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Otto cycles with a quantum planar rotor
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We present two realizations of an Otto cycle with a quantum planar rotor as the working medium controlled
by means of external fields. By comparing the quantum and the classical description of the working medium,
we single out genuine quantum effects with regard to the performance and the engine and refrigerator modes of
the Otto cycle. The first example is a rotating electric dipole subjected to a controlled electric field, equivalent to
a quantum pendulum. Here we find a systematic disadvantage of the quantum rotor compared to its classical
counterpart. In contrast, a genuine quantum advantage can be observed with a charged rotor generating a
magnetic moment that is subjected to a controlled magnetic field. We prove that the classical rotor is inoperable as
a working medium for any choice of parameters, whereas the quantum rotor supports an engine and a refrigerator
mode, exploiting the quantum statistics during the cold strokes of the cycle.

DOI: 10.1103/PhysRevE.110.034109

I. INTRODUCTION

With the thermodynamic interpretation of the three-level
maser in 1959 [1], the field of quantum thermodynamics was
born. Since then, quantum analogues of classical thermal ma-
chine models such as the Carnot cycle [2–7] and the Otto cycle
[8–14] have been studied exhaustively. In these machines,
the classical macroscopic working medium, usually a gas,
is replaced by quantum systems of varying complexity that
undergo a controlled cycle of strokes, which alternate between
the thermal coupling with a hot and a cold reservoir and the
modulation of the system Hamiltonian over time, mimicking
the (model-extrinsic) motion of a “piston.” In this work, we
focus on the Otto cycle, which can be operated both as an
engine that outputs work at the expense of heat from the hot
reservoir and as a refrigerator that extracts heat from the cold
reservoir at the expense of work.

Studied quantum working media range from small
finite-dimensional systems [15–17] to many-body systems
[18–20] and infinite-dimensional continuous-variable systems
[12,21,22]. Experimental proof-of-principle realizations of
the Otto cycle were performed with trapped ions [23,24],
nanobeams [25], nitrogen vacancy centers [26], spins with
nuclear magnetic resonance techniques [17], optomechani-
cal systems [27], and quantum gases [28] and proposed for
nanomechanical resonators [29], circuit QED [30], and quan-
tum dots [31].

Continuous-variable working media naturally lend them-
selves to the study of quantum effects on the machine
performance. They can represent motional degrees of freedom
with a classical analog, e.g., the position and momentum of
a particle, admitting a direct comparison between the classi-
cal and the quantum version of the studied machine. Note,
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however, that the quantum-classical comparison is often un-
derstood as a comparison of machine models with and without
coherence on a given quantum system [32,33], provided that
the periodic piston modulation affects the energy basis of the
working medium. While the advantages of quantum machines
are often highlighted in specific cases [34–38], the perfor-
mance of a machine model can in general both improve and
deteriorate due to quantization of the working medium.

One predominantly studied working medium is the har-
monic oscillator, due to its mathematically well-understood
behavior. Unfortunately, it was shown that the harmonic oscil-
lator does not have the capacity for genuine quantum effects
on the range of parameters at which a standard Otto cycle
operates as an engine or refrigerator: A homogeneous scaling
of the energy levels with respect to the work parameter λ

representing the periodic piston modulation of the harmonic
frequency, En(λ) = λh̄ω(n + 1/2) implies classical operation
modes [39]. Moreover, the same applies to any Otto cycle
in which the cyclic modulation of the Hamiltonian implies a
simple proportionality of the energy spectrum, En(λ) ∝ λk .

Here we will consider the quantum planar rotor as a
continuous-variable working medium for the quantum Otto
cycle. This is in contrast to and a complement of previous the-
oretical works employing the rotor as an autonomous piston
degree of freedom for engines [40–44]. Angular momentum
quantization can lead to genuinely nonclassical phenomena
in the free evolution of a single planar rotor [45] as well as
in the dynamics of coherently interlocked rotors [46]. Ex-
perimental demonstrations of rotor-based machines could be
based on molecular rotors, the quantum dynamics of which
is nowadays routinely observed and controlled with help of
tailored laser pulses [47,48]. Another platform to realize pla-
nar rotor analogues and rotor engines is circuit QED [49],
where the Josephson phase plays the role of the rotor angle.
Finally, state-of-the-art experiments in levitated optomechan-
ics with rigid nanorotors are steadily approaching the quantum
regime [50–54].
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(a) (b)

FIG. 1. Two physical settings in which a planar rotor acts as the
working medium of an Otto cycle: (a) rotating electric dipole subject
to an externally controlled, homogeneous electric field parallel to
the rotation plane; (b) charged rotor generating a magnetic dipole
moment subject to a controlled magnetic field perpendicular to the
rotation plane.

