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Percolation in a three-dimensional nonsymmetric multicolor loop model
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We conduct Monte Carlo simulations to analyze the percolation transition of a nonsymmetric loop model
on a regular three-dimensional lattice. We calculate the critical exponents for the percolation transition of this
model. The percolation transition occurs at a temperature that is close to, but not exactly, the thermal critical
temperature. Our finite-size study on this model yields a correlation length exponent that agrees with that of the
three-dimensional XY model with an error margin of 6%.
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I. INTRODUCTION

It has been observed that porous materials like charcoal,
limestone, or sponge are impervious to water until a substan-
tial fraction of the pores are filled by the water. The threshold
value of these occupied pores is a measure of a kind of phase
transition popularly known as percolation. This threshold
value that separates the two phases is known as the percolation
threshold. Perhaps, the most influential work in this field
which laid the mathematical foundations of this subject was
the work by Broadbent and Hammersley [1]. Following their
work, there was an avalanche of activities in both physics and
the field of applied sciences, which continues even today. One
of the early applications of the theory was due to Anderson,
who used percolation to study the localization of electrons
in disordered media, a phenomenon famously known as An-
derson localization [2]. Subsequently, people used it to study
the conduction and transport phenomena in inhomogeneous
conductors near the percolation threshold [3–5]. In statistical
mechanics, Fisher and Essam studied percolation in exotic
lattice systems like the Bethe lattice (infinite Cayley tree) [6].
However, it was not until the work of Fortuin and Kasteleyn
[7,8] that it was shown for the first time that there exists a
direct connection between the percolation problem and the
Ising or Ising-like models. This connection was vital in cal-
culating the critical exponents associated with the percolation
transition [9–12]. The central idea was the concept of cluster-
ing, which was later exploited by physicists to circumvent the
problem of critical slow down in the Monte Carlo simulations
of spin systems [13–15]. The ideas of percolation have also
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been used in the study of nonphysical phenomena, e.g., forest
fires [16] and interactions in social networks [17].

Compared to the conventional site and bond percolation,
the phenomenon of loop percolation is a relatively less studied
subject in the physics community, especially when the perco-
lation transition is thermally driven. The statistical distribution
of these loops can be thought of as clusters or connected
components, whose growth has a very natural description in
terms of the percolation transition [18–20]. For example, the
onset of the λ transition in superfluid helium is mediated by
the percolation of vortex rings [18]. Extensive studies of these
condensed-matter systems have also led to our understanding
of the formation of topological defects in the universe [21,22].
A statistical mechanical study of the frustrated XY model by
Nguyen and Sudbo [23] showed that the temperature-driven
percolation transition due to the vortices was responsible for
the melting of the Abrikosov flux-line lattice in type-II super-
conductors. In the case where temperature was not the driving
factor, a study by Pfeiffer and Rieger [24] showed that the
critical exponents for the loop percolation transition belong
to the same universality class as the conventional bond or
site percolation. However, in the same study, the percolation
transition which occurs due to minimizing the ground state
(T = 0) energy of a loop Hamiltonian with random disorder
resulted in a completely different set of critical exponents. It is
worth mentioning that the work by Pfeiffer and Rieger partly
serves as the motivation for the present work. An extensive
study of the universal behavior of thermally driven percolating
loops remains unaddressed. Therefore, we believe that there
is further scope for work and our study will be a step in that
direction.

In this paper we look at the finite-temperature percola-
tion transition observed in a certain loop model, in a regular
three-dimensional lattice. The model under consideration is
a variant of the loop Hamiltonian used in [24]. The major
differences between our loop model and the one in [24] is
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FIG. 1. Elementary excitations in NS loops: (a) the first excited state with 1 unit of energy (kBT units) and degeneracy 6, (b) the second
excited state with 1.5 units of energy and degeneracy 6, and (c) the third excited state (left and middle) with 2 units of energy and the fourth
excited state (right) with 2.5 units of energy.

that our loop model Hamiltonian is devoid of any random
disorders and it has multiple loop components where each
component is termed a color. We refer to our model as the
nonsymmetric (NS) loop model, for reasons that have been
discussed in the preceding paper [25]. That paper contains the
thermodynamic properties of the NS loop model, including
its thermal (specific-heat) critical exponent α and the corre-
lation length exponent ν. In the present work we calculate
the critical exponents for percolation transition seen in the
NS loop model. We observe that the percolation transition
happens at a temperature close but not equal to the thermal
critical temperature. Our finite-size scaling analysis suggests
that the correlation length exponent for the NS loops is that of
the XY model in three dimensions. Since the loop percolation
transition in NS loops is a thermally driven transition, its per-
colation properties are intertwined with its thermal properties.
Therefore, it is important to discuss the finite-temperature
properties of the NS loop model before we discuss its per-
colation properties.

