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Desensitization to commodity price fluctuations by product characteristics
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Little is known about how commodity price fluctuations transmit to the prices of products. In this paper
we present a price dynamics model for a product which is in competition with a commodity. The price of
the commodity is treated as a stochastic process. Commodity price fluctuations are transmitted to the product
price through a demand function which is obtained by aggregating the choices of a consumer population.
Importantly, these consumers make their choices on the basis of a utility function which includes a term relating
to product characteristics. Numerical simulations show that improved product characteristics tend to suppress
the transmission of commodity price fluctuations. We apply our model to a realistic case of monolayer platinum
(a product) in competition with platinum metal (a commodity) for adoption by consumers as a catalyst material.
While monolayer platinum shows only a minor improvement in catalytic turnover rates for oxygen reduction,
the resulting product characteristic improvement is sufficient to effectively eliminate product price fluctuations,
at least for the consumer population regime considered here.
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I. INTRODUCTION

Price fluctuations are of considerable interest to econo-
physics. Two lines of research in this direction can be
identified. One line of work aims to model price fluctuations
by characterizing the underlying stochastic dynamics and
building appropriate generating equations [1–4]. The other
aims to explain the emergence of price fluctuations by build-
ing microscopic agent-based models for the consumers and
suppliers [5–7]. Regardless of which approach is taken, any
realistic price model should consider how prices of different
products and commodities are affected by each other. Correla-
tions between prices in financial markets are well established
[8,9] and almost certainly exist in other markets as well. At
present, our understanding of how price fluctuations are trans-
mitted between products on a microscopic level is incomplete,
and the factors which modulate this transmission are poorly
understood.

To clarify, let us consider a situation where a product
competes with a commodity for selection by consumers in
a particular market. Such a situation might occur in the
chemical industry. For example, ethanol (a commodity chem-
ical) competes with chlorhexidine (a product chemical) for
selection by the producers of antiseptic solutions (for exam-
ple, see [10]). Polyethylene (a commodity) competes with
various speciality polymers such as polytetrafluoroethylene
for selection in certain applications [11]. Moreover, novel
solid-state materials (products) often compete with precious
metals (commodities) for adoption as catalytic materials in
fuel cells [12]. In such situations, it is clear that fluctuations
in the commodity price must be transmitted to the price of
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the competing product. Indeed, strong upward fluctuations in
the commodity price will tend to push consumers towards the
competing product, causing an upward shift in the price of
the product through a sudden demand shock. The reverse will
happen when the commodity price undergoes a strong down-
ward fluctuation. While common sense, this phenomenon is
not easy to model on a microscopic level.

Moreover, there is another aspect to the problem that has
received little attention: the role played by product character-
istics. In order to be adopted by consumers, products need
to have superior characteristics compared to the competing
commodity. Returning to the above example, monolayer plat-
inum (a novel solid-state material) could potentially displace
platinum metal (a commodity) in fuel cell technologies due to
its superior catalytic turnover rate for oxygen reduction [13].
In this example, the relevant product characteristics can be
identified with catalytic reaction rates; in general, the relevant
product characteristics will be the ones deemed important by
the consumers in the specific market. Stated in general terms,
the problem that we wish to study is as follows: how do prod-
uct characteristics affect the transmission of commodity price
fluctuations to the prices of those products? At present, the
tools of econophysics offer little insight into such questions.

The effect of product characteristics has received con-
siderable attention within mainstream economics, although
not from the perspective of price dynamics. In classical
economics research, the effect of product characteristics is
investigated as a revealed preference problem, in which con-
sumers reveal their attitudes towards product characteristics
through their consumption choices (see [14] for a discussion).
In modern microeconomics, product characteristic terms are
directly embedded into the utility functions of individual con-
sumer units, from which (equilibrium) expressions for price
are deduced from an aggregate demand function [15–17].
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The latter approach seems most amenable to the approaches
used in econophysics, in which equations of motion for prices
are sought by deriving expressions for demand and supply.
Like establishing a micro-macro correspondence in statistical
mechanics on the basis of a Hamiltonian function, understand-
ing the effects of product characteristics on price fluctuations
requires establishing a correspondence between individual
consumer units and market prices on the basis of a utility-
derived demand function.

