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Emergence of vertical diversity under disturbance
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We propose a statistical physics model of a neutral community, where each agent can represent identical plant
species growing in the vertical direction with sunlight in the form of rich-get-richer competition. Disturbance
added to this ecosystem, which makes an agent restart from the lowest growth level, is realized as a stochastic
resetting. We show that in this model for sufficiently strong competition, vertical diversity characterized by a
family of Hill numbers robustly emerges as a local maximum at intermediate disturbance.
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I. INTRODUCTION

Organisms often compete with other organisms and those
could coexist as a whole ecosystem. The theoretical frame-
works to understand the mechanism of such coexistence in
ecology have been developed based on Lotka-Volterra equa-
tion [1]. The developed theories have continued to overcome
the obstacles to clarify unexplored coexistence mechanisms
[2–12].

One of the important topics in coexistence theory is di-
versity [13], which is characterized by various indexes such
as Hill numbers equivalent to Rényi entropy [14]. Diversity
of an ecosystem is largely affected by so-called disturbance
[15]. Disturbance is a general term referring to the effects led
by the environment outside of an ecosystem, which causes
a certain loss of mass of organisms in the ecosystem. There
is a qualitative hypothesis that high diversity is achieved at
intermediate disturbance, which is called the intermediate
disturbance hypothesis (IDH) [16,17]. Various mathematical
models have been found to show what IDH implies [18–23]
and also a proposal of updating such a hypothesis has been
posed [24].

The concept of diversity in ecology is not only used about
species, but also used about the spatial structure of an ecosys-
tem such as the height of plants [25]. This structural diversity
has been discussed in strong relation to species diversity
[26,27]. Indeed, in German forests, structural diversity in
terms of canopy height, which is so-called vertical diversity,
has been discovered to get the highest at an intermediate dis-
turbance [28]. Mathematical models have been also developed
which focus on height statistics of plants [29–36]. Never-
theless, IDH in terms of vertical diversity has hardly been
mentioned from the perspective of such theoretical models.

In this paper, we develop a theoretical framework of statis-
tical physics models where one can quantitatively investigate
the relationship among competition, disturbance, and vertical
diversity in a community of identical species.
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The approach taken hereafter can also be regarded as a
proposal on a unique branch of neutral theories in community
ecology [37–43]. Indeed, it has already been discussed how
theoretical development can go beyond neutral theories [44]
and how the neutral theories ignoring spatially heterogeneous
effects can be extended to include such spatial effects [45].

II. MODEL

In this paper, we consider competition among plants for
sunlight, which often takes the form of competition such that
taller plants are more likely to occupy sunlight and then to get
taller, which is the so-called rich-get-richer form of competi-
tion [46].

As preliminaries, suppose that for a given height distribu-
tion of plants, we classify it into three height levels by putting
two thresholds of the average plus or minus standard devi-
ation. Specifically, let N ∈ Z be the total number of agents,
i ∈ {1, . . . , N} be the name of each agent, and xi ∈ {1, 2, 3}
be the state as the relative height of agent i. We use a nota-
tion x := (x1, x2, · · · , xN ) ∈ {1, 2, 3}N as a state of the whole
system.

Based on the above considerations, we introduce a
stochastic process where the transition rate representing rich-
get-richer competition is induced by a simple energy function
E (x). For simplicity, the energy function is required to have
the following two conditions: (i) The energy is invariant
in terms of replacing the state of maximum 3 by the state
of minimum 1 in the whole system: E (x) = E (x′) for x′

i =
−(xi − 2) + 2. (ii) In the configuration achieving the mini-
mum energy, the number of state 2 is zero and also the number
of state 3 minus the number of state 1 is either zero or ±1.

Under these two conditions, we consider the following en-
ergy function E (x) in which each agent interacts with agents
at neighboring sites determined by the edges of a graph G,

E (x) := − 1

N − 1

∑
i∈V (G)

∑
j∈Bi (G)

(xi − x j )
2, (1)

where V (G) is the set of all sites in graph G and Bi(G) for
1 � i � N is the set of all the nearest-neighbor sites of site i.
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FIG. 1. Schematic diagram for the transition rules between two
states for the case of three plants i, j, k. Under sunlight competition,
the transitions from x j = 2 to 3 or 1 and the reverse transitions as
described by dotted blue arrows may occur. Due to disturbance, the
transitions from xk = 3 and x j = 2 to 1 described as filled red arrows
may occur.

Indeed, this energy function (1) satisfies (i). Further, (1)
satisfies (ii) because the minimum value of the energy −2N at
the leading order of N is realized when xi = 1 or 3 for any i on
the condition that the number of state 1 minus the number of
state 3 is either 0 for even N or ±1 for odd N . For simplicity,
we focus on only the case that G is the complete graph having
edges by which any pair of two sites is directly connected.

