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Pink-noise dynamics in an evolutionary game on a regular graph
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We consider a multiplayer prisoner’s dilemma game on a square lattice and regular graphs based on the
pairwise-Fermi update rule, and we obtain heatmaps of the fraction of cooperators and the correlation of
neighboring pairs. In the heatmap, we find a mixed region where cooperators and defectors coexist, and the
correlation between neighbors is significantly enhanced. Moreover, we observe pink-noise behavior in the mixed
region, where the power spectrum can be fitted by a power-law function of frequency. We also find that the
pink-noise behavior can be reproduced in a simple random-walk model. In particular, we propose a modified
random-walk model which can reproduce not only the pink-noise behavior but also the deviation from it observed
in a low-frequency region.

DOI: 10.1103/PhysRevE.110.034110

I. INTRODUCTION

The history of modern game theory dates back to von
Neumann, who published a seminal paper on mixed-strategy
equilibria in the two-person zero-sum game [1,2]. Later his
idea was applied to economics [3]. von Neumann also collab-
orated with Morgenstern to write a book entitled Theory of
Games and Economic Behavior [4].

Modern game theory has been applied to various fields
such as politics [5], psychology [6], and biology [7]. Two
key concepts of game theory are Nash equilibria and Pareto
optimality. Nash discussed equilibria in a strategic-form non-
cooperative game and proved the existence of equilibria,
which are referred to as Nash equilibria [8]. Pareto created
a concept known as the Pareto optimality, where payoffs are
most efficiently distributed so that nobody cannot increase
his/her payoff without making another player worse off [9].

In particular, some game-theoretical models are considered
to explain development of cooperative relation even in social
viscosity [10] in a large population [11–13]. In recent years,
several mechanisms have been found to construct sustain-
able cooperation by giving players mutual advantages and
keeping them from undesirable risk avoidance. One mech-
anism is a network structure [14–16]. When we consider a
large well-mixed population where individuals equally match
others, iterated games with dilemma may cause natural selec-
tion; without any mechanism for cooperation, cooperators are
likely to be extinct. However, when players are not mixed well
and different individuals tend to interact with different specific
others, such a relation can be expressed by a graph [17];
each individual is represented by a node, and each interaction
between individuals is represented by an edge. By considering
a case in which iterated games with dilemma on a network, we
observe mutual cooperation, unlike a well-mixed case [14].
Other mechanisms are also known to enhance evolutionary
cooperation, such as kin selection, direct reciprocity, indirect
reciprocity, and group selection [18].

In general, games can be classified into strategic-form
games and extensive-form games [9]. A strategic-form game
is specified by three components, i.e., players, strategies, and
payoffs. An n-player strategic-form game is given by a set
M = { 1, · · · , n } of n players, a set { Si }i∈M of strategies
available for players and a set { f i }i∈M of payoff functions for
players:

(M, {Si}i∈M , { f i}i∈M ). (1)

Here the payoff function f i : S1 × · · · × Sn → R is a real-
valued function of joint strategies and gives a payoff to player
i according to strategies (s1, · · · , sn) ∈ S1 × · · · × Sn taken by
players. We express the direct product of strategies of n − 1
players with one player i excluded as S−i ≡ S1 × · · · Si−1 ×
Si+1 × · · · × Sn. In addition, a component of the direct prod-
uct is denoted by s−i ≡ (s1, · · · , si−1, si+1, · · · , sn).

In a strategic-form game, each player chooses a strategy
from his/her set of strategies. When players have a finite num-
ber of available strategies, a strategic-form game can simply
be expressed by a payoff matrix. By way of illustration, let us
consider a situation in which there are two players 1, 2, and
each player i (= 1, 2) has a strategy set Si = { si

1, · · · , si
mi } of

mi strategies. When players 1 and 2 choose strategies s1
i and

s2
j , respectively, players 1 and 2 gain payoffs a1

i j = f 1(s1
i , s2

j )
and a2

i j = f 2(s1
i , s2

j ), respectively. Then the game can be rep-
resented by assigning the joint payoffs (a1

i j, a2
i j ) to the (i, j)th

component of a matrix. This matrix is referred to as the payoff
matrix, and the matrix A in Table I is the payoff matrix for
mi = 2 and i = 1, 2.

In the above-mentioned strategic-form game, all players
simultaneously choose their strategies. We can also consider
a game where players determine their strategies at differ-
ent times. Such a game is referred to as an extensive-form
game. Examples of strategic-form games are the prisoner’s
dilemma game [19], the stag-hunt game [20], and the battle of
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TABLE I. 2 × 2 payoff matrix A for a strategic-form game.

12 s2
1 s2

2

s1
1

(
a1

11, a2
11

) (
a1

12, a2
12

)
s1

2

(
a1

21, a2
21

) (
a1

22, a2
22

)

sexes [21]. Examples of extensive-form games include chess
and poker [22].

Here we briefly describe strategic-form games which con-
stitute the main subject of this paper. Strategic-form games
can be classified into games with perfect information and
games with imperfect information [9]. They can also be
classified into cooperative games [23] and noncooperative
games [24]. In a game with perfect information, the three
components described in Eq. (1) are all common knowledge to
all players. In contrast, in a game with imperfect information,
not all the three components in Eq. (1) are common knowl-
edge [9]. Meanwhile, in a noncooperative game, each player
independently chooses his/her strategy without prior negotia-
tion. In contrast, in a cooperative game, players are allowed to
negotiate with others before choosing their strategies.

In this paper, we focus on a noncooperative game with
imperfect information. In particular, we discuss evolutionary
games, where multiple players interact with each other and
change their strategies in an attempt to increase their pay-
offs over time. Evolutionary game theory was initiated by
Smith and Price [7], where the concept of Nash equilibria
was developed into a new idea of an evolutionarily stable
strategy [25,26]. This idea of evolutionary games has widely
been applied to biology [27] and genetics [28].

We examine the dynamics of the fraction of cooperators
in an iterated prisoner’s dilemma game and study the power
spectrum of the fraction of cooperators. We find that the
obtained power spectrum exhibits a pink noise, which means
that the spectrum is proportional to S( f ) ∝ f −α , where α is
a positive constant. The pink-noise behavior is widely studied
and is a ubiquitous phenomenon in physics. It is of interest
to investigate whether or not a similar pink-noise behavior
emerges in the game dynamics.

We demonstrate that a simple random-walk model repro-
duce the pink-noise behavior of the fraction of cooperators in
our game model. We show that the dynamics of the fraction
of cooperators in a game-theoretical model can be reproduced
by a much simpler random-walk model. We find that the
power exponent of the spectrum can also be reproduced by
the random-walk model, and that in some cases the power
spectrum of the fraction of cooperators deviates from the
pink-noise curve in low-frequency region. We show that the
deviation of the spectrum from the power law can be repro-
duced by a modified random-walk model.