In this paper we present a price dynamics model for the
situation described above. Concretely, we consider the case
of a product competing in a market with a commodity whose
price follows a stochastic process. An expression for product
demand is derived from a microscopic model of consumers,
who make their consumption choices on the basis of a util-
ity function which incorporates a term related to product
characteristics. The resulting demand function resembles a
sigmoidal activation function of the type which appears in
the study of neuron dynamics [3,18,19] and serves to transmit
commodity price fluctuations to the price of the competing
product. We further find that improved product characteris-
tics tend to desensitize the product price to commodity price
fluctuations. This is confirmed through numerical simulations,
which also show that such desensitization is strongly condi-
tional on the state of the market. In particular, desensitization
is not guaranteed when consumers are highly uniform in
their preferences towards good product characteristics. Fi-
nally, we apply our model to the case of a monolayer catalyst
in competition with pure platinum, using density functional
theory (DFT)-calculated catalytic turnover rates as a measure
of catalyst quality. While these calculations predict only a
minor lowering of activation energy for oxygen reduction on
monolayer platinum compared to pure platinum, subsequent
numerical simulations show that the resulting improvement
in product characteristics is sufficient to essentially eliminate
price fluctuations, at least under the market conditions that we
consider. This paper therefore provides understanding about
how price fluctuations are transmitted between products on a
microscopic level, and how such transmission can be modu-
lated by product characteristics.

This paper is organized as follows. In Sec. II we introduce
our model and derive an expression for the demand func-
tion from microscopic considerations. In Sec. III, we present
numerical simulation results of our model for two cases:
where the commodity price follows an Ornstein-Uhlenbeck
process, and where the commodity price is simulated from
a time-series model fitted to real platinum price data. The
latter part of Sec. III also presents our DFT calculations of
oxygen reduction turnover rates on monolayer platinum and
pure platinum catalysts, which are used to measure product
characteristics. Discussion and conclusions are left to Secs. IV
and V.

II. PRICE DYNAMICS MODEL

Consider a market of N consumers and two items: a com-
modity C and a product M which can be produced cheaply.
Our model makes five basic assumptions: (i) at each point in
time, each consumer purchases exactly one unit of either M
or C; (ii) consumer choices are Markovian, in the sense that

they depend only upon current prices (as well as other model
parameters); (iii) the price pM of M follows

d pM

dt
= −γ (SM − DM ), (1)

where SM is the supply of M, DM the demand, and γ > 0 is a
constant; (iv) the supply of M is given by

SM = a + bpM , (2)

where a, b > 0 are constants; and (v) the price pC and supply
of C are unaffected by demand fluctuations in this market.
Assumptions (i) and (ii) simplify the calculation of the de-
mand function. Assumption (v) implies that C is traded in
very many markets simultaneously and is therefore negligibly
influenced by the conditions of the specific market considered
in the market. This is analogous to the assumption of “no
reactive feedback” from the system to the surroundings used
in stochastic models in statistical physics [20]. In contrast,
assumption (iii) implies that M is only traded in the specific
market considered by the model, and hence is strongly af-
fected by its market conditions.

We derive an expression for the demand of M by aggregat-
ing the decisions of each consumer in the market. Thus, let uki

denote the marginal utility gain for consumer k upon selecting
item i (i ∈ {M,C}). Suppose that

uki = βk ln Wi − αk pi, (3)

where βk � 0 and αk � 0 are constants, and Wi denotes the
product characteristic for item i. In general, Wi will be de-
termined by the aspect of the product which is deemed most
important by the consumers in the market under consideration.
For the case of a market of chemical engineers, where C and
M might be used as catalysts for a particular chemical reac-
tion, Wi might denote catalytic turnover rate. The logarithm
implies diminishing utility gains with improving product char-
acteristics, which is consistent with treatments of product
characteristics used in mainstream economics [15]. The co-
efficients βk and αk measure the importance that consumer
k places on the product characteristic and price, respectively,
when making their decision. According to Eq. (3), consumer
k will purchase C if and only if ukC > ukM . Inserting Eq. (3)
into this inequality and rearranging yields

βk

αk
< B = pM − pC

Q
, (4)

where we have assumed that WC < WM . In the above, Q is
the log characteristic ratio, defined as Q = ln WM/WC . For a
fixed instance of the prices pM and pC , the demand for C is
therefore

DC (pM, pC ) =
N∑

k=1

1
(

βk

αk
< B

)
, (5)

where 1 denotes the indicator function. The demand for M is
simply

DM (pM , pC ) = N −
N∑

k=1

1
(

βk

αk
< B

)
. (6)

In order to transform Eq. (6) into a form more useful for cal-
culations, we assume that β1, β2, . . . , βN and α1, α2, . . . , αN
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FIG. 1. Diagrammatic representation of the price dynamics
model [Eq. (10)]. See Sec. II for details

are sequences of independent and identically distributed ran-
dom variables. Let Pr denote probability and observe that
Pr(βk/αk < B) is independent of k. By the law of large num-
bers, we therefore have that

DM (pM, pC )/N → 1 − φ(B) (7)

with probability 1 as N goes to infinity, where φ is the cumu-
lative distribution of the random variable βk/αk .