Next, let us define f ±
i such that f ±

i x := (x j ± δi, j )N
j=1 for

only the case that 1 � f ±
i xi � 3, where δi, j is the Kronecker

delta with δa,b = 1 for a = b, otherwise 0. Then, we introduce
a Markov process in continuous time t as follows. Let us
consider a transition rate T0(x → f ±

i x) from x to f ±
i x,

T0(x → f ±
i x) = 1

4

[
1 + tanh

(− 1
2β�E (x → f ±

i x)
)]

, (2)

where 0 � β and �E (x → f ±
i x) := E ( f ±

i x) − E (x)

= 2

{
∓ 2

(
xi − 1

N − 1

∑
j �=i

x j

)
− 1

}
. (3)

A. Stochastic resetting as disturbance

Next, as a disturbance added to this system, we consider
a transition from the current state of an agent to its lowest
growth state. This transition can be regarded as one class of
stochastic resetting [47]. Concretely, let us consider stochas-
tic resetting from state xi � 2 to state 1 with a disturbance
rate R(x → dix), where dix := (x j (1 − δi, j ) + δi, j )N

j=1 in the
following manner:

R(x → dix) = r, (4)

where 0 � r � 1.
Combining this stochastic resetting with the above Markov

process representing competition, the transition rate T (x →
x′) of the stochastic process that we consider, as schematically
illustrated in Fig. 1, is totally

T (x → x′) = (1 − r)
∑

1�i�N

∑
s=±

δx′, f s
i xT0(x → f s

i x)

+
∑

1�i�N

δx′,dixR(x → dix). (5)

Note that the dynamics governed by the introduced rich-get-
richer form of competition and disturbance is neutral in the
following sense: the system has essentially the same dynamics
governed by the rules of competition and disturbance even if
any pairs of individuals are exchanged.

Next, let Pt (x) be the probability that the state is x at
time t . Then, transition rate (5) leads to the following master
equation:

dPt (x)

dt
=

∑
x′ �=x

(Pt (x′)T (x′ → x) − Pt (x)T (x → x′)). (6)

The stationary distribution Pst (x) is defined such that Pt (x) =
Pst (x) leads to dPt (x)

dt = 0.
Indeed, the canonical distribution Pcan(x) := 1

ZN (β ) exp ( −
βE (x)), where ZN (β ) = ∑

x exp(−βE (x)), satisfies the fol-
lowing detailed balanced condition:

Pcan(x)T0(x → f ±
i x) = Pcan( f ±

i x)T0( f ±
i x → x). (7)

Hence, the canonical distribution is the stationary distribution
satisfying Eq. (6) with r = 0.

If the disturbance rate holds r > 0, this stochastic process
involves irreversible processes caused by disturbance because
the transition from state 1 to state 3 does not exist but the
reverse exists. Thus, the detailed balanced condition cannot
be satisfied under the presence of disturbance, meaning that
Pst (x) no longer follows the canonical distribution determined
by the energy function (1).

III. ON POPULATION DYNAMICS

A. Derivation of population dynamics

Although the master equation has the complete information
about the stationary distribution, to avoid dealing with 3N

states, we consider the time evolution of the density of each
of three different states in the limit of large N . We show how
to derive such a set of closed equations in the following.

First, let Qh be the density of states h ∈ {1, 2, 3}, and be
Q := (Q1, Q2, Q3) ∈ [0, 1]3. Then we focus on the transition

rate U (h → h ± 1 | Q) from state h to h ± 1 ∈ {1, 2, 3} of an
agent for given Q in the limit of large N . Taking into account
(2) and (3), U turns out to be equal to

(1 − r)

4
[1 + tanh(−β�e±(h | Q))], (8)

where

�e±(h | Q) =
{

∓ 2

(
h −

3∑
h′=1

h′Qh′

)
− 1

}
. (9)

Note that it is assumed that the replacement of
∑

i xi/N by∑3
h′=1 h′Qh′ in the limit of N → ∞ holds, which can be re-

garded as self-averaging. Taking into account disturbance rate
(4), the time evolution of each density Qh for h = 1 and 3 is
exactly described as dQh

dt = Vh(Q), which is explicitly:

dQh

dt
= −δh,3rQ3 + Q2U (2 → h | Q)

+ δh,1r
3∑

h′=2

Qh′ − QhU (h → 2 | Q). (10)
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FIG. 2. (a) The density Q∗
h (T, 0) as a function of T . At T = 0,

Q∗
1 and Q∗

3 have an infinite number of solutions satisfying 1/4 <

Q∗
1, Q∗

3 < 3/4 and Q∗
2 = 0. At T → ∞, Q∗

h (T, 0) → 1/3 for any h.
(b) r-susceptability χh(T, 0) at r = 0 as a function of T . χh(T, 0)
shows an exponential divergence as T → 0.

B. Densities and susceptibility in stationary states

Before discussing vertical diversity, we try to capture the
typical behaviors of the model in the parameter space of
disturbance characterized by r and interaction strength char-
acterized by T = β−1.

