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Exact solutions for a coherent phenomenon of condensation in conservative Hamiltonian systems
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While it is known that Hamiltonian systems may undergo a phenomenon of condensation akin to Bose-
Einstein condensation, not all the manifestations of this phenomenon have been uncovered yet. In this work,
we present a novel form of condensation in conservative Hamiltonian systems that stands out due to its evolution
through highly coherent states. The result is based on a deterministic approach to obtain exact explicit solutions
representing the dynamical formation of condensates in finite time. We reveal a dual-cascade behavior during
the process, featuring inverse and direct transfer of conserved quantities across the spectrum. The direct cascade
yields the excitation of arbitrarily high modes in finite time, being associated with the formation of a small-scale
coherent structure. We provide a fully analytic description of the processes involved.

DOI: 10.1103/PhysRevE.110.034107

I. INTRODUCTION

In the last decades, it has been observed that nonlinear
waves far from equilibrium may undergo a phenomenon of
condensation [1–12] akin to Bose-Einstein condensation in
quantum systems [13,14]. It happens when the fundamen-
tal mode experiences a macroscopic occupation and ends
up dominating the spectrum. In conservative Hamiltonian
systems, this process is understood as part of the phe-
nomenon of self-organization that takes place in strongly
nonequilibrium regimes [15], consisting in the emergence of
large-scale coherent structures from highly fluctuating con-
figurations. The common notion is that these systems evolve
from out-of-equilibrium states towards the “most disordered”
configuration, i.e., the thermal equilibrium state [16,17]. In the
presence of conserved quantities, however, the thermal state
cannot just consist of highly disordered fluctuations but, in
addition, it requires the formation of coherent structures to
store the quantities [15,18,19]. The phenomenon of conden-
sation arises in this picture when the thermal state spectrum
diverges at the fundamental mode, something that induces the
dramatic occupation of that mode and results in the formation
of a large-scale coherent structure, a condensate. On many
occasions, this process has found characterization within the
framework of wave turbulence [20,21], which has proved
fruitful in the study of the dynamical formation of condensates
[1,3,4,6,7,21]. Through this framework the phenomenon has
been widely studied in the Gross–Pitaevskii equation [22],
finding great applicability in the understanding of Bose-
Einstein condensation [1,4,23–27], and wave condensation
[3,5–10,28]. The latter found experimental confirmation in
optical turbulence [5,10].

In this work, we move out of nonequilibrium and ther-
mal regimes to report a condensation phenomenon that
takes place in the “coherent” regime of a conservative
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Hamiltonian system. Specifically, we report exact explicit so-
lutions representing the dynamical formation of condensates
in an infinite-dimensional Hamiltonian. These solutions reveal
that the system condenses in finite time evolving through
highly coherent states (all modes have well-determined phases
and amplitudes during the process), contrasting sharply with
the incoherent evolution and randomness inherent to the con-
densation predicted by wave turbulence [21]. It leads to three
notable results in this paper. First, the existence of a coher-
ent phenomenon of condensation in conservative Hamiltonian
systems. Second, the characterization of a direct cascade
that excites arbitrarily high modes in finite time. Third, our
fully analytic and explicit description of all the processes
involved. This is particularly remarkable due to the extensive
use of numerical methods to study the dynamical formation of
condensates.

II. SETUP

The coherent phenomenon of condensation uncovered in
this work takes place in the following class of infinite-
dimensional Hamiltonian systems:

i
dαn

dt
=

∞∑
m=0

∞∑
i=0

∞∑
j=0︸ ︷︷ ︸

n+m=i+ j

Cnmi j ᾱmαiα j, (1)

where t represents time, αn(t ) ∈ C are complex variables la-
beled by n ∈ N, the bar represents complex conjugation, and
Cnmi j ∈ R are time-independent couplings with symmetries
Cnmi j = Cmni j = Cnm ji = Ci jnm. Systems of this form and sim-
ilar commonly arise via resonant approximations of weakly
nonlinear waves in diverse fields of physics [29–49], including
nonlinear optics and cold atoms [29–33], nonlinear waves on
the sphere [34], or general relativity [35–37,43,44,47]. For
instance, the well-known Gross–Pitaevskii equation with the
harmonic trap enjoys an effective system of the form (1) in
any number of dimensions under radial symmetry [33]. In
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those contexts, αn is the amplitude of the nth normal mode
of the system, while n + m = i + j represents the resonance
condition (ωn + ωm = ωi + ω j) between these modes when
the linearized spectrum of frequencies is fully resonant (ωn =
an + b) [29,34,35,38,48,50]. See Appendix A for further de-
tails on this kind of derivation and Ref. [51] for examples of
systems with different frequencies ωn. This kind of Hamil-
tonian structures have been useful to study a rich catalog of
dynamics, including turbulent cascades [37,44,52–55] (e.g.,
in the formation of small black holes [38,44]), time-periodic
energy flows [29,30,34,35,43,48] [e.g., vortex precession in
two-dimensional Bose-Einstein condensates (BECs) [29,30],
or breathing modes [48]], Fermi-Pasta-Ulam-Tsingou recur-
rences (in BECs [31] and general relativity [45]), or stationary
dynamics [35,41,42,46,56]. There are also systems in (1) or
similar with exceptional analytic structures, belonging to the
class of integrable Hamiltonians [52–54,57], or presenting
multidimensional invariant manifolds [58]. The quantum ver-
sion of (1) has been explored in Refs. [32,59,60].

Our motivation to search for condensation processes in
the class of Hamiltonian systems (1) was twofold. First,
these systems arise in phase-sensitive (coherent) regimes of
wave models, clearly differing from the typical scenarios
where condensation phenomena have been observed. We then
expected that if Hamiltonian systems (1) exhibited conden-
sation, it would present distinctive features from previous
observations. Our second motivation came from the presence
of systems (1) in disparate areas of physics, something that
endows their study with great interdisciplinary value. If one
of these systems displays a certain kind of dynamics, then we
expect that other systems in (1) with different physical origins
may exhibit the same behavior. An example of this idea is
the series of works [29,30,34,35,43], which were unified in
Ref. [58].

