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Sum rule for fluctuations of work
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We study the fluctuations of work caused by applying cyclic perturbations and obtain an exact sum rule
satisfied by the moments of work for a broad class of quantum stationary ensembles. In the case of the canonical
ensemble, the sum rule reproduces the Jarzynski equality. The sum rule can also be simplified into a linear
relationship between the work average and the second moment of work, which we numerically confirm via an
exact diagonalization of a spin model system.
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I. INTRODUCTION

Under cyclic variation of a system parameter, a system will
generally proceed to a different state from its initial state. The
energy change that occurs accordingly amounts to work W
done on the system if the system is isolated. This work is a
random quantity for small systems, and their distribution de-
pends on all details of the force protocol, such as its duration
and strength, as well as the system’s initial state. So-called
fluctuation relations for classical or quantum systems have
attracted much attention in recent decades [1–4]. The class
of systems for which one knows such fluctuation relation is
mainly restricted to systems in a canonical [5,6] or in a grand
canonical initial state [7]. There are two types of fluctuation
relations, the detailed ones also known as Crooks relations and
the integral relations known as Jarzynski equalities. Crooks
relations also extend to systems in a microcanonical initial
state [8–11], while the rigorous derivation of the Jarzynski
equality requires a canonical or grand canonical initial state.

Meanwhile, for weak cyclic force protocols acting on a
system in a microcanonical initial state at the energy E , an-
other type of fluctuation relation was derived in Ref. [12]. It
connects the first two moments of work as

W1(E ) ≈ 1

2ω(E )

∂ω(E )

∂E
W2(E ), (1)

where W1 and W2 are the work average and the second moment
of work, respectively. This relation is particularly significant
in the aspect that it predicts the universal form of the en-
ergy distribution of nonequilibrium states reached after many
cyclic processes [12]. The crucial assumptions in the deriva-
tion of this relation are that the density of states, ω(E ), and the
moments of work are smooth functions of the energy E and
that the work is approximately Gaussian distributed. However,
how we can reconcile those assumptions with the frequent
observations that the work statistics of quantum systems
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typically are non-Gaussian [13] and moreover that quantum
systems have discrete spectra [13] remains a question.

In the present study, we scrutinize the work fluctuations
caused by a cyclic force protocol and examine the validity
of the relation (1). We first derive an exact sum rule (10)
that governs the relation between the work average and the
higher moments of work, which is valid for a broad class of
quantum stationary ensembles as initial states. In this ensem-
ble class, the occupation probability of an energy eigenstate
is determined by a continuous and differentiable function. If
this function is taken to be exponential, a canonical ensemble
is recovered, and then the sum rule reproduces the Jarzyn-
ski equality. On the other hand, upon choosing the function
to have a narrow width, the corresponding initial ensemble
simulates a smoothed version of a quantum microcanonical
ensemble, which is advantageous for dealing with some tech-
nical difficulties posed by the discrete nature of quantum
systems. With the exact sum rule, we show that a linear rela-
tion between the first two moments of work can exist in a form
similar to (1) but with a different proportionality coefficient.
We also specify the conditions to obtain the linear relation
and point out that the Gaussianity of work distribution is not
essential. Finally, via exact enumeration of eigenvalues and
eigenstates of a spin model system, we numerically investi-
gate the validity of the linear relationship in the case of the
smoothed microcanonical initial state.

This paper is organized as follows: Sec. II introduces the
initial ensembles in which the energy eigenstates of an initial
Hamiltonian are populated following smooth functions. We
also recollect the definition of work for quantum systems, the
probability of observing work values, and the corresponding
expressions of work moments. In Sec. III we derive an exact
sum rule that governs the work moments. We discuss Jarzyn-
ski equality as a particular form of the sum rule. Also, we
deduce a linear relationship akin to Eq. (1) from the sum rule.
We show therein that, instead of the density of states ω(E ),
a smooth function of E related to the normalization factor
of the initial ensemble determines the proportional constant.
In the subsequent Sec. IV, we take a model system of spins
(the Heisenberg XXX model in one dimension), considering
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a weak and local perturbation as a force protocol. We demon-
strate that work moments in the considered setting satisfy the
linear relationship. Finally, Sec. V summarizes our study.

II. INGREDIENTS

We first describe the basic elements of our study, the initial
ensembles, work, and its probability for quantum systems.