Let us compute the stationary solutions of the derived
population dynamics (10). The density of each state h in
a stationary solution satisfying Vh(Q∗) = 0 is described by
Q∗

h(T, r) as a function of two parameters of T = β−1 and
r. Note that because of Q∗

1 + Q∗
2 + Q∗

3 = 1, we have Q∗
2 =

1 − Q∗
1 − Q∗

3 and also
∑3

h=1 hQ∗
h = −Q∗

1 + Q∗
3 + 2, by which

Eq. (10) is written as two coupled equations depending on
only Q∗

1 and Q∗
3.

Let us consider the case of r = 0 for any T . As shown in
Fig. 2(a), it turns out that there is a symmetric solution,

Q∗
1(T, 0) = Q∗

3(T, 0) = (2 + exp(−2β ))−1, (11)

leading to Q∗
h(T, 0) → 1/3 for any h at T → ∞. At T = 0,

in addition to this symmetric solution, we obtain the other
asymmetric solutions as follows:

1
4 < Q∗

1(0, 0) = 1 − Q∗
3(0, 0) < 3

4 , (12)

which means that infinite number of the solutions Q∗
h exist

under condition (12).
Next, let us consider a response of the density against r

around r 	 1, which is characterized by r-susceptibility

χh(T, r) := ∂Q∗
h

∂r
, (13)

for any h. As shown in Fig. 2(b), using Taylor series expan-
sion, we straightforwardly obtain

χ1(T, 0) = 4
(2 + gβ )(4 + g2

β ) + 4g′
ββ(2 − gβ )

(2 + gβ )2((2 + gβ )(2 − gβ ) + 8g′
ββ )

, (14)

χ3(T, 0) = 4
−4gβ (2 + gβ ) + 4g′

ββ(2 − gβ )

(2 + gβ )2((2 + gβ )(2 − gβ ) + 8g′
ββ )

, (15)

where gβ = 1 + tanh β with g0 = 1 � gβ < 2 = limβ→∞ gβ

and g′
β = (cosh β )−2. Note that χ2 = −χ1 − χ3 by definition.

It is notable that χh for each h shows an exponential diver-
gence as β → ∞ (T → 0).

Let us move on to the case of T 	 1 for any r > 0. Sim-
ilar to the case with r = 0, we consider a response of the
density against T around T 	 1, which is characterized by
T -susceptibility

μh(T, r) := ∂Q∗
h

∂T
(16)

for any h. As shown in Fig. 3, Q∗
h and μh in the limit of T → 0

are computed in the following. First, for r0 = −3 + 2
√

3 <

r � 1, we obtain

Q∗
1(0, r) = 2r

1 + r
, (17)

Q∗
3(0, r) = (1 − r)2

(1 + r)2
, (18)

and μh(0, r) = 0 for any h.
For 0 < r < r0, it is rather tricky that Q∗

1(0, r) cannot
be exactly computed solely. To compute Q∗

1(0, r), one can
perform Taylor series expansion as Q∗

h(T, r) = Q∗
h(0, r) +

μh(0, r)T + O(T 2) and then substitute it into Eq. (10). As-
suming that all the terms for each order with respect to T
separately satisfy Eq. (10), we finally obtain

Q∗
1(0, r) = Q∗

3(0, r) + 1
2 = − 1

4 r + 3
4 , (19)

μ1(0, r) = −1 + r

1 − r
μ3(0, r) = −1 + r

4
artanh θ (r), (20)

where

θ (r) = −r2 − 10r + 3

(1 − r)(3 + r)
. (21)

Note that limr→r0 θ (r) = −1 < θ (r) < 1 = limr→0 θ (r) for
0 < r < r0, and μ2 = −μ1 − μ3 by definition.
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(a)

(b)

FIG. 3. (a) The density Q∗
h (0, r) as a function of disturbance rate

r. Q∗
h for any h are not differentiable at r = r0. (b) T -susceptibility

μh(0, r) as a function of disturbance rate r. μh(0, r) shows logarith-
mic divergences as r → 0 for only h = 1, 3 and r → r0 for any h.

It is notable that the average height defined by
∑3

h=1 hQ∗
h

is equal to 3/2 independent of r for 0 < r < r0 with
T → 0. μh for h = 1, 3 as r → 0 and for any h as r → r0

show logarithmic divergences. Further, finite size fluctuations
have been found to show distinct behaviors between lower r
and higher r compared to r0 (see Appendix B).

For T → ∞, as shown in Fig. 4, we can straightforwardly
obtain the analytical form of Q∗

h(∞, r) and χh(∞, r) as

Q∗
1(∞, r) = 5r2 + 10r + 1

3r2 + 10r + 3
, (22)

Q∗
3(∞, r) = (1 − r)2

3r2 + 10r + 3
, (23)

Q∗
2(∞, r) = −3r2 + 2r + 1

3r2 + 10r + 3
, (24)

which satisfy Q∗
1 > Q∗

2, Q∗
3 and χ1 > 0, χ2 < 0, χ3 < 0 for

any r > 0, as shown in Fig. 4. Note that νh(∞, r) := ∂Q∗
h

∂β
= 0

holds for any h.

FIG. 4. Q∗
h as a function of r for β = 0. Note that Q∗

1 > Q∗
2, Q∗

3

and χ1 > 0, χ2 < 0, χ3 < 0 hold for 0 < r.