This paper is organized as follows. In Sec. II, we briefly
introduce fundamental ideas of game theory and give the
setting of the iterated game based on the prisoner’s dilemma
game. In Secs. III and IV, we describe the numerical results of
ensemble-averaged quantities in the games on a square lattice
and regular graphs, respectively. In Sec. V, we numerically
examine dynamical trajectories of the fraction of cooperators,
and we find that their spectra exhibit pink-nose behavior. In

TABLE II. Payoff matrix of the prisoner’s dilemma game.

Alice/Bob C D

C (R, R) (S, T )
D (T, S) (P, P)

Sec. VI, we discuss how pink-noise behavior is reproduced in
terms of random-walk models. We also discuss the system-
size dependence and comment on the boundary game. In
Sec. VII, we conclude this paper with an outlook.

II. EVOLUTIONARY GAME ON A GRAPH

A. Prisoner’s dilemma

In game theory, a strategic-form game is the standard
representation of a multiplayer game which is given by the
relationship between the strategies and payoffs of players. In
general, an n-player strategic-form game is defined by the
following sets of ingredients:

G = (M, {Si}i∈M , { f i}i∈M ), (2)

where M = { 1, · · · , n } is a set of players, Si is a set of possi-
ble strategies or actions of player i, and f i : S1 × · · · × Sn →
R is a payoff function of player i. In this game, each player i ∈
{ 1, · · · , n } chooses his/her strategy si ∈ Si without knowing
the other players’ choice. Then, player i is given a payoff
f i(s1, · · · , sn) depending on the combination of the actions
of all players. The goal of player i is to maximize his own
payoff.

One example is the prisoner’s dilemma game [29]. A pay-
off bimatrix is generally written as in Table II.

Here actions C and D denote cooperation and defection,
either of which is chosen by each player; R, P, T , and S
represent the reward, punishment, temptation, and sucker’s
payoff, respectively. In the conventional prisoner’s dilemma
game, the inequality T > R > P > S holds. Assume that two
players, Alice and Bob, participate in the game, and they
are given two choices: cooperation and defection. Their goal
is to separately choose the action that maximizes their pay-
off. If both players cooperate with each other, both of them
receive the reward R. If both players defect, both of them
receive the punishment P, which is lower that the reward R.
This means that mutual cooperation is more preferable than
mutual defection for both players. If one player unilaterally
defects and the other player cooperates, the defector receives
the highest payoff T and the cooperator receives the lowest
payoff S. Since T > R, the players may be tempted to choose
defection for a higher payoff. Since P > S, the players may
deviate from mutual cooperation to avoid ending up with the
worst result. Consequently, both players are likely to choose
defection without any communication beforehand, despite the
fact that mutual cooperation would give higher payoffs. This is
why the game with the payoff bimatrix in Table II is referred
to as the “dilemma.” From the fact that defection is Alice’s
best response to Bob’s defection and vice versa, it is clear
that this game has a Nash equilibrium (D, D). Note that this
equilibrium is not Pareto optimal. Furthermore, defection is
the dominant strategy for both players; defection always gives
Alice a higher payoff than cooperation regardless of Bob’s
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TABLE III. Payoff matrix of the donation game.

Alice/Bob C D

C (b − c, b − c) (−c, b)
D (b, −c) (0,0)

choice. In this sense, we may say that it is rational for a
selfish player to choose defection. For this game to be the
conventional prisoner’s dilemma game in a strict sense, we
have to impose the condition that T > R > P > S. In this pa-
per, however, we consider extended cases where this condition
does not necessarily holds.

The donation game is a special version of the prisoner’s
dilemma as shown in Table III [30].

This bimatrix can be obtained simply by setting R = b − c,
P = 0, T = b, and S = −c in Table II, and we assume that
b > c > 0 to maintain the dilemma [31], where b for the ben-
efit and c for the cost, respectively. In this game, each player
can choose among two actions, cooperation and defection. To
cooperate, each player pays the cost c and provides the benefit
b to the other. To defect, each player does nothing to the other.
As discussed in the prisoner’s dilemma game, (D, D) is the
Nash equilibrium but not Pareto optimal. The combination (C,
C) is Pareto optimal when the benefit b is greater than the cost
c.

B. Update rule of strategies

To consider an iterated prisoner’s game, we prepare a sub-
class of the prisoner’s dilemma game. The prisoner’s dilemma
game has basically four parameters, and the donation game
has basically two parameters. However, for simplicity, we
here consider a one-parameter case, which is obtained by
substituting b = 1 + r and c = −r.

In the above table, r is referred to as the cost-to-benefit ra-
tio [32]. For r > 0, this game can be regarded as the standard
prisoner’s dilemma, while for −1 < r < 0, mutual coopera-
tion is promoted because the profile (C, C) is not only Pareto
optimal but also the Nash equilibrium.

The setting of the game we consider is as follows. First,
we construct a k-regular graph with the number N of vertices,
each of which is connected to different k vertices by edges.
Then, we assign players 1, · · · , N to different vertices. As an
initial state, each player independently has a random strategy
C or D. We assume that each pair of two neighboring players
interact with each other by iterating the game specified in
Table IV. In each step, all the players play the game with their
k neighbors. Then they are given payoffs for k game results
according to Table IV. The goal of each player is to maximize
his averaged payoff. After each game, one player has a chance
to change his strategy according to the pairwise-Fermi update
rule [33]. One player x ∈ { 1, · · · , N } is randomly chosen out

TABLE IV. Payoff matrix of the one-parameter prisoner’s dilemma.

Alice/Bob C D

C (1,1) (−r, 1 + r)
D (1 + r, −r) (0,0)

of N players with uniform probability. Then player x chooses
one neighbor y out of his k neighbors with uniform probability
as a player to be imitated. Each player is assumed to know the
actions and payoffs of his neighbors in the previous game,
and he can utilize the knowledge to change his strategy. Let
sx be the strategy that player x takes at a single step and px

be the averaged payoff that player x obtains per single game.
Player x can imitate the strategy of player y by comparing his
own payoff px to the neighbor’s payoff py with the following
probability:

Pr(sx ← sy) = 1

1 + exp[(px − py)/T ]
, (3)

where T > 0 is referred to as the temperature. The temper-
ature T determines the strength of natural selection. As the
temperature approaches zero, the process becomes determin-
istic; if player x finds that he has a payoff less than his
neighbor y, the transition probability in Eq. (3) approaches
one. If player x finds that he has a payoff more than his neigh-
bor y, the transition probability approaches zero. However,
as the temperature goes to infinity, the transition probability
approaches one half regardless of the payoffs, and therefore
the process becomes completely random.

The pairwise-Fermi update rule has been utilized to study
the prisoner’s dilemma game on lattices and graphs. For in-
stance, the b-c phase transition, which involves the donation
game described in Table III, is examined on game-theoretical
models with the pairwise-Fermi update rule [34,35]. For an-
other example, the iterated prisoner’s dilemma game with
the update rule and payoff functions which are re-scaled by
random variables is introduced to promote cooperation gen-
erated by social diversity [36]. In addition, cooperation can
also be enhanced by introducing the dynamical process of
players’ aging and death in the iterated prisoner’s dilemma
game with the update rule on a square lattice [37]. There
are several thorough reviews on evolutionary game models,
which provide useful guides for understanding evolution of
cooperation [38–40].