A renormalization argument is required in order to write
our final evolution equation for the price. We let γ → 0 as
N → ∞ such that

γ b = c1 (8)

and

γ N = c2, (9)

where c1 and c2 are positive constants. The condition in
Eq. (8) implies that the supply curve for M is highly elastic,
meaning that that supply adjusts readily to changes in the price
of M. On the other hand, the condition γ → 0 implies that
we are considering a highly damped situation in which prices
are extremely “sticky” and adjust slowly. This might occur
when wages and other outlays for the production of M are
slow to adjust to market conditions. Utilizing these conditions
and inserting Eqs. (2) and (7) into Eq. (1) yields

d pM

dt
= −c1 pM + c2[1 − φ(B)], (10)

where we have allowed γ a → 0 for simplicity. The time evo-
lution of pM is coupled to pC through the function φ, as can
be seen by writing B explicitly:

B = �p

Q
, (11)

where �p = pM − pC denotes the price difference between
M and C.

Equations of the form of Eq. (10) are widely used to
model neuron firing dynamics [3,18,19]. In these cases, the
sigmoidal function φ is referred to as the activation function.
While this connection is purely coincidental, it is convenient
to refer to φ as an activation function in the present case as
well, and to represent Eq. (10) diagrammatically as a neuron
model. Such a representation is shown in Fig. 1. The “neuron,”
corresponding to the activation function, receives an input
signal �p/Q. The output signal of the neuron is then added
to another signal c2 − c1 pM (t ), resulting in the final output
d pM (t )/dt . It is through the activation function that the fluc-
tuations in the commodity price are transmitted to the price of

TABLE I. Parameters used for the case of Gaussian commodity.
h is the time step, and nts is the number of time steps. Other parame-
ters are defined in the text.

c1 0.1 va 0.75
c2 0.3 vb 0.75
WC 1.0 τ 5.0
WM 1.25 c 1.5
μa 1.0 h 10−4

μb 2.5 nts 106

the product. We will use this diagrammatic representation of
the model to facilitate discussions in the following sections.

III. NUMERICAL SIMULATIONS

We perform simulations for two cases. For the first
case (“Gaussian commodity”), we suppose that pC is an
Ornstein-Uhlenbeck process following the stochastic differ-
ential equation:

d pC

dt
= − 1

τ
pC + c1/2F (t ), (12)

where τ and c are positive constants and F (t ) is Gaussian
white noise with mean zero, unit variance, and correlation
function 〈F (t )F (t ′)〉 = δ(t − t ′), where t > t ′. The Ornstein-
Uhlenbeck process is chosen as a generic stochastic process
for commodity price evolution and is sufficient for illustrating
the key behavior of our price dynamics model. Indeed, we will
obtain our conclusions entirely on the basis of the “neuron”
representation of the model above without referring to the
distributional properties of pC . For the second case (“platinum
commodity”), we consider the case of a realistic product in
which M is a monolayer platinum catalyst and C pure plat-
inum, and pC is generated according to a time-series model
fitted to a real platinum price data. Moreover, a realistic value
of the parameter Q is calculated using density functional the-
ory calculations, as described later. The main purpose of this
second case is therefore to illustrate some possible behavior
of pM given a realistic value of Q for real materials.

For expediency, we assume that αk ∼ N (μa, σ
2
a ) and βk ∼

N (μb, σ
2
b ), respectively, where N is the normal distribution.

Under this assumption, the distribution of βk/αk is approxi-
mately normal with mean

μ = μb/μa (13)

and variance

σ 2 = μ2
(
v2

a + v2
b

)
, (14)

where va = σa/μa and vb = σb/μb are the coefficients of vari-
ation for αk and βk , respectively [21]. μ measures the degree
to which the average consumer values characteristics over
price. σ measures the degree of heterogeneity in consumer
preferences as a fraction of μ. Note that the above approxi-
mation is reliable only when the coefficients of variation are
suitably small (less than unity).

Unless otherwise mentioned, all simulations used the
parameter settings listed in Table I. These include two
supply-side parameters (c1 and c2) and four consumer-side
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FIG. 2. Representative price trajectories for the Gaussian commodity case. Red curve is pM , black curve is pC , and blue curve is the
activation function. (a) Baseline case; (b) small log characteristic ratio case (WM/WC = 1.05); (c) large log characteristic ratio case (WM/WC =
3.50); (d) low consumer heterogeneity case (va = 0.1, vb = 0.1); (e) high consumer heterogeneity case (va = 1.0, vb = 1.0); and (f) high log
characteristic ratio, low consumer heterogeneity case (W2 = 3.50, va = 0.1, vb = 0.1). Unless otherwise mentioned, all parameters set as in
Table I.