IV. DIVERSITY INDEXES

Let us focus on Hill numbers for α > 0 and α �= 1,

Dα :=
( 3∑

h=1

Qα
h

)1/(1−α)

, (25)

which satisfies the replication principle [14] and quantifies the
vertical diversity of the model with 1 � Dα � 3. Further, we
define

D1 := lim
α→1

Dα = exp

(
−

3∑
h=1

Q∗
h loge Q∗

h

)
, (26)

which is equivalent to the exponential of Shannon entropy,
where e is Napier’s constant.

In Fig. 5, Dα for α = 0.1, 1, 10, 100 are shown at T → 0
and T → ∞. Whereas the diversity indexes at T → ∞ show
monotonically decreasing behaviors, those at T → 0 robustly
get a maximum as a function of a single variable r at an
intermediate disturbance r = r0 for α � 0.199.

To elaborate on Hill numbers, we discuss theoretical re-
sults in the cases of T → ∞ and T → 0 in the following
subsection A. Then, in the following subsection B, we present
numerical computation of Hill numbers for more general val-
ues of T .

A. Hill numbers Dα(r) as a function of r

To discuss how the diversity indexes behave for gen-
eral values of α, let us define Mα := log Dα and Q∗ :=
(Q∗

1, Q∗
2, Q∗

3 ) ∈ [0, 1]3. Then, the sign of ∂rMα is the same as
that of ∂rDα . Indeed, we get the following:

∂rMα = α(1 − α)−1

(∑
h

(Q∗
h )α

)−1

Fα (Q∗), (27)

Fα (Q∗) =
∑

h

(Q∗
h )α−1χh. (28)

Thus, the nontrivial part determining the sign of ∂rDα is Fα ,
which has key information to find out the local maximum
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(a)

(b)

FIG. 5. Diversity indexes Dα (r) as a function of r for (a) T → ∞
and (b) T → 0. α = 0.1, 1, 10, 100. Dα (r) do not have local maxima
as a function of r at T → ∞. On the contrary, at T → 0, Dα (r) have
local maxima at intermediate values of disturbance r for any α.

point r
(T, α) of Dα . Note that Fα = 0 at α = 1 holds due
to

∑
h χh = 0.

1. The absence of local maxima of Dα at T → ∞ for 0 < α < ∞
Suppose the following condition that for a fixed T , Q∗

1 >

Q∗
2, Q∗

3 and χ1 > 0, χ2 < 0, χ3 < 0 hold for 0 < r � 1. On
that condition, we can derive that (Q∗

1 )α−1χ1 as a term in Fα

can be larger than |(Q∗
2 )α−1χ2 + (Q∗

3 )α−1χ3| for α > 1, and
smaller than it for 0 < α < 1. This leads to that for 0 < r �
1, Fα > 0 holds for α > 1, and Fα < 0 holds for 0 < α < 1,
corresponding to that there is no local maximum of Dα as a
function of r in 0 < r � 1 for α > 0.

The derivation of the above conclusion is as follows. First,
it is straightforward to see

|(Q∗
2 )α−1χ2 + (Q∗

3 )α−1χ3|
= (Q∗

2 )α−1χ1 + (Q∗
3 )α−1|χ3| − (Q∗

2 )α−1|χ3|
= (Q∗

3 )α−1χ1 + (Q∗
2 )α−1|χ2| − (Q∗

3 )α−1|χ2|, (29)

where we have used
∑

h χh = 0. Hence, we obtain

χ1 min(Q∗
2, Q∗

3 )α−1 � |(Q∗
2 )α−1χ2 + (Q∗

3 )α−1χ3|
� χ1 max(Q∗

2, Q∗
3 )α−1. (30)

It means that for α > 1, the following holds:

χ1(Q∗
1 )α−1 > χ1 max(Q∗

2, Q∗
3 )α−1, (31)

which immediately leads to Fα > 0. On the other hand, for
0 < α < 1, the following holds:

χ1(Q∗
1 )α−1 < χ1 min(Q∗

2, Q∗
3 )α−1, (32)

which immediately leads to Fα < 0. Thus, we reach the con-
clusion mentioned above.

Note that for T = ∞, (22)–(24) directly mean that the
conditions of Q∗

1 > Q∗
2, Q∗

3 and χ1 > 0, χ2 < 0, χ3 < 0 hold.
Thus, it leads to the absence of local maxima of Dα in 0 <

r � 1 for any α > 0 as shown in Fig. 5(a).

2. The existence of a local maximum of Dα at T → 0
for 0 < α < ∞

First, let us consider the case of r < r0 and T → 0 where
we use Eq. (19) by putting r = r0. Then, as shown in Fig. 6(a),
we obtain that Fα < 0 for α > 1, Fα > 0 for 0.199 � α < 1,
and Fα < 0 for α � 0.198 as r → r0. It means that for α �
0.199, ∂rDα as r → r0 is positive, whereas it is negative for
0 < α � 0.198.