III. ENSEMBLE-AVERAGED QUANTITIES
OF A SQUARE LATTICE

In this section, we consider the heatmap of the ensemble-
averaged quantities in the iterated prisoner’s dilemma games.
Here a heatmap shows a quantity, such as the fraction of
cooperators, the time-variance of the fraction of cooperators
and the correlation of neighboring pairs, as a function of
temperature and the cost-to-benefit ratio, where the quantity
is displayed by using colors on a two-dimensional plane. In
the case where two players play a one-shot game specified
by Table IV with a positive cost-to-benefit ratio r, they do
not have an incentive to choose the cooperative action. How-
ever, when there are multiple players and they play the same
game repeatedly, the emergence of mutual cooperation can be
observed. We change the cost-to-benefit ratio and the temper-
ature to investigate the emergence of cooperation in numerical
simulations.

A. Fraction of cooperators

The top panel in Fig. 1 shows the fraction of cooperators
that appear in the iterated game on an L × L square lattice
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FIG. 1. (Top) Fraction of cooperators appearing in the iterated
prisoner’s dilemma games on a square lattice. The color of each
pixel represents the fraction of cooperators according to the color
gauge on the right. (Bottom) Time-averaged variance of the fraction
of cooperators appearing in the iterated prisoner’s dilemma games
on the square lattice. The color of each pixel represents the variance
of the fraction of cooperators, where the variance is defined by
Eq. (4). The horizontal axis represents the cost-to-benefit ratio in
the one-parameter prisoner’s dilemma game described in Table IV.
The vertical axis represents the temperature T in the pairwise-Fermi
update rule described in Eq. (3). In the top panel, the white and black
regions show the cooperative and noncooperative ones, respectively.
The red region indicates the mixed region, where cooperators and
defectors coexist even after a long run. From the bottom panel, we
find that the variance of the fraction of cooperators is significantly
enhanced in the mixed region.

with a size of L = 25. We have performed 10 independent
simulations with different initial states, and for each simu-
lation the number of time steps is 1000 times the number
of players. The shown result is the average over these sim-
ulations. The neighborhood is defined as follows: when we
consider a square lattice, each player is placed at a lattice point
(n, m), where n, m ∈ 1, ..., L. We also impose the periodic
boundary condition on the lattice. Then, when the distance
between two players is 1, we refer to that pair of players
as neighbors. The white region in the upper panel in Fig. 1
corresponds to a cooperative regime in which all the players
take the cooperative action. The black region corresponds to a
defective regime in which all the players take the defective
action. The red region corresponds to a mixed regime in
which cooperative players and defective players coexist after
a long run. As we can see in Fig. 1, the mixed region consists
of a diamond-shaped region and a high-temperature regime
above it.

In the top panel in Fig. 1, as the cost-to-benefit ra-
tio increases, the fraction of cooperators decreases. As the
cost-to-benefit ratio decreases, the fraction of cooperators
increases. We can see a boundary between the cooperative
region and the mixed region in the regime of the negative
cost-to-benefit ratio. The boundary varies in a nonmonotonic
way with respect to the temperature; in the low-temperature
region of T < 0.05, the slope of the boundary is negative,
while in the high-temperature region of T > 0.05, the slope
is positive. A similar behavior can be seen in the region of the
positive cost-to-benefit ratio.

We also consider the heatmap of fluctuations of the fraction
of cooperators. In the top panel in Fig. 1, we find the mutual
cooperation in a certain region and the phase-transition-like
behavior. To investigate this behavior, we perform numerical
simulations of the fluctuations of the fraction of cooperators
over time. The bottom panel in Fig. 1 shows the result of
the numerical simulation. Here we define the variance of the
fraction of cooperators over time as

1

τ

τ∑
t=1

[
1

N

N∑
i=1

xi
t − 1

τ

τ∑
t ′=1

1

N

N∑
i=1

xi
t ′

]2

, (4)

where i ∈ { 1, · · · , N } denotes each player, 〈i j〉 denotes each
pairs of neighboring players, t denotes each step when nu-
merical results are obtained to calculate the variance of the
fraction, and τ denotes the number of time steps in the whole
iterated game.

It is interesting that the heatmap shown in Fig. 1 is
analogous to a phase diagram concerning cooperation and
defection.

B. Correlation of neighboring pairs

We also consider the heatmap of the correlation of neigh-
boring pairs in the prisoner’s dilemma game on a square
lattice. Here by the correlation we mean the correlation
between the strategies of two players placed at vertices con-
nected by edges on the graph. The correlation C is defined as
follows:

C := 1

2N

∑
(i j)

[〈xix j〉 − 〈xi〉 〈x j〉], (5)
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FIG. 2. Correlation C of the strategies of neighboring pairs in
the iterated prisoner’s dilemma games on a square lattice. The color
of each pixel represents the correlation of the strategies of neigh-
bors according to the color gauge shown on the right, where the
correlation is defined by Eq. (5). The horizontal axis represents the
cost-to-benefit ratio in the one-parameter prisoner’s dilemma game
described in Table IV. The vertical axis represents the temperature T
in the pairwise-Fermi update rule described in Eq. (3). The correla-
tion is significantly enhanced in the mixed region, and increases as
the cost-to-benefit ratio increases in the diamond-shaped region.

where xi ∈ { 0, 1 } represents the strategy of player i ∈
{ 1, · · · , N }; xi = 0 if player i is a cooperator and xi = 1 if
player i is a defector. The sum is taken over all neighboring
pairs (i j), which is divided by the number 2N of neighboring
pairs, and 〈·〉 represents the time average.

We now investigate the relation between the correlation of
players and the fraction of cooperators. In Fig. 2, we find
strong correlation between neighboring pairs in the mixed
region. We observe a diamond-shaped region where the cor-
relation is significantly enhanced. This region belongs to the
mixed region discussed earlier.

It is expected that in the mixed region with higher temper-
ature T � 1.0 above the diamond region, the correlation takes
on a small value after being averaged over a sufficiently large
number of samples. This is because it is a high-temperature
region, and thus the fluctuation in this region should be larger
than that in the low-temperature diamond region. In the di-
amond region, we observe that the correlation tends to be
stronger in the region with a positive cost-to-benefit ratio than
in the region with a negative cost-to-benefit ratio. The reason
for this is as follows. From Table IV, when the cost-to-benefit
ratio r is positive, one’s payoff is maximized to be 1 + r for
unilateral defection and minimized to be −r for unilateral co-
operation. Thus, every player is tempted to choose defection,

and one wants to avoid being unilaterally defected by the other
player to obtain a higher payoff. Hence one needs to carefully
observe the strategies of the other players and take his own
strategy accordingly. As a result, the correlation becomes
stronger. However, for the cost-to-benefit ratio −1 < r < 0,
one’s payoff is maximized to be 1 for mutual cooperation
and minimized to be 0 for mutual defection. This means that
every player can maximize his own payoff simply by choosing
cooperation. Hence, it is not necessary for players to carefully
observe which strategy the other player takes, and therefore
the correlation becomes weaker than in the case of r > 0.

