
− 1

α

{
1

2
Q̃Q + 1

2
q̃q − m̃m − 1

2
ln(Q̃ + q̃ + 1) + q̃ + m̃2

2(Q̃ + q̃ + 1)

}
.

(4.2)

To minimize Eq. (4.2) in Eq. (4.1), Q, q, m, Q̃, q̃, m̃ satisfy the
following conditions:

Q̃∗ = α

{
1

Q∗ − q∗
− 1 − 2m∗ + q∗

(Q∗ − q∗)2

}
, (4.3)

q̃∗ = α

{
− 1

Q∗ − q∗
+ 1 − 2m∗ + Q∗

(Q∗ − q∗)2

}
, (4.4)

m̃∗ = α

Q∗ − q∗
, (4.5)

Q∗ = 1

Q̃∗ + q̃∗ + 1
+ q̃∗ + m̃2

∗
(Q̃∗ + q̃∗ + 1)2

, (4.6)

q∗ = 1

Q̃∗ + q̃∗ + 1
+ −Q̃∗ − 1 + m̃2

∗
(Q̃∗ + q̃∗ + 1)2

, (4.7)

m∗ = m̃∗
Q̃∗ + q̃∗ + 1

. (4.8)

B. Analogs of energy and entropy

The analogs of energy and entropy are derived from dif-
ferentiating Eq. (4.1) with respect to the analogous inverse
temperature. In Ref. [25], the differentiation with respect to
sample size M was replaced with finite difference due to
its discreteness. Alternatively, the differentiation of fB(α) =
fB(Q∗, q∗, m∗, Q̃∗, q̃∗, m̃∗) with respect to α can be performed
just as it is thanks to continuity of α. We note that Q∗, q∗,
m∗, Q̃∗, q̃∗, and m̃∗ which satisfy Eqs. (4.3)–(4.8) are regarded
as functions of α. The notation that these are functions of α,
e.g., Q∗(α), is omitted for simplicity. We obtain the analogs of
energy density and entropy density as follows:

uB(α) = ∂{α fB(α)}
∂α

= 1

2

{
ln[2π (Q∗ − q∗)] + 1 − 2m∗ + q∗

Q∗ − q∗

}
, (4.9)

sB(α) = α2 ∂ fB(α)

∂α
= 1

2
Q̃∗Q∗ + 1

2
q̃∗q∗ − m̃∗m∗

− 1

2
ln(Q̃∗ + q̃∗ + 1) + q̃∗ + m̃2

∗
2(Q̃∗ + q̃∗ + 1)

. (4.10)

We refer to what Eqs. (3.4), (4.1), and (4.9)–(4.10) mean
in terms of Bayesian statistics. The logarithm of evidence
in Eq. (3.4) is known as a measure for performing model
selection and determination of hyperparameters in a prior dis-
tribution based on a guideline called evidence maximization
[60]. The guideline says that one performs model selection
and determination of hyperparameters so that the evidence is
maximized. For example, Bayesian information criteria (BIC)
[61] which forms the expansion of log-evidence is represen-
tative for performing model selection based on the guideline.
The meaning of Eqs. (3.4) and (4.1) in Bayesian statistics is a
macroscopic kind of measure of evidence maximization, up to
the multiplicative factor of −α−1 and expectation with respect
to Eq. (2.12). The maximization of the evidence is translated
into the minimization of analogous free energy fB. Therefore,
fB is the object to be minimized in terms of model selec-
tion and determination of hyperparameters based on evidence
maximization [62]. Apart from this minimization aspect, one
needs to minimize the analogous free energy fB in Eqs. (4.1)
and (4.2) such that (Q, q, m, Q̃, q̃, m̃) do not necessarily sat-
isfy Eqs. (4.3)–(4.8). Its minimization stems from considering
the macroscopic system with Eq. (2.14), and more specifically
from Laplace’s method [63] in calculating Eq. (3.4), which is
also used in deriving BIC mentioned above. The minimization
in Eq. (4.1) which occurs in such a way shares a similar
direction with the concept of evidence maximization in that
free energy is minimized.