Second, let us consider the case of r > r0 where we use
Eqs. (17) and (18) by putting r = r0. Then, as shown in
Fig. 6(b), it turns out that Fα > 0 for α > 1 and Fα < 0 for
α < 1. It means that ∂rDα as r → r0 is negative for any α > 0.

Therefore, combining two cases together, we reach the
conclusion that there is a local maximum point r
(0, α) > 0
at T → 0 for any α > 0. The concrete values of r
(0, α) are
r0 for α � 0.199, and get smaller than r0 between α = 0.198
and 0.199. Then, limα→0 r
(0, α) is numerically estimated as
0.451 · · · .

B. Computation of Hill numbers by nullcline method

Next, we have performed the nullcline method for comput-
ing Q∗ to estimate the local maximum of Dα (r) as a function
of r for general values of T and α. As shown on the (T, r)-
parameter plane in Fig. 7, whereas r = 0 could also get the
local or global maximum point for any T > 0, local maximum
points r
(T, α) > 0 of Dα as a function of single variable r
are determined by ∂rDα (r
(T, α)) = 0. Indeed, there is a point
around T = 0.25 below which there exists a local maximum
point for any α > 0. On the contrary, for T � 0.26, r
(T, α)
does not exist for all the values of α higher than a sufficiently
large α0(T ).

Related to this phenomenon, we have also found that the
local minima of Q∗

1 as a function of single variable r, which
are observed for T � 0.25, disappear for T � 0.26. Further,
the local maxima of Q2 exist for T � 2.58, and it seems to
disappear between T = 2.58 and T = 2.60, which is very
close to the lower limit of the absence of local maxima of Dα

for any α.
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(a)

(b)

FIG. 6. (a) limr→r0 Fα as a function of α for r < r0 and (b) for
r > r0. Reminding of (27), it turns out that ∂r log Dα are negative
for any α in the case of r > r0 and for at least α � 0.199 in the
case of r < r0. On the contrary, ∂r log Dα are positive for at least
α � 0.198 in the case of r < r0, which means that the local maxima
for α � 0.198 are not located at r = r0.

V. CONCLUDING REMARKS

In this paper, we have proposed a neutral community model
of identical plant species with rich-get-richer competition,
which robustly exhibit emergent vertical diversity that has a
local maximum at an intermediate disturbance for sufficient
strong competition. This property observed in the proposed
model is qualitatively consistent with the property observed in
German forests [28]. It remains for future studies to perform
more detailed comparisons with the properties observed in
real ecosystems.

It is intriguing to consider how to blend the effects of
migration and death process from classical neutral models
[39,41,42] with the model in this paper. Future works in that
direction could provide unique insights into neutral species
abundance distributions into vertically structured local com-
munities.

The proposed neutral model can be easily generalized into
a non-neutral model with multiple species by introducing

FIG. 7. The local maximum points r
(T, α) of Dα (r) depending
on (T, α) for Q∗

h . r
(0, 0.1) = 0.457 · · · < r0 = 0.464 · · · . The data
points of r
(T, α) are estimated within the numerical resolution by a
nullcline method where the increment of r and T is 10−2. T = 0.25
is around the value, above which local maxima for certain values of
α do not appear.

species dependence into transition rates representing competi-
tion or disturbance. In another direction, one can study spatial
effects by considering the model on a finite-dimensional lat-
tice such as a one-dimensional chain instead of the complete
graph. Based on finite-dimensional lattice models, a mixing
process could also be introduced as a parameter to study how
such lattice models go through a transition to the correspond-
ing population dynamics such as a Lotka-Volterra type of
equation [48]. The relationship between lattice models and
population dynamics is one topic discussed in the context of
intermediate disturbance hypothesis [22]. Those cases remain
to be studied.
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APPENDIX A: THE EQUATIONS TO DETERMINE
THE STATIONARY SOLUTIONS

OF THE POPULATION DYNAMICS

As mentioned in the main text, based on the model we
study, we consider Q := (Q1, Q2, Q3) ∈ [0, 1]3, where Qh is
the density of each state h. Then we may derive the following
equation of the population dynamics of Q for h = 1, 3:

dQh

dt
= Vh(Q),

Vh(Q) = −δh,3rQ3 + Q2U (2 → h | Q)

+ δh,1r
3∑

h′=2

Qh′ − QhU (h → 2 | Q). (A1)

We define Q∗
h such that Vh(Q∗) = 0 holds for h = 1, 3.
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Let us remember that because of Q∗
1 + Q∗

2 + Q∗
3 = 1, we

have

Q∗
2 = 1 − Q∗

1 − Q∗
3, (A2)

3∑
h=1

hQ∗
h = −Q∗

1 + Q∗
3 + 2. (A3)

We substitute (A2) and (A3) into (A1) and then obtain the
following for h = 1, 3:

−δh,3rQ∗
3 + (1 − Q∗

1 − Q∗
3 )

(1 − r)

4

(
1 + G(h)

β (Q∗
3 − Q∗

1 )
)

+ δh,1r(1 − Q∗
1 ) − Q∗

h

(1 − r)