parameters (μa, μb, va, and vb). Our choices of c1 and c2

imply that b/N = 1/3, according to Eqs. (8) and (9). This
means that a unit increase in product prices induces suppliers
to increase aggregate supply of M by one-third the number of
potential consumers. This is reasonable, as under the assump-
tions of the model we would expect b/N to be positive but
less than 1 (since there would be no reason to produce more
product than the number of potential sales). The parameters
μa and μb describe the preferences of the average consumer in
the population. Differentiating the utility expression in Eq. (3)
and averaging over all consumers yields dui = μbdWi/Wi −
μad pi, where ui is the marginal utility gain of the average
consumer upon selecting i. Thus, our choices of μa = 1.0 and
μb = 2.5 imply that the average consumer gains 2.5 times
as much benefit from a percentage improvement in product

characteristic (dWi/Wi) compared to a unit reduction in price.
This is reasonable: within the assumptions of the model, all
consumers have already committed themselves to purchasing
one of the two items and must therefore have a particular need
for the characteristics of these items. For these consumers,
price should be a secondary consideration. The setting of va =
0.75 and vb = 0.75 is reasonable as well. In other studies,
coefficients of variation for similar parameters are typically
between 0.1 and 0.6 when measured from consumption data,
exceeding 1.0 slightly for extreme cases [15,22].

A. Gaussian commodity case

Representative price trajectories for the Gaussian com-
modity case are presented in Fig. 2. These trajectories were
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obtained by integrating the price equation [Eq. (10)] using
the Euler-Maruyama algorithm with a time step of 10−4 units
[note that the Euler-Maruyama algorithm is not necessary, as
Eq. (10) does not contain any stochastic differentials]. The
Gillespie algorithm was used to propagate pC [23]. Figure 2(a)
shows the case where the baseline parameters from Table I
were used for the simulation. The thick red, black, and blue
curves correspond to pM , the fluctuating commodity price
pC , and the value of the activation function, respectively. It
can be seen that pM fluctuates less violently than the in-
coming stochastic input pC , despite obvious fluctuations in
the activation function. This is expected in the overdamped
regime considered by the model, where prices become sticky.
Nonetheless, pM displays a high degree of irregularity. Indeed,
pM appears to rise when pC is larger than pM , and appears to
fall when pC is smaller than pM . This is expected for the rea-
sons mentioned earlier: upward fluctuations in the commodity
price will push consumers towards the competing product M,
causing a the price of M to rise due to increased demand, and
conversely for downward fluctuations. Our model therefore
transmits commodity price fluctuations to the product price in
a sensible manner.

We now consider the case where the log characteristic ratio
Q is very small [Fig. 2(b)]. Concretely, we set WM/WC to
1.05, which yields Q = 0.05. For this case, it can be seen
that the activation function value evolves in a way somewhat
reminiscent of telegraph noise, spending most of its time in
one of two states (1 or 0). This behavior can be anticipated
from the diagrammatic representation in Fig. 1, which shows
when Q is small, the input signal �p/Q is extremely sensitive
to small changes in the price difference. Suppose that the
price difference is suitably large, such that the right-hand
asymptotic tail of the activation function is being probed by
the input signal. At this instance, φ(B) is essentially 1. As
the price difference decreases, the highly sensitive input signal
will shoot past the sigmoidal inflection point of the activation
function and end up probing the left-hand asymptotic tail,
where φ(B) is essentially 0. As the price difference increases
again, the input signal will again shoot past the inflection
point, and end up probing the right-hand asymptotic tail once
more. This accounts for the telegraph noiselike behavior of
the activation function when Q is very small. The transition
between 0 and 1 occurs as the input signal sweeps through the
inflection point, which occurs when B = μ, or equivalently
when pM − pC = Qμ ≈ 0. Indeed, it can be seen that the tran-
sitions in the activation function tend to occur when trajectory
of pM (the red line) intersects with the trajectory of pC (the
black line).

What remains to be explained is the smooth rise and de-
cay of pM between transitions of the activation function. It
can be seen that pM tends to decrease when the activation
function is close to 1 (when the input signal probes the
right-hand asymptotic tail). Conversely, pM tends to increase
when the activation function is residing at 0. Both behaviors
are expected on intuitive grounds: the input signal probes
the right-hand asymptotic tail when �p is suitably large,
which implies that the product price is high compared to the
commodity price, and hence that demand for the product is
decreasing. The converse explanation holds when the input
signal probes the left-hand asymptotic tail. Moreover, both

behaviors can be readily explained by inspecting our price
evolution equation [Eq. (10)]. Indeed, when φ(B) = 1, the
price evolution equation reduces to d pM/dt = −c1 pM , which
yields damped dynamics. When φ(B) = 0, the price evolution
equation becomes d pM/dt = −c1 pM + c2. This equation de-
scribes dynamics of the form pM = [c2 − exp(−c1t )]/c1,
which describes a smooth, nonlinear rise with an asymptot-
ically constant value. While mathematically nonrigorous, this
analysis qualitatively explains the behavior observed when the
log characteristic ratio Q is very small.