We will formulate the theoretical model of a planar rotor
subjected to an externally modulated potential in the four
strokes of the paradigmatic Otto cycle (Sec. II) and investi-
gate the classical and quantum predictions for two physically
motivated examples, sketched in Fig. 1: The first one is a
rotating electric dipole in the presence of an electric field of
alternating strength in the plane of rotation (Sec. III). We show
that the so-defined Otto cycle, assuming ideal quenches of the
electric field and full thermalization in between, always per-
forms worse in the quantum case. Both the operation regimes
as an engine or refrigerator and the energy output decrease
in comparison to the classical case. The second example is a
dipole in a magnetic field of alternating strength perpendicular
to the rotation plane (Sec. IV). Here we show that the classical
rotor operates neither as an Otto engine nor as a refrigerator,
whereas the quantum rotor does, when the cold stroke of the
Otto cycle is operated in the low-excitation regime. This con-
stitutes a genuine advantage enabled by angular momentum
quantization. We briefly conclude our study in Sec. V.

II. THEORETICAL MODEL

A planar rotor is a dynamical degree of freedom described
by a single angular coordinate α ∈ [0, 2π ) and its conjugate
angular momentum Lz. It represents the phase space of, for
instance, a particle on a ring in the xy plane, the phase variable
in a superconducting Josephson loop, and the orientation of a
rigid rotor on a fixed plane of rotation. We will first intro-
duce the notation and theoretical description of a classical
and quantum planar rotor, before briefly reviewing the ideal
four-stroke Otto cycle.

A. Classical and quantum planar rotor

Classically, the canonical variables (α, Lz ) of the planar
rotor can be treated in the same manner as the position and
momentum of linear motion in one dimension. Physical states
are described by phase-space probability densities P(α, Lz )
and valid (time-independent) Hamiltonians by H (α, Lz ), with
the additional requirement of strict 2π periodicity in α. We
will consider Hamiltonians of the form

H = H (α, Lz ) = (Lz − Iω)2

2I
+ V (α), (1)

with a given moment of inertia I , a periodic potential, V (α) =
V (α + 2π ), and an angular momentum displacement by Iω.
The latter can be viewed as a boost with respect to a rotating
frame at angular frequency ω.

The Gibbs state of such a classical planar rotor in thermal
equilibrium at temperature T is given by

P(α, Lz ) = 1

Z
e−H (α,Lz )/kBT , (2)

with the partition function

Z =
∫ 2π

0
dα

∫ ∞

−∞
dLz e−H (α,Lz )/kBT

=
√

2π IkBT
∫ 2π

0
dα e−V (α)/kBT . (3)

In the quantum case, the differences between linear and
rotational motion are more fundamental. The orientation state
of the quantum planar rotor is described by 2π -periodic wave
functions ψ (α) = 〈α|ψ〉, and the periodicity implies that the
angular momentum be quantized in integer multiples of h̄.
We can thus express the angular momentum operator as L̂z =∑

m∈Z h̄m|m〉〈m|, defining the orthonormal basis of discrete
angular momentum eigenstates, 〈α|m〉 = eimα/

√
2π . The ex-

pansion coefficients of the wave function in this basis are
obtained from its Fourier decomposition.

The conjugate angle operator α̂ can be defined through the
unitary momentum displacement operators exp(ikα̂), which
for k ∈ Z adhere to the strict periodicity of the system and act
like exp(ikα̂)|m〉 = |m + k〉. Consistently, the basis of angle
states |α〉 is obtained as

|α〉 =
∑
m∈Z

e−imα

√
2π

|m〉. (4)

They form a continuous orthonormal basis, 〈α1|α2〉 = δ(α1 −
α2 mod 2π ), and they are eigenstates of the displacement op-
erators and thus of any periodic function of α̂ by virtue of the
Fourier expansion; e.g., V (α̂)|α〉 = V (α)|α〉. The canonical
commutation relation between L̂z and α̂ can be expressed in
terms of periodic functions as

[ f (α̂), L̂z] = ih̄ f ′(α̂), ∀ 2π -periodic f (α). (5)

The quantum version Ĥ of the generic Hamiltonian (1) will
have a discrete spectrum of energy eigenvalues En. The
corresponding Gibbs state is given by the density matrix
γ̂ = exp(−Ĥ/kBT )/Z with the quantum partition function
Z = tr{exp(−Ĥ/kBT )}.

For our following case studies and numerical compu-
tations, we conveniently introduce the rotational energy
quantum as a natural energy scale,

E = h̄2

I
, (6)

and express all relevant energies in units of this scale. When
comparing the quantum and the classical rotor as a working
medium, we expect notable differences only for thermal ener-
gies that do not exceed this scale by much.
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FIG. 2. Phase diagram of the four-stroke Otto cycle with a
generic working medium in terms of the temperature T and the
control parameter λ. The two horizontal lines represent the isentropic
strokes in which the control parameter changes between λh and λc

under work exchange. The two vertical lines represent “isochoric”
thermalization of the working medium through heat exchange with a
hot reservoir at temperature Th (left) and a cold reservoir at Tc (right).