Driven by these considerations, we developed a Hamilto-
nian system in (1) that admitted exact solutions undergoing
condensation in finite time. Our goal was to demonstrate the
existence of this phenomenon in this kind of coherent regime,
hoping it leads to future observations in various wave models
of physics. Our system is given by the couplings

Cnmi j = 1

2
(n + m + 2)

fn fm fi f j

f 2
n+m

, (2)

where fn = √
An, and An = (2n + 1)−1

(2n+1
n

)
are the Cata-

lan numbers [61]. Details on its construction are provided
in Appendix C. It belongs to the class of Hamiltonian sys-
tems with two extra conserved quantities since conserves the
Hamiltonian

H = 1

2

∞∑
n=0

∞∑
m=0

∞∑
i=0

∞∑
j=0︸ ︷︷ ︸

n+m=i+ j

Cnmi j ᾱnᾱmαiα j, (3)

and two additional quantities

N =
∞∑

n=0

|αn|2 and E =
∞∑

n=0

n|αn|2, (4)

which receive the interpretation of the “particle number”
and the “energy” when they are associated with the Gross–
Pitaevskii equation [30].

III. COHERENT CONDENSATION

We here show that our system (1) and (2) admits exact
solutions representing the phenomenon of condensation. The
key element is the preservation of the following ansatz by the
evolution

α0(t ) = b(t ), αn�1 = fnc(t )p(t )n−1, (5)

where b, c, p ∈ C are unknowns and fn is the same time-
independent function as that in (2). The restriction |p|2 < 1/4
is necessary to guarantee finite values for the conserved quan-
tities N and E in (4) due to the exponential growth of fn�1 ∼
2nn−3/4. The advantage of this ansatz is the reduction of the
infinite-dimensional system (1) and (2) to three equations for
three unknowns

i ṗ = p

(
N + bc̄p

x
F + b̄cp̄

x

)
, (6)

iḃ =
(

N + 2E

F + 1

)
b + 2EF

(F + 1)x
cp̄, (7)

iċ = (3N + 2E )c + 2E
F − 2

F + 1
(c − bp), (8)

where N and E are given in (4), x = |p|2, and

F (x) =
∞∑

n=1

f 2
n xn = 2x

1 − 2x + √
1 − 4x

. (9)

Technical details about this and subsequent derivations are
provided in Appendix D.

The resulting system of equations is solvable. First, we
combine Eq. (6) and the quantities N , E , and H to write an
equation for x in the form of zero-energy trajectories of a point
particle

ẋ2 + V (x) = 0, (10)

where V (x) only depends on x, N , E , and H. Once we obtain
a trajectory x(t ), the expressions for |b(t )|2 and |c(t )|2 follow
from the combination of the ansatz for αn and the conserved
quantities

|b(t )|2 = N − EF (x(t ))
x(t )F ′(x(t ))

, |c(t )|2 = E

F ′(x(t ))
, (11)

where F ′ = dF/dx = F/(x
√

1 − 4x). One then obtains
the evolution for |α0(t )|2 = |b(t )|2 and |αn�1(t )|2 =
f 2
n |c(t )|2x(t )n−1. The expressions for the phases come

from the integration of (6)–(8) once we have substituted x(t ),
|b(t )|, and |c(t )|. Altogether, this constitutes an exact solution
αn(t ) to our Hamiltonian system.

For the sake of concreteness, we focus the discussion on a
particular initial condition that undergoes condensation, while
a family of conditions will be introduced at the end of the
section. We work with α0(0) = α1(0) = 1, αn�2(0) = 0, be-
ing equivalent to p(0) = 0, b(0) = c(0) = 1. Equation (10)
reduces to

ẋ2 = −2(1 − 4x)(1 − 4x − √
1 − 4x), (12)
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FIG. 1. (a) Evolution of the first |αn(t )|. (b) Convergence of
the amplitude spectrum to the power law n−3/2 as t approaches T
(visualized extracting |c|2). The initial condition corresponds to the
two-mode initial data described in the main text; N = 2 and E = 1.

and is solved by

x(t ) = 1
4 sin2

√
2t (1 + cos2

√
2t ). (13)

Applying the above strategy, we have explicit formulas for
the evolution of |αn(t )|, while the phases of αn come from the
phases of p, b, and c:

φp(t ) = −π

2
− arctan(2− 1

2 tan
√

2t ), (14)

φb(t ) = −2t − arctan(2
1
2 tan

√
2t ), (15)

φc(t ) = −2t − 2 arctan(2− 1
2 tan

√
2t ). (16)

Then, we have an exact explicit solution αn(t ) with well-
determined amplitudes and phases in time. As we now
explain, it represents the dynamical formation of a condensate
in finite time T = π/(2

√
2), being its most distinctive feature

the evolution through highly coherent states [the phases of
αn�1 are always in a straight line (5)]. The evolution is illus-
trated in Fig. 1. Initially, only the first two modes are excited
since x(0) = 0; at intermediate times, all modes get excited
with an exponential decay for large n since 0 < x(t ) < 1/4;
and finally, the amplitude spectrum converges to the Kro-
necker delta distribution

|αn|2 →
t→T

Nδ0,n, (17)

storing the total amount of N at the lowest mode while the rest
of the spectrum goes to zero. This behavior is extracted from
(11) and the fact that x(T ) = 1/4, F (1/4) remains finite, but
F ′(1/4) diverges. Then, the conservation of N and E leads to
|c|2 → 0, and |b|2 → N as t → T .

Above, we have illustrated the process of coherent conden-
sation through a particular example but, there is a family of
exact solutions undergoing the same phenomenon. Their ini-
tial conditions are written in terms of the conserved quantities
N and E as follows:

b(0) =
√

N3

N2 + 4E2
, p(0) = 4E2 − N2

2(N2 + 4E2)
,

c(0) = E (N + 2E )2

N2 + 4E2

√
N

N2 + 4E2
, (18)

and all of them converge to the Kronecker delta distribution
in finite time. Note therefore that the condensation happens
for any positive E/N , from arbitrarily small to arbitrarily
large. Technical details and explicit expressions are provided
in Appendix D.