4

(
1 − G(h)

β (Q∗
3 − Q∗

1 )
) = 0,

(A4)

where

G(h)
β (a) = tanh β((δh,1 − δh,3)2a + 1). (A5)

1. The explicit expressions of Q∗
h and χh at r → 0

Based on (A4) for T > 0, we find the stationary solution
of the densities Q∗

1 and Q∗
3 satisfying the following:

1
4 (1 − 2Q∗

1 )(1 + tanh β ) − 1
4 Q∗

1(1 − tanh β ) = 0. (A6)

Then, taking into account (A2), we obtain

Q∗
1(T, 0) = Q∗

3(T, 0) = 1

2 + exp(−2β )
, (A7)

Q∗
2(T, 0) = exp(−2β )

2 + exp(−2β )
. (A8)

Next, we focus on the case of T = 0 where the following
holds:

lim
T →0

G(h)
β (a) =

⎧⎪⎪⎨
⎪⎪⎩

1 if β((δh,1 − δh,3)2a + 1) > 0

−1 if β((δh,1 − δh,3)2a + 1) < 0

0 if β((δh,1 − δh,3)2a + 1) = 0.

(A9)

There are six cases in terms of the possibilities of taking
values of G(1)

β (a) and G(3)
β (a), each of which can be −1, 0,

or 1. Note that if one of G(1)
β (a) and G(3)

β (a) is 0, the value
of the other is uniquely determined. Indeed, when the two
conditions of

−2Q∗
1 + 2Q∗

3 + 1 > 0, (A10)

2Q∗
1 − 2Q∗

3 + 1 > 0 (A11)

hold, based on (A4), we obtain

Q∗
3 = −Q∗

1 + 1, (A12)

where we have used

lim
T →0

G(h)
β (Q∗

3 − Q∗
1 ) = 1, (A13)

for h = 1, 3. Additionally, the two conditions of (A10) and
(A11) lead to

1
4 < Q∗

1(0, 0) < 3
4 , (A14)

Q∗
3(0, 0) = 1 − Q∗

1(0, 0), (A15)

Q∗
2(0, 0) = 0. (A16)

Note that the other five cases for the possibilities of taking
values of G(h)

β (a) give no solutions of Eq. (A4).

To compute χh(T, r) := ∂Q∗
h

∂r for T > 0, let us perform
Taylor series expansion of Q∗

h(T, r) at r = 0 for h = 1, 3 as
follows:

Q∗
h(T, r) = Q∗

h(T, 0) + χh(T, 0)r + O(r2). (A17)

Then, substituting this form with (A7) and (A8) into (A4), for
O(βr) 	 1 up to O(r) order, we obtain

−2χ1 − gβχ3 + 4g′
ββ

2 + gβ

(χ3 − χ1) + 8

2 + gβ

= 0,

−gβχ1 − 2χ3 + 4g′
ββ

2 + gβ

(χ1 − χ3) − 4gβ

2 + gβ

= 0, (A18)

where

gβ = 1 + tanh β, (A19)

g′
β = 1

cosh2 β
, (A20)

with g0 = 1 � gβ < limβ→∞ gβ = 2.
Solving these equations, we finally obtain

χ1(T, 0) = 4
(2 + gβ )(4 + g2

β ) + 4g′
ββ(2 − gβ )

(2 + gβ )2((2 + gβ )(2 − gβ ) + 8g′
ββ )

, (A21)

χ3(T, 0) = 4
−4gβ (2 + gβ ) + 4g′

ββ(2 − gβ )

(2 + gβ )2((2 + gβ )(2 − gβ ) + 8g′
ββ )

, (A22)

where g′
ββ � β exp(−2β ) → 0 as β → ∞ and g′

ββ �
β → 0 as β → 0. Note that χ2 = −χ1 − χ3 by definition.

2. The explicit expressions of Q∗
h and μh at T → 0

Among six possibilities of taking values of G(1)
β and G(3)

β ,
let us consider the situation where the following two condi-
tions hold for T 	 1:

−2Q∗
1 + 2Q∗

3 + 1 = 0, (A23)

2Q∗
1 − 2Q∗

3 + 1 > 0. (A24)

In this case, we need to take the limit of T → 0 carefully.
First, we can perform Taylor series expansion of Q∗

h(T, r) at
T = 0 as

Q∗
h(T, r) = Zh + μh(0, r)T + O(T 2), (A25)
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where Zh := Q∗
h(0, r) and μh(T, r) := ∂Q∗

h
∂T . Substituting this

form into (A4), we obtain, up to O(T 0) order,

(1 − r)

4
(1 − Z1 − Z3){1 + tanh 2(−μ1 + μ3)}

− (1 − r)

4
Z1{1 − tanh 2(−μ1 + μ3)} + r(1 − Z1) = 0,

(A26)
1
2 (1 − r)(1 − Z1 − Z3) − rZ3 = 0, (A27)

where the second equation is obtained on the condition of
(A23) corresponding to

lim
T →0

G(3)
β (Q∗

3 − Q∗
1 ) → 1. (A28)

