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Simulation of the continuous time random walk using subordination schemes
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The continuous time random walk model has been widely applied in various fields, including physics, biology,
chemistry, finance, social phenomena, etc. In this work, we present an algorithm that utilizes a subordinate
formula to generate data of the continuous time random walk in the long time limit. The algorithm has been
validated using commonly employed observables, such as typical fluctuations of the positional distribution, rare
fluctuations, the mean and the variance of the position, and breakthrough curves with time-dependent bias,
demonstrating a perfect match.

DOI: 10.1103/PhysRevE.110.034113

I. INTRODUCTION

The continuous-time random walk (CTRW) [1–7] is a
stochastic process for a random walk that jumps from one
position to another one. As an extension of the discrete ran-
dom walk process, it was originally discussed by Montroll
and Weiss [2], where a random walk is subordinated to a
renewal process. Waiting times and displacements of the ran-
dom particles are independent and identically distributed (IID)
[4]. For the waiting times, it may be drawn from a heavy or
narrow-tailed distribution. Different combinations of waiting
times and displacement distributions yield different types of
diffusion statistics, ranging from subdiffusion, normal diffu-
sion, and super diffusion. The CTRW model has attracted
great attention from researchers due to its wide applications.
For example, it was used in many physical and chemical
phenomena, including the transport of amorphous materials
[8], contamination in disorder systems [9], the U.S. dollar in
Deutsche mark future exchange [10], diffusion of polymers in
attractive nanoparticle polymer mixtures [11], and so on.

The key issue is to discuss and simulate the positional dis-
tribution of the CTRW model. Two alternative approaches are
the fractional diffusion equation [4,12] and Langevin equa-
tions [13–15]. For example, Fogedby used decouple Langevin
equations concerning power law step and waiting time distri-
butions [16] to illustrate the CTRW model. One advantage is
that the drift force field of the system is natural to be added.
This method was further extended in Refs. [17,18]. See also
discussions of coupled cases [19]. Here we use the statistics
of the number of renewals in the long time limit, eliminating
the need to generate waiting times statistics.

This manuscript focuses on the case when waiting time
has a finite mean and an infinite variance, and the displace-
ment follows a Gaussian distribution with a nonzero mean.
However, the methods we provided are much more general.
Due to the asymmetric displacement distribution, sometimes
it was called the biased CTRW model. The biased CTRW has
garnered significant attention and a vast number of specialized
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literature [20–25]. When the bias of the system or the mean of
the displacement is zero, the process shows normal diffusion.
While, when the bias is added, CTRW shows the enhanced or
supper diffusion [1], i.e.,

〈x2〉 − 〈x〉2 ∼ t3−α

with 1 < α < 2. In the long time limit, the positional distribu-
tion follows the asymmetric Lévy stable law [26] according
to the Montroll-Weiss equation [3,4]. The fat tail is a key
characteristic of the asymmetric Lévy distribution. Generally,
when seeking data on CTRW, we obtain a random count
representing the number of renewals occurring within the time
interval from zero to t , then use subordinated processes to get
the particle’s position. A drawback is that it takes a long time
to find the number of renewals when the observation time
is long. Thus, it would be interesting to find a new way to
generate the number of renewals and the position of particles.

Recall that in the long time limit, the number of renewals
follows the asymmetric Lévy stable law [27]. By instinct, one
possible way is to generate the number of renewals based
on the mentioned Lévy stable law. The Lévy stable law is
perfectly correct, but it does have some drawbacks. For ex-
ample, the far tail of Lévy distribution tends to infinity, which
indicates that the number of the renewals tends toward neg-
ative infinity. In turn, the Lévy stable law gives an infinite
mean square displacement [27,28] (MSD) of the number of
renewals. It is certainly not true, as the far tail should have
a cutoff [28] for a finite observation time t . In addition, as
suggested in [28], the MSD of the number is governed by an
infinite density. On the other hand, the positional distribution
in the context of simulations converges to the Lévy stable law
rather slowly, especially when the system’s bias is weak. In
some sense, the convergence problem was solved in [29] using
the fractional advection-diffusion-asymmetry equation. To be
more exact, the solution of the equation is the convolution
of the Lévy stable law and a Gaussian distribution. Unfor-
tunately, the solution of the fractional advection-diffusion-
asymmetry equation yields a divergent MSD [29,30].