IV. DUAL CASCADE BEHAVIOR

We here demonstrate that the condensation process de-
scribed by our family of solutions shares common features
with turbulent systems, in particular, the transfer of conserved
quantities across the spectrum [20,21,62,63]. As we shall see,
our quantities N and E experience a separation in the spectrum
as the condensation advances, being supported by modes with
low and high n, respectively, similar to what happens in the
condensation predicted by wave turbulence [21]. At the end
of the process, N and E are entirely supported by the opposite
“edges” of the spectrum. We then say that our system under-
took a dual-cascade behavior, in connection with the literature
on wave turbulence. An inverse cascade transferred the entire
amount of N to the lowest mode, as we can see from (17),
while a direct cascade transferred E to high modes (modes
with arbitrarily large n). The latter is indicated by the loss of
the exponential suppression in the asymptotic spectrum when
the condensate forms (i.e., x → 1/4):

|αn�1|2 ∼ (4/
√

π )|c|2n− 3
2 (4x)n−1, (19)

as Fig. 1 shows. The development of the power law n−3/2 (the
excitation of higher and higher modes) serves to ensure the
conservation of E when the spectrum approaches the Kro-
necker delta (17) because the decay of |c|2 is compensated
by the divergence of the series in (4). This result confirms
that Hamiltonian systems in class (1) may develop a power
law spectrum in finite time. Numerical evidence of this phe-
nomenon has been reported in other systems [37,44], and
confirmation of the development of a power law spectrum
in infinite time was achieved in Refs. [52,53]. In general,
the dynamical excitation of the asymptotic spectrum is an
important subject included in the reference list “Problems
in Hamiltonian PDEs” [64]. In that context, the phe-
nomenon is quantified through the growth of Sobolev norms
[52–54,65–71],

H ξ =
( ∞∑

n=0

(n + 1)2ξ |αn|2
)1/2

, (20)

which we have calculated in Appendix E, confirming their
growth to infinity as the spectrum converges to the Kronecker
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FIG. 2. Position space representation of the coherent condensa-
tion process presented in Fig. 1. Function u(t, θ ) converges from the
initial state to the fundamental mode

√
N except at a single point,

θ = π .

delta distribution (for ξ > 1/2)

H ξ>1/2 ∼
t∼T

(T − t )2(1−2ξ ). (21)

The transition is at ξ = 1/2 because that norm H1/2 =√
N + E remains finite due to the conservation of E and N .

V. FORMATION OF A SMALL-SCALE COHERENT
STRUCTURE

We here demonstrate that the development of the power
law spectrum in Eq. (19) represents a process of energy con-
centration in position space, which leads to the formation of
a small-scale structure. This kind of process has been, for
instance, associated with the formation of tiny black holes
in general relativity [44], a result that supports the instabil-
ity of anti-de Sitter space-time [38]. To illustrate this point,
we visualize the coherent condensation process described
by our solutions in a one-dimensional box in Fig. 2. This
is done by taking {αn} as the Fourier coefficients u(t, θ ) =∑∞

n=0 αn(t )einθ . The figure shows the convergence of |u(t, θ )|
from the initial state to the fundamental mode [|u(T, θ )| =√

N]. In the process, a steep region is generated, approach-
ing a discontinuity at a single point |u(t, π )| →

t→T
|u∗| =

[N + 	(1/4)2E
√

2/π ]1/2, where 	 is the gamma-function;
see Appendix F. It happens because function u(t, θ ) trans-
lates the excitation of modes with large n into high-frequency
oscillations in θ . Additionally, the phases of αn�1 form a
straight line in n, inducing the coherent superposition of
high-frequency Fourier modes. Altogether, it results in the
formation of a small-scale coherent structure, a discontinuity.
This is a markedly different behavior from turbulent regimes.
In those contexts, the excitation of high modes leads to a
background of turbulent fluctuations consequence of the in-
coherent superposition of Fourier modes [15].

VI. NUMERICAL SIMULATIONS

Numerical simulations have been used to explore condi-
tions more general than the ansatz in (5). Across different
classes of conditions, these simulations revealed dynamics

FIG. 3. Numerical simulation of system (1) and (2) with 400
modes and an initial condition outside ansatz (5) with N = 2 and
E = 2.11 (provided in Appendix G). A large fraction of N accumu-
lates at |α0|2, while the amplitude spectrum approaches the power
law n−3/2 (visualized compensating the spectrum decay). αn transits
from (c) random phases to (d) a coherent state. Truncation effects are
visible around n ≈ 400.

that exhibited characteristic features of our solutions for
coherent condensation. As Figs. 3 and 4 illustrate when
compared with Fig. 1, we observe a strong concentration
of N at the lowest mode and the approach to the power law
|αn|2 ∼ n−3/2. Particularly interesting is the emergence of
this kind of dynamics from highly incoherent states (random
phases), as demonstrated in Fig. 3. It indicates that a high
degree of correlation between modes is not necessary for
a close manifestation of coherent condensation, as it can
arise during evolution. The initial condition in that figure has
been generated by adding random phases and amplitudes to
our ansatz in the form αn(0) = AneiPnα(a)

n (0), where α(a)
n

represents the ansatz and An and Pn are random numbers
uniformly distributed on [0,2] and [0, 2π ), respectively.
Similar dynamics have been observed from other classes of
initial conditions. For instance, several modes initially excited
with random phases [Fig. 4(a)], or spectra with different
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FIG. 4. Numerical simulation of three initial conditions outside ansatz (5). (first row) Evolution of the first mode amplitudes. (second row)
Amplitude spectrum approaching the power law n−3/2 (visualized compensating the spectrum decay). Simulations have been performed using
400 modes and truncation effects are visible at nearby modes. [(a), (d)] The first six modes with random phases (see Appendix G): E = 1.78
and N = 2. [(b), (e)] α0(0) = 0.51, αn�1(0) = 0.2(n + 1)e−0.2n: E = 11.57 and N = 2. [(c), (f)] α0(0) = 0.05, αn�1(0) = 0.46(n + 1) fne−0.77n:
E = 18.24 and N = 2.

asymptotic behaviors: n2 [Fig. 4(b)], and n1/2 [Fig. 4(c)].
These conditions revealed a preference of the system for
spectra led by the power n−3/2, as they approached it
regardless of their initial spectrum. Further details are
provided in Appendix G.