IV. ENSEMBLE-AVERAGED QUANTITIES
OF A REGULAR GRAPH

In this section, we consider the heatmap of cooperation
and defection in the iterated prisoner’s dilemma game on a
regular graph. As shown below, mutual cooperation emerges
in a certain region similar to the case of the game on a square
lattice. We change two parameters, the cost-to-benefit ratio r,
and the temperature T , to investigate a phase-transition-like
behavior by numerical simulations. Compared with the case
of a square lattice, we can vary the degree k of the graph,
where k is the number of edges that connect a vertex to other
vertices.

A. Fraction of cooperators

Figure 3 shows the result of the numerical simulation
of the iterated prisoner’s dilemma game on regular graphs.
The regular graphs are randomly generated by specifying the
number N of vertices and the degree k. We set the num-
ber of vertices to be N = 210 and the degree to be k =
3, 4, 6, 10, 12, 16, 20, 24. A single player is assigned to each
vertex on the graph. Each player changes his own strategy
over time by using the pairwise-Fermi update rule. Each panel
in Fig. 3 shows the fraction of cooperators that appear in the
iterated game on the regular graph.

We find from Fig. 3 that the game result depends on the
cost-to-benefit ratio r and the temperature T . As in the case
of a square lattice discussed in the previous section, the white
region shows a cooperative regime in which all the players
take the cooperative action. However, the black region shows
a defective regime in which all the players take the defec-
tive action. The red region shows a mixed regime in which
cooperative players and defective players coexist after a long
time.

For each given temperature T , as the cost-to-benefit ra-
tio increases, the fraction of cooperators decreases. As the
cost-to-benefit ratio decreases, the fraction of cooperators in-
creases. We see a boundary between the cooperative region
and the mixed region for the negative cost-to-benefit ratio. The
boundary varies in a nonmonotonic manner against the tem-
perature. In the top right panel in Fig. 3, which corresponds
to the degree of k = 4, in the low-temperature region of T �
0.05, the slope of the boundary is positive for the positive
cost-to-benefit ratio r > 0. In the intermediate-temperature
region of 0.05 � T � 1.0, the slope is negative. In the high-
temperature region of T � 1.0, the slope is positive. A similar
nonmonotonic behavior can be seen in the region of the nega-
tive cost-to-benefit ratio.
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FIG. 3. Fraction of cooperators appearing in the iterated prisoner’s dilemma game on regular graphs. The color of each pixel represents
the fraction of cooperators according to the color gauge shown on the top. On a k-regular graph, each vertex has an equal number of edges
that connect each vertex to other k vertices. Each panel corresponds to the case of k = 3 (a), 4 (b), 6 (c), 10 (d), 12 (e), 16 (f), 20 (g), and 24
(h) from the top left panel to the bottom right panel. The horizontal axis of each panel represents the cost-to-benefit ratio in the one-parameter
prisoner’s dilemma game described in Table IV. The vertical axis shows the temperature T in the pairwise-Fermi update rule described in
Eq. (3). As the degree of the graph increases, the diamond-shaped mixed region shrinks along the horizontal axis of the cost-to-benefit ratio,
and the mixed region in the lower-right corner below the diamond-shaped region becomes more pronounced.
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So far the results are essentially the same as in the case of
a square lattice. In Fig. 3, we observe that as the degree k in-
creases from k = 3 to k = 6, the boundaries tend to shift to the
positive direction of the cost-to-benefit ratio. This tendency
suggests the following. In general, the payoff matrix tells us
that the mutual cooperation provides a payoff more than mu-
tual defection. Therefore, one’s cooperation tends to induce
the other player’s cooperation. If the degree k is large, one’s
temptation to choose the defective action for a higher payoff is
expected to decrease. However, as the degree increases from
k = 10 to k = 24, the behavior of the boundaries changes;
the diamond-shaped region shrinks along the horizontal axis
toward the vertical axis of zero cost-to-benefit ratio r = 0, and
the slope of boundaries surrounding the mixed region become
steeper. Since the diamond-shaped region is the region in
which the fraction of cooperators fluctuates, this result may
be interpreted as the larger mean-field effect for larger k. In
other words, as the degree k increases, the network structure
becomes closer to the case of a well-mixed population, where
natural selection prevents the coexistence of cooperators and
defectors.

Another finding is the regime located in the lower-right
corner of the diamond-shaped mixed region in the panels
in Fig. 3; for a small degree k, this region exhibits nearly
extinct cooperators, while for a large degree k, this region in-
volves a relatively large number of cooperators in comparison
with the case of a small degree k. In contrast, in the upper-
right corner of the diamond-shaped region in the panels in
Fig. 3, this tendency is not seen; the regime with intermediate
temperature T and positive cost-to-benefit ratio r is almost
unchanged regarding to the degree k of the regular graph. Such
temperature-dependent behavior reminds us of the difference
between gradient descent (GD) and stochastic gradient de-
scent (SGD); in GD, the optimization process is deterministic
and likely to be trapped in a local optimal point, while in SGD,
the optimization process is probabilistic and likely to reach the
global optimal point. This difference is analogous to that of a
stochastic process which obeys the pairwise-Fermi update rule
in Eq. (3) for the lower-temperature case and the process for
the higher-temperature case; the lower-temperature process is
deterministic and tends to eliminate cooperators for positive
cost-to-benefit ratio r > 0, while the higher-temperature pro-
cess is probabilistic and tends to maintain the coexistence of
cooperators and defectors.

Additionally, we observe a quantitative difference between
a square lattice and a 4-regular graph according to the heatmap
of the fraction of cooperators; comparing the top panel of
Fig. 1 with Fig. 3(b), we find that the width of the diamond-
shaped region along the horizontal axis for a 4-regular graph
is wider than that for a square lattice. A possible reason for
this observation is as follows. When players are placed on a
lattice, it is more likely that clusters of cooperators are formed
and maintained for a long time. In contrast, when players are
placed at a regular graph that is randomly generated, we do
not expect clusters of cooperators to be formed.

B. Correlation of neighboring pairs

We also consider the heatmap of the correlation of neigh-
boring pairs in the prisoner’s dilemma game on k-regular

graphs. The correlation C is defined as

C := 2

kN

∑
(i j)

[〈xix j〉 − 〈xi〉 〈x j〉], (6)

where xi ∈ { 0, 1 } represents the strategy of player i ∈
{ 1, · · · , N }; xi = 0 if player i is a cooperator and xi = 1 if
player i is a defector. The sum is taken over all neighboring
pairs (i j), kN/2 is the number of neighboring pairs, and 〈·〉
represents the time average. Here we refer to neighboring
pairs as players located at vertices that are connected by edges
on a graph.