Our goal in this manuscript is to construct a PDF to de-
scribe the number of renewals, which is not only valid for
the typical fluctuations of the number of renewals but also
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effective for rare events. The main idea is that we use the
Lévy stable law and the non-normalized density to illustrate
the central part and the far tail of the number of renewals,
respectively. Below, we will demonstrate that these two laws
exhibit distinct scaling limits on the number of renewals and
then utilize commonly employed observables to illustrate the
effectiveness of the constructed PDF.

The organization of the manuscript is as follows. In Sec. II,
we give the definition of the CTRW model and the algorithm
to generate the number of renewals in the long time limit.
Specifically, the modified Lévy stable law is introduced. We
further check the theoretical prediction using the widely used
observables in Sec. III, including typical fluctuations of the
position, large deviations of the position describing the far tail,
the mean and the variance of the position, and breakthrough
curves with the time-dependent bias. Finally, we conclude the
manuscript with a discussion in Sec. IV.

II. MODEL AND ALGORITHM

Below, we present the definition of the CTRW model and
the algorithm for simulating data on the number of renewals
and positions.

A. Model

In this subsection, we introduce the CTRW model, which
is defined as follows. A random walk starts from its initial
position. The particle waits at its initial position for time
τ1 drawn from φ(τ ), and then makes a jump to x1 with x1

following f (χ ). The particle traps at x1 for time τ2 and then
jumps to the position x1 + x2 with x2 generated from f (χ ).
Then, the process is renewed. All along the manuscript, the
waiting times τi are IID random variables, and the same holds
for χi. The number of renewals, denoted as Nt , obeys the re-
lation

∑Nt
i=1 τi + Bt = t , where Bt is the backward recurrence

[27,28] and t is the total observation time.
All along the manuscript, waiting times follow a power law

distribution [28,31,32]

φ(τ ) =
{

0, τ < τ0,

α
τα

0
τ 1+α , τ � τ0

(1)

with 1 < α < 2. As mentioned, waiting times τ have
a finite mean and an infinite variance. Performing the
Laplace transform with respect to φ(τ ), we have φ̂(s) =∫ ∞

0 exp(−st )φ(τ )dτ ∼ 1 − 〈τ 〉s + (τ0)α|�(1 − α)|sα with
〈τ 〉 = ατ0/(α − 1) being the mean of waiting times.

For displacements, we focus on Gaussian distribution with
a finite mean a and a finite variance σ 2,

f (x) = 1√
2σ 2π

exp

[
− (x − a)2

2σ 2

]
. (2)

Let Qt (N ) be the PDF of the number of renewals and
f (x|N ) be the conditional probability of finding the particle
on the position x on the condition it made N jumps. The PDF
of the position follows

P(x, t ) =
∞∑

N=0

Qt (N ) f (x|N ) →
∫ ∞

0
Qt (N ) f (x|N )dN. (3)

Equation (3) describes the particle at position x after N steps
on the condition that exactly N steps were made up to time t .

FIG. 1. Distribution of the number of renewals. The red solid
line describes typical fluctuations of the number of renewals, shown
by the Lévy law Eq. (5) and rare events Eq. (9) are plotted by the
black dashed line. Symbols plotted by circles are simulations of
the renewal process for 2 × 107 realizations. We choose t = 1000,

τ0 = 0.1, and α = 3/2.

Equation (3) can be interpreted as the so-called integral for-
mula of subordination [3,29,33,34], i.e., a random walk is
subordinated to a renewal process. The subordination scheme
has been employed in mathematics and physics within various
contexts, including fractional kinetic equations [31,35,36],
Jacobi stochastic volatility models [37], and financial mod-
els [38]. Below, we will use Eq. (3) to generate the data of
positions.

Recall that displacements are IID random variables, thus
f (x|N ) obeys

f (x|N ) = 1√
2σ 2πN

exp

[
− (x − aN )2

2σ 2N

]
. (4)

As described in [26–28], in the long time limit, the number of
renewals follows the asymmetric Lévy distribution

Qt (ξ ) ∼ Lα (ξ ) (5)

with ξ = (N − t/〈τ 〉)/(t/t̄ )1/α and t̄ = 〈τ 〉1+α/(τα
0 |�(1 −

α)|). Equation (5) is plotted by the red solid line in Fig. 1.
Here the symbol Lα (ξ ) is the Lévy stable distribution, whose
Fourier transform is

∫ ∞
−∞ exp(−ikξ )Lα (ξ )dξ = exp((−ik)α ).