In general, we observe that our Hamiltonian system ex-
hibits common features in the behavior of high modes: they
get significantly excited after some time and develop a high
degree of correlation in their phases. We also find that an
asymptotic spectrum of the form |αn�1|2 ∼ n−3/2e−ρn arises
during the evolution, tending to approach the formation of a
power law (ρ becomes small). Other powers have been oc-
casionally observed when the spectrum develops oscillations,
as illustrated in Fig. 5. Even in those cases, the power n−3/2

dominated for part of the evolution, switching to a smaller one
when the exponential suppression weakened. Regarding the
low-mode behavior, it has been more difficult to characterize.
Contrary to high modes, low ones did not exhibit common
features independently of the initial conditions. For instance,
low modes reached different degrees of correlation in the
phases when starting from random data (Figs. 3 and 5), or
they did not perfectly converge to the Kronecker delta dis-
tribution: |αn|2 = Nδn0 (Fig. 4). However, these observations
come from simulations that span a few forward cascades in
the system (i.e., a few times the spectrum increased) and are
not applicable to longer times. As discussed in Ref. [45] and
Appendix G, the truncation in the number of modes introduces
important limitations for the simulation of systems that ex-
hibit strong cascades like ours. In particular, spurious effects
associated with the truncation make the evolution unreliable
when high modes get excited, something that quickly happens
in our system, obstructing the execution of long-time simula-
tions. Consequently, the simulated dynamics did not last long
enough to display effects associated with relaxation or reach
conclusions about the role of condensation processes in the
long-time behavior of the system. Addressing these questions
requires enhancements in the numerical description of direct
cascades in the Hamiltonian structures (1). In this regard, our
analytic solutions are well-suited for benchmarking because

FIG. 5. Numerical simulation starting from a fluctuating spec-
trum with random phases in the form αn(0) = An(n + 1)e−0.2n+iPn

(N = 2, E = 9.17). High modes develop strong correlations, con-
trary to low ones. The amplitude spectrum presents oscillations when
the power law is approached, contrary to Figs. 3 and 4.
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they display a direct cascade in finite time and are exact and
explicit.

VII. THRESHOLD IN E/N

A cutoff is commonly introduced in systems that exhibit
energy concentration processes, such as the one discussed
in Sec. V, precisely to prevent energy leakage to arbitrarily
small scales. This action is known to generate a threshold in
the “energy per particle” (E/N )c for condensation to occur in
nonequilibrium setups [3,7]. This fact is now discussed in our
system. We first explain the emergence of a threshold within
the ansatz in (5), where an exact expression can be derived
analytically. Then, we discuss this question for more general
conditions. Before that, note the absence of a threshold with-
out a cutoff, as we have obtained an exact solution undergoing
condensation for any positive E/N ; see Eq. (18).

First, restricted to the ansatz in (5), we use as a cutoff
an upper bound for x(t ) < x∗ � 1/4. It indicates that, for
physical reasons, the dynamics of the system remain reliable
until the excitation of high modes reaches the admissible
level x(t ) = x∗. Under this restriction, a threshold follows
from (11):(

E

N

)
c

= 1√
1 − 4x∗ and

|α∗
0 |2
N

= 1 − E

Ec
. (22)

The second expression is the fraction of N stored at the lowest
mode when the cutoff is reached x(t ) = x∗. The origin of
the threshold is quite simple in this case: it comes from the
exclusion of trajectories with min[x(t )] � x∗ and the interpre-
tation of those with min[x(t )] < x∗ � max[x(t )] as the same
process of energy concentration. Interestingly, these processes
now produce spectra with different fractions of N stored at
the lowest mode, contrary to the Kronecker delta distribution
(|αn|2 → Nδn0).

The presence of a threshold is more subtle outside the
ansatz in (5). We illustrate it after making some assumptions
on the formation of condensates, based on our analytic so-
lutions in Sec. III and numerical simulations in Sec. VI. We
assume conditions that undergo condensation (i.e., |αn|2 →
Nδn0) accompanied by the power law n−3/2. This is writ-
ten in the form |αn�1|2 ∼ (4/

√
π )|c|2n− 3

2 (4x)n−1 to define
functions x(t ) and c(t ) outside the ansatz. They still need to
satisfy x → 1/4 and |c| → 0 to represent condensation. Ad-
ditionally, |αn�1|2 must vanish, and we assume this happens
at the same rate as the asymptotic spectrum decays, or faster,
guaranteeing that all |βn�1|2 = |αn|2(x/|c|2) remain bounded.
For these conditions, the following threshold can be derived
when 0 < 1/4 − x∗ � 1:(

E

N

)
c

= 1

B(x∗)
√

1 − 4x∗ , B(x∗) =
∞∑

n=1

|βn|2
∣∣∣∣
x=x∗

. (23)

The new element B(x∗) indicates that this expression depends
on the specific way each mode approaches the Kronecker delta
distribution. This dependency arises due to the power law
n−3/2, which keeps B(x∗) finite as x∗ → 1/4 and cannot be
computed asymptotically. Higher powers would enable such
computation, decoupling the threshold from the low mode
behavior; however, these have not been observed in our nu-

merical simulations. Consequently, Eq. (23) may exhibit a
significant dependence on the initial conditions through B(x∗),
potentially compromising the existence of a global threshold
(E/N )c. For it to exist, our system should exhibit a finite
number of approaches, or a generic one, to the formation of
a condensate (i.e., for given values of the conserved quanti-
ties, {βn} should tend to a common behavior as x∗ → 1/4).
This issue thus demands an understanding of the various
mechanisms in the system to approach the Kronecker delta
distribution. Addressing the problem of asymptotic relaxation
in Hamiltonian structures (1) could shed light on this mat-
ter. The convergence to thermal equilibrium is precisely a
mechanism behind the condensation in nonequilibrium setups
[3]. From a numerical perspective, the problem demands the
exploration of long-time dynamics to observe the conden-
sation from larger classes of initial conditions and accurate
characterization of its formation. Specifically, the expression
for (E/N )c in Eq. (23) is valid asymptotically, indicating
that simulations must describe the dynamics for very small
1/4 − x(t ). In that regime, determining |βn| becomes chal-
lenging as this is the quotient of two quantities approaching
zero, and extracting the values of x(t ) and |c(t )|2 from nu-
merical data becomes particularly inaccurate as observed in
Appendix G. Overall, enhancements in describing the direct
cascade accompanying condensation are necessary to clarify
the existence of a threshold (E/N )c.