A. Initial ensembles

As initial states to which a perturbation shall be applied,
we consider a stationary ensemble of the unperturbed Hamil-
tonian Ĥ0, which is defined for any energy by means of a
diagonal density matrix in the eigenbasis of Ĥ0:

ρ̂(E ) = 1

D(E )

∑
i

mi(E )�̂i, (2)

where �̂i denotes the ith eigenprojector of Ĥ0, hence, Ĥ0 =∑
i Ei�̂i with Ei being the ith eigenvalue, obeying �̂i�̂ j =

δi, j�̂i and
∑

i �̂i = 1. D(E ) in Eq. (2) is the normalization
factor given by

D(E ) =
∑

i

mi(E )Tr�̂i. (3)

The weights mi(E ) are smooth functions determined by a
single, smooth master function m(x) according to mi(E ) =
m[(E − Ei )/ε], where ε > 0 is an energy scale.

The formula (2) has two properties: First, it is diagonal in
the energy basis, and, second, it determines the occurrence of
an energy eigenstate having energy E by a single-argument
function m(x). The first property applies to the equilibrium
ensembles. Also, it applies to any ensembles acquired imme-
diately after performing the ideal von Neumann projective
energy measurement. Since work in a quantum system is
defined as the difference between energies at the beginning
and the end of a work protocol, the energy measurement at
the protocol beginning is necessary and naturally comes in.
So the first property fits generally the purpose of investigating
work done by quantum systems. The assumption of the single-
argument function has no proof that this is always the case.
However, the equilibrium ensembles are well presented by the
single-argument functions, and the very common Gaussian
weight [14–17] is also determined by the single argument.
Thus, we believe that the single-argument assumption is not
very restrictive. We also show in Appendix A that the canon-
ical ensemble can be derived from the reduced density matrix
for a small subsystem of a total system described by Eq. (2).

Specifically, when choosing the expression for the master
function to be

m(x) = 2

1 + cosh(x)
, (4)

we can simulate the microcanonical ensemble in the limit of
very small ε because the resulting smoothing functions mi(E )
reach their maximal values at E = Ei and become vanish-
ingly small for Ei located from E such that |E − Ei| � ε.
When choosing m(x) = �(x + 1) − �(x − 1) with �(x) be-
ing the Heaviside step function, Eq. (2) corresponds to the

microcanonical ensemble of energy eigenstates that falls
within an energy shell of width 2ε centered at E [18–20].

Another strict definition of the microcanonical ensemble of
Ĥ0 reads [9,11,21,22]

ρ̂Ei = �̂i

DEi

, (5)

where the normalization factor DEi is given by the degeneracy
of the ith energy eigenvalue as DEi = Tr�̂i. The microcanon-
ical ensemble density matrix defined in this way only on the
subset of eigenstates having the specific energy value renders
its use rather cumbersome in many cases. For instance, the
density of states ω(E ) that enters Eq. (1) is given by the sum
of the delta functions,

ω(E ) =
∑

i

δ(E − Ei )DEi . (6)

This is a highly singular function tricky to handle, requiring a
smoothing scheme for its computation [23,24]. On the other
hand, Eq. (3) resembles Eq. (6) in the limit of very small ε, its
analytic property allows a more tractable approach.

In passing, we note that the master function m(x) is not
restricted to the form of Eq. (4). Rather, any positive master
function m(x) generates a density matrix describing a sta-
tionary ensemble provided that the normalizing factor D(E )
exists. The latter condition is always satisfied for systems with
a finite dimensional Hilbert space. In particular, the exponen-
tial master function m(x) = ex generates the E -independent
canonical density matrix ρc = Z−1

β e−βĤ0 with Zβ = Tre−βĤ0 ,
where the inverse temperature β is given by the energy scale
ε. The normalization factor becomes D(E ) = eβE Zβ . We see
later that in the case of the exponential master function, our
sum rule for work moments becomes Jarzynski equality.

B. Work and its probability

The work applied to a system by the external variation of
some of its parameters according to a force protocol is defined
as the difference between the system’s energies at the end and
the beginning of the protocol. For a quantum system, these
energies ideally are the results of projective measurements of
the instantaneous Hamiltonians at the respective times. For
cyclic protocols, these Hamiltonians agree with each other.
Hence, the possible work values are given by the differences
of a pair of energy eigenvalues of Ĥ0, that is, W = Ej − Ei

where Ei is the result of the measurement just before the
beginning of the force protocol and Ej is that of the one
immediately after the end of the force protocol.