Typical fluctuations Eq. (5) describes the case when N −
t/〈τ 〉 is of the order of t1/α , i.e., the central part of the distribu-
tion. Using the asymptotic behavior of the Lévy distribution,
the far left tail of N follows Qt (ξ ) ∼ (−ξ )−1−α/�(−α). It
indicates that Eq. (5) does not give the information of the
MSD [28].

B. Algorithm

According to Eqs. (3)–(5), in the long time limit, the posi-
tional distribution follows

P(x, t ) ∼ 1

(t/t )1/α

∫ ∞

0
Lα

(
N − t/〈τ 〉

(t/t )1/α

)
exp

( − (x−aN )2

2σ 2N

)
√

2πσ 2N
dN.

(6)
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Changing the random variables, the above equation leads to

P(x, t ) ∼
∫ ∞

− t
〈τ 〉 (t/t )1/α

Lα (ξ )
exp

( − (x−a t
〈τ 〉 −aξ ( t

t )1/α )2

2σ 2(t/〈τ 〉+ξ (t/t )1/α )

)√
2σ 2π

(
t

〈τ 〉 + ξ
(

t
t

)1/α) dξ .

(7)

Equation (7) is the main result of this section used to generate
the random variables. Note that Lα (ξ ) in Eq. (7) should be
modified, denoted as L∗

α (ξ ). Otherwise, it will not accurately
account for the MSD and the far tail of the position distribu-
tion. For that, we generate the statistics of L∗

α (ξ ), stemming
from typical fluctuations and the infinite density [39] and
then use it to get the data of the position. Afterwards, posi-
tions of particles are drawn from a Gaussian distribution with
the mean at/〈τ 〉 + aξ (t/t̄ )1/α and the variance δ2(t/〈τ 〉 +
ξ (t/t̄ )1/α )2.

Rare fluctuations of N were investigated, describing the
scaling when N − t/〈τ 〉 is of the order of t . According to the
result given in [28], large deviations of N obey

Qt (ε) ∼ α(τ0)α
[

t (−ε〈τ 〉)−α−1 + 1 − α

α
(−ε〈τ 〉)−α

]
(8)

with ε = N − t/〈τ 〉. Consider the random variable, ξ =
ε/(t/t̄ )1/α , we have

Qt (ξ ) ∼ α(τ0)α
(

t

t̄

)1/α

×
[

t( − ξ
(

t
t̄

)1/α〈τ 〉)α+1 + (1 − α)/α( − ξ
(

t
t̄

)1/α〈τ 〉)α

]
. (9)

See the black dashed line in Fig. 1. Recall that Eq. (9) is valid
for small ξ corresponding to small N . As shown in Fig. 1,
Eq. (5) is valid for the central part of the number of renewals
together with the right tail, and the non-normalized density
Eq. (9) works for the left far tail. By instinct, we can utilize
the effective part of Eqs. (5) and (9) to generate data of the
number of renewals.

In order to generate the random variable based on Eq. (9),
we construct a PDF by adding a condition z on Eq. (9),

QI
t (ξ ) = α(τ0)α

⎡⎣ t̄

(−ξ 〈τ 〉)α+1
+ (1 − α)/α

(−ξ 〈τ 〉)α
(

t
t̄

)1− 1
α

⎤⎦ (10)

with b̄ < ξ � z < 0. Here, z is an undetermined constant.
As N � 0, the bottom limit of ξ should be greater than
−t1−1/α t̄1/α/〈τ 〉, i.e.,

b̄ = −
(

α

�(2 − α)

)1/α(
t

τ0

)1− 1
α

. (11)

When 1 < α < 2, in the long time limit, b̄ → −∞. While for
a finite observation time t , ξ can not tend to infinity. Thus,
the modified Lévy stable law L∗

α (ξ ) should have a cutoff at
the tail.