VIII. DISCUSSION AND CONCLUSIONS

In this work, we have uncovered a novel form of condensa-
tion in conservative Hamiltonian systems. Our fully analytic
description of the process reveals features fundamentally dif-
ferent from the condensation observed in turbulent scenarios,
the most remarkable being the evolution through highly co-
herent states. However, it shares common features with those
scenarios as well, such as a dual-cascade behavior that trans-
fers the conserved quantities towards the opposite parts of the
spectrum, or the excitation of arbitrarily high modes in finite
time.

From a broader perspective, this paper sets the precedent
that a novel form of condensation exists in a class of Hamil-
tonian equations associated with weakly nonlinear waves.
Consequently, our result holds great potential for the observa-
tion of this coherent form of condensation in those scenarios,
both theoretically and experimentally. The explicit solutions
uncovered in this work will be valuable allies in that research,
as they provide a full description of the development of the
phenomenon and serve for benchmarking in numerical sim-
ulations. From an experimental viewpoint, we believe that
nonlinear optics is a promising ground to initiate the search for
coherent condensation. Hamiltonian systems similar to ours
naturally arise in that field [30,50], and it already has the nec-
essary technology for the observation of wave condensation
in kinetic regimes [5,10].
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APPENDIX A: THE COHERENT REGIME WHERE
SYSTEMS (1) EMERGE AS EFFECTIVE EQUATIONS

We here illustrate the emergence of the Hamiltonian struc-
tures in Eq. (1) from a phase-sensitive regime of nonlinear
waves. We use as an example the Gross–Pitaevskii equa-
tion (GPE)

i∂t = − 1
2� + V (x) + g||2ψ, (A1)

where � is the Laplacian, V (x) a trapping potential (e.g.,
the harmonic trap), x ∈ Rd the spatial coordinates, and g ∈ R
the nonlinear coupling. It conserves the “particle number”
and the energy,

N =
∫

||2dd x, (A2)

H =
∫ (

1

2
|∇|2 + V ||2 + g

2
||4

)
dd x. (A3)

To derive the Hamiltonian structures in Eq. (1), one first
decomposes the solution into the normal modes of the lin-
earized equation (g = 0), (t, x) = ∑

n αn(t )ψn(x)e−iωnt . In
this expression, n is a discrete d-wave vector, ωn is the normal
frequency associated with mode ψn(x), and αn(t ) ∈ C is the
amplitude of that mode. The GPE is then written as an infinite-
dimensional system for αn:

i
dαn

dt
= g

∑
m

∑
i

∑
j

Cnmijᾱmαiαj ei(ωn+ωm−ωi−ωj)t . (A4)

The couplings are Cnmij = ∫
ψn ψm ψi ψj dd x, and the sym-

metries Cnmij = Cnmji = Cmnij = Cijnm naturally arise. This
dynamical system is exactly the GPE in (A1), we did not
perform any approximation yet. It is now when the assumption
of weak nonlinearities |g| � 1 is introduced, allowing us to
apply perturbation techniques as the multiple scale method or
time-averaging [72] to describe the evolution. The dynamics
of the system split into timescales and relevant nonlinear
effects happen at times of order 1/g, which are captured by
the following effective Hamiltonian system:

i
dαn

dt
=

∑
m

∑
i

∑
j︸ ︷︷ ︸

ωn+ωm=ωi+ωj

Cnmijᾱmαiαj, (A5)

where g has been compensated by scaling t . This system
receives the name of resonant approximation because only
resonant terms (ωn + ωm = ωi + ωj) remain, while others are
neglected. Note that the derivation does not rely on random
phases or amplitudes of αn; just weak nonlinearities |g| � 1.
Then, the Hamiltonian system in Eq. (A5) provides a deter-
ministic description of phase-sensitive (coherent) dynamics
displayed by the GPE.

The Hamiltonian structure considered in the main text
comes from Eq. (1) under two considerations. First, we reduce

the d-dimensional space of modes n to a one-dimensional
one n ∈ N. This is achieved by considering symmetries in
the original equation, such as the radial one. Second, we
considered a fully resonant or equidistant spectrum (i.e., ωn =
an + b), which reduces the resonance condition ωn + ωm =
ωi + ω j to the simple expression n + m = i + j. As an ex-
ample, the radially symmetric GPE (A1) with the harmonic
potential V (x) = |x|2/2 belongs to this class of systems in
any number of spatial dimensions (e.g., ωn = 2n + d/2 for
d � 2). This example is particularly convenient to visual-
ize the origin of the conserved quantities N , E , and H in
(4) and (3). They come from the conservation laws in (A2)
and (A3) getting the interpretation of the “particle number”
and the linear and nonlinear energies, respectively. Finally,
the Hamiltonian systems in Eq. (1) enjoy scaling [αn(t ) →
εαn(ε2t )], phase-shift (αn → ei(φ+nθ )αn with φ, θ ∈ R), and
time-reversal (αn −→

t→−t
ᾱn) symmetries.

APPENDIX B: CATALAN NUMBERS

Some properties of the Catalan numbers are listed here
[61]. They have the expression

An = 1

2n + 1

(
2n + 1

n

)
, (B1)

with n ∈ N, and the asymptotic behavior An�1 ∼ n−3/2√
π

4n.
They satisfy the identity on the left, which has been used as
written on the right:

M∑
n=0

AM−iAi = AM+1,

M−1∑
n=1

AM−iAi = 2
M − 1

M + 2
AM , (B2)

with M = 2, 3, 4, . . .. The generating function of the Catalan
numbers may be rewritten as

F (x) =
∞∑

n=1

Anxn = 2x

1 − 2x + √
1 − 4x

, (B3)

and its derivative has the form

F ′(x) =
∞∑

n=1

nAnxn−1 = F (x)

x
√

1 − 4x
. (B4)

F (x) is finite at x = 1/4, while F ′(x) diverges; a property we
use in Sec. III and Appendix D.