In terms of Bayes statistics, the analogous energy and en-
tropy calculated using the sample size ↔ inverse temperature
correspondence have meant a measure of model performance
associated with cross-validation [64] and the logarithmic
number of models consistent with data, respectively [25]. The
meanings of Eqs. (4.9) and (4.10) in Bayesian statistics could
be considered macroscopic varieties of those meanings with
respect to Eq. (2.14).

C. Estimation error

The concreteness of Q in Eq. (4.2) is a macrostate
associated with the sum of w2

i from i = 1 to N per
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N , i.e., N−1 ∑N
i=1 Ep(w|y,X )[w2

i ]. By the same token,
macrostates of q and m in Eq. (4.2) are associated with
N−1 ∑N

i=1 Ep(w|y,X )[wi]
2

and N−1 ∑N
i=1 Ep(w|y,X )[viwi], re-

spectively. Hence, results obtained by Eqs. (4.3)–(4.8) that
minimize Eq. (4.2) are the (analogous) equilibrium values of
those macrostates together with Eq. (2.14) and the expectation
by Eq. (2.12). This means that Eq. (2.13) can be expressed as

MSE(α) = 1 − 2m∗ + q∗, (4.11)

where N−1Er(y,X ,v)[
∑N

i=1 v2
i ] = N−1 ∑N

i=1 Er(v)[v2
i ] = 1 is

applied. Note that Er(v)[v2
i ] is unity since it expresses the

variance of Eq. (2.10).

V. PROPERTIES OF ANALOGOUS THERMODYNAMIC
FUNCTIONS AND ESTIMATION ERROR

In Secs. V A and V B, we investigate properties of analo-
gous thermodynamic functions and inverse temperature, i.e.,
Eqs. (4.1), (4.9), (4.10), and α. The points to be investigated
are equations which hold between them in Sec. V A and analo-
gous temperature dependence of thermodynamic functions in
Sec. V B. In Sec. V C, we explore, based on Secs V A and V B,
what physical insights can be gained for estimation associated
with the Bayesian linear regression model.

A. Equations

We observe equations that hold between the analogs, i.e.,
fB, uB, sB, and α. These analogs are not thermodynamic
functions given to some thermodynamic systems, which are
standard objects for analysis in statistical mechanics and
thermodynamics. However one can eventually recognize that
properties of analogs are consistent with those of genuine ther-
modynamics functions which are not analogs. These analogs
are derived on the basis of the correspondences in Sec. III and
statistical mechanical prescriptions for deriving thermody-
namic functions in Sec. IV. Thus, the well-known expressions
that hold between free energy, energy, entropy, and inverse
temperature which are not analogs in thermodynamics also
work for their analogs, i.e., fB, uB, sB, and α. For example, we
confirm

fB(α) = uB(α) − 1

α
sB(α) (5.1)

and

α
∂uB(α)

∂α
= ∂sB(α)

∂α
. (5.2)

Equations (5.1) and (5.2) are reminiscent of the equations, in
thermodynamics, connecting free energy, energy, and entropy
whose arguments are (inverse) temperature.

Additionally, the expression of inverse temperature with
energy and entropy in thermodynamics is reproduced by their
analogs α, uB, and sB as follows:

∂sB(uB)

∂uB
= α, (5.3)

where analogous entropy sB of argument uB instead of α

in the left-hand side is obtained with the Legendre-Fenchel

transform of fB(α) with respect to 1/α, i.e.,

sB(uB) = min
1/α

{
uB − fB(α)

1/α

}
. (5.4)

We see Eqs. (5.1)–(5.3) from the viewpoint of Bayes
statistics. As mentioned in Sec. IV B, fB, uB, and sB could
be considered to have Bayesian statistical meanings as the
macroscopic measure of evidence maximization, that of
model performance, and that of log-number of models con-
sistent with data, respectively. Additionally, the identity of
α in Bayes statistics is the convergence of sample size per
the number of regression coefficients. We realize that fB, uB,
sB, and α which are Bayesian quantities with those meanings
are connected through Eqs. (5.1)–(5.3), disguised free energy,
energy, entropy, and inverse temperature, respectively.