Combining (A27) with the condition of (A23) gives

Z1 =Q∗
1(0, r) = − 1

4 r + 3
4 , (A29)

Z3 =Q∗
3(0, r) = − 1

4 r + 1
4 , (A30)

Q∗
2(0, r) = r

2
. (A31)

Let us move onto (A26) into which we substitute (A29) and
(A30), leading to

tanh 2(−μ1 + μ3) = −r2 − 10r + 3

(r + 3)(1 − r)
=: θ (r). (A32)

Since −1 < tanh 2(−μ1 + μ3) < 1 should hold, r satis-
fies 0 < r < r0 = −3 + 2

√
3 due to limr→0 θ (r) = 1 and

limr→r0 θ (r) = −1. Thus, it turns out that (A29), (A30),
and (A31) as the stationary solution is valid only for
0 < r < r0. Note that limr→0 Q∗

1(0, r) = sup Q∗
1(0, 0) = 3

4 ,
limr→0 Q∗

3(0, r) = inf Q∗
3(0, 0) = 1

4 , and limr→0 Q∗
2(0, r) =

Q∗
2(0, 0) = 0 hold.
Next, among the other five possibilities of taking values of

G(1)
β and G(3)

β , when the following two conditions:

−2Q∗
1 + 2Q∗

3 + 1 < 0, (A33)

2Q∗
1 − 2Q∗

3 + 1 > 0 (A34)

hold, based on (A4) we obtain

− 1
2 (1 − r)Q∗

1 + r(1 − Q∗
1 ) = 0, (A35)

1
2 (1 − r)(1 − Q∗

1 − Q∗
3 ) − rQ∗

3 = 0, (A36)

where we have used

lim
T →0

G(1)
β (Q∗

3 − Q∗
1 ) = −1, (A37)

lim
T →0

G(3)
β (Q∗

3 − Q∗
1 ) = 1. (A38)

It reads

Q∗
1(0, r) = 2r

1 + r
, (A39)

Q∗
3(0, r) = (1 − r)2

(1 + r)2
, (A40)

Q∗
2(0, r) = 2r(1 − r)

(1 + r)2
. (A41)

Substituting (A39) and (A40) into the two conditions of (A33)
and (A34) gives

3r2 + 10r − 1 > 0, (A42)

r2 + 6r − 3 > 0, (A43)

which lead to r0 < r � 1. Thus, the obtained solution of
(A39), (A40), and (A41) is valid only for r0 < r � 1. Com-
bining two cases of smaller r and larger r than r0, the
left-sided limit and the right-sided limit of Q∗

h as r → r0

coincide. Note that the other four cases for the possibilities
of taking values of G(h)

β (a) give no solutions of Eq. (A4).
To compute the response μh(0, r), we can perform Taylor

series expansion as

Q∗
h(T, r) = Q∗

h(0, r) + μh(0, r)T + O(T 2). (A44)

Substituting this form into (A4) with (A28) for 0 < r < r0,
we obtain, up to O(T ) order:

(1 − r)

4
(1 − Q∗

1 − Q∗
3 ){1 + tanh 2(−μ1 + μ3 + O(T ))}

− (1 − r)

4
Q∗

1{1 − tanh 2(−μ1 + μ3 + O(T ))}
+ r(1 − Q∗

1 ) = 0, (A45)

(1 − r)μ1 + (1 + r)μ3 = 0. (A46)

Note that the first equation does not give an explicit exact
solution up to O(T ) order.

Combining (A46) with (A32), we obtain

μ1(0, r) = −1 + r

4
artanh θ (r), (A47)

μ3(0, r) = 1 − r

4
artanh θ (r). (A48)

Note that μ2 = −μ1 − μ3 holds by definition, leading to

μ2(0, r) = r

2
artanh θ (r). (A49)

Thus, it turns out that |μh| � log(r − r0) for each h.
Let us move onto the case of r0 < r � 1. By using the same

Taylor series expansion, instead of (A45), we obtain

−rμ1 − 1
2 (1 − r)μ1 = 0. (A50)

Then, combining this equation with (A46) leads to

μ1(0, r) = μ3(0, r) = μ2(0, r) = 0. (A51)

3. The explicit expressions of Q∗
h and νh at β → 0

Based on (A4), taking into account

lim
β→0

G(h)
β (a) = 0, (A52)

we obtain the following:

(1 − r)

4
(1 − Q∗

1 − Q∗
3 ) − (1 − r)

4
Q∗

1 + r(1 − Q∗
1 ) = 0,

(A53)
(1 − r)

4
(1 − Q∗

1 − Q∗
3 ) − (1 − r)

4
Q∗

3 − rQ∗
3 = 0. (A54)
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Solving these equations, we obtain

Q∗
1(∞, r) = 5r2 + 10r + 1

3r2 + 10r + 3
, (A55)

Q∗
3(∞, r) = (1 − r)2

3r2 + 10r + 3
, (A56)

Q∗
2(∞, r) = −3r2 + 2r + 1

3r2 + 10r + 3
. (A57)