We further introduce the cumulative distribution function,
describing the probability of ξ when ξ is less than y,

h(y) =
∫ y

b̄
QI

t (ξ )dξ . (12)
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FIG. 2. Plot of the modified asymmetric Lévy stable distribution.
Here, the black dot marked by A describes the modified survival
probability Eq. (16), part B stems from the modified infinite density
Eq. (10), part C is related to typical fluctuations Eq. (5), and the
black dot D denoted as ξ ∗ is the crossover point between typical
fluctuations and rare fluctuations.

Performing the integral from b̄ to z, Eq. (12) leads to

τ0z((α − 1)t )1/α|�(1 − α)|1/α + t (ατ0)1/α

t (ατ0)1/α (−z)α|�(1 − α)| = 1. (13)

Equation (13) can be used to determine the upper limit z
defined in Eq. (10). When α = 3/2, using a cubic equation,
the formula for the roots of Eq. (13) is easy to find. While, if
α = 5/4, Eq. (13) reduces to a fifth degree polynomial. Thus,
according to the Abel-Ruffini theorem, the equation concern-
ing z shown by Eq. (13) is generally unsolvable. For that, to
have a universal program valid for all kinds of α, we have to
abandon some methods that are z dependent.

As shown in Fig. 2, the modified Lévy stable has three
parts, labeled as A, B, and C, respectively. Part A represents the
probability for the normalization, describing the fade proba-
bility of random variables equaling to b̄. For part B, we utilize
the information of the modified infinite density Eq. (10). In
part C, random variables ξ are drawn from the Lévy stable
law Eq. (5). The dot D is the intersection of part B and part C.

Below, we calculate the probability of random variables
located in regions B and C, respectively. For the probability
of rare fluctuations in region B, we have

Prare(ξ ∗) = h(ξ ∗) = τ0z((α − 1)t |�(1 − α)|)1/α + t (ατ0)1/α

t (ατ0)1/α (−ξ ∗)α|�(1 − α)| ,

(14)

as mentioned before, ξ ∗ is the transition point of region B and
region C. Recall that part C is illustrated by the Lévy stable
law, the probability in region C follows

Ptypical(ξ
∗) =

∫ ∞

ξ∗
L(ξ )dξ . (15)

When t → ∞, Prare(ξ ∗) + Ptypical(ξ ∗) tends to unity. While for
a finite t , Prare(ξ ∗) + Ptypical(ξ ∗) < 1. Therefore, we further
introduce the modified or fake survival probability describing
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the nontraveling particles

Psurvival(ξ
∗) = 1 − Prare(ξ ∗) − Ptypical(ξ

∗). (16)

In other words, it is related to scenarios where the number of
renewals is zero, which leads to the nonmoving particles in
the context of the CTRW model.

Now we discuss the details of generating random vari-
ables ξ drawn from L∗

α (ξ ). First, we generate a random
variable drawn from a uniform distribution, denoted as η.
Based on the value of η, we determine which part it be-
longs to. If η > Psurvival(ξ ∗) + Prare(ξ ∗), we generate a random
variable ξ from L(ξ ) under the condition that ξ � ξ ∗. In-
structions for generating a Lévy stable distribution can be
found on [40,41] or the MATLAB Central File Exchange, as
detailed in the work by Veillette [42]. When Psurvival(ξ ∗) <

η < Psurvival(ξ ∗) + Prare(ξ ∗), ξ are drawn from the modified
infinity density Eq. (10) using the accept/reject algorithm. If
η < Psurvival(ξ ), the random variable is fixed, i.e., ξ = b̄. Note
that the MSD is sensitive to lagging particles far behind the
mean [43]. Therefore, when simulating the position for the
MSD, the random variables η are larger than Psurvival(ξ ∗) using
the theory given in Eq. (10). Throughout the manuscript, the
theories marked in legends of figures refer to the algorithm
discussed in this subsection. Specifically, we generate ξ drawn
from the modified Lévy law L∗

α (ξ ) and then use it to determine
the position statistics given by the expression

J (x) =
exp

( − (x−a t
〈τ 〉 −aξ ( t

t )1/α )2

2σ 2(t/〈τ 〉+ξ (t/t )1/α )

)√
2σ 2π

(
t

〈τ 〉 + ξ
(

t
t

)1/α) .

Here, J (x) represents the distribution of the position x at the
time t within the context of the CTRW model, where ξ are
drawn from L∗

α (ξ ).