B. Analogous temperature dependence and estimation error

Continuing from the previous Sec. V A, we examine
properties of analogous thermodynamic functions. In this sub-
section, we investigate how fB(α), uB(α), and sB(α) depend
on the analogous temperature, 1/α. For various values of 1/α

except 1/α = 1, those of Q̃∗, q̃∗, m̃∗, Q∗, q∗, and m∗ are
obtained by iteratively calculating Eqs. (4.3)–(4.8) with initial
condition (Q, q, m) = (1.0, 0.001, 0.001). Substituting those
values for Eqs. (4.1), (4.9), and (4.10), we acquire the values
of fB(α), uB(α), and sB(α) for various values of 1/α. The
results are plotted in Fig. 1.

In Fig. 1(a), fB seems to be concave with respect to 1/α.
We observe that uB(α) and sB(α) appear to increase with
respect to 1/α, as shown in Figs. 1(b) and 1(c). These 1/α de-
pendencies of fB(α), uB(α), and sB(α) do not contradict those
of free energy, energy, and entropy which are not analogs
in thermodynamics. Additionally, one encounters the singular
behavior of analogous thermodynamic functions in the sense
that fB becomes nondifferentiable at 1/α ∼ 1 together with
discontinuity in uB and sB.

We additionally obtain the values of MSE(α) for various
values of 1/α by substituting q∗ and m∗ determined above
for Eq. (4.11). The result is plotted in Fig. 2. In Fig. 2, we
observe MSE ∼ 0 in the range of 1/α < 1 and MSE � 0 in
1/α > 1. This abrupt change in the behavior of MSE(α) at
1/α ∼ 1 is related to the statistical meaning of 1/α. As shown
in Eq. (2.14), α is the convergence of sample size M per the
number of parameters N , i.e., M/N . In the case of 1/α < 1,
M is (asymptotically) larger than N , which means an easy
situation to estimate. The case of 1/α > 1 represents (asymp-
totically) M < N , which makes the estimation difficult.

C. Physical insights into Bayesian linear regression

In thermodynamic systems, the effect of decreasing energy
and that of increasing entropy are competing in achieving
an equilibrium state with minimum free energy. We observe
that estimation of Bayesian linear regression could also be
understood in a similar picture. To explain it, we introduce
following quantities:

uB(Q, q, m) = 1

2

{
ln[2π (Q − q)] + 1 − 2m + q

Q − q

}
(5.5)
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FIG. 1. Analogs of thermodynamic functions, Eqs. (4.1), (4.9), and (4.10), are plotted versus the analogous temperature, 1/α.
(a) fB(α)-1/α. (b) uB(α)-1/α. (c) sB(α)-1/α.

and

sB(Q, q, m, Q̃, q̃, m̃) = 1

2
Q̃Q + 1

2
q̃q − m̃m

− 1

2
ln(Q̃ + q̃ + 1)

+ q̃ + m̃2

2(Q̃ + q̃ + 1)
, (5.6)

in the sense that these represent the analogous energy and
entropy for which (Q, q, m, Q̃, q̃, m̃) do not necessarily satisfy
Eqs. (4.3)–(4.8), respectively. Such an introduction comes
from the forms of right-hand sides in Eqs. (4.9) and (4.10). Re-
garding the nonminimum analogous free energy, fB = uB −
α−1sB holds using Eqs. (4.2), (5.5), and (5.6). Thus Eq. (4.1)
with the sense of minimization of fB is also expressed as

-0.05
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 0.7  0.8  0.9  1  1.1  1.2  1.3
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1/α