B. Otto cycle

The Otto cycle is the most widely studied and instructive
thermal machine model [12,55], which can be generically
formulated in a classical or quantum setting. We start with
the quantum version and introduce the classical counterpart
later. The basic setting comprises one hot and one cold thermal
reservoir with respective temperatures Th > Tc, and a quantum
system acting as the working medium, whose Hamiltonian
Ĥ (λ) depends on a control parameter λ. This parameter can be
varied between two extreme values λh and λc, which abstracts
the cyclic motion of a piston. The temperature T and the
control parameter λ are the two relevant independent state
variables of the working medium.

In its ideal implementation, the Otto cycle consists of four
discrete strokes, as sketched in the phase diagram spanned by
λ and T in Fig. 2: two thermalization strokes (B → C and
D → A) in which the system is coupled to either reservoir of
temperature Th or Tc at a respectively fixed control parameter
value λh or λc, and two work strokes (A → B and C → D)
in which the control parameter alternates between λh and λc

while the system is in isolation. Ideally, we assume that the
system can fully thermalize with each reservoir, resulting in
the two respective Gibbs states

γ̂ j = 1

Z (λ j, Tj )
exp

[
− Ĥ (λ j )

kBTj

]
, j ∈ {h, c}. (7)

During the work strokes, we assume that the control parameter
is quenched quasi-instantaneously between its two boundary
values, so that the thermal populations of the system’s energy
levels are unaffected and the system remains in one of the two
Gibbs states [56].

Hence, we can identify the net heat input from the hot and
cold reservoir as the mean energy change in each respective

thermalization stroke, during which the thermal populations
change between γ̂h and γ̂c at a fixed control parameter value,

Qc = 〈Hc〉c − 〈Hc〉h = tr{Ĥ (λc)(γ̂c − γ̂h)},
Qh = 〈Hh〉h − 〈Hh〉c = tr{Ĥ (λh)(γ̂h − γ̂c)}. (8)

We abbreviate the mean energy at the control parameter
value λi in thermal equilibrium at temperature Tj by 〈Hi〉 j =
tr{Ĥ (λi)γ̂ j}. These mean energy values, four in total, fully
characterize the performance and operation mode of the ideal
Otto cycle.

In the two work strokes, the change of mean energy is due
to a change in the control parameter and can thus be identified
as work,

WA→B = 〈Ĥc〉h − 〈Ĥh〉h = tr{[Ĥ (λc) − Ĥ (λh)]γ̂h},
WC→D = 〈Ĥc〉h − 〈Ĥh〉h = tr{[Ĥ (λh) − Ĥ (λc)]γ̂c}. (9)

Energy conservation over the whole cycle requires that the net
total work input of both strokes be

W = WA→B + WC→D = −(Qc + Qh). (10)

We distinguish three modes of operation of the so-defined
ideal Otto cycle. When it yields a net work output, W < 0,
it operates as an “engine” with cycle efficiency η = |W |/Qh.
When heat is drawn from the cold reservoir, Qc > 0, the
cycle acts as a “refrigerator.” In any other case, the cycle is
considered useless, acting merely as a “heater.”

In this paper the working medium is a classical or quan-
tum planar rotor with a Hamiltonian of the form (1) or the
corresponding quantum version Ĥ = H (α̂, L̂z ). In the two
following case studies, the control parameter λ modulates
the strength of the potential V or the boost frequency ω. For
the classical analysis, we simply replace the Gibbs states (7)
and their partition functions by the respective phase-space
quantities, as defined in (2) and (3), and the energy expectation
values in (8) by the respective phase-space averages.

C. Fluctuations of work

In macroscopic working media, fluctuations of state vari-
ables are typically negligible and thermodynamic process
quantities such as heat and work are well represented by their
mean values. This is no longer the case in the microscopic
regime of working media comprising only a few degrees of
freedom, which are subject to comparatively strong (quantum)
fluctuations. The output of such thermal machines can then
vary randomly and widely across instances or over time. To
assess the fluctuations in the output of a quantum engine,
several notions of work statistics have been proposed, all
with their specific advantages and disadvantages [57]. Here
we employ a definition based on the “operator of work” re-
cently reviewed in [58], which yields measurable quantum
work statistics for isentropic strokes with a consistent classical
limit.

Consider a parametric Hamiltonian Ĥ (λt ) and a time-
dependent parameter λt that generates the unitary time
evolution operator Û (t ). The operator of work between times
0 and t is defined as

Ŵ0→t = Û †(t )Ĥ (λt )Û (t ) − Ĥ (λ0). (11)
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Taking the expectation value of this operator with respect to
the initial state ρ(0) results in the average work defined for
isentropic strokes as the difference in mean energy,

〈W0→t 〉 = tr{ρ(0)Ŵ0→t }
= tr{Ĥ (λt )ρ̂(t )} − tr{Ĥ (λ0)ρ̂(0)}. (12)

The variance of this observable accordingly provides a mea-
sure for the deviations of work around the mean.