APPENDIX C: THE ORIGIN OF SYSTEM (2)

For the construction of our system (2), we first proposed
a simple form for αn(t ) that could capture a condensation
process. We realized that the ansatz presented in Eq. (5),
i.e., α0 = b, αn�1 = fncpn−1, could accomplish that. The idea
behind that choice was to endow mode α0 with more freedom
than the rest of modes, which would evolve following the
same law. After, we constructed the couplings Cnmi j in (2) by
imposing that the ansatz was a solution [i.e., we substituted
the ansatz in (1) and searched for the couplings that reduced
the system to three equations for the three unknowns]. We did
not have an algorithmic method for this search, but followed a
trial-and-error process guided by the intuition acquired from
our previous works [52,58] on similar constructions. Catalan
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numbers arose due to their summation identity in (B2), which
allowed us to compute various sums once we realized how to
combine them in (2).

APPENDIX D: CONDENSATION IN FINITE TIME

Technical details omitted in Sec. III are presented here. For
the derivation of the system of equations in (6)–(8), one plugs
the ansatz (α0 = b and αn�1 = fncpn−1) into the equations,
divides by fn pn−1 on both sides, and uses the identities for
the Catalan numbers in (B2)–(B4) to replace the summations.
It results in an expression linear in n on both sides of the
equations. From the equation for α̇0 we obtain an equation for
ḃ, while the equations for ċ and ṗ come from α̇n�1 after
equating the coefficients that accompany n on the one hand,
and the independent terms on the other hand. The equation for

ẋ = p̄ṗ + p ˙̄p has the form

ẋ = √
1 − 4x

1 + √
1 − 4x

1 − 2x + √
1 − 4x

(b̄p̄c − bpc̄), (D1)

which may be written as

ẋ2 + V (x) = 0 (D2)

after using the relation (b̄p̄c − bpc̄)2 = (b̄p̄c + bpc̄)2 −
4|b|2|c|2x and writing the Hamiltonian as H = 1

2 (N2 + ES)
to work with the quantity

S = 8

1 + √
1 − 4x

(bc̄p + b̄cp̄)

+ 2N − 4E (1 − 4x) + 2N
√

1 − 4x. (D3)

The potential has the form

V (x) = 1

64
(1 − 4x + √

1 − 4x)2

[(
4N − 2S

1 + √
1 − 4x

)2

− 8E
(1 − 4x + √

1 − 4x)

1 − 2x + √
1 − 4x

(
4N − S(1 − 4x + √

1 − 4x)

1 − 2x + √
1 − 4x

)

+ 16E2 (1 − 4x + √
1 − 4x)2

(1 − 2x + √
1 − 4x)2

]
. (D4)

The construction of solutions representing condensation
is reduced to a standard study of this potential. As we have
seen in the main text, the condensate forms as x → 1/4,
namely, when F ′(x) diverges. Therefore, we had to find initial
conditions for which x(t ) reached that value. Equation (D2)
indicates that it only happens when the potential approaches
V (1/4) = 0 from negative values. Then, an exploration of the
potential close to that point,

V (x ∼ 1/4) ∼ 1
16 (S − 2N )2(1 − 4x)

− 1
4 N (4E + S − 2N )(1 − 4x)3/4, (D5)

reveals that x = 1/4 is only reached by initial conditions
satisfying

S = 2N. (D6)

Namely, in our ansatz (5), only the initial conditions that
satisfy this property develop a condensate. Any other con-
ditions display a periodic or stationary motion. Focusing on
those that undergo condensation, we substitute S and N by its
expressions in terms of b, c, and p, writing (D6) in the form

F (F + 1)2

x
|c|2 =

∣∣∣∣(1 − F )b + 2F

x
cp̄

∣∣∣∣2

, (D7)

which is solved by

c = bp
−2F + eiλ(F + 1)

√
F

(F − 1)F
, (D8)

where λ ∈ [0, 2π ]. Then, this is the family of initial conditions
that undergo condensation in finite time. To see that, we sub-
stitute (D6) in the potential V (x), which is greatly simplified:

V (x) = 1
4 (1 − 4x)[(4E2 + N2)(1 − 4x) − 4EN

√
1 − 4x].

(D9)

Equation (D2) is now solved by

x(t ) = 1

4(F0 + 1)2
[2 + (F0 − 1) sin2(�t )]

× [2F0 − (F0 − 1) sin2(�t )] (D10)

with

F0 =
(

N − 2E

N + 2E

)2

, � = N + 2E

2

√
F0 + 1

2
. (D11)

From these expressions we find x(T ) = 1/4 at time T =
π/(2�). Then, as t approaches T the function F (x) remains
finite but F ′(x) diverges, as can be seen from (B3) and (B4).
The conservation of N and E in (11) leads to |b|2 → N and
|c|2 → 0. With this, the spectrum converges to the lowest
mode

|αn|2 → Nδn0, (D12)

where δn0 is the Kronecker delta. All these solutions develop
the same power law

|αn�1|2 ∼
t∼T

4√
π

|c|2n−3/2, (D13)

as extracted from the asymptotic behavior of Catalan numbers
in Appendix B.

The expressions for the phases of αn(t ) follow from the
phases of b, c, and p. They are obtained by integrating
the equations for ḃ, ċ, and ṗ in (8). First, we decompose
these complex functions into modulus and phases b(t ) =
|b(t )|eiφb(t ), c(t ) = |c(t )|eiφc (t ), and p(t ) = |p(t )|eiφp(t ) to ob-
tain differential equations for the phases. Then, we substitute
the explicit expressions for the modulus previously obtained,
together with the constraint in the combination φb + φp − φc

coming from the conserved quantity S in (D3). The integration
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of each equation leads to

φb(t ) = φb(0) − 1

2
(2E + N )t − arctan

(√
4E2 + N2

N
tan (�t )

)
, (D14)

φc(t ) = φc(0) + 1

2
(2E − 3N )t − 2 arctan

(√
4E2 + N2

2E + N
tan (�t )

)
, (D15)

φp(t ) = φp(0) + (2E − N )t + arctan

(√
4E2 + N2

N − 2E
tan (�t )

)
− arctan

(√
4E2 + N2

2E + N
tan (�t )

)
. (D16)

The case N = 2E is the two-mode initial data provided in the
main text.