The joint probability of measuring Ei and subsequently Ej

results as

p j,i = Tr�̂ jÛ�̂iρ̂(E )Û †, (7)

where Û is the time evolution operator and ρ̂(E ) is the density
matrix of the initial state given by Eq. (2). This joint probabil-
ity determines the probability of work, given by the following
expression:

PW (E ) = D(E )−1
∑
i, j

δW,Ej−Ei mi(E )Tr�̂ jÛ�̂iÛ
†. (8)
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The moments of work are accordingly given by

Wn(E ) =
∑
W

W nPW (E ), n = 1, 2, . . . . (9)

We are now ready to establish an exact relation between these
work moments.

III. AN EXACT SUM RULE FOR WORK FLUCTUATION

The main result of the present study is that for all smooth
stationary ensembles as given by Eq. (2) the moments of work
satisfy an exact sum rule:

W1(E ) = 1

D(E )

∑
n=2

(−1)n

n!

dn−1

dEn−1
[D(E )Wn(E )]. (10)

The proof of this relation begins with a formal identity:

∑
W

∑
i, j

δW,Ej−Ei F

(
E − W − Ei

ε

)
Tr�̂ jÛ�̂iÛ

†

=
∑
W

∑
i, j

δW,Ej−Ei F

(
E − Ej

ε

)
Tr�̂ jÛ�̂iÛ

†, (11)

where F (x) is an incomplete integral of the master function
m(x). By assumption, m(x) is infinitely many times differ-
entiable everywhere, so is F (x). The first derivative of F (x)
agrees with m(x),

mi(E ) =
[

dF (x)

dx

]
x=(E−Ei )/ε

. (12)

As the next step, we expand the function F ((E − W − Ei )/ε)
on the left-hand side of (11) as a power series of W to get

F

(
E − W − Ei

ε

)
=

∞∑
n=0

(−W )n

εnn!

dnF (x)

dxn

∣∣∣∣
x= E−Ei

ε

. (13)

Upon this substitution, the contribution from the zeroth order
in W on the left-hand side of Eq. (11) cancels the right-
hand side of Eq. (11) due to the time-reversal symmetry
Tr�̂ jÛ�̂iÛ † = Tr�̂iÛ�̂ jÛ † so that we obtain

∑
n=1

1

n!

dn−1

dEn−1

∑
W

(−W )n

×
⎡
⎣∑

i, j

δW,Ej−Ei mi(E )Tr�̂ jÛ�̂iÛ
†

⎤
⎦ = 0. (14)

Recalling the expression of work probability, Eq. (8), we
can identify the terms in the square brackets by D(E )PW (E ).
Using the definition of the nth moment of work (9), the
summation over W leads the above infinite series to the sum
rule given in Eq. (10). Although it is an exact relation for the
large class of stationary states where the master function is
expressed only in terms of a constant-shifted variable with
a overall scale factor, i.e., x = (E − Ei )/ε as in Eq. (14),
this sum rule may yet appear rather unwieldily due to the
presence of moments (cumulants) and their derivatives up to
arbitrarily high orders. In the remainder of this section, we
consider a case where the sum rule yields a closed expression

and situations where it leads to a handier approximate relation
similar to Eq. (1).

A. Jarzynski equality as a special case of Eq. (10)

As mentioned earlier, taking the exponential master func-
tion m(x) = ex leads to a canonical density matrix at the
temperature ε = β−1: Eq. (2) reads as

ρ̂(E ) = 1

D(E )

∑
i

eβ(E−Ei )�̂i (15)

= Z−1
β

∑
i

e−βEi�̂i. (16)

In obtaining the second line, we used the fact that the nor-
malization factor D(E ) in the case of the exponential master
function is determined as

D(E ) = eβE
∑

i

e−βEi�̂i ≡ eβE Zβ. (17)

This normalization factor of such form presents a relation

dn−1D(E )

dEn−1
= βn−1D(E ). (18)

Note also that the density matrix (15) is independent of the
energy parameter E , and consequently, the probability of work
and all moments of work are independent of E . More explic-
itly, by writing the probability of work from Eq. (8) as

PW (E ) =
∑
i, j

δW,Ej−Ei

e−βEi

Zβ

Tr�̂ jÛ�̂iÛ
†, (19)

one finds that this expression is the work probability for a
canonical initial state.

Now using the E independence of work moments and the
relation (18) for the derivatives of D(E ), we find that Eq. (10)
can be written as ∑

n=1

(−1)n

n!
βnWn(E ) = 0, (20)

where the nonzero D(E ) is divided and dropped out. Because∑
W W nPW (E ) = Wn, Eq. (20) is equivalent to∑

W

PW (E )e−βW = 1, (21)

which is the Jarzynski equality for the canonical initial states.