In our case studies below, the Hamiltonian is of the generic
form Ĥ (λ) = Ĥ0 + λV̂ and the work strokes are modeled as
quasi-instantaneous quenches. The operators of work associ-
ated with the isentropic strokes from point A to point B and
from C to D in Fig. 2 reduce to

ŴA→B = (λc − λh)V̂ = −ŴC→D. (13)

Noting that the statistics of these two work operators are
evaluated with respect to different initial states γ̂h and γ̂c and
thus independent from each other, we can express the variance
of the total per-cycle work in terms of variances of V̂ with
respect to γ̂h,c,

var[W ] = (λc − λh)2(varh[V ] + varc[V ]), (14)

with varh[V ] = 〈V 2〉h − 〈V 〉2
h; see the Appendix for details.

We will quantify the relative amount of work fluctuations in
terms of the “scaled variance,”

var[W ]

〈W 〉2
= varh[V ] + varc[V ]

(〈V 〉c − 〈V 〉h)2
. (15)

Equations (14) and (15) also apply to the classical case, in
which quantum expectation values with respect to (7) are
replaced by classical phase space averages with respect to (2).

III. ELECTRIC DIPOLE MACHINE

In our first case study, we investigate the setting depicted in
Fig. 1(a): an electric dipole rotating in the xy plane under the
influence of a homogeneous electric field (across a capacitor
of controlled voltage) pointing in, say, the x direction. The
control parameter λ determines the field strength, Eλ = Eλex,
while the rotor angle α determines the dipole orientation, d =
d (ex cos α + ey sin α), which results in the potential energy
V (α) = −Eλ · d = −dEλ cos α. Writing the control parame-
ter as the dimensionless potential strength λ ≡ 2dEλ/E , we
arrive at the Hamiltonian

H (λ) = L2
z

2I
+ Eλ sin2

(α

2

)
= E

[
L2

z

2h̄2 + λ sin2
(α

2

)]
,

(16)

up to an additive constant. This resembles a mathematical
pendulum, which behaves approximately like a harmonic
oscillator of frequency ωeff = √

Eλ/2I in the limit of low
excitations and λ � 1. We will therefore focus on the rotor-
specific regime λ ∼ 1.

A. Classical description

Describing the electric dipole as a classical planar ro-
tor, the four characteristic mean energy values 〈Hi〉 j of the
Otto cycle can be given analytically. They follow from the

partition function (3) of a Gibbs state with respect to the
Hamiltonian (16),

Z (λ, T ) =
√

2π IkBT 2πe−Eλ/2kBT I0

(
Eλ

2kBT

)
. (17)

The energy values then become

〈Hi〉 j =
∫

dLz

∫
dα H (λi )

exp[−H (λ j )/kBTj]

Z (λ j, Tj )

= kBTj

[
1

2
− λi

λ j

∂ ln Z (λ j, Tj )

∂λ j

]

= kBTj

2
+ Eλi

2

[
1 − I1(x j )

I0(x j )

]
, (18)

with x j = Eλ j/(2kBTj ) and In modified Bessel functions. The
heat and work inputs per cycle read as

Qc = kB(Tc − Th)

2
+ Eλc

2

[
I1(xh)

I0(xh)
− I1(xc)

I0(xc)

]
, (19)

Qh = kB(Th − Tc)

2
+ Eλh

2

[
I1(xc)

I0(xc)
− I1(xh)

I0(xh)

]
, (20)

W = E (λh − λc)

2

[
I1(xh)

I0(xh)
− I1(xc)

I0(xc)

]
. (21)

From these we can already infer the modes of operation.
To this end, we note that the function I1/I0 is strictly
monotonously increasing, and hence, inequalities between
function values also hold between the respective arguments.
The engine regime, W < 0, can be achieved in two ways:
Either the first factor in (21) is positive (λh > λc) and the
second one is negative (xc > xh), or vice versa. The latter,
however, implies Tc > Th and can thus be excluded. As a
result, the engine regime is characterized by

W < 0 ⇐⇒ Th

Tc
>

λh

λc
> 1. (22)

The refrigeration regime can be characterized by an implicit
inequality only,

Qc > 0 ⇐⇒ I1(xh)

I0(xh)
− I1(xc)

I0(xc)
>

kB(Th − Tc)

Eλc
. (23)

We will now evaluate the classical performance of the engine
and refrigerator in terms of the work output and the cold
reservoir heat input, respectively, and compare them to the
quantum case.

B. Quantum-classical comparison

For the quantum version of the machine, the characteristic
mean energies 〈Hi〉 j can no longer be given analytically. We
compute them with help of the quantum optics package for the
Julia programming language [59].