III. THEORETICAL PREDICTIONS COMPARED
WITH ASYMPTOTIC BEHAVIORS AND SIMULATIONS

In this section, we generate the data of the position ob-
tained from the method outlined in Sec. II B to obtain typical
fluctuations of the position, rare fluctuations, the mean of po-
sition, the variance of the position, and breakthrough curves.
Additionally, we generate the positional distribution data
using simulations and outline the well-known asymptotic be-
haviors for comparative analysis.

A. Typical fluctuations

Several authors have studied typical fluctuations of the
position for the biased CTRW; see Refs. [21,26,29,43,44]. In
the long-time approximation, the scaled positional distribution
follows the asymmetric Lévy stable distribution [26,45]

P(ζ ) ∼ Lα (ζ ) (17)

with ζ = (x − at/〈τ 〉)/l (t ) and l (t ) = a(t/t )1/α . In Eq. (17),
it is crucial to emphasize that a must be nonzero; otherwise,
the positional distribution would yield a Gaussian distribution.
In the general scenario, P(x, t ) is described by the convolution

FIG. 3. Distribution of the position for different biases. Here,
the red symbols describe simulations and the green symbols indi-
cate theoretical predictions. For the theories, we use the algorithm
provided in Sec. II B. The solid lines stem from Eq. (18) describing
typical fluctuations of x. We choose α = 3/2, σ = 1, t = 1000, and
τ0 = 0.1.

of a Lévy stable distribution and a Gaussian distribution [29]

P(x, t ) ∼
∫ ∞

−∞
Lα (ξ )

exp
( − (x− at

〈τ 〉 −aξ ( t
t )1/α )2

2σ 2 t
〈τ 〉

)
√

2πσ 2 t
〈τ 〉

dξ, (18)

describing typical fluctuations when x − at/〈τ 〉 ∼ t1/α , i.e.,
the central part of the positional distribution. As shown in
Fig. 3, Eq. (18) fails for the left tail of the positional distribu-
tion. While the theoretical prediction given in the manuscript
is valid for both tails. It indicates that if we use the modified
Lévy stable law in Eq. (7), Eq. (7) does work perfectly. See
Fig. 4 in linear scale as well. In addition, we plot the po-
sitional distribution at a short time t , see Figs. 5 and 6. For
this case, the positional distribution follows a nearly Gaussian
distribution, affirming the validity of our findings. All along
the manuscript, the theoretical predictions are based on the al-
gorithm described in Sec. II B, which uses the modified Lévy
stable law to generate statistics of the number of renewals.
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FIG. 4. Same as in Fig. 3 in linear scale.
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FIG. 5. Positional distribution with a short observation time t ,
i.e., t = 2, 10, and 50. The symbols are theoretical predictions,
and the corresponding simulations are plotted using the solid
lines. Here we choose α = 3/2, τ0 = 0.1, δ = 1, a = 1, and 2 × 107

realizations.

B. Rare fluctuations

To proceed, we discuss the limit of the Montroll-Weiss
equation (20), but when |s|/|k| is fixed. Specifically, s and k
are small and in the same order. As a complementary to the
Lévy law Eq. (17), the rare fluctuations illustrate the far tail of
the positional distribution. Following the result given in [43],
rare fluctuations are

P(x, t ) ∼ (τ0)α

atα

(
α

(
1 − x/a

t/〈τ 〉
)−1−α

−(α − 1)

(
1 − x/a

t/〈τ 〉
)−α

)
, (19)

describing the scaling when x is of the order of the time t .
Equation (19) gives a prediction for particles that are near
the initial position. In other words, the mentioned slowing-
moving particles stem from these longest single waiting times
drawn from Eq. (1). As shown in Fig. 7, our theory is effective
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FIG. 6. Same as in Fig. 5 in linear scale.

0 1000 2000 3000 4000
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10−4
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simulations
theory
Levy law
rare events

FIG. 7. Simulations (“�”) of the positional distribution are com-
pared to rare fluctuations Eq. (19) (solid line), the Lévy law Eq. (17)
in terms of x (dashed line), and theory (“◦”). The parameters are a =
1, σ = 1, t = 1000, α = 3/2, τ0 = 0.1, and 2 × 107 realizations.

for both the positional distribution’s central part and far tails,
whereas the Lévy stable law Eq. (17) tends to infinity.