B. Approximate fluctuation relation, Eq. (1)

Apart from rare cases allowing an exact treatment, such as
seen above in the case of the canonical initial states, the sum
rule (10) can be used to find criteria allowing the approxi-
mate fluctuation relation (1). For example, if all contributions
higher than the second order to the sum are negligible, the
approximate fluctuation relation,

W1(E ) ≈ (1/2)βD(E )W2(E ) + (1/2)dW2(E )/dE , (22)

is obtained. Here an inverse-temperature-like quantity βD is
defined as

βD(E ) ≡ d ln D(E )/dE . (23)
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If, additionally, the energy derivative of the second moment
can be neglected, we get

W1(E ) ≈ βD(E )

2
W2(E ), (24)

which is almost similar to Eq. (1). Only difference from
Eq. (1) is that the appeared proportional factor is not the
derivative of the density of states but the normalization factor
of the smoothed ensemble (2). A question now is whether
those seemingly independent assumptions can be justified in
what circumstances. In the next section, considering a weak
and local perturbation on a system of Heisenberg XXX spins
as a concrete example, we numerically validate this linear
relation (24).

Before going over the next section, we would like to point
out that even if one assumes a Gaussian distributed work
probability as suggested in Ref. [12], one does not get the
series (10) terminated. This point can be seen explicitly, using
the cumulant generating function of work,

C(λ, E ) = ln
∑
W

eλW PW (E ), (25)

and rewriting Eq. (10) as

∑
n=1

(−1)n

n!

dn−1

dEn−1

[
D(E )

(
dn

dλn
eC (λ, E )

)
λ=0

]
= 0. (26)

When the work probability is Gaussian, the cumu-
lant generating function is given by C(λ, E ) = W1(E )λ +
(λ2/2)[W2(E ) − W 2

1 (E )]. Yet we see that the above series still
contains the higher order derivatives (n > 2). Therefore, the
Gaussianity of work distribution appears not to be an essential
element for the validity of Eq. (1).

IV. NUMERICAL TEST

Let us now examine Eq. (24) numerically. We take the
quantum-spin model in our numerical calculations, the so-
called Heisenberg XXX model described by the Hamiltonian,

Ĥ0 = −J

2

N∑
k=1

�σk · �σk+1. (27)

Here �σk = (σ̂ x
k , σ̂

y
k , σ̂ z

k ) are the Pauli matrices for a spin-1/2
located at the kth site of one-dimensional lattice having N
number of sites in total. We impose the periodic boundary
conditions: �σk = �σk+N . In this model, spins interact with their
nearest neighboring spins, and J measures the interaction
strength. We set J = 1 and use it as an energy unit in pre-
senting our numerical results.

We consider an initial ensemble of this spin system, choos-
ing the master function in the density matrix (2) to be

mi(E ) = 2

1 + cosh[(E − Ei )/ε]
. (28)

As said, the corresponding density matrix mimics the micro-
canonical ensemble by the width parameter ε chosen small.
We fix ε to be 1.5 times the maximum level spacing of the
Hamiltonian Ĥ0 for our numerical calculations. In order to
check whether the master function with the chosen ε well

FIG. 1. (a) Schematic picture of the model system used for the
numerical test of Eq. (22); the shaded region marks the two spins on
which the perturbation (33) acts. (b) Normalized cumulative count-
ing functions, �(E )/�(∞) defined in Eq. (29). To compare, it also
displays C(E )/C(∞) defined in Eq. (30) and numerically calculated
for the spin model system (27).

describes the energy level populations of the considered sys-
tem, we compare two quantities: One is a cumulative counting
function of the number of energy states below the energy E ,

�(E ) =
∫ E

−∞
dE ′ω(E ′), (29)

which is given by the density of states integrated up to an en-
ergy E . Unlike the density of states, a singular function given
by the series of delta functions, the cumulative counting �(E )
renders an adequate measure for a qualitative comparison. We
take the corresponding quantity in the case of the smoothed
microcanonical ensemble to compare with �(E ) to be

C(E ) =
∫ E

−∞
dE ′D(E ′). (30)

As shown in Fig. 1, C(E ) [normalized by C(∞)] and the ac-
cordingly normalized �(E ) are in relatively good agreement
with each other.