Figure 4 shows the correlation of strategies of neighboring
pairs in the iterated prisoner’s dilemma game on a regular
graphs. Each panel corresponds to the numerical result on
a random regular graph which has the number N = 210 of
vertices and the degree k = 3, 4, 6, 10, 12, 16, 20, 24. The
landscape of the heatmap of the correlation in Fig. 4 resembles
that of the fraction of cooperators in Fig. 3, similarly to the
case of a square lattice. Noting that the color bar of a heatmap
in Fig. 4 depends on the degree of the graph, we find that
as the degree increases, the correlation of neighboring pairs
decreases. This is because a player surrounded by an increas-
ing number of neighbors finds the per capita influence of his
neighbors to be averaged out.

V. SINGLE-TRAJECTORY QUANTITIES

In this section, we consider the detailed dynamics of the
iterated prisoner’s dilemma game. Specifically, we track in-
dividual real-time trajectories of the fraction of cooperators
in an iterated game. Then we analyze the power spectrum
of the trajectories, which turns out to be approximated as a
superposition of several sine waves with low frequencies. In
particular, we find that the spectral density S( f ) generally
follows the power-law distribution of the pink noise in such
a manner that S( f ) ∝ f −α , where f denotes the frequency.

A. Real-time dynamics of fraction of cooperators

Figure 5 shows the real-time trajectory of the fraction
of cooperators in an iterated prisoner’s dilemma game on a
4-regular graph, where the cost-to-benefit ratio r, the temper-
ature T and the number of players are set to be r = 0.02,
T = 0.1, and N = 210, respectively. Throughout this paper,
time is measured in units of 1/N . Here, the pairwise-Fermi
update rule is applied every time 2n prisoner’s dilemma games
are performed. In Fig. 5, the unit time corresponds to N
pairwise-Fermi updates. In the top panel, we see that the curve
oscillates around the fraction of one half. This implies that
the set of parameters r = 0.02 and T = 0.1 belongs to the
mixed region. In the bottom panel, however, we see that the
fraction of cooperators decreases in the early stage. This is
thought to be due to the fact that each player is independently
given an action, i.e., cooperation or defection, in the initial
state. Cooperators are exploited by their neighboring defectors
because of the positive cost-to-benefit ratio, and thus some
cooperators change their strategy to defection by following the
update rule. Meanwhile, the fraction of cooperators recovers
after 10 time units.
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FIG. 4. Correlation C of the strategies of neighboring pairs in the iterated prisoner’s dilemma game on regular graphs, where the correlation
is defined in Eq. (6). The color of each pixel represents the fraction of cooperators according to the color gauge shown on the top. On a k-regular
graph, each vertex has an equal number of edges that connect each vertex to other k vertices. Each panel shows the case of k = 3 (a), 4 (b),
6 (c), 10 (d), 12 (e), 16 (f), 20 (g), and 24 (h) from the top left panel to the bottom right one. The horizontal axis of each panel represents the
cost-to-benefit ratio in the one-parameter prisoner’s dilemma game described in Table IV. The vertical axis represents the temperature T in the
pairwise-Fermi update rule described in Eq. (3). The correlation is pronounced in the mixed region, similarly to the case of the square lattice.
As the degree of the graph increases, the correlation becomes more pronounced in the lower-right area below the diamond-shaped region.
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FIG. 5. Real-time trajectory of the fraction of cooperators in an
iterated prisoner’s dilemma game on a 4-regular graph with cost-to-
benefit ratio r = 0.02 and temperature T = 0.1. The horizontal axis
of each panel represents how many time steps the pairwise-Fermi
update rule has been applied. The time is measured in units of 1/N ,
where N is the number of players. The vertical axis represents the
fraction of cooperators appearing at each step. This pair of parame-
ters belongs to the mixed region in Fig. 3. The timescale of the top
panel is shown on a linear scale, while that of the bottom panel is
shown on a logarithmic scale. The fraction of cooperators decays
in the early stage, while after about one time unit, the fraction of
cooperators oscillates around one half.

Figure 6 shows the real-time trajectory of the fraction of
cooperators in an iterated prisoner’s dilemma game on a 4-
regular graph, where the parameters are set to be r = 0.02,
T = 1.0 and N = 210. The fraction of cooperators is initially
about one half before the updates similarly to the case of
T = 0.1 in Fig. 5. In this case, however, cooperators go extinct
during the simulation, and the strategies of players are no
longer updated after the fraction becomes zero at about 450
time units. Moreover, this means that the set of parameters
r = 0.02 and T = 1.0 belongs to the defective region.

Figure 7 shows the real-time trajectory of the fraction
of cooperators in an iterated prisoner’s dilemma game on
a 4-regular graph with cost-to-benefit ratio r = 0.02 and

FIG. 6. Real-time trajectory of the fraction of cooperators in an
iterated prisoner’s dilemma game on a 4-regular graph with cost-to-
benefit ratio r = 0.02 and temperature T = 1.0. The horizontal axis
represents how many time steps the pairwise-Fermi update rule has
been applied. The time is measured in units of 1/N , where N is the
number of players. The vertical axis represents the fraction of coop-
erators appearing at each step. The fraction of cooperators eventually
vanishes at about 450 time units, since the pair of parameters belongs
to the defective region in Fig. 3.

temperature is T = 3.2 × 10−3. We see that the fraction of
cooperators is initially about one half as in Figs. 5 and 6.
However, the fraction rapidly decays in the initial stage,
and thereafter the fraction remains to be small. The reason
for the rapid decay is as follows. At low temperature, the
process following the pairwise-Fermi update rule becomes
almost deterministic; the probability of an advantageous strat-
egy being chosen approaches one, while the probability of a
disadvantageous strategy being chosen approaches zero for
each update. For a positive cost-to-benefit ratio, therefore,
defection becomes dominant almost without fluctuations in
the early phase.

From Fig. 7, we find that at extremely low temperature the
fraction of cooperators quickly decreases in 10 time units.
However, it is notable that the fraction stays nonzero values
even after a long time. This means that the set of parameters
r = 0.02 and T = 3.2 × 10−3, which is located in the lower-
right area below the diamond-shaped region in the upper-right
panel in Fig. 3, belongs to the mixed region. Furthermore, this
result is consistent with the fact that the fraction is clearly
nonzero in the lower-right area with degree k � 6 in Fig. 3.

Figure 8 shows the real-time trajectory of the fraction
of cooperators in an iterated prisoner’s dilemma game on
a 4-regular graph with the cost-to-benefit ration r = 0.02
and temperature T = 100. The trajectory terminates at about
600 time units at which the cooperators go extinct. We
note that we perform multiple independent numerical simu-
lations for different random seeds. Some numerical results
show extinction of cooperators as shown in Fig. 8, while
some others show extinction of defectors (not shown). The
ensemble-averaged trajectory converges to 0.5 as expected in
the high-temperature limit.
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FIG. 7. Real-time trajectory of the fraction of cooperators in
an iterated prisoner’s dilemma game on a 4-regular graph with
cost-to-benefit ratio r = 0.02 and temperature T = 3.2 × 10−3. The
horizontal axis of each panel represents how many time steps the
pairwise-Fermi update rule has been applied. The time is measured
in units of 1/N , where N is the number of players. The vertical axis
represents the fraction of cooperators appearing at each step. The
time scale of the top panel is shown on a linear scale, while that
of the bottom panel is shown on a logarithmic scale. The fraction
of cooperators rapidly decays, in comparison with Fig. 5 in the
case of higher temperature of T = 0.1. Note that the fraction of
cooperators does not vanish after a long run.