C. Moments of the position

We investigate the mean of the position denoted by 〈x(t )〉,
which refers to the sum of all positions divided by the number
of particles. It is a measure that reflects the tendency of the
position. Let us start from the Montroll-Weiss equation, which
in Fourier-Laplace space is as follows [3,4]:

˜̂P(k, s) = 1 − φ̂(s)

s

1

1 − f̃ (k)φ̂(s)
. (20)

Using the relation

〈x̂q(s)〉 = iq ∂q˜̂P(k, s)

∂kq
|k=0,

in the long time limit, Eq. (20) yields

〈x(t )〉 ∼ a
t

〈τ 〉 . (21)

Recall that the waiting time has a finite mean 〈τ 〉, then for
a fixed t , the mean of the number of renewals is 〈N (t )〉 ∼
t/〈τ 〉 [27,28]. Thus, 〈x(t )〉 ∼ 〈
x〉〈N (t )〉 ∼ at/〈τ 〉 is ob-
tained again, where 〈
x〉 is the mean of the displacements.
As shown in Figs. 8 and 9, the theoretical prediction grows
linearly with the observation time t , showing a perfect match
with simulations and Eq. (21).

The MSD is the most commonly employed quantifier for
diffusion processes. Due to the effect of the bias, the biased
CTRW shows superdiffusion [22]. Fascinatingly, the MSD
is controlled by these sluggish particles that significantly
lag far behind the average position, as opposed to the swift
particles near the average. In that sense, the rare events, gov-
erned by the infinite density, are responsible for the enhanced
diffusion [43]. Mathematically, the variance of the position
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FIG. 8. Mean of the position under various biases are depicted.
Lines correspond to the asymptotic prediction given by Eq. (21). The
parameters are σ = 1, α = 3/2, τ0 = 0.1, and 2 × 107 realizations.

grows as

Var(x) = 〈x2〉 − 〈x〉2 ∼ 2a2τα
0

(2 − α)(3 − α)〈τ 〉3
t3−α + σ 2 t

〈τ 〉 ,
(22)

measuring the time evolution of its spatial extension. In the
long time limit, the leading term of Eq. (22) is t3−α , and
when the observation time is short, the correction term is of
importance. As shown in Fig. 10, theoretical results are con-
sistent with simulations. In particular, when the bias is weak,
for example, a = 0.5, our theory gives a perfect prediction
if compared with Eq. (22). In linear-linear scale, small de-
viations exist between theoretical predictions and simulation
results; see Fig. 11. The reason is as follows. When the bias
is strong, particles are pushed by the bias and move quickly.
In this scenario, the asymptotic Lévy stable law given by
Eq. (17) applies. Consequently, the modified infinite density
becomes insignificant, as its probability is very low compared
to the weak bias case [see Fig. (3)]. Therefore, the algorithm
provided in Sec. II B essentially utilizes Eq. (17) with a cutoff
at the tail to compute the MSD. Besides, fluctuations of the

FIG. 9. Same as Fig. 8 in log-log scale.

FIG. 10. Plot of the Var(x). The solid lines describes the asymp-
totic behavior Eq. (22), together with simulations (“◦”) and theories
(“+”). The parameters are the same as in Fig. 8.

far tail of the positional distribution are large when the bias
is strong. It leads to deviations, but it does not like the results
given by Eq. (18), which predicts an infinite MSD.

D. Breakthrough curves

Now we further discuss the positional distribution, but
from aspects of breakthrough curves, which are essential
tools in measuring the contamination in porous materials
[9,46–49]. We assume that all the particles are injected im-
mediately when we start to observe the process, wherein the
positional concentration is measured at a fixed position xb.
To be more exact, the breakthrough curves, the probability
of particles being at xb at a specific observation time t , are
measured in terms of the distribution.