The above-described spin chain is subject to a cyclic per-
turbation V̂ (t ) that extends over the period τ . We take the form
of quench as a simple time dependence,

V̂ (t ) =
{

V̂ if 0 < t < τ

0 otherwise.
(31)
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While this perturbation is in operation, the time evolution
operator is given by

Û (τ ) = e−iĤτ/h̄, Ĥ = Ĥ0 + V̂ , (32)

where Ĥ denotes the total Hamiltonian during the evolution.
We choose the perturbation potential to act only on two spins
as

V̂ = −λσ̂ z
N σ̂ z

1 . (33)

This short-range perturbation can be considered weak for
moderately small values of λ. In our numerical calculations,
we set λ = 0.2 in the energy unit, J . Upon choosing such weak
perturbation, we expect that its yielded work moments Wn are
such that their absolute magnitude stays small with increasing
order of the moments, and the lower order contributions in the
sum rule would possibly be the dominant ones.

In order to calculate the quantities that appear in Eq. (10)
and its approximate expression (22) in the setting described
above, we adopt the exact diagonalization technique to find
the eigenvalues and eigenvectors of the model Hamiltonians
(27) [25]. Taking explicitly into account all symmetries of the
models, such as symmetry under spin inversion and spatial re-
flection symmetry for the perturbed systems and additionally
translational symmetry for the unperturbed systems, we per-
form our numerical investigation on the spin chain of length
N = 17.

A. Confirmation of Eq. (24)

We now numerically demonstrate the validity of the ap-
proximate relation (24) between the first moment and the
second moment of work. While those moments are functions
of τ , the duration of the force protocol, instead of choosing
particular values of τ , we consider the long-time averages of
the moments determined by

W n(E ) ≡ lim
T →∞

∫ T

0
dτWn(E ). (34)

Due to the linearity of the sum rule with respect to the mo-
ments, the long-time averages of the work moments Wn obey
the identical sum rule. Hereafter, we present our results for
these long-time averages.

As we see in Fig. 2(a), the curve of W 1(E ) versus
βD(E )W 2(E ) is positioned mostly along the straight line,
showing that the relation (24) is fairly valid. A notewor-
thy point here is that because W 2(E ) is non-negative, the
sign of the work average W 1(E ) is determined by the in-
verse temperature-like quantity βD(E ). Meanwhile, the sign
of βD(E ) defined in Eq. (23) indicates whether D(E ) is an
increasing or decreasing function at E . So when the energy
factor E of the initial ensemble is at regions where D(E )
increases, the average energy of the system increases after
the cyclic process of the quench type (31) is applied. The
average energy decreases when E of the initial ensemble is
located at the D(E )-decreasing region. We display the be-
havior of βD(E ) as a function of E/N in Fig. 2(b) [see the
curve for O = D(E )]. In the case of the spin model used in
our calculation, an energy spectrum is bounded below and
above. As E increases from the ground state energy, D(E ) in-
creases and reaches its maximum at E ≈ 0. When E increases

FIG. 2. Numerical test of Eq. (24) for the spin model systems of
size N = 17. (a) Linear relationship between the two work moments.
(b) Logarithmic derivative of D(E ) and the second moment.

further, D(E ) decreases. This behavior of D(E ) explains the
sign change of βD around at E ≈ 0 in Fig. 2(b). Also, in the
same panel, we plot the logarithmic derivative of the long-
time-average of the second moment W 2(E ), in which one can
see that its magnitude stays almost zero compared to βD(E ).
The results explicitly show that the energy derivative of the
second moment makes negligible contribution in determining
the relation between the first and the second moment of work,
as assumed in obtaining the relation, Eq. (24).

Now we analyze the higher-order contributions, question-
ing whether the linear relationship displayed in Fig. 2 is due
to the mutual cancellation between terms of the higher order
moments or it is due to the smallness of the individual terms.
To see the effect of the terms discarded from the exact relation
(10) systematically, let us define a finite sum:

M (n)(E ) = 1

D(E )

n∑
k=2

(−1)k

k!

dk−1

dEk−1
[D(E )W k (E )], (35)

whereby the sum rule (10) can be read as W 1(E ) = M (∞)(E ).
We omit the function argument E for notation simplicity in the
discussion hereafter. Note that Fig. 2(a) displays the relation
between the work average W 1 versus this finite sum up to
n = 2, M (2). When n = 3, M (3) includes the additional con-
tribution from the third-order moment of work. Therefore, the
magnitude of the contributions from the nth work moment is
estimated from the degree of variation of M (n): M (n) − M (n−1).
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FIG. 3. The finite sum (35) vs work average W 1. The system size
used is N = 17. The finite sum for n � 3 is largely the same as that
given by n = 2.