FIG. 2. Mean squared error (MSE), Eqs. (2.13) and (4.11), is
plotted versus the analog of temperature 1/α. MSE is one of the
measures that represent whether the regression task is successful
or not. The case of MSE ∼ 0 in 1/α < 1 means success of the
regression task, while that of MSE � 0 in 1/α > 1 means failure as
the value of it is away from zero.

follows:

fB(α) = min
A

{uB(Q, q, m)} − 1

α
max
A

{sB(Q, q, m, Q̃, q̃, m̃)},
(5.7)

where A = (Q, q, m, Q̃, q̃, m̃). Equations (5.1) and (5.7) show
that uB decreases, while sB increases to achieve Bayes infer-
ence with minimum fB. According to Figs. 1(b) and 1(c), both
uB and sB simultaneously take lower values in 1/α < 1 and
higher values in 1/α > 1, in the images of them, respectively.
In 1/α > 1, it seems that uB cannot be lower in its image while
sB is higher in its image. In 1/α < 1, sB cannot be higher
while uB is lower. These properties suggest that the effect
of decreasing uB and that of increasing sB are competing in
achieving Bayes inference so that fB is minimized. In other
words, both effects of min{uB} and max{sB} in Eq. (5.7) are
balanced. Using this picture, Figs. 1(b) and 1(c) provide not
only 1/α dependence of uB and sB but also an aspect of
balance between them as follows; the effect of decreasing uB

is dominant in the range of 1/α < 1, while that of increasing
sB is dominant in 1/α > 1. These two balanced states seem to
switch to each other at 1/α ∼ 1.

Moreover, the two balanced states seem to be associated
with whether or not the task of Bayesian linear regression
is successful. To understand this, we call attention to the
macroscopic behavior of mean squared error (MSE) shown
in Fig. 2. We recall that the case of MSE ∼ 0 means success
of the regression task, while MSE � 0 indicates failure of the
task as the value of it is away from zero.

Here Fig. 2 and the above description in the first paragraph
of this Sec. V C lead us to see the following physical view: On
the one hand, Bayes inference that succeeds in the regression
task (MSE ∼ 0) is understood to be a low-temperature anal-
ogous state in 1/α < 1 dominated by the decreasing effect of
uB. We interpret w to take configurations close to v, consid-
ering that MSE shown in Eq. (2.13) measures the square of
radius of a hypersphere centered on v. On the other hand, the
inference that fails in the task (MSE � 0) is understood as
a high-temperature analogous state in 1/α > 1 favoring the
effect of increasing sB. It is interpreted that w scatteringly
takes configurations not necessarily close to v. The Bayes
inference at the boundary point in both cases, 1/α ∼ 1, is
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singular, as mentioned in Sec. V B. In other words, the present
model experiences the singularity when both the Bayes infer-
ences are switched to each other with change in analogous
temperature 1/α.

D. Discussion on nature of phase transition

We refer to the singular behavior of analogous thermody-
namic functions at 1/α ∼ 1 in Fig. 1, i.e., nondifferentiability
of fB and discontinuity in uB and sB. In the context of sig-
nal reconstruction which is performed with an application of
linear regression models, behavior similar to the first-order
phase transition was reported under the condition called Bayes
optimal [58]. Its behavior was observed from the logarithm of
evidence corresponding to that of analogous partition func-
tion, without using analogous inverse temperature. The model
treated in this paper falls under that condition. It is not
clear whether such a phase-transition-like phenomenon can
be treated in the same way as phase transitions in genuine
thermodynamic systems. However, the singular behavior in
Fig. 1 is in agreement with the report in Ref. [58], within the
Ehrenfest classification of phase transitions, in the sense that
the discontinuity has appeared in uB and sB related to the first
derivative of fB. We note that the Ehrenfest scheme classifies a
singularity in which the nth derivative of free energy exhibits
discontinuity as an nth-order phase transition [65,66].