We compare the electric dipole machine output in the
classical and the quantum case for an exemplary parameter
setting in Figs. 3(a) and 3(b), respectively, against varying
hot-stroke field strength and temperature, λh and Th. The
cold-stroke parameters are set to moderate values, λc = 1 and
kBTc = E . The red- and the blue-shaded contours correspond
to different per-cycle outputs of work (−W ) and cold-bath
heat (Qc), respectively, and the dashed lines mark the engine
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(a) (b)

FIG. 3. Energy output of an Otto cycle for the electric dipole
machine setting with (a) a classical and (b) a quantum planar rotor.
We plot against the hot-stroke control parameter λh and temperature
Th, distinguishing between two operation modes marked by the dot-
ted lines: engine operation with work output W < 0 (red shades)
and refrigeration with heat output Qc > 0 (blue). The cold-stroke
parameters are fixed at kBTc = E and λc = 1.

and refrigerator operation regimes. As expected from the clas-
sical condition (22), we observe that work production occurs
when the temperature ratio is greater than the ratio of dipole
potential strength parameters. The more these parameters
(and hence the temperatures) differ, the greater the absolute
work output. Refrigeration is most pronounced in the regime
of strongly confined pendulum motion for the hot stroke,
λh � 1. The quantum rotor behaves similarly to the classical
one, exhibiting only a small decrease of its operation regimes
and outputs.

More significant differences are observed in Fig. 4, where
we set the cold bath temperature to kBTc = 0.05E , close to
the ground state. The refrigeration mode is now no longer
visible in the quantum case shown in Fig. 4(b). Once again,

(a) (b)

FIG. 4. Energy output of (a) the classical and (b) the quantum
electric dipole machine, plotted in the same manner as in Fig. 3 as a
function of the hot-stroke control parameter λh and temperature Th.
We set the cold-stroke temperature to a lower value, kBTc = 0.05E .

(a) (b)

FIG. 5. Square root of the scaled work variance for (a) the clas-
sical and (b) the quantum electric dipole machine, plotted against
against the hot-stroke control parameter λh and temperature Th for
the same settings as in Fig. 4. Unshaded regions correspond to no
work output (〈W 〉 � 0), and the black shades represent a diverging
scaled work variance.

the quantum case is systematically worse in terms of operation
regime and output. This agrees with the intuition that quantum
Gibbs states of localized or trapped motion typically occupy
more phase-space area than classical Gibbs states of the same
temperature, and the discrepancy grows at lower temperatures.
Hence, from a classical perspective, the quantum machine
appears to operate at a lower temperature bias and thus more
poorly.

This intuition is corroborated by the fact that the work fluc-
tuations are consistently higher in the quantum case. Inserting
the control Hamiltonian V̂ = E sin2(α̂/2) into (15), we obtain
the scaled work variance,

var[W ]

〈W 〉2
= varh[sin2 (α/2)] + varc[sin2 (α/2)]

(〈sin2 (α/2)〉h − 〈sin2 (α/2)〉c)2
. (24)

As shown in the Appendix, the classical version of this ex-
pression can be given explicitly, whereas the quantum version
must be computed numerically. Both versions are compared
in Fig. 5, which shows the square root of the scaled variance
as a function of λh and Th for the same settings as in Fig. 4.
Not only does the quantum version (b) exhibit greater relative
work fluctuations than the classical version (a), but the quan-
tum work variance is also greater than the mean value in this
parameter regime.

In the next case study, we will see that a quantum rotor can
be beneficial if the rotational motion is both unrestricted and
close to its ground state, as angular momentum quantization
then plays a more intricate role.

IV. MAGNETIC DIPOLE MACHINE

We now consider the setting of Fig. 1(b): a charged
dumbbell or rod rotates in the xy plane in the presence of
a homogeneous magnetic field perpendicular to that plane,
Bλ = Bλez. Once again, the control parameter λ determines
the field strength. The charged rotor constitutes a circular
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current to which one can associate a magnetic dipole moment
μ = μLzez/h̄. Its potential energy in the field, V = −μ · Bλ =
−ωλLz, can be given in terms of the controlled Larmor fre-
quency ωλ = μBλ/h̄ ≡ λh̄/I .

The Hamiltonian of the so-defined working medium is

H (λ) = L2
z

2I
− ωλLz = E

[
L2

z

2h̄2 − λ
Lz

h̄

]
, (25)

where h̄λ determines the net angular momentum displacement
that minimizes the energy in the field. In both the quantum
and the classical case, the relevant mean energies, the total
per-cycle work (10), and the cold-bath heat input Qc in (8)
can then be expressed as

〈Hi〉 j =
〈
L2

z

〉
j

2I
− Eλi

h̄
〈Lz〉 j, (26)

W = E (λh − λc)
〈Lz〉h − 〈Lz〉c

h̄
, (27)

Qc =
〈
L2

z

〉
c
− 〈

L2
z

〉
h

2I
− Eλc

〈Lz〉c − 〈Lz〉h

h̄
. (28)

A. Classical no-go result

For a classical planar rotor, we will now show that the
magnetic dipole configuration can operate neither as an Otto
engine nor as a refrigerator, regardless of the chosen tempera-
tures or control parameters.