In Fig. 3 we show M (n) vs W 1, up to n = 5. The M (2)

aligned along y = x is the behavior previously illustrated in
Fig. 2(a); only the chosen axes are different. Interestingly,
M (3) also maintains the linear relationship, suggesting that
d2[DW 3]/dE2 makes a negligible contribution to the sum.
Including higher order moments such as n = 4, 5 does not
alter much the behavior of the finite sum, except it provides
a better fit to W 1 close to the left boundary values. From this
numerical evidences, one can infer that

dk�3

dEk

[
DW k+1

(k + 1)!

]
	 1

2

d

dE
(DW 2), DW 1. (36)

Note that the terms in the square brackets are the unnormal-
ized work moments; see Eq. (8), where D(E ) appears as the
normalization of the probability of work.

In Fig. 4 we plot the unnormalized work moments to
complement our numerical analysis. The upper panel shows
DW n/n! for a few odd n’s, where the odd-moment-associated
terms are all smooth functions of energy. Although decreasing
in magnitudes with increasing n, DW n/n! with higher n is
not negligible, rather almost comparable, when compared to
that of the lowest n. As combined with results of Fig. 3, it
clearly means that the contributions of higher nth moments
are negligible, not because their absolute magnitudes them-
selves or their first derivatives with respect to E are small, but
because their n-order derivatives are diminishing with large n.
Qualitatively, the same behavior is observed for those terms
given by even number, n. These observations explain why the
conjecture (36) works and, therefore, the almost perfect linear
relation between the work average W 1 and W 2 displayed in
Fig. 2(a).

Recently, the notion of stiffness was introduced as a suf-
ficient condition for the Jarzynski equality to hold for work
performed on a system initially prepared in a microcanoni-
cal initial state [26,27]. Here stiffness requires that the force
protocol is characterized by a transition probability from the
initial energy to any final energy independent of the initial
energy. This discussion parallels what we found from our
sum rule for the canonical initial state. However, this condi-
tion is apparently not satisfied for the microcanonical initial
states. As we have shown explicitly through our numerical

FIG. 4. Behaviors of the unnormalized work moments appearing
in the sum rule (10) are displayed as a function of energy: (a) for odd
n and (b) for even n.

calculations, even a weak perturbation yields work moments
that depend on the initial energy, which directly proves that
the stiffness condition is not fulfilled. On the other hand, our
sum rule (10) states that the nth-order unnormalized work
moment contributes to the work-fluctuation-governing law
through not by itself but its nth derivatives with respect to
the initial energy. Therefore, the nth-order contribution can
be sufficiently small despite its energy dependence, leading to
the approximate validity of the relation (24).

In closing, we point out the role of ε. We present the work
average and the second moment of work for two different val-
ues of ε in Fig. 5. Recall here that disagreement between M (2)

and the work average indicates the degree of the contributions
from the higher-order work moments. In the case of a small
decay scale (see the lower panel in which we choose ε to
be 0.1 times the maximum level spacing) M (2) pronouncedly
oscillates. This rapid oscillation discloses the discreteness of
the energy spectra of the considered model system [28]. Most
notably, M (2) deviates off the work average, meaning that the
higher-order unnormalized work moments are susceptible to
the energy location and make a non-negligible contribution to
the sum rule. Only the relatively large decay scale (such as
1.5 times the maximum level spacing) tames such sensitivity
and reduce their contribution to the sum rule, as displayed in
Fig. 5(a).

In the seminal paper [12], the authors predicted that many
repeated applications of cyclic perturbations of very short
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FIG. 5. M (2)(E ) and work average as a function of E . Panels
(a) and (b) show the results for ε being 1.5 and 0.1 times the
maximum level spacing, respectively.

time intervals acting on an isolated quantum system lead to a
universal non-Gibbssian ensemble. The basic equation of their
theory is the Fokker-Planck equation of an energy distribution
function. In Appendix B we show that the time evolution of
the probability distribution function of energy can be written
in terms of the work moments using the Kramers-Moyal (KM)
expansion scheme and derive the Fokker-Planck (FP) equa-
tion by neglecting higher-order derivatives of work moments.
The Fokker-Planck equation is adequate, at least when the
higher-order work moments that appear in the KM expansion
are not too sensitive to the energy location. Note that the
work moments appearing in the KM expansion are the work
moments in the limit ε → 0, and their time-average behaviors
are very sensitive to E as observed in Fig. 5. When setting
the perturbation interval very short, whether this E sensitivity
diminishes so that the FP equation provides a valid description
would require close investigation, from which we expect to
understand an intriguing interplay between ε and the pertur-
bation time interval.