Based on the discussions in [9,29], we delve into the time-
dependent bias to validate the program outlined in Sec. II.
The process entails four states. In state (i), particles are
promptly injected; thereafter, displacements follow a Gaus-
sian distribution with a mean of a and a variance of σ 2

FIG. 11. Same as in Fig. 10 in linear-linear scale.
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FIG. 12. Breakthrough curves with time-dependent bias. The
theory is based on the algorithm given in Sec. II, asymptotic behavior
is given in Eq. (23), and simulations are obtained from 2 × 107 tra-
jectories. Here we choose ta = tb/2 = tc/3 = 100, t = 1000, η = 4,
and σ = 5.

from time zero until ta. All along the process, the variance
of displacements remains the same. Subsequently, in state
(ii), the bias of the system is enhanced from time ta to tb,
i.e., the displacements are drawn from Gaussian distribu-
tion with the mean 4aη/(1 + η), where η > 2/3. State (iii)
witnesses a bias of the system represented by a/(2/3 + η)
over the time interval (tb, tc), constituting the weakest bias
among the four states. Ultimately, the bias reverts to a after
tc until the end of the observation time. The correspond-
ing theoretical prediction was considered using the fractional
advection-diffusion-asymmetry equation in Ref. [29], where
the main strategy is that the final position of each state is
regarded as the initial position of the next process. In the long
time limit, the positional distribution follows [29]

P(x, t ) ∼
∫ ∞

−∞

1√
4πcm1

exp

[
− (x − y − cm2)2

4cm1

]
1

(cm3)1/α
Lα

×
[

y

(cm3)1/α

]
dy (23)

with

cm1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t σ 2

2〈τ 〉 , m = 1,

t σ 2

2〈τ 〉 , m = 2,

t σ 2

2〈τ 〉 , m = 3,

t σ 2

2〈τ 〉 , m = 4,

(24)

cm2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1

t
〈τ 〉 , m = 1,

[a1t1 + a2(t − t1)] 1
〈τ 〉 , m = 2,

[a1t1 + a2(t2 − t1) + a3(t − t2)] 1
〈τ 〉 , m = 3,

[a1t1 + a2(t2 − t1) + a3(t3 − t2) + a4(t − t3)] 1
〈τ 〉 , m = 4,

(25)

and

cm3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aα

1 t 1
t , m = 1,[

aα
1 t1 + aα

2 (t − t1)
]

1
t , m = 2,[

aα
1 t + aα

2 (t2 − t1) + aα
3 (t − t2)

]
1
t , m = 3,[

aα
1 t1 + aα

2 (t2 − t1) + aα
3 (t3 − t2) + aα

4 (t − t3)
]

1
t , m = 4.

(26)

with m = 1, 2, 3, 4 being the number of the state. This is plot-
ted in Fig. 12 for different times t . Note that when 0 < t < t1,
the solution Eq. (23) reduces to Eq. (7) in the main text.

IV. CONCLUSION

In this manuscript, we introduced a way to generate statis-
tics of the positional distribution that is consistent with the
CTRW model for a long observation time t . The main idea is
that we use the modified Lévy stable law L∗

α (ξ ) to simulate
the number of renewals, which yields a perfect prediction
for the positional distribution. In some sense, the method
avoids the generating of IID random waiting times, which
saves a significant amount of time. Mathematically, we
can use the following formula to predict the positional

distribution

P(x, t ) ∼
∫ ∞

− t
〈τ 〉 (t/t )1/α

L∗
α (ξ )

exp
( − (x−a t

〈τ 〉 −aξ ( t
t )1/α )2

2σ 2(t/〈τ 〉+ξ (t/t )1/α )

)√
2σ 2π

(
t

〈τ 〉 + ξ
(

t
t

)1/α) dξ,

(27)

with

L∗
α (ξ ) =

⎧⎪⎨⎪⎩
L∗

α (ξ ), ξ � ξ ∗,

QI
t (ξ ), b̄ < ξ < ξ ∗

b̄, else.

(28)

The method is not limited to examples discussed in the
manuscript. On the one hand, it is valid for the case of waiting
times having an infinite mean, where the number of renewals
follows the one-sided Lévy stable distribution [27]. On the
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other hand, the displacements can be extended to situations
when steps have a finite mean and a finite variance. When
discussing the MSD, deviations exist between simulations
and theoretical predictions. However, we did not find such
deviations for the positional distribution and the mean of the
position. This indicates that, for the biased CTRW model,
the MSD is sensitive to the details of the positional distri-
bution. Improving the presented work is a task left for the
future.

Recently, researchers have been increasingly drawn to
the nearly exponential decay observed in stochastic pro-
cesses [11,50–70]. Unlike the approach investigated here, the

exponential decay is easy to detect at a short time scale, such
as, the total observation time is half. Consequently, Eq. (27)
fails. How to extend the present approach is left for future
work.
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