Reexamining the baseline case [Fig. 2(a)], similar features
to those identified above can be discerned. While the activa-
tion function evolves in a decidedly different manner from
the telegraph noise-type process described above, the price
pM displays similar evolution. It tends to decrease when the
activation function is near 1, increase when the activation
function is near zero, and undergo transitions whenever the
trajectory of pM intersects the trajectory of pC . Between tran-
sitions, pM appears to undergo a smooth evolution. While
quantitatively different, it appears that both the baseline case
and the small-Q case can be qualitatively understood in terms
of a similar picture: that of an input signal �p/Q sweeping
back and fourth through the activation function, changing the
direction of the trajectory of pM whenever it passes through
the sigmoidal inflection region.

We now consider the case where the Q is large [Fig. 2(c)].
We set WM/WC to 3.50, which yields Q = 1.26. Under these
conditions, the input signal �p/Q is relatively insensitive to
changes in the price difference, and will spend more time
probing the activation function in the region of the sigmoidal
inflection point as a result. This is evident from the blue line
in Fig. 2(c), which shows a relatively stable evolution for
the value of the activation function. As a result, the evolu-
tion of pM becomes remarkably steady. While the direction
of the pM trajectory again appears to change whenever it
intersects the pC trajectory, the overall degree of fluctuation
remains negligible. Taken together, these results show that
poor improvements in characteristics compared to the com-
modity lead to unstable and irregular product price dynamics,
whereas large improvements tend to reduce product price fluc-
tuations by suppressing the transmission of commodity price
fluctuations.

We now turn to the effect of consumer population charac-
teristics on price dynamics. The two relevant parameters are
μ and σ , which describe the preferences of the average con-
sumer and the variation of preferences across the population
as a whole, respectively. In our framework it is not possible
to vary μ without affecting σ [as is evident from Eq. (14)].
We will therefore vary the values of va and vb, the coefficients
of variation for product price preferences and characteristic
preferences, while holding μ constant. Figure 2(d) shows the
case where va and vb are small (va = 0.1, vb = 0.1). The result
strongly resembles the case of small Q, although now the
telegraph noiselike evolution of the activation function is even
more pronounced. This result can be explained using similar
ideas to those developed above. When the coefficients of vari-
ation are particularly small, the activation function resembles
a step function with the inflection region tightly localized at
the point μ. If the input signal �p/Q is small but tending to
increase, it will eventually pass through the step region, where
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FIG. 3. (a) Illustration of oxygen splitting by a platinum catalyst
used in fuel cells. (b) Slab model a platinum catalyst (Pt catalyst) sys-
tem used in this study. Gray and red spheres represent platinum and
oxygen atoms, respectively. The red bar connecting the two oxygen
atoms represents the chemical bond in the oxygen molecule. R is the
height of the oxygen molecule with respect to the catalyst surface,
and r is the oxygen bond length. (c) Slab model of a monolayer
platinum catalyst (M-Pt catalyst). Copper atoms are represented by
brown-orange spheres. Slab models drawn with the Materials Studio
Visualizer software [24].

the activation function will abruptly change its value from 0
to 1. The opposite will happen if �p/Q is large but tending to
decrease. The same arguments developed above can then be
applied to explain the unstable and irregular trajectory for pM ,
which bears a striking resemblance to the one in Fig. 2(b).

Figure 2(e) shows the case where va and vb are large (va =
1.0, vb = 1.0). In this case, the activation function trajectory
is relatively stable, fluctuating in an unremarkable way about
the value 1/2. When the coefficients of variation are large, the
inflection region of the activation function broadens, approx-
imating a horizontal line over a wide range of values. As a
result, the activation function becomes more insensitive to the
input signal. The price trajectory for pM therefore becomes
stable, and the transmission of commodity price fluctuations
to the product price becomes ineffective.

These results therefore demonstrate two ways in which
the transmission of commodity price fluctuations can be sup-
pressed: through large improvements in characteristics of the
product relative to the commodity, or through a strong hetero-
geneity in consumer tastes. Both of these conditions appear
necessary in order to stabilize price fluctuations. Figure 2(f)
shows results for the case of large log characteristic ration
and low consumer heterogeneity (Q = 1.26, va = 0.1, vb =
0.1). While less dramatic than the small-Q case [Fig. 2(b)],
the price trajectory for pM still shows significant stochastic
fluctuations. This indicates that large improvements in prod-
uct characteristics might not be enough to desensitize prices
to commodity price fluctuations, especially when consumer
preferences are relatively homogenous across the population.