V. SUMMARY

We have studied the fluctuating nature of work performed
by a weak cyclic perturbation applied to a quantum system.
We have derived an exact sum rule (10) governing the relation
between work average and work fluctuation. Through the sum
rule, we have shown that a linear relationship (24) between

the first and the second moments of work can be obtained.
Although it looks similar to previously postulated relation (1),
our result (24) is different in that (i) it is not restricted to
systems with Gaussian work distributions and (ii) the propor-
tionality coefficient is defined via the derivatives not of the
density of states ω(E ) but of the normalization factor D(E ),
so readily accessible even for a system with discrete energy
spectrum. We also could identify that the essential element to
allow the Jarzynski-type relation is the energy independence
of the work moments in the case of the canonical initial states.

We have chosen a specific model system and a weak
perturbation to numerically demonstrate the validity of the
approximate relation (1). The perturbation we choose has a
weak strength and short range, acting only on a small part of
the system. Also, the force protocol taken here is a simple
quench type. Such a choice of force protocol may be consid-
ered special. How not only model specifics, the range/strength
of the acting perturbation, but also the time trajectory of
perturbation alter the relation between work moments are not
analysed in this study. We believe the subject is worthy of
further research and anticipate that the derived sum rule (10)
would guide understanding the specific behaviors of work
fluctuations resulting from all those details.
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APPENDIX A: REDUCED DENSITY OPERATOR
OF THE SMALL SUBSYSTEM OF A TOTAL SYSTEM

DESCRIBED BY EQ. (2): CONNECTION
TO THE CANONICAL ENSEMBLE

Let us suppose that a system described by Ĥ0 consists of
a small subpart and the remainder (bath) weakly coupled to
it. Neglecting the weak coupling, we can write the system
Hamiltonian as Ĥ0 = Ĥs + Ĥb, in which Ĥs and Ĥb are the
Hamiltonians of the small subpart and the bath, respectively.
We let Ĥs|� j〉 = ε j |� j〉, and Ĥb|�k〉 = Bk|�k〉. The eigenpro-
jector of H0 can be written as the linear combinations of the
product state |� j〉|�k〉:

�̂i =
∑

j,k

|� j〉〈� j | ⊗ |�k〉〈�k|δEi−ε j−Bk , (A1)

which enters in Eq. (2). Note that only the pairs of ( j, k) for
which ε j + Bk = Ei is satisfied should contribute to the above
sum. Upon the explicit inclusion of the weak coupling, the
projector in general is not written in terms of such direct prod-
uct state, and the issue becomes more involved in the proof
of eigenstate thermalization hypothesis, which is elaboratively
analyzed in Ref. [29].

The ensemble of the small subpart, ρ̂s, is determined by the
partial trace over the bath as

ρ̂s = Trbρ̂, (A2)
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which, upon using Eq. (2) and expressing the projector �̂i in
terms of Eq. (A1), becomes

ρ̂s = N
∑

j

Cj |� j〉〈� j |, (A3)

where N is the normalization factor determined by Trsρ̂s = 1.
Here the probability weight for the occupancy of the state |� j〉
(apart from the normalization factor) is given by

Cj =
∑

i

mi(E )
∑

k

δBk+ε j−Ei (A4)

=
∑

k

m

(
E − ε j − Bk

ε

)
≡ Db(E − ε j ). (A5)

Therefore, the normalized reduced density operator for the
small subsystem is determined as

ρ̂s =
∑

j Db(E − ε j )|� j〉〈� j |∑
j Db(E − ε j )

. (A6)

When ε in function m(x) [Eq. (4), for example] is compa-
rable to the maximum level spacing of Bk’s, Db(E − ε j ) is
an almost continuous function of E . The continuity of Db(E )
allows Taylor expansion, Db(E − ε j ) ∼ exp[−β(E )ε j], under
the assumption that ε j is much smaller than E and β(E ) =
∂ ln Db(E )/∂E is constant, leading to the canonical ensemble.