The rest of the paper is organized as follows. In Sec. II
we introduce the NS loop model and briefly discuss its finite-
temperature properties. In Sec. III we discuss the percolation
transition in the NS loop model using finite-size scaling. In
Sec. IV we present and discuss our results. We briefly sum-
marize in Sec. V.

II. MULTICOLORED LOOP MODEL

The order-disorder transitions in a regular three-
dimensional lattice system can occur due to topological
defects. Their topological nature protects them and prevents
their removal by any smooth deformation of the lattice. They
obey a continuity condition [see Eq. (1)], for which their
lattice realizations assume the form of closed loops (Fig. 1).
In solids, these topological defects are called dislocations and
disclinations. The former is responsible for the breakdown of
the broken translational symmetry, while the latter destroys
the broken rotational symmetry [26–28]. The topological
defects in solids are second-rank symmetric tensors, which
can cause melting. In three-dimensional solids, the melting
transition is a first-order transition. In the preceding paper
[25] we argue the theoretical possibility of tensor loop defects
which can be nonsymmetric, hence the name NS loops. The
NS loops undergo a second-order phase transition, but we
have shown that strong interactions among the various colors
can alter the nature of the transition in these loop systems. In
this section we briefly discuss the NS loop model and refer
the reader to [25] for more details.

Let ηi j (x) represent the integer-value NS tensors at each
point x in the lattice. The tensor has nine independent
elements, with each column denoted by index j, which
corresponds to the color of the loop, e.g., j ∈ {1, 2, 3} =
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FIG. 2. Percolation probability among different colors c in dif-
ferent directions i with size L = 16.

{red, blue, green}. For each color, we have the lattice conti-
nuity equation

�iηi j (x) = 0, j ∈ {1, 2, 3}. (1)

The Hamiltonian, which is a function of ηi j , is given by

H (ηi j )loop =
∑

x

A
[
η2

11(x) + η2
22(x) + η2

33(x)
]

+ B
[
η2

12(x) + η2
21(x) + η2

23(x)

+ η2
32(x) + η2

13(x) + η2
31(x)

]
+ D[η11(x)η22(x) + η22(x)η33(x)

+ η33(x)η11(x)], (2)

where A = 0.5, B = 0.25, and D = 0.1, in units of kBT . If
E (color)

(plane) denotes the energy of an elementary excitation of color
c along a given plane, then the excitations in Figs. 1(a) and
1(b) will have energies given by

E1
Y Z = E2

XZ = E3
XY = 4B,

E1
XY = E1

XZ = E2
XY = E2

Y Z = E3
Y Z = E3

XZ = 2(A + B), (3)

where 4B < 2(A + B). From the calculations above, it is ev-
ident that the excitations carrying 4B units of energy have
greater chances of acceptance than the ones carrying 2(A + B)
units of energy. As a result, color 1 in the Y and Z directions,
color 2 in the X and Z directions, and color 3 in the X and Y
directions have their corresponding percolation probabilities
shooting up close to the criticality as shown in Fig. 2. We must
emphasize that despite such directional preferences, the crit-
ical behaviors of this model and of the model with complete
isotropy are the same.