B. Platinum commodity case

We now consider a more concrete situation shown in Fig. 3,
which shows two materials which catalyze the oxygen split-
ting reaction (O2 → 2O, Fig. 3(a)]. This reaction is of critical
importance in hydrogen fuel cells [12], where high reac-
tion rates are required to ensure efficient energy generation.
Figure 3(b) shows a pure platinum (Pt) catalyst, which is
widely used in commercial hydrogen fuel cells at present.
While a highly effective catalyst, Pt is an expensive com-

modity which is subject to unpredictable price fluctuations.
Figure 3(c) shows an alternative catalyst that might serve as
a replacement for Pt in fuel cell technologies. This catalyst,
which we denote M-Pt, consists of a platinum monolayer
supported on a copper substrate. Other types of monolayer
catalysts have been proposed previously [13]. In terms of the
model described above, Pt would act as the commodity C,
and M-Pt as the competing product M. This correspondence
is possible due to the negligible price of copper compared
to platinum, the negligible amount of platinum used in the
production of M-Pt, as well as the fact that M-Pt and Pt would
be competing for the same consumers in certain markets (such
as fuel cell producers). We wish to compute the log character-
istic ratio Q between M-Pt and Pt and determine whether the
price of M-Pt can be desensitized to fluctuations in the price
of platinum.

For the case of catalytic materials, the product characteris-
tics can be set equal to the rate constant for O2 dissociation,
which is given by the Arrhenius equation:

Wi = Ai exp

(
− εi

kBT

)
, (15)

where i denotes either M-Pt or Pt, kB is the Boltzmann con-
stant, T is the temperature, Ai is the frequency factor, and εi

is the activation energy. We can assume that the frequency
factors Ai are independent of catalyst type, since both catalysts
should involve similar reaction geometries. The log character-
istic ratio Q = ln WM-Pt/WPt then reduces to

Q = −εM-Pt − εPt

kBT
. (16)

The activation energies are computed using density func-
tional theory (DFT) using slab models for the M-Pt and Pt
catalysts. DFT is a well-established method for solving the
Schrödinger equation for systems of electrons in solid mate-
rials and molecules (see [25,26] for reviews). The following
calculations follow those presented in Refs. [13] and [27],
which also applied DFT to monolayer catalysts. The M-Pt
slab was first generated by creating a three-layer Cu slab
terminated at the 001 face and placing Pt atoms on top of the
hollow positions. The Pt catalyst structure was generated us-
ing a four-layer Pt slab terminated at the 001 face. We consider
the 001 faces, as these are known to be the preferred face for
O2 dissociation for platinum [27]. The slab dimensions were
10.84 × 15.35 Å for M-Pt and 11.10 × 11.10 Å for Pt. The
slabs were relaxed using DFT with the bottom two atom layers
kept frozen. Relaxation was performed as implemented in
VASP version 5.4.4 [28], using the PBE exchange-correlation
function [29], PAW-PBE pseudopotentials, a 450 eV basis set
cutoff, and 1 × 1 × 1 �-centered k-point grids.

To obtain the activation energy, an O2 molecule with a
bond length r was placed at various heights R above the M-Pt
or Pt slab, in such a way that the O-O bond was parallel to
the surface and intersected midway through one Pt-Pt bond
[see Fig. 3(b)]. For given values of r and R, the energy of
interaction between the O2 molecule and the catalyst slab was
calculated according to the formula

Eint(r, R) = E (r, R) − Eref, (17)
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FIG. 4. Interaction energies Eint(r, R) for (a) an oxygen molecule
and a Pt catalyst surface and (b) an oxygen molecule and a M-Pt
catalyst surface. The dotted orange line represents the trajectory
of the oxygen molecule during the oxygen splitting reaction. The
orange x marks the location of the activation barrier. Plots drawn
using the AKIMA package for R [31].

where E (r, R) is the energy of the slab + oxygen molecule
system as obtained from a single-point DFT calculation. Eref

is a reference energy, which corresponds to the energy of the
system when the catalyst and oxygen molecule are isolated
from each other and not interacting. Eref can be obtained as
Eref = Eslab + EOx, where Eslab is the energy of the slab in
isolation and EOx is the energy of an isolated O2 molecule
with its equilibrium bond length r = 1.2 Å. These energies
were computed for various bond lengths r between 1.2 Å and
2.5 Å, and various heights R between 1.1 Å and 2.1 Å using
DFT as implemented in VASP, with spin polarization, the
rev-vdW-DF2 exchange-correlation functional [30], a 450 eV
basis set cutoff, and 3 × 3 × 2 �-centered k-point grids. Note
that Eq. (17) assumes that the structural relaxation rate of the
surface is much slower than the O2 dissociation rate.