APPENDIX B: KRAMERS-MOYAL EXPANSION

Consider in this Appendix a cyclic perturbation of a short
time duration dt is repeatedly applied to an initial ensemble.
The cyclic perturbation means that an instantaneous Hamil-
tonian at time t , Ĥ (t ), is recovered at time t + dt ; that is,
Ĥ (t + dt ) = Ĥ (t ). The time evolution of a density matrix
ρ̂(t ) that describes a system ensemble at time t is determined
as

ρ̂(t + dt ) = U (t + dt, t )ρ̂(t )U †(t + dt, t ), (B1)

where U (t + dt, t ) is the time evolution operator from time t
to time t + dt . In general, ρ̂(t ) is not diagonal in the eigen-
basis of the Hamiltonian at an instant t . To acquire the energy
distribution, we must introduce a crucial assumption: that ρ̂(t )
is diagonal in the energy basis:

ρ̂(t ) =
∑

i

�̂i pi(t ). (B2)

This assumption also applies to ρ̂(t + dt ):

ρ̂(t + dt ) =
∑

i

�̂i pi(t + dt ). (B3)

Inserting Eqs. (B3) and (B2) into Eq. (B1), we get

Tr�̂ j (t )ρ̂(t + dt ) = dEj p j (t + dt )

=
∑

i

Tr�̂ jU (t + dt, t )

× �̂iU
†(t + dt, t )pi(t ). (B4)

and accordingly, an equation for the probability density func-
tion (PDF) of energy,

P(E , t + dt ) ≡
∑

j

δ(E − Ej )dEj p j (t + dt )

=
∑

i j

δ(E − Ej )Tr�̂ jU (t + dt, t )

× �̂iU
†(t + dt, t )pi(t ). (B5)

Let us express the right-hand-side of (B5) in terms of the
PDF at time t , given by

P(E , t ) =
∑

i

δ(E − Ei )dEi pi(t ). (B6)

In doing so, it is also necessary to introduce a probability of
work,

PI
W (E ) = d−1

E

∑
i j

[
δW −Ej+Ei

(
Tr�̂ jU (t + dt, t )

× �̂iU
†(t + dt, t )

)
I (E − Ei )

]
, (B7)

where I (E − Ei ) is an indicator function, which is unity if
E = Ei and zero otherwise. The normalization factor is given
by dE = ∑

i Tr�̂iI (E − Ei ). We add the superscript I in order
to distinguish from the probability of work given in Eq. (8).
PI

W (E ) is related to PW (E ) via

lim
ε→0

PW (E ) = PI
W (E ), (B8)

where the limit applies to mi(E ) built in PW (E ) as

lim
ε→0

mi(E ) = lim
ε→0

2

1 + cosh[(E − Ei )/ε]

≈ I (E − Ei ) =
{

1 if E = Ei

0 otherwise.

By inspection, we find

P(E , t + dt ) =
∑
W

PI
W (E − W )P(E − W, t ). (B9)

The validity of this relation can be checked by inserting
Eqs. (B6) and (B7) into (B9) and comparing the outcome with
Eq. (B5). Equation (B9) is also identical to what is given in
Ref. [30]; see Sec. 6.4 therein.

We expand PW (E − W ) and P(E − W, t ) as a power series
of W in their function arguments:

PI
W (E − W ) =

∞∑
�=0

(−1)�(W �/�!)∂�
E PI

W (E ), (B10)

P(E − W, t ) =
∞∑

m=0

(−1)m(W m/m!)∂m
E P(E , t ) (B11)

with ∂�
E = (∂/∂E )�. Inserting these expansions into Eq. (B9),

and defining the nth moment of work as

W I
n (E ) =

∑
W

W nPI
W (E ), (B12)

034108-8



SUM RULE FOR FLUCTUATIONS OF WORK PHYSICAL REVIEW E 110, 034108 (2024)

we get

P(E , t + dt ) =
∑
�,m

(−1)�+m
[
∂�

EW I
�+n(E )

]
∂m

E P(E , t )

=
∞∑

n=0

(−1)n

n!
∂n

E

{
W I

n (E )P(E , t )]
}
, (B13)

where the use the Leibniz rule acquires the second equality.
This equation is akin to the Kramers-Moyal expansion con-
necting the energy distribution function at time t + dt and that
at time t through the moment of work.

Writing a few terms in Eq. (B13) explicitly as

P(E , t + dt ) − P(E , t )

= −∂E [W I
1 P(E , t )] + 1

2∂2
E [W I

2 P(E , t )] + · · · , (B14)

we find that the above equation becomes the Fokker-Planck
equation with drift W I

1 /dt and diffusion constant W I
2 /dt in

the energy space when the higher order derivatives ∂
n�3
E of

W I
n P(E , t ) are negligible.
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