A way to further discuss the nature of this phase transition
is to enter into the equivalence and nonequivalence of ensem-
bles [67,68]. If there exists an analog of the microcanonical
ensemble whose thermodynamic potential is sB(uB), the na-
ture of that phase transition would be explained as follows.
The singular behavior in Fig. 1(a) means that the phase
coexistence occurs as the first-order phase transition with
analogous latent heat 	uB = limα↑1 uB(α) − limα↓1 uB(α).
This phenomenon can arise in two cases: either sB(uB) is
affine, meaning linear in 	uB, or sB(uB) is nonconcave in
	uB. In the first case where sB(uB) is concave with the lin-
ear part (nonstrictly concave), Eq. (2.5) and the analogous
microcanonical ensemble are equivalent, since their thermo-
dynamic potentials, namely fB(α) and sB(uB), are related
through the Legendre-Fenchel transform as in Eq. (5.4). In
the second case, the two ensembles are not equivalent since
the nonconcave part of sB(uB) cannot be obtained from the
Legendre-Fenchel transform, i.e., uB that makes sB(uB) non-
concave does not exist in Eq. (2.5). The nature of phase
transition encountered in Fig. 1 would fall into one of these
two cases. However, it is not possible to tell which one is from
the canonical angle of Eq. (2.5) and fB(α) alone. To solve this
problem, we need to analyze sB(uB) from the microcanon-
ical angle, which leads us to further research exploring the
analogous microcanonical ensemble in response to Eq. (2.5):
canonical correspondence.

VI. SUMMARY AND DISCUSSION

The subject of this paper concerns the similarities between
statistical physics and Bayes inference through the Bayesian
linear regression model. We have concentrated on the proposal
to associate discrete sample size with inverse temperature
[25,34] and on the derivation of analogous thermodynamic
functions using its correspondence.

This paper suggests incorporating the macroscopic per-
spective as analogous thermodynamic limit into the previous
suggestion. Its motivation comes from the statistical mechan-
ical concept of calculating thermodynamic functions which
characterize macroscopic properties. We have adopted the
asymptotic limit in statistics, called by various names shown
in Table I, where the sample size and the number of parame-
ters both increase at once. In this asymptotics, the convergence
of the ratio of sample size and the number of parameters
becomes a variable to control asymptotic behavior [39]. This
paper indicates that the converged quantity appears to be a
candidate for the analog of inverse temperature with con-
tinuity. Combining this analogous inverse temperature with
the other similarities we calculated the analogs of free en-
ergy, energy, and entropy for the Bayesian linear regression
model, and those properties were investigated. On the basis
of those properties, we considered the physical view of Bayes
inference.

As a result, Bayes estimation of regression coefficients
could be observed as the statistical mechanical or thermody-
namic picture of an equilibrium state, i.e., the balance between
the effect of decreasing energy and that of increasing entropy.
The low-temperature analogous state dominated by the former
effect was shown to be associated with the success in esti-
mation, while the failure in estimation is understood as the
high-temperature analogous state favoring the latter effect.

We discuss the behavior of analogous thermodynamic
functions with respect to analogous temperature shown in
Fig. 1. The behavior of sB(α) < 0 seems to be, at first glance,
contradictory in the context of statistical mechanics and ther-
modynamics. There are two possible explanations for this
behavior. The previous study mentioned that the analogous
entropy derived from sample size ↔ inverse temperature cor-
respondence can have negative values [25]. Although α in
Eq. (2.14) is used in place of sample size, we may have found
an example of that, shown in Fig. 1(c). Another possibility
is to require an additive constant to be the interpretation of
sB(α) < 0. Thermodynamic entropy has the property of being
invariant up to an additive constant. If this is also the case
for analogous sB, we could select an additive constant such
that sB(α) > 0. Other properties shown in Fig. 1, such as the
concavity of fB and the increase of uB and sB with respect to
1/α, do not appear to contradict temperature dependence of
genuine thermodynamic functions which are not analogs.