We conclude by providing an initial condition that un-
dergoes condensation for any nonvanishing values of the
quantities E and N :

b(0) =
√

N3

N2 + 4E2
, p(0) = 4E2 − N2

2(N2 + 4E2)
,

c(0) = E (N + 2E )2

N2 + 4E2

√
N

N2 + 4E2
. (D17)

These expressions guarantee that the conserved quantities N
and E have the values there inserted, the condensation condi-
tion S = 2N in (D6) is satisfied, and x(0) < 1/4 for any N
and E greater than zero. Then, their evolution leads to the
formation of condensates in finite time. We obtained these ex-
pressions by first fixing x(0) to the lowest root of V (x) in (D9).
We then used that value to write |b(0)|2 and |c(0)|2 in terms of
N and E from (11). Next, we required that these expressions
satisfied the condensation condition in (D8), resulting in the
values λ = 0 and π . Finally, we obtained b(0) and p(0) from
|b(0)|2 and x(0) and after c(0) from (D8).

APPENDIX E: GROWTH OF SOBOLEV NORMS

We here compute the growth of Sobolev norms presented
in Sec. IV. Recall they have the form

H ξ =
( ∞∑

n=0

(n + 1)2ξ |αn|2
)1/2

. (E1)

Once we introduce the ansatz for αn given in (5) they take the
form

H ξ =
(

|b|2 + |c|2
x

∞∑
n=1

(n + 1)2ξ f 2
n xn

)1/2

. (E2)

To study their behavior close to the formation of the conden-
sate (x ≈ 1/4 and t → T ), we use the leading behavior of the
following functions:

|c|2 = E

F ′(x)
∼

x∼1/4

E

4

√
1 − 4x and f 2

n�1 ∼ n−3/2

√
π

4n,

(E3)

which comes from the expressions in Appendix B. The lead-
ing term is

H ξ ∼
x∼1/4

(
E√
π

√
1 − 4x

∞∑
n=1

n2ξ− 3
2 (4x)n

)1/2

. (E4)

Using then the expression for x(t ) in (D10), and the leading
contribution of the series [73]

∞∑
n=1

nazn ∼
z∼1−

	(1 + a)

(1 − z)1+a for a > −1, (E5)

one obtains the leading contribution

H ξ>1/2 ∼
x∼1/4

Cx(1 − 4x)
1−2ξ

2 ∼
t∼T

Ct (T − t )2(1−2ξ ), (E6)

where Cx and Ct are constants that depend on E and N . Then,
Sobolev norms with ξ > 1/2 blow up at time T . The norm
H1/2 = √

N + E remains finite due to the conservation of E
and N .

APPENDIX F: CONDENSATION IN POSITION SPACE

We here present the calculation that led to the formation of
a small-scale structure in Sec. V. We first use the ansatz in (5)
to write function u(t, θ ) = ∑∞

n=0 αn(t )einθ in the form

|u(t, θ )|2 = |b|2 + |c|2
x

( ∞∑
n=1

fn(peiθ )n

)( ∞∑
n=1

fn( p̄e−iθ )n

)

+ b̄cp̄

x

( ∞∑
n=1

fn(peiθ )n

)
+bc̄p

x

( ∞∑
n=1

fn( p̄e−iθ )n

)
.

(F1)

To compute this expression as t → T , we inspect the com-
petition between the decay of |c| to zero and the possible
divergence in the summations. The only contributions will
come from |b|2 and diverging series that are compensated by
|c|. To find the diverging series, we use the expansion fn�1 ∼
2n[n−3/4/π1/4 − 9n−7/4/(16π1/4) + · · · ], observing that only
the first term may produce a divergence. We then study a series
of the form

c
∞∑

n=1

n−3/4
(
2
√

xei(θ+φp))n = c Li3/4
(
2
√

xei(θ+φp)), (F2)

where we have decomposed p = √
xeiφp , and Lia(z) is the

polylogarithm function [73]. When x → 1/4 the polyloga-
rithm function converges to Li3/4(ei(θ+φp) ) which is finite
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FIG. 6. Coherent condensation process that concludes at time T .
Comparison between our analytic solution presented in the main text
(black dashed lines in each plot) and a numerical simulation of the
same process using the Hamiltonian system (1) truncated to 400
modes [colored (gray) lines]. (a) Time evolution of the first modes,
(b) time evolution of the phases of b, c, and p, and (c) amplitude
spectrum |αn| at different times. Spurious effects associated with the
truncation in the number of modes are visible in panel (b) and in the
zoomed-in sections provided in Fig. 7.

except when the argument is one, that diverges, i.e., when
θ = −φp. Due to the factor c, the expression in (F2) and
its complex conjugation vanish for all θ except at θ = −φp,
leading to |u(t → T, θ = −φp)| → √

N in (F1).
To analyze the point θ = −φp in (F2), we study the

behavior of c Li3/4(2
√

x). Close to x = 1/4 we combine
the property of the series in (E5) with the leading term
of |c| in (E3) to see that the second term in (F1) is
	(1/4)2E

√
2/π , while the third term vanishes. The latter

observation required the conservation of S in (D3) to see that
the phases of b, c, and p satisfy cos(φb + φp − φc) → 0

FIG. 7. Zoom-in sections for Figs. 6(a) and 6(c) where deviations
from the exact solution (black dashed lines) are appreciated.

when x → 1/4. To sum up, we obtained that, when
t → T , |u(t, θ )| → √

N for θ ∈ [0, 2π ) − {−φp}, and
|u(t, θ = −φp)| → [N + E 	(1/4)2√2/π ]1/2. For the
solution presented in Fig. 2, the phase of p is φp →

t→T
−π ,

showing agreement between the visual representation and the
calculation.