B. Power spectrum: Pink noise

We discuss the power spectrum of real-time trajectories of
the fraction of cooperators in an iterated prisoner’s dilemma
game on a regular graph. The fraction of cooperators is
recorded at every time interval δt , and thus the fraction at each
time can be labeled by assigning an index m = 0, · · · , N − 1.
The fraction of cooperators at time mδt is denoted by am (m =
0, · · · , N − 1), where N is the number of the points in the data
set. Let the discrete Fourier transform Ak (k = 0, · · · , N − 1)
of am be defined as

Ak =
N−1∑
m=0

am exp

(
−i

2πmk

N

)
, (7)

FIG. 8. Real-time trajectory of the fraction of cooperators in an
iterated prisoner’s dilemma game on a 4-regular graph with cost-to-
benefit ratio r = 0.02 and temperature T = 100.0. The horizontal
axis represents how many time steps the pairwise-Fermi update rule
has been applied. The time is measured in units of 1/N , where N
is the number of players. The vertical axis represents the fraction
of cooperators appearing at each step. Note that when we perform
multiple independent numerical simulations with different random
seeds, some numerical results show that cooperators go extinct, as
shown in this figure, while others show that defectors go extinct (not
shown).

and the frequency fk be defined as

fk = k/(Nδt ). (8)

Then, the original data am can be expressed as

am = 1

N

N−1∑
k=0

Ak exp

(
i
2πmk

N

)
. (9)

In the following, we examine the power spectrum |Ak|2 against
frequency fk for k � N/2.

Figure 9 shows the power spectrum of the real-time tra-
jectory in Fig. 6 with cost-to-benefit ratio r = 0.02 and
temperature T = 1.0. The blue dots show the power spectrum
calculated from Eq. (7), and the red solid line is a power-law
curve which decays with respect to the frequency f as S( f ) ∝
1/ f α where the exponent is α = 1.88. The upper envelope of
the sets of the blue dots can be fitted by the red solid line.
From this result, we see that the real-time trajectory in Fig. 6
behaves like a pink noise. Moreover, in Fig. 9, a few dots
within f < 0.02 are dominant in the power spectrum. This
means that the real-time trajectory can roughly be reproduced
by a superposition of a small number of low-frequency waves.

Figure 10 shows the power spectrum of the real-time
trajectory in Fig. 5 with cost-to-benefit ratio r = 0.02 and
temperature T = 0.1. As in Fig. 9, the blue dots show the
power spectrum, and the red solid line is proportional to
S( f ) ∝ 1/ f α with the exponent α = 1.84. We note that the
data dots distribute over a wider range of frequency in Fig. 10
than that in Fig. 9. This is because the original data obtained
for T = 0.1 have a larger number of data points than that for
T = 1.0 due to the decay of the fraction of cooperators for
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FIG. 9. Power spectrum of the real-time trajectory of the fraction
of cooperators, which is shown in Fig. 6, in an iterated prisoner’s
dilemma game on a 4-regular graph with cost-to-benefit ratio r =
0.02 and temperature T = 1.0. The solid line is a power-law curve
S( f ) ∝ 1/ f α with an exponent α = 1.88. The upper envelope of the
spectrum can be fitted by the power-law curve over a wide frequency
region.

T = 1.0, and thus the available data points extend to a lower-
frequency range, following Eq. (8). In the high-frequency
region f � 10−2, the power spectrum decreases so that the
uppermost data points distribute along the red solid line,
similarly to Fig. 9. In the low-frequency region f � 10−2,
in contrast, the blue dots deviate from the red solid line. A

FIG. 10. Power spectrum of the real-time trajectory of the frac-
tion of cooperators, which is shown in Fig. 5, in an iterated prisoner’s
dilemma game on a 4-regular graph with cost-to-benefit ratio r =
0.02 and temperature T = 0.1. The solid line is a power-law curve
S( f ) ∝ 1/ f α with an exponent α = 1.84. The upper envelope of the
spectrum can be fitted by the power-law curve in a high-frequency
region, while the spectrum deviates from it and exhibits a plateau in
the low-frequency region.

FIG. 11. Power spectrum of the real-time trajectory of the frac-
tion of cooperators, which is shown in Fig. 7, in an iterated prisoner’s
dilemma game on a 4-regular graph with cost-to-benefit ratio r =
0.02 and temperature T = 3.2 × 10−3. The solid line is a power-law
curve S( f ) ∝ 1/ f α with an exponent α = 1.88. The upper envelope
of the spectrum can be fitted by the power-law curve in a high-
frequency region, while the spectrum deviates from the curve in the
low-frequency region.

possible reason for this deviation from the red line is the
strong correlation of neighboring pairs discussed in Sec. IV B.

Figure 11 shows the power spectrum at cost-to-benefit ratio
r = 0.02 and temperature T = 3.2 × 10−3. We see two dis-
tinctive features similarly to those stated in relation to Fig. 9.
One feature is the pink-noise behavior in the high-frequency
region; the upper envelope of the power spectrum above
f � 0.5 is well fitted by the power-law function S( f ) ∝ 1/ f α

where the exponent is α = 1.88. The other feature is that a
few points over the frequency range between f = 10−4 and
f = 10−3 have dominant spectral weights. Thus, the long-
term behavior in Fig. 7 can be reproduced by a small number
of low-frequency modes.

Figure 12 shows the power spectrum at cost-to-benefit ratio
r = 0.02 and temperature T = 100.0. Here we see that the
pink noise extends over the entire frequency range. The data
below f � 10−2 is absent because the fraction of cooperators
either vanishes or saturates to 1 for time t � 102.

VI. DISCUSSION

In this section, we discuss detailed properties of the it-
erated prisoner’s dilemma game. In Sec. VI A, we discuss
a simple random-walk model which reproduces the pink-
noise behavior obtained in the game-theoretical model in
Sec. V. Moreover, we find that the low-frequency plateau,
which appears in Fig. 10, can be reproduced by introduc-
ing a negative-feedback effect to the random-walk model. In
Sec. VI B, we demonstrate game results for different system
sizes to obtain the size dependence of the iterated prisoner’s
dilemma game on a square lattice and a 4-regular graph. We
find the continuous transition across the boundary between
the mixed region and the defective region shown in Secs. III
and IV. In Sec. VI C, we show the diagram of the fraction
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FIG. 12. Power spectrum of the real-time trajectory of the frac-
tion of cooperators, which is shown in Fig. 8, in an iterated prisoner’s
dilemma game on a 4-regular graph with cost-to-benefit ratio r =
0.02 and temperature T = 100.0. The solid line is a power-law curve
S( f ) ∝ 1/ f α with an exponent α = 1.90. The upper envelope of the
spectrum can be fitted by the power-law curve over a wide frequency
region.

of cooperators for the boundary game, which is expressed by
another payoff matrix in Table V, instead of the one-parameter
prisoner’s dilemma game described in Table IV.