The properties such as temperature dependence of anal-
ogous thermodynamic functions were found to be nearly
consistent with those of genuine thermodynamics functions.
The singularity in the analogous ones is consistent with the
report in Ref. [58], at least within the Ehrenfest scheme. These
points may support, in physical perspective, the proposal by
Refs. [25,34] to associate sample size with inverse tempera-
ture, though we have employed α instead of sample size.

The analysis in this paper was performed through the spe-
cific Bayesian model as linear regression. This model is the
basis of various Bayesian machine learning models such as
classification, the kernel method, and neural networks [69].
However, advantages of Bayesian estimation might not be
fully demonstrated if we remain within the linear regression
and its estimation task. Apart from Bayesian analysis, there
are even more convenient approaches to linear regression such
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as the weighted least squares method which assumes that the
noise random variables do not have the same variance. There-
fore, one of the future directions is to apply the analysis to
applied models based on linear regression where advantages
of Bayesian estimation can be fully utilized.

In this study, ς, σ ∼ 0 were assumed, which may im-
plicitly cause unexpected behavior of sample size, e.g., high
sample size. If this is true, the results for 1/α > 1 would be
unreliable. One way to approach this problem is to explore
the case of ς, σ �= 0. This future direction of research is also
supported in the sense that ς, σ �= 0 is a practical situation.

We hope that this work will enrich the interdisciplinary
science between physics, machine learning, and statistical
inference.
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APPENDIX: ANOTHER ANALOG OF INVERSE
TEMPERATURE IN THE BAYES MODEL

Apart from the sample size ↔ inverse temperature cor-
respondence, another analog of inverse temperature was
proposed previously. It is associated with an external param-
eter to extend the likelihood function in the Bayes model.
Although another analog using an external parameter is be-
yond the scope of this study, we describe details of it and a
difference between these analogs. Specifically, the likelihood
function is extended to it to the power of an external parameter
β as follows:

p(w|y, X ) ∝ p(y|X ,w)β p(w), (A1)

ZB =
∫

dw p(y|X ,w)β p(w). (A2)

Several references proposed to regard this β as an anal-
ogous inverse temperature [30,31,70–78]. In the extended
form of Eqs. (A1) and (A2), the original Bayes inference
is obtained only for the specific case of β = 1. This ex-
tended form appears practical and efficient for sampling from
the posterior distribution and computing marginal likelihood
[30,31,70–72,75,76,78,79].

Reference [25] acknowledged the practicality of the ex-
tended form for sampling. However, beyond its practical
aspect, the previous study had some concerns about regarding
β as inverse temperature, from the view of what the role of
inverse temperature is in Bayes inference, as follows. The
parameter β is not a preexisting quantity inherent in the
Bayesian model. The case of β �= 1 no longer corresponds to
Bayes inference. Reference [80] also expressed a concern sim-
ilar to that of Ref. [25] about the Bayes model extended with
external parameters, which was introduced in signal inference
problems in information field theory [72]. In that extended
model, in addition to the above β extension, an extension
using another external variable termed a moment generating
source J was also added. Reference [80] commented that the
extended Bayes form in Ref. [72] violates Bayes’s theorem
in the case of (β, J ) �= (1, 0), while Ref. [81] explained that
this concern in Ref. [80] does not affect the methodology
developed in Ref. [72].

In contrast to recognizing the external parameter β as
inverse temperature, the correspondence between the sample
size and inverse temperature uses a quantity which originally
appears in the Bayesian model, namely sample size M. In
Sec. III, we have suggested that the convergence of sample
size M per the number of parameters N is a candidate for anal-
ogous inverse temperature with continuity. This converged
quantity consists of M and N , both of which are inherent
in the Bayesian linear regression model. In this sense, our
suggestion shares the style of Refs. [25,34] which observes
the similarity using a quantity inherent in the Bayesian model,
rather than the style of considering an external parameter as
analogous inverse temperature.
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