A contour plot of the interaction energy is shown in Fig. 4.
From these plots, the activation energy εi can be obtained
by identifying the energy maximum along the lowest energy
pathway between intact O2 (r = 1.2 Å) and dissociated O2

(r = 2.1 Å). In Fig. 4 the locations of the activation barriers
are indicated by the orange crosses. The activation energies
are calculated to be εPt = 0.46 eV and εM-Pt = 0.41 eV.
The small 0.05 eV decrease in activation energy for oxygen
splitting indicates only a modest improvement in catalytic
performance for M-Pt compared to Pt. Similar results were
reported in Ref. [13], which considered a monolayer platinum
catalyst on an iron substrate.

We now consider the price dynamics of M-Pt. As men-
tioned above, M-Pt plays the role of the product M and
platinum as the commodity C. The price of platinum was
simulated using a GARCH(1,1) + ARMA(1,1) time-series
model fitted to the price of real platinum between 2016 and
2022 (see the Appendix). This time-series model includes
a nonstationary noise term as well as a deterministic trend.
Simulated platinum prices are expressed in units of decigrams
so that they fluctuate over a similar range as the Gaussian
commodity prices described in the previous section. For con-
sistency we use the same choice of parameters as used in the
previous section (Table II). These parameters are satisfactory
for the present work, which focuses on how product charac-
teristic improvements affect the transmission of commodity

TABLE II. Parameters used for the case of the platinum com-
modity. Symbols are defined in the text.

pM (0) 0 USD/dg va 0.75
c1 0.1/day vb 0.75
c2 100 USD/(dg day) h 0.003 days
μa 1.0 dg/USD nts 2366 days
μb 2.5 T 300 K

price fluctuations. Simulations are again performed using
the Euler-Maruyama scheme, using the parameters shown in
Table II. Because the GARCH(1,1) + ARMA(1,1) propagates
in discrete time, and therefore cannot predict price changes
over arbitrarily short intervals, we padded the sequence of
predicted values using linear interpolation in order to use a
small time step in our simulations.

Figure 5(a) shows simulations of the M-Pt price [pM (t )]
using the parameters shown in Table II. The M-Pt price is

FIG. 5. Representative trajectories for the platinum commodity
case. (a) Baseline case; (b) low consumer heterogeneity case (va =
0.1, vb = 0.1); (c) high consumer heterogeneity (va = 1.0, vb = 1.0).
Unless otherwise mentioned, all parameters set as in Table II.
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remarkably stable, following a smooth curve and not showing
any fluctuations at all. This result is not surprising under this
particular parameter regime. While the activation energies
for oxygen splitting on M-Pt may be only 0.05 eV smaller
compared to Pt, this corresponds to a log characteristic ratio of
Q = 1.93, which is quite large. Moreover, the platinum price
(pC (t ), C = Pt) does not vary as wildly as the Gaussian prices
shown in the previous section, at least when expressed in units
decigrams. As a consequence, there are two factors operating
to stabilize the input signal for the activation function: the
large value of Q, which desensitizes the input signal to small
changes in price differences, and the relatively steady value of
pC (t ), which prevents large price differences from occurring.
The result is a steady input signal which samples the activation
function over a very narrow range. This is reflected in the
essentially flat blue curve in Fig. 5(a). As a consequence of
the latter, the M-Pt price can be approximated by a differential
equation of the form d pM/dt = −c1 pM + C, where C is a
constant, which describes a smoothly increasing curve which
converges to a constant asymptotic value.

The results are much the same even for the cases of high
and low consumer heterogeneity. Figure 5(b) shows the case
of a consumer population with low heterogeneity (va = 0.1,
vb = 0.1). Almost exactly the same results are observed,
which is expected on the basis of the reasoning above: while
decreasing heterogeneity will change the shape of the acti-
vation function, making it more steplike in the region of the
inflection point, this will not change the fact that the stable
input signal will only be able to probe it over a very narrow
range. In this case, the input signal continually samples the
left-hand tail of the activation function, where its value is
zero. Compared to the baseline case described above, this
results in a larger value of the asymptotic M-Pt price. Similar
remarks apply to the case of a consumer population with
high heterogeneity [Fig. 5(c), va = 1.0, vb = 1.0], where the
flattened activation function means that the stable input signal
continually samples a value near 0.5. Compared to the low-
heterogeneity case, this lowers the asymptotic value of the
M-Pt price.

These results suggest that, for certain consumer pop-
ulations, small improvements in material properties can
significantly suppress the transmission of commodity price
fluctuations. However, these results need to be applied with
care in the real world. Before committing to such applica-
tions, consumer surveys should be performed to estimate the
values of the model parameters and to evaluate the validity
of model assumptions (i–iv). Indeed, our simulations for the
case of Gaussian commodities in the previous section show
that low consumer heterogeneities can potentially enhance the
transmission of commodity price fluctuations, which height-
ens the need for consumer population surveys in real-world
applications of our theory.