The classical partition function of a Gibbs state is
straightforwardly obtained after completing the square in the
Hamiltonian (25),

Z (λ, T ) = Z (0, T )eEλ2/2kBT = 2π h̄

√
2πkBT

E
eEλ2/2kBT .

(29)

From this follow the classical values for the mean angular
momentum,

〈Lz〉 j = h̄
kBTj

E

∂

∂λ j
ln Z (λ j, Tj ) = h̄λ j, (30)

and for the relevant mean energies (26),

〈Hi〉 j = kBTj

[
Tj

∂

∂Tj
+ (λ j − λi )

∂

∂λ j

]
ln Z (λ j, Tj )

= kBTj

2
+ Eλ j

2
(λ j − 2λi ). (31)

The resulting work (27) and cold-bath heat (28) are

W = E (λh − λc)2 > 0, (32)

Qc = −kB(Th − Tc)

2
− E

2
(λh − λc)2 < 0, (33)

which precludes any useful operation of the Otto cycle.

B. Quantum machine operation

We will now see that the quantum magnetic dipole setting
allows for both an Otto engine and a refrigerator mode, pro-
vided that the cold strokes are operated close to the ground
state. As before, the performance is determined by the charac-
teristic mean energies 〈Hi〉 j , which can be given by derivatives

FIG. 6. Mean angular momentum of a quantum planar rotor in
Gibbs states of three different temperatures, with respect to the mag-
netic dipole Hamiltonian (25) of varying momentum displacement λ.
The dotted line marks the classical mean value 〈Lz〉 = h̄λ, achieved
at high temperatures.

of the partition function as in the second line of (31). The first
lines in (32) and in (33) also hold, but with the expectation
values taken over the quantum Gibbs state at Th and Tc. The
associated partition function is a discrete sum due to angular
momentum quantization. With help of the Poisson sum rule
[60], we can express it as the product of the classical partition
function (29) (in units of Planck’s action quantum) and a
Jacobi theta function [61],

Z (λ, T ) =
+∞∑

m=−∞
e−Em(m−2λ)/2kBT

=
√

2πkBT

E
eEλ2/2kBT

+∞∑
ν=−∞

e−2πν(iλ+πνkBT/E )

=
√

2πkBT

E
eEλ2/2kBT ϑ3(−πλ, e−2π2kBT/E ). (34)

The quantum expectation value of angular momentum,
〈Lz〉 =: h̄(λ + ε), can now deviate from the classical mean
value h̄λ by at most |ε| < 1/2. In fact, we can invoke a
functional identity of the Jacobi theta function to obtain an
explicit Fourier expansion of the deviation [61],

ε = 〈Lz〉
h̄

− λ = kBT

E

∂ ln Z (λ, T )

∂λ
− λ

=
∞∑

n=1

(−)n 2πkBT/E

sinh(2π2nkBT/E )
sin(2πnλ). (35)

Figure 6 plots the resulting 〈Lz〉 as a function of λ for three
temperatures of the underlying quantum Gibbs state. The de-
viation vanishes exactly for any T whenever λ assumes an
integer or a half-integer value. Moreover, we observe that the
quantum-classical deviation diminishes quickly with growing
temperature T and is here no longer visible at kBT = 0.5E
(green line). In the opposite limit kBT � E (blue curve), the
Fourier-sine coefficients in (35) converge to (−)n/πn, which
describes a triangular sawtooth pattern and thus a stepwise
increase of 〈Lz〉 at every half-integer λ.
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To understand this behavior, recall that the quantum
Hamiltonian Ĥ (λ) is diagonal in the angular momentum basis
{|m〉}. Its energy eigenvalues, Em = E (m − λ)2/2 − Eλ2/2,
are points on a parabola in m that is centered around λ. For
integer λ, we have one ground state at m = λ and degenerate
energy doublets at m = λ ± n with n ∈ N. Assuming that
these doublets are uniformly populated in thermal equilibrium
(which would require the environment to induce incoherent
transitions between them upon equilibration), we get 〈Lz〉 =
h̄λ regardless of temperature. Similarly, for half-integer λ, all
energy states including the ground state are doubly degen-
erate with respect to m = λ ± (n − 1/2), so that once again
〈Lz〉 = h̄λ. Deviations can occur only for λ mod 1/2 �= 0. At
low temperatures, the rotor then mainly occupies the angular
momentum state |[λ]〉 of minimal energy, where [λ] denotes
the integer closest to λ. Consequently, 〈Lz〉 ≈ h̄[λ] = h̄(λ +
ε) with deviation |ε| < λ mod 1/2 < 1/2. In summary, we
have

〈Lz〉 ≈

⎧⎪⎨
⎪⎩

h̄[λ] for T → 0 and λ /∈ Z + 1
2

h̄λ for λ ∈ Z + 1
2

h̄λ for T → ∞.