III. PERCOLATION TRANSITION IN NS LOOPS

In the preceding section we saw that the basic excitations
in the NS loop system are elementary loops (plaquettes).
They can be oriented along any arbitrary plane and can have
both clockwise and counterclockwise chiralities. Every site
associated with such a loop will have an incoming and an
outgoing arrow whose number is always conserved. Near the
critical point, when the system is proliferated by such loopy

networks, the system is said to be disordered and there will
exist a path or multiple paths connecting the opposite sides
of the system running through the bulk. The analogy between
site percolation and percolation due to loops stems from the
following fact. A single loop [Fig. 1(a)], which is the most
basic excitation in the system, is a connected component of
size 4, that is, it connects four sites in the lattice. As the
number of loops increases in the system, they will join one
another to form bigger loops or clusters [Fig. 1(c)]. Near
the percolation transition, the typical size of the connected
components will grow until we end up having a percolating
cluster. This implies that we can always find a path or a set
of paths within the cluster that run through the bulk of the
system connecting its opposite faces (boundaries). In other
words, we will have loops whose diameter will scale as the
size of the system when the system is driven near the critical
region. Unlike conventional phase transitions, this kind of
transition is a thermally driven geometrical transition. It is a
continuous transition which involves occupation of the sites
(site percolation) or bonds (bond percolation) in a lattice and
therefore will have its own critical exponents.

With increasing temperature these loops interact with one
another to form clusters or connected components of varying
sizes. If two points within the system are connected by a
path, then they belong to the same cluster. If these two points
happen to be at the two opposite boundaries or faces of the
system, then we say that we have a percolating path and
the cluster is a percolating cluster. We will see that near the
critical point, the number of such paths and the size of the
percolating cluster have a scaling behavior. Our knowledge
of the statistics of the connected components (loop statistics)
provides information about the geometry of these networks
and enables us to calculate the critical exponents. Contrary to
ordinary percolation, where bonds or sites are randomly and
independently occupied (or emptied) with some probability,
the thermal problem will have them filled or emptied based
on the Metropolis algorithm. The algorithm’s conditional ad-
dition or removal of bonds or sites puts it in a special category
of problems in statistical mechanics known as correlated per-
colation. They are correlated because the loops are generated
by a first-order Markov chain of events.

Method

Our goal is to investigate the percolation transition in NS
loops within a regular three-dimensional lattice with periodic
boundary conditions using computer simulations. As previ-
ously stated, the loop variables are integer-value quantities
that obey a continuity condition. Therefore, the update equa-
tions must satisfy this constraint [25]. Since the percolation
transition is thermally driven, we employ the Metropolis algo-
rithm [29,30] to simulate the Hamiltonian in Eq. (2) at a finite
temperature T . According to the algorithm, the evolution of
the system of loops is a Markov process. If �E represents the
change in the energy of the system when transitioning from
state a to state b, then the transition probability W (a → b) is
given by

W (a → b) =
{

exp(−�E/kBT ) for �E > 0
1 otherwise.

(4)
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FIG. 3. Percolation probability Pc
i in NS loops: (a) the raw data for P1

Z vs temperature (T ), (b) the log - log plot for P1
Z vs L1/ν for the

correlation length exponent ν, and (c) the finite-size scaling results for P1
Z (for other colors, see Table I).

After the system has equilibrated at temperature T , we will
have a canonical ensemble of loops with a certain config-
uration. We use the depth-first search [31,32] algorithm to
calculate all the connected components in the system. For
example, in two-dimensional magnetic systems, the islands
of magnetization are connected components of various sizes.
The order-disorder transition in such systems is determined
by the value of the magnetization order parameter. Unlike
magnetic systems, the NS loops have no such order parameter.
However, one can draw a close analogy with the idea of mag-
netization and the average number of loops of various sizes
as a measure of disorder in such loop systems. With a slight
abuse of terminology, one may choose to call it a disorder
parameter.

The quantities that will be important for the present study
are the percolation probability Pc and the percolating cluster
P∞. In the preceding section we looked at the concept of
a percolating path. If Nc

i represents the number of times a
percolating path of a given color c occurs in a given direction
i, out of NM trials, then

Pc
i = Nc

i

NM
(5)

is simply the percolation probability of color c in the ith
direction. A percolating path is a connected component of a
certain size which is determined by the number of lattice sites
belonging to the percolating path. If Nc

∞ represents the size
of such a cluster of a specific color c, then we can define our
second quantity of interest, the percolating cluster, as

Pc
∞ = Nc

∞
L3

, (6)

where L3 is the total number of lattice sites. It indicates the
size of the largest cluster that spans the opposite boundaries
of the system. This can be interpreted as the probability of a
randomly chosen site being part of this cluster. Furthermore,
it is an indicator of the random geometric networks created by
the loops.

In the next section we will observe that close to the critical
region, these quantities exhibit scaling behavior. By using
finite-size scaling analysis, we will determine the critical ex-
ponents associated with these quantities.