APPENDIX G: NUMERICAL SIMULATIONS

1. Comparison between an analytic solution
and numerical simulations

We here illustrate the difficulties in the numerical descrip-
tion of coherent condensation. To do so, we compare an
analytic solution and a numerical simulation of the Hamilto-
nian system (1) with the same initial condition. As Figs. 6 and
7 show, there is excellent agreement between them, exclud-
ing times close to the formation of the condensate (t ∼ T ).
Deviations from the analytic prediction are associated with
the necessary truncation in the number of modes to simulate
infinite-dimensional Hamiltonian systems like ours. Spurious
effects associated with this truncation arise as the asymp-
totic part of the spectrum develops the power law |αn(t ∼
T )|2 ∼ n−3/2 (D13). It happens because contributions from
the omitted modes become more relevant as the exponential
decay of the spectrum weakens. Consequently, truncating the
number of modes has a dramatic effect near T , causing serious
difficulties for simulations in describing the final part of the
evolution. A larger number of modes should provide better
resolution of the dynamics close to T ; however, the compu-
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FIG. 8. Time evolution of the local exponents γL and ρL (G2)
and (G3) calculated at fixed n for the simulation presented in Fig. 6.
Black dashed lines represent the values coming from the exact solu-
tion [e.g., γ = −3/2 and ρ(t → T ) → 0]. In panel (c) ρL has been
calculated fixing γL = −3/2.

tational cost is high and the improvement rather small. This
is because the numerical problem (the truncated Hamiltonian
system) scales cubically with the number of modes and |αn|
decays slowly with n when time is close to T (modes signif-
icantly far from each other are of practically the same order
|α10n|/|αn| ∼ 0.18).

2. The analyticity strip method

We here present the analyticity strip method [74], which is
used to characterize direct cascades in Hamiltonian systems
(1) from numerical simulations [44,55]. We used this method
to study the behavior of initial conditions outside the ansatz
for αn(t ) in (5). Its basic idea is to assume the following
asymptotic form for the spectrum

|αn�1(t )| ∼ nγ (t )/2e−ρ(t )n, (G1)

and extract the behavior of the parameters γ (t ) and ρ(t ) from
the numerical data. If ρ(t ) becomes zero, then it indicates

FIG. 9. γL and ρL at different times as a function of the mode
number. In panel (c), ρL has been calculated fixing γL = −3/2. Black
dashed lines represent the values coming from the exact solution
(e.g., γ = −3/2).

the formation of a power law. We calculated these parameters
locally by using [75]

γL(t ) = 2
ln

(
|αn−1||αn+1|

|αn|2
)

ln
( (n−1)(n+1)

n2

) , (G2)

ρL(t ) = −1

n

[
ln

( |αn|
|αn−1|

)
− γL(t )

2
ln

(
n

n − 1

)]
(G3)

(a fit is more appropriate when the spectrum presents
oscillations). In these expressions, γL(t ) and ρL(t ) depend
on the mode number n. The advantage is to have multiple
observations of two parameters that should be practically
constant for large-enough n, allowing us to identify spurious
effects associated with the truncation in the spectrum.
To gain intuition and understanding, we applied this
procedure to the simulation presented above in Fig. 6,
which underwent condensation and we had the analytic
solution to compare. Figures 8 and 9 summarize the results,
providing valuable observations. First, the method captures
the analytic prediction γ = −3/2 except close to T , it can
accurately reach an exponent smaller than ρ = 0.01 and hints
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FIG. 10. Local exponent γL (|αn�1|2 ∼ nγL e−2ρLn) calculated at
different n for the simulations presented in Figs. 3 and 4(a)–4(c),
from panels (a)–(d). Oscillations observed in panels (a) and (b) are
associated with fluctuations in the spectra during those times.

at ρ(t ) becoming zero. Second, deviations from the exact
values for the parameters γ and ρ originate at the truncation
of modes and propagate toward low modes. Third, ρL is
more robust than γL since its deviation from the exact value
happens at later times. Finally, the robustness of ρL(t ) is
further improved by replacing in its expression the parameter
γL(t ) by −3/2 (the value before spurious effects arose).

Figures 10 and 11 provide the local exponents for the simu-
lations presented in Figs. 3 and 4. We observe that ρL deceases
and γL remains close to −3/2, indicating the approach to the
power law |αn�1|2 ∼ n−3/2.

3. Initial conditions in the figures

Figure 3: α0 ≈ 0.6568, α1 ≈ −0.6047 + 0.9099i,
α2 ≈ −0.4481 + 0.223i, α3 ≈ −0.2922 − 0.1266i,

FIG. 11. Local exponent ρL (|αn�1|2 ∼ nγL e−2ρLn) calculated at
different n for the simulations presented in Fig. 3 and Figs. 4(a)–
4(c), from panels (a)–(d). ρL has been calculated using γL = −3/2
in panels (b)–(d).

α4 ≈ −0.0236 − 0.1007i, α5 ≈ −0.0465 − 0.0724i,
α6 ≈ 0.0134 − 0.0594i, α7 ≈ −0.0138 + 0.0227i,
α8 ≈ −0.0145 − 0.012i, α9 ≈ −0.0096 − 0.0035i, etc.
Figure 4(a): α0 = 0.78 − 0.58i, α1 = 0.53 + 0.33i, α2 =
−0.77 − 0.16i, α3 = −0.20 − 0.05i, α4 = 0.002 + 0.003i,
α5 = 0.028 − 0.06i, αn�6 = 0. The conditions in Figs. 4(b)
and 4(c) have been provided in the caption. Figure 5: α0 ≈
0.8855, α1 ≈ 0.1564 + 0.1307i, α2 ≈ −0.5014 + 0.0499i,
α3 ≈ −0.0539 + 0.1047i, α4 ≈ −0.0023 + 0.0128i,
α5 ≈ −0.1221 − 0.1279i, α6 ≈ −0.0009 + 0.0005i,
α7 ≈ 0.4717 + 0.0243i, α8 ≈ −0.438 − 0.0043i, α9 ≈
−0.2637 + 0.195i, etc. All conditions had N = 2 without
loss of generality due to the scaling symmetry at the end of
Appendix A.
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