(36)

Let us now discuss the implications of quantization for the
engine operation regime. We shall restrict our view to the case
λc > λh; the other case could be treated analogously. The per-
cycle work in (27) can be rewritten as

W = E (λc − λh)2

(
1 + εc − εh

λc − λh

)
, (37)

which must be negative (i.e., an output) for an engine. The fact
that |εc ± εh| < 1 immediately restricts the choice of control
parameters to |λc − λh| < 1. Moreover, any integer offset of
both parameter values, λh,c → λh,c + m, is irrelevant, which
allows us to restrict our view to λc,h < 1 without loss of
generality.

We have already seen that there is no work output in the
classical regime of vanishing εh,c, i.e., when both temperatures
are high, kBTh,c > E . In the opposite, deep quantum regime
of kBTh,c � E , we can approximate W ≈ E (λc − λh)([λc] −
[λh]) by using (36) in (27). This expression is also non-
negative due to the monotonicity of rounding to the closest
integer. Therefore, appreciable work output occurs only in an
intermediate regime of comparably low Tc and comparably
high Th. In this case, (36) leads to the average work W ≈
E (λc − λh)([λc] − λh), which becomes negative if and only
if λc > λh > [λc]. This in turn requires λc,h < 1/2 and hence
[λc] = 0, so that

W

E
≈ −(λc − λh)λh =

(
λh − λc

2

)2

− λ2
c

4
> − 1

16
. (38)

Here, setting λh = λc/2 results in the maximum work output
of Eλ2

c/4 per cycle for a given λc ∈ (0, 1/2). Hence it is
optimal to choose λc as close as possible (but not identical)
to 1/2. The upper bound of E/16 work output can only be
achieved asymptotically for λc → 1/2 and Tc → 0 [62].

The work output in the ideal engine regime is shown in
Fig. 7 as a function of the hot-stroke parameters λh and Th for
fixed λc = 0.485 and kBTc = 0.001E . We see that the work

FIG. 7. Energy output of an Otto cycle for the magnetic dipole
machine setting with a quantum planar rotor. We plot against the
hot-stroke control parameter λh and temperature Th, distinguishing
between two operation modes marked by the dotted lines: engine
operation with work output W < 0 (red shades) and refrigeration
with heat output Qc > 0 (blue). The cold-stroke parameters are
fixed at kBTc = 0.001E and λc = 0.485. The work output is normal-
ized with respect to theoretically predicted optimum W = −E/16;
see Eq. (38).

reaches close to the ideal value around λh ≈ 0.25 and for
temperatures kBTh > 0.2E .

As one moves away from the ideal regime by increasing the
cold temperature, the engine operation window closes and the
work output deteriorates quickly. This is illustrated in Fig. 8,
where we set kBTc = 0.025E . In this setting, we find that the
Otto cycle can also operate as a refrigerator, provided that the
hot temperature is small, kBTh < 0.1E .

Overall, we have shown that, because of angular mo-
mentum quantization, the magnetic dipole machine supports
useful operation modes in the low-temperature regime. How-
ever, this regime is dominated by fluctuations, as indicated
by the scaled work variance (15). Identifying V̂ = −EL̂z/h̄, it
here reads as

var[W ]

〈W 〉2
= varh[Lz] + varc[Lz]

(〈Lz〉h − 〈Lz〉c)2 . (39)

This expression can be simplified further in the relevant opera-
tion regime of almost zero Tc and high Th, where varc[Lz] ≈ 0,
〈Lz〉c ≈ 0, 〈Lz〉h ≈ h̄λh, and varh[Lz] ≈ h̄2kBTh/E . The latter
is the classical variance calculated in the Appendix, and from
Fig. 6, we infer that kBTh � 0.5E is already sufficient for the
classical limit to be valid. We arrive at

var[W ]

〈W 〉2
≈ varh[Lz]

h̄2λ2
h

= 1

λ2
h

kBTh

E
� 2. (40)

The lower bound follows, because we must also have λc ∈
(0, 1/2) for engine operation. The work fluctuations always
exceed the mean value, and they grow with increasing hot-
bath temperature. We confirm this observation in Fig. 9,
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FIG. 8. Energy output of the magnetic dipole machine, plotted in
the same manner as Fig. 7 against the hot-stroke parameter λh and
the temperature Th. The cold-stroke parameters are fixed at kBTc =
0.025E and λc = 0.485.

depicting the square root of the scaled variance (39) for the
same parameters as in Fig. 7.