IV. RESULTS

A. Finite-size scaling of the percolation probability

As the system approaches criticality T → Tc, the loops
grow in size and the system reaches the percolation threshold.
Near this threshold point, the correlation length of an infinitely
large system goes to infinity, but the correlation length is
upper bound by the size of the finite-size system L. We find
that with increasing system size, the Pc

i vs T curves become
steeper near the percolation threshold as shown in Fig. 3(a).
A crude estimate of the critical temperature T ≈ 0.21 may be
obtained from the intersection point of these curves. However,
to get a more quantitative and accurate result, we have per-
formed finite-size scaling analysis of these loops of different
colors using AUTOSCALE.PY by Melchert [33] and our own
numerical methods. Close to the critical point, Pc

i has the
scaling form

Pc
i (L) = Pc

i (t̃L1/ν ). (7)

The right-hand side of Eq. (7) is a homogeneous function
of the scaled temperature t̃L1/ν , where t̃ = (T − Tc)/Tc. The
exponent ν is associated with the correlation length [25]. Note
that Pc

i (L) becomes independent of the system size only at
t̃ = 0, i.e., T = Tc. The correct choice of the exponent and
the critical temperature Tc will compel all the curves of dif-
ferent system sizes to collapse onto one another [Fig. 3(c)].
The critical temperature shown in Table I is close to Tc =
0.21(0003). The correlation length exponent is approximately
ν = 0.74(0024). The exponent ν calculated from the three-
dimensional XY model gives 1/ν = 1.48(0091) [34].

TABLE I. Comparison of the critical temperature Tc and correla-
tion length exponent ν for different colors in different directions.

Percolation probability Tc 1/ν

P1
Y 0.20(00971) 1.36(005)

P1
Z 0.20(00971) 1.36(002)

P2
X 0.20(00962) 1.36(002)

P2
Z 0.20(00973) 1.36(002)

P3
X 0.20(00978) 1.36(002)

P3
Y 0.20(00978) 1.36(002)
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FIG. 4. Percolating cluster Pc
∞ in NS loops. Raw data and finite-

size scaling results are plotted for (a) P2
∞ vs T (color 2) and (b)

P2
∞Lβ/ν vs t̃L1/ν (for other colors, see Table II).

B. Finite-size scaling of the percolating cluster

Similar to the percolation probability, Pc
∞ also has a scaling

form given by

Pc
∞(L) = L−β/ν P̄c

∞(t̃L1/ν ), (8)

where P̄c
∞ is a homogeneous function of t̃L1/ν . For varying

system sizes, Pc
∞ has the behavior shown in Fig. 4(a). Finite-

size scaling analysis gives us the values of the exponents for
various colors. The critical temperature obtained from Table II
is close to Tc = 0.21(0003) and the exponent β = 0.61(007).

V. CONCLUSION

Using Monte Carlo simulations, we have studied perco-
lation in the nonsymmetric loop model (2). The exponents
are tabulated in Tables I and II. The effects of anisotropy
(directional preference) are seen while the system transits
from an ordered to a disordered state. The scaling expo-
nent for the percolation probability [ν = 0.74(0024)] and
percolation cluster [β = 0.61(007)] for NS loops have been

TABLE II. Comparison of the critical temperature Tc, correlation
exponent ν, and the exponent β for different colors.

Percolation cluster Tc 1/ν β/ν β

P1
∞ 0.21(0003) 1.31(0057) 0.80(0056) 0.61(002)

P2
∞ 0.21(0003) 1.31(0057) 0.82(0049) 0.62(007)

P3
∞ 0.21(0001) 1.31(0057) 0.80(0056) 0.61(002)

calculated. The percolation transition occurs at a tempera-
ture T ≈ 0.20(0098), which is close but not exactly equal
to the thermal critical temperature Tc = 0.212 [25]. A nu-
merical study of the stochastic Gross-Pitaevskii equation by
Kobayashi and Cugliandolo showed that the percolation tem-
perature of the vortices differed from the thermal critical
temperature by only 2% [35]. Similarly, finite-size scaling
calculations of the correlation length exponent of the three-
dimensional XY model by Schultka and Manousakis [36] and
Campostrini et al. [34] agree with our model within a 6%
deviation.
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