A. Random-walk model

To investigate the origin of the pink-noise behavior in the
power spectrum, we perform numerical simulations based on
a simple random-walk model. More specifically, we consider
a trajectory of a variable x that changes in time, which is inde-
pendent of the game-theoretical model under consideration.
The initial value of x is set to be x = 0.5, and at each time
step, the value of x changes randomly by −2−10,+2−10, and
0 with equal probability of 1/3. Figure 13 shows the trajectory
of x that is generated by this simple random walk. From the
Fourier transform for the trajectory in Fig. 13, we obtain the
power spectrum shown as blue dots in Fig. 14. The solid line
in Fig. 14 is a power-law curve S( f ) ∝ 1/ f α with an exponent
α = 1.88. We find that this solid curve fits well with the
upper part of a set of the blue dots. This finding indicates that
the simple random walk reproduces the pink-noise behavior,
similarly to the fraction of cooperators in the game-theoretical
model considered in this paper. Moreover, the power exponent
of the simple random walk is close to that obtained in the
game-theoretical model.

However, there is a notable difference between the simple
random walk and the game theoretical model. In Fig. 14,

TABLE V. Payoff matrix of the boundary game.

Alice Bob C D

C (1,1) (0, r)
D (r, 0) (0,0)

FIG. 13. Real-time trajectory of the value obtained from a simple
random walk. The horizontal axis represents time, and the vertical
axis represents the value of the time-dependent random variable. The
value is initially set to be 0.5. For each step, the value increases by
2−10, decreases by 2−10 and is unchanged with uniform probability
of 1/3.

which is the case of the simple random walk, the spectrum fits
well to the power-law curve over the entire range. In the case
of the game-theoretical model, the low-frequency spectrum
does not fits the power-law curve so well, and the spectrum
flattens out in the range of f � 3 × 10−3, as in Fig. 10.

To understand the origin of the deviation of the spectrum
from the fitting curve, we perform a modified random walk.
More specifically, we consider a variable x whose transition
probability depends on its own present value. The value of

FIG. 14. Power spectrum of the real-time trajectory in Fig. 13
of the value obtained from a simple random walk. The solid line
is a power-law curve S( f ) ∝ 1/ f α with an exponent α = 1.88. The
upper envelope of the spectrum can be fitted by the power-law curve
over a wide frequency region. This behavior is similar to that of the
spectrum in Fig. 6, which is obtained from the iterated game on the
regular graph.
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FIG. 15. Real-time trajectory of the value obtained from a mod-
ified random walk. The horizontal axis represents time, and the
vertical axis represents the value of the time-dependent random
variable. The value is initially set to be 0.50. For each step, the
value x increases by 2−10, decreases by 2−10 and is unchanged with
probability of 2x/3, 2(1 − x)/3, and 1/3, respectively.

x is initially set to be x = 0.5, and at each time step, the
value of x changes by −2−10, +2−10, and 0 with probability of
2x/3, 2(1 − x)/3, and 1/3, respectively. This setting suggests
that x is always bounded by 0 � x � 1 and that x is likely
to decrease (increase) when x is greater (smaller) than 0.5.
Figure 15 shows the trajectory of x that is generated by the
modified random walk. From the Fourier transform of the
real-time trajectory in Fig. 15, we obtain the power spectrum
shown as blue dots in Fig. 16. The solid line in Fig. 16 is a
power-law curve S( f ) ∝ 1/ f α with an exponent of α = 1.88.
In the high-frequency regime of f � 2 × 10−2, the solid line
fits well with the upper envelope of the blue dots. This means
that the modified random walk reproduces the pink-noise
behavior, which is also reproduced with the simple random
walk. In the low-frequency regime of f � 2 × 10−2, however,
we find that the blue dots deviate from the solid line and
their upper envelope is almost flat. This finding is consistent
with the result obtained from the game-theoretical model as
in Fig. 10. Therefore, we find that the deviation from the pink
noise in the game-theoretical model involves the unbalanced
transition probability of the fraction of cooperators. In fact,
at each time step, a cooperator (defector) is likely to be cho-
sen to change his own action when cooperators (defectors)
dominates defectors (cooperators), since a player is randomly
chosen from all players. Thus, the number of cooperators
is likely to decrease (increase) when cooperators (defectors)
are dominant if temperature T is low enough to balance the
transition probability. As a result, the fraction of cooperators
oscillates around one half for a long time as shown in Fig. 5.

For a high-temperature case, the payoffs of players do
not significantly contribute to the stochastic process in the
game. This is because the transition probability in Eq. (3)
is approximately one half for a sufficiently high temperature
T , regardless of the difference px − py of payoffs. Therefore,

FIG. 16. Power spectrum of the real-time trajectory in Fig. 15
of the value obtained from a modified random walk. The solid line
is a power-law curve S( f ) ∝ 1/ f α with an exponent α = 1.88. The
upper envelope of the spectrum can be fitted by the power-law curve
in a high-frequency region, while the spectrum deviates from it and
exhibits a plateau in the low-frequency region. This behavior is
similar to that of the spectrum in Fig. 10, which is obtained from
the iterated game on the regular graph.

the fraction of cooperators for high temperature is expected to
behave similarly to the simple random walk. We note that the
fraction of cooperators is limited to values between zero and
one, but that the simple random walk has no such restriction.
Therefore, the trajectory of the fraction of cooperators can be
regarded as that of the simple random walk which is cut off by
the boundaries of zero and one. In fact, the trajectory shown
in Fig. 8 with T = 100 does not significantly oscillate before
cooperators go extinct. In addition, the shape of the spectrum
in Fig. 12 with T = 100 is similar to that of the simple random
walk. We note that with a large number n of players, we will
obtain a long-time trajectory and a low-frequency spectrum
of the fraction of cooperators. For a low-temperature case, in
contrast, the game is significantly affected by the payoffs of
players, and the stochastic process in the game deviates in the
low-frequency regime from the simple random walk. In fact,
the spectrum in Figs. 10 and 11 with T = 0.1, 3.2 × 10−3

exhibits pink-noise behavior for high frequency, while the
spectrum deviates from the fitting curve for low frequency.