V. CONCLUSION

We investigated two physically motivated realizations
of an Otto cycle with a planar rotor as the working

FIG. 9. Square root of the scaled work variance for the quantum
magnetic dipole machine, plotted against the hot-stroke control pa-
rameter λh and temperature Th for the same settings as in Fig. 7. The
unshaded region corresponds to no work output, and the black region
is where the scaled variance diverges.

medium, highlighting differences in the operation regimes
and performance due to quantization. The first realization
consists of a rotating electric dipole subject to an electric
field of controlled strength parallel to the rotation plane. The
system thus resembles a mathematical pendulum. We found
that angular momentum quantization leads to consistently
lower energy output and smaller engine and fridge operation
windows at low temperatures.

For the second realization, in which a charged rotor gen-
erates a magnetic moment subjected to a magnetic field of
controlled strength, we showed that there is no useful output in
the classical limit. For the quantized rotor, however, we could
locate and characterize an engine operation mode in which
the rotor state cycles between a deeply quantum cold tem-
perature regime of almost no excitations and a quasiclassical
hot regime of arbitrarily high excitations. This constitutes a
genuinely quantum thermal machine model that differs from
previously studied models based on few-level systems.

The discussed Otto machine models and their quantum
features could be demonstrated in experiments with molec-
ular rotors, levitated nanorotors, or Josephson loops in circuit
QED. For example, the magnetic dipole engine could be
demonstrated with a charged nanorotor electrically slowed
and aligned in a Paul trap [51]. As a proof pf principle, one
could then apply a switchable magnetic field to implement
the Otto cycle. Future theoretical work could explore the
possibility of similar quantum features in other mechanical
systems with a nonhomogeneous energy spectrum.
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APPENDIX: WORK VARIANCE

In Sec. II C we introduced the work operators

ŴA→B = −ŴC→D = (λc − λh)V̂ , (A1)

where V̂ is the controlled part of the Hamiltonian. The work
operators are evaluated with respect to the state of the working
medium at the points A and C, respectively. For example, the
work statistics of the stroke (A → B) are determined by the
moments tr{γhŴA→B}. The total per-cycle work is the sum
of both contributions. Since the end points of the two work
strokes are independent, we can conveniently define the total
full work operator on the tensor product of the Hilbert space
with itself,

Ŵ = ŴA→B ⊗ 1 + 1 ⊗ ŴC→D (A2)

= (λc − λh)(V̂ ⊗ 1 − 1 ⊗ V̂ ), (A3)

and calculate expectation values or higher moments with
respect to the state γ̂h ⊗ γ̂c. The second moment of work
reads as

〈W 2〉 = (λc − λh)2(〈V 2〉h − 2〈V 〉h〈V 〉c + 〈V 2〉c), (A4)

034109-8



OTTO CYCLES WITH A QUANTUM PLANAR ROTOR PHYSICAL REVIEW E 110, 034109 (2024)

while the squared expectation value becomes

〈W 〉2 = (λc − λh)2
(〈V 〉2

h − 2〈V 〉h〈V 〉c + 〈V 〉2
c

)
. (A5)

Upon subtraction, the mixed term vanishes and we find the
work variance

var[W ] = (λc − λh)2(varh[V ] + varc[V ]). (A6)

This expression holds both for the quantum and the classical
version.

For the case of the electric dipole engine in Sec. III, the
controlled part of the Hamiltonian is the pendulum potential,
V̂ = E sin2(α̂/2). Its variance with respect to the hot and
cold Gibbs state of the classical rotor can be calculated from
the first and second moment by taking the first and second
derivative of the classical partition function (17),〈[

E sin2
(α

2

)]n〉
= (−kBT )n

Z (λ, T )

∂n

∂λn
Z (λ, T ). (A7)

Elementary properties of the modified Bessel functions yield〈
E sin2

(α

2

)〉
= E

2

(
1 − I1(x)

I0(x)

)
, (A8)

〈[
E sin2

(α

2

)]2
〉

= E2

2

[
1 −

(
1 + 1

2x

)
I1(x)

I0(x)

]
, (A9)

with the abbreviation x = Eλ/(2kBT ). This results in the
variance

var
[
E sin2

(α

2

)]
= E2

4

[
1 −

(
1

x
+ I1(x)

I0(x)

)
I1(x)

I0(x)

]
. (A10)

The quantum counterpart is evaluated numerically.
For the magnetic dipole engine in Sec. IV, which oper-

ates only in the quantum regime, the control Hamiltonian
is V̂ = EλL̂z/h̄. Rewriting Eq. (26) and using that the hot
thermal state yields approximately the classical expectation
value 〈Lz〉h ≈ h̄λh from (30), we obtain

〈
L2

z

〉
h = 2h̄2

( 〈Hh〉h

E
+ λ

〈Lz〉h

h̄

)

≈ 2h̄2

E
〈Hh〉h + 2(h̄λh)2. (A11)

Hence, the angular momentum variance is directly given by
the expectation value of Ĥh,

varh[Lz] = h̄2

(
2〈Hh〉h

E
+ λ2

h

)
, (A12)

which can be read off Eq. (31). We get

varh[Lz] = h̄2kBTh

E
= IkBTh. (A13)
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