To compute the response νh(T, r) := ∂Q∗
h

∂β
, we perform Tay-

lor series expansion of Q∗
h(T, r) at T = ∞ as

Q∗
h(T, r) = Q∗

h(∞, r) + νh(∞, r)β + O(β2). (A58)

Substituting this form into (A4), we obtain

−1 − r

4
(ν1 + ν3) − 1 − r

4
ν1 − rν1 = 0, (A59)

−1 − r

4
(ν1 + ν3) − 1 − r

4
ν3 − rν3 = 0. (A60)

Solving these equations, we obtain

ν1 = ν3 = 0, (A61)

leading to ν2 = 0 by definition.
Note that by taking the derivative of the stationary solutions

from (A55), (A56), and (A57) with respect to r, we also have

χ1(∞, 0) = 20
9 , (A62)

χ3(∞, 0) = − 16
9 , (A63)

χ2(∞, 0) = − 4
9 , (A64)

which are consistent with the expression of (A21) and (A22)
in the limit of β → 0.

APPENDIX B: MONTE CARLO SAMPLING

1. Updating rules

Let us explain how to obtain sample trajectories by Monte
Carlo simulations and compare them with the solutions of the
derived population dynamics (A1). As Monte Carlo simula-
tions, we perform the following procedures:

Initially, prepare a configuration x where the state at each
site is a value taken randomly from {1, 2, 3} with uniform
distribution. That is, the probability of taking each state is 1/3.

Next, repeat the steps from 1 to 3:
(1) Randomly choose a name 
 (1 � 
 � N ) of an agent

with uniform distribution. That is, the probability of taking
each name is 1/N .

(2) With the probability r, the chosen agent 
 is disturbed,
making the transition from state x
 to 1.

(3) If the chosen agent 
 is not disturbed, choose either a
positive or negative direction with probability 1/2.

(a) If a positive direction is chosen and x
 �= 3, make
the transition from state x
 to x
 + 1 with the probability

1

2

(
1 + tanh β

(
2

(
x
 − 1

N − 1

∑
k �=


xk

)
+ 1

))
. (B1)

FIG. 8. The density of height,
∑

i δxi,h/N , calculated by the
Monte Carlo (MC) simulation with N = 1000 and the solutions Qh

of the population dynamics (A1). T = 1, r = 0.2.

(b) If a negative direction is chosen and x
 �= 1, make
the transition from state x
 to x
 − 1 with the probability

1

2

(
1 + tanh β

(
− 2

(
x
 − 1

N − 1

∑
k �=


xk

)
+ 1

))
. (B2)

As shown in Fig. 8, we have confirmed that Monte Carlo
simulations have good agreement with the solution of the
population dynamics (A1). Note that for convenience in the
simulations, we have replaced 1

N−1

∑
k �=
 xk by 1

N

∑
k xk ; the

caused errors are the order of 1/N , which is negligible, at
least, near stationary states for sufficiently large N , except for
the vicinity of r = 1, T = 0.

2. Finite-size fluctuations

Let us characterize the finite size fluctuations in the density
of each state by variance σhh, covariance σhh′ , and correlation
coefficient Chh′ for h, h′ ∈ {1, 2, 3}, which are defined as

σhh′ := N

τ − t0

τ∑
t=t0

�h(t )�h′ (t ), (B3)

�h(t ) := Q̂h(t ) − Q∗
h, (B4)

Chh′ := σhh′√
σhh

√
σh′h′

, (B5)

where Q̂h(t ) is a sample trajectory of density of state h
obtained from Monte Carlo simulation at time t . The time
unit is one Monte Carlo step per site (N steps). We set t0 =
100 because the typical trajectories of Q̂h(t ) with r � 10−2

and T = 10−3 crosses the stationary solution much before
t = t0 = 100. Indeed, for r � 10−3 and T = 10−3, the dy-
namics gets very slow and the typical trajectories do not cross
the stationary solutions by t = t0 = 100.

As shown in Fig. 9, we have performed Monte Carlo simu-
lations with different system sizes N . If we straightforwardly
extrapolate the behaviors for larger system sizes, there seem
to be singular behaviors in the three types of variance and
the three types of correlation function in the large size limit
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FIG. 9. The variance σhh and correlation coefficients Chh′ averaged over ten samples with different trajectories. T = 10−3, t0 = 100,
τ = 150, N = 102, 103, 104.

near r = r0 for r < r0. In particular, it is notable to point out
that three correlation coefficients in the large size limit seem
to have perfect correlation, corresponding to |Chh′ | = 1, for
only r < r0.

Additionally, the results obtained by Monte Carlo simu-
lations suggest that Chh′ for r < r0 tends to show U-shaped

curves as the system size N gets larger. It is notable that the
bottoms of the U-shaped curves are close to r = −5 + 2

√
7 �

0.291 · · · , which is the point where μh changes its sign. Nev-
ertheless, more works with sufficiently large samples need to
be done to obtain more convincing data, which remain to be
found as another work in the future.
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