B. System-size dependence

To discuss the system-size dependence of the fraction
of cooperators in the game-theoretical model, we perform
numerical simulations for different numbers of players. Fig-
ure 17 shows the fraction of cooperators in the iterated
prisoner’s dilemma game on a square lattice and a regu-
lar graph for the number N = 322, 642, 1282, and 2562 of
players. The cost-to-benefit ratio in Table IV is fixed to be
r = 0.02, and the temperature of the pairwise-Fermi update
rule described in Eq. (3) is varied between T = 0.001 and
T = 1. We perform 50 independent numerical simulations,
each with total steps of 200 × N , for each temperature to
obtain the time-averaged fraction of cooperators. A point for
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FIG. 17. Size dependencies of the fraction of cooperators in the
iterated prisoner’s dilemma games on a square lattice (Top) and on a
regular graph (Bottom). The horizontal axis of each panel represents
the temperature T in the pairwise-Fermi update rule described in
Eq. (3). The vertical axis represents the fraction of cooperators ap-
pearing in the iterated prisoner’s dilemma games. The cost-to-benefit
ratio in the one-parameter prisoner’s dilemma game described in
Table IV is fixed to be r = 0.02. Each color of the points corresponds
to the number N = 322, 642, 1282 and 2562 of players. In both cases,
the fraction of cooperators varies continuously with respect to the
temperature.

each temperature in Fig. 17 shows the averaged fraction of
cooperators over the simulation results. For both cases of a
square lattice and a regular graph, the fraction of cooperators
for the number N = 2562 of players varies more smoothly
than that for N = 322, while the temperature-dependence of
the fraction of cooperators is almost the same among the
different numbers of players. The fraction of cooperators has
a small value in the low-temperature region. We find that the
fraction of cooperators increases around T ∼ 0.01 and peaks
around T ∼ 0.1. We also find that it has a local minimum
around T ∼ 0.5, and increases in the high-temperature region.
Moreover, we can conclude that the transition along r = 0.02
is continuous.

FIG. 18. Fraction of cooperators appearing in the iterated bound-
ary games on the 4-regular graph. The horizontal axis represents the
parameter r appearing in the boundary game in Table V. The vertical
axis represents the temperature in the pairwise-Fermi update rule
described in Eq. (3). The white region corresponds to the cooperative
one, and the black region corresponds to the defective one. The
red region corresponds to the mixed region, where cooperators and
defectors coexist even after a long run. The landscape of the heatmap
is quite similar to that of Fig. 3, which is obtained from the iterated
one-parameter prisoner’s dilemma game in Table IV.

C. Boundary game

For reference, we perform numerical simulation of the
boundary game, which is also classified as the prisoner’s
dilemma game. The boundary game is represented by Ta-
ble V. The parameter r can be regarded as the strength of
the temptation to choose defection. For large r > 1, unilateral
defection provides a greater payoff than mutual cooperation.
Then, mutual cooperation is not stable in a one-shot game.
However, for small 0 < r < 1, mutual cooperation maximizes
both players’ payoffs. Then, mutual cooperation is likely to
occur.

We similarly simulate an iterated boundary game on a 4-
regular graph, simply by replacing the game in Table IV by
the boundary game in Table V. Figure 18 shows the fraction
of cooperators appearing in the iterated boundary game on the
4-regular graph. The result appears qualitatively similar to the
case of Table IV in the sense that the diamond-shaped mixed
region exists.

VII. CONCLUSION AND OUTLOOK

In this paper, we have investigated the phase diagram of the
iterated prisoner’s dilemma game on a graph as a function of
the cost-to-benefit ratio and temperature. We have also studied
the real-time dynamics of the fraction of cooperators in the
game. In Sec. II, we have formulated the iterated multiplayer
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game where players shift their strategies according to the
pairwise-Fermi update rule. In Sec. III, we have discussed
the averaged quantities such as the fraction of cooperators
and the correlation of neighboring pairs in the game on a
square lattice. The phase-transition-like behavior can be seen
in the game, and the correlation of neighboring pairs is found
to be significant in the mixed region, where cooperators and
defectors coexist. In Sec. IV, we have examined the fraction
of cooperators and the correlation of neighboring pairs in the
game on a regular graph. We have found that the degree of a
regular graph affects the boundaries of the mixed region, and
the diamond-shaped mixed region significantly shrinks for
large degrees k � 6. In Sec. V, we have studied the real-time
trajectories of the fraction of cooperators of the game for the
cost-to-benefit ratio r = 0.02. The power spectrum is found
to behave as a pink noise in the sense that the upper envelope
of the spectrum can be fitted by a power-law curve over a
wide frequency region. In Sec. VI, we have compared the
dynamics of the game-theoretical model with the dynamics of
the random-walk models. As a result, the pink-noise behavior
can be reproduced by the simple random walk. Moreover,
the deviation of the low-frequency spectrum from the pink-
noise behavior in the game-theoretical model is found to be
reproduced by the modified random walk, where a negative-
feedback effect is introduced.

We have discussed the phase-transition-like behavior found
in the iterated game, which is analogous to phase transi-
tions in physics in the sense that several distinct phases
of configuration appear depending on the two parameters,
the cost-to-benefit ratio and temperature. However, we have
not given the strict definition of phase transitions in the
game-theoretical model. One possible definition may involve
finite-size scaling analysis, which investigates critical proper-
ties and scaling behavior of a finite-sized system. Moreover,
the averaged correlation of neighboring pairs in Eq. (5) is non-
vanishing in the mixed region: it is interesting to investigate
how the correlation affects the real-time dynamics.

In this paper, we have focused on iterated prisoner’s
dilemma games on a square lattice and regular graphs; how-
ever, we can also consider games on other types of graphs
such as a triangular lattice, a hexagonal lattice and a scale-free

network. Especially, scale-free networks, where degrees k of
nodes are distributed as a power-law function proportional
to ∝ k−γ with a scaling exponent γ , are widely observed in
real world [41]. Thus, iterated games on a scale-free network
will be worth considering to model real phenomena that arise
from interactions among people. In addition, it is known that
in physics frustration arises in a triangular lattice model with
antiferromagnetic interactions [42]. Considering this fact, we
expect that a triangular lattice could give rise to a similar
phenomenon in a certain iterated game. One way to realize
a frustrated state in a game-theoretical model might be to
adopt a payoff matrix where payoffs are minimized by mutual
cooperation and mutual defection and payoffs are maximized
by disagreeing choices. In this case, neighboring players will
tend to choose distinct choices for higher payoffs. However,
it is impossible that three players on a triangle lattice choose
distinct strategies, since only two strategies can be chosen, and
at least two pairs out of the three have to settle for the lowest
payoffs. Thus, frustration obtained in such a game-theoretical
model will also be worth exploring.

From another aspect, it is notable that not only evolution-
ary cooperation but also moral behaviors have recently been
studied in game-theoretical models [43]. Traditional models
based on monetary payoffs have limitations in discussing var-
ious forms of unselfish behaviors, which include cooperation,
altruism and truth-telling. However, it is possible to consider
unselfish behavior in “one-shot anonymous economic games,”
where players act without expecting direct benefits or in-
direct ones. In other words, unselfish behaviors can better
be explained by moral preferences, which involves players’
following their personal policies about what is right or wrong,
than merely by social preferences, which involves players’
care about others’ payoffs. We expect that models containing
such moral preferences will help understand human decision
making and guide policy-making.
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