IV. DISCUSSION

The model makes a number of assumptions which could
be reconsidered in future work. In mainstream economics,
utility functions similar to the one in Eq. (3) are often used for
modeling consumer demand, particularly ones where product
characteristics enter logarithmically and prices enter linearly

[15]. There is little motivation for replacing these ingredients
in our model at present. A more serious shortcoming of our
model is the lack of an unobserved component in our utility
functions; that is, the allowance for product characteristics
which are important to the consumers but unknown to the
modeler. We have ignored this here because the unobserved
component needs to be correlated with price, which signifi-
cantly complicates subsequent analysis. Our utility functions
also ignored consumer budget constraints, as well as the pos-
sibility of a third option where consumers choose to purchase
neither item. Proper consideration of these two factors would
be interesting for further work, and may introduce new fac-
tors which modulate the transmission of commodity price
fluctuations.

While an Ornstein-Uhlenbeck processes was selected as a
generic stochastic process for commodity price evolution in
Sec. III A, Gaussian commodity fluctuations are not essential
to our price dynamics model. It is important to emphasize
this point, as careful studies of real commodity price fluc-
tuations have shown that their distributions are often heavy
tailed [32]. The conclusions in Sec. III A (which are the
main econophysics-related conclusions of this paper) were
obtained entirely by considering the “neuron”-type model
representation shown in Fig. 1. These conclusions are (i)
small log characteristic ratios Q will enhance the transmission
of commodity price fluctuations to product prices, and con-
versely for large ratios [Figs. 2(b) and 2(c)]; (ii) low consumer
heterogeneity will enhance the transmission of commodity
price fluctuations to product prices, and conversely for high
consumer heterogeneity [Fig. 2(e)]; and (iii) suppression of
commodity price fluctuations by product characteristics re-
quires sufficient consumer heterogeneity [Fig. 2(f)]. These
conclusions were obtained by considering how the input sig-
nal (�p/Q in Fig. 1) sweeps over the transition region of the
neuron activation function, as well as the effect of consumer
population parameters on the width of the transition region.
No assumptions on the distribution of commodity price fluc-
tuations were needed to reach (i)–(iii), meaning that they hold
even if realistic heavy-tailed models for commodity prices are
used.

Another important point concerns our assertion that pM

represents the actual price of the product. This assertion
is acceptable within the confines of this study, however in
general the connection between the pM in our model and
product prices can be complicated. From a microeconomics
perspective, the price of the product M would emerge as
a result of iterative price-setting games between suppliers.
On the other hand, econophysics research usually assumes
a dynamical equation such as Eq. (1) from the outset. A
connection between these two approaches might be made by
assuming that the suppliers of M set their prices within a very
short time, and that consumers make their selections of M or
C over a much longer timescale. We could then consider a
short time interval (t, t + δt ) over which the demand for M
is essentially constant. We might then imagine Bertrand-type
competition arising between suppliers during this interval as
they try to attract the consumers who which to purchase a
unit of M. If the market price of M happened to be pM (t )
at the start of this interval, then by the end of the interval
it would be reduced to pM (t ) − ε, where ε could be made
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small by sending δt to zero. If the limiting value of ε could
be shown to be proportional to SM − DM , then a connection
between the microeconomics and econophysics approaches
would be established and the conditions under which pM

represents product price would become clearer. This argument
is obviously idealized, as it is hard to justify why price set-
ting by suppliers and choice formation by consumers would
take place on such vastly different timescales. The Bertrand
model is known to be flawed as well. In realistic situations,
the product price would probably emerge as some kind of
composite of pM [as given by Eq. (1)] and other kinds of
“correction” factors. It would therefore be inaccurate to speak
of the transmission of commodity price fluctuations to product
prices in the general case. Rather, it would be more correct to
speak of the transmission of commodity price fluctuations to
one component of the overall product price.

Of particular interest to econophysics are assumptions re-
lated to correlation and memory. Our model treats consumers
as independent “Markovian” agents who are neither influ-
enced by other agents nor have any memory of past events.
The former shortcoming could be overcome by replacing the
utility expression in Eq. (3) with something resembling a Ising
Hamiltonian expression, where an interaction term is included
to encourage or discourage consumers from mimicking the
choices of others. Such Ising-type models are widely used
in social physics [33–36]. The inclusion of a consumer-level
interaction term would certainly affect how commodity price
fluctuations are transmitted to product prices. On the other
hand, the inclusion of memory effects at the level of con-
sumers looks more difficult. One indirect approach might be to
impose a waiting period between the selection times of each
consumer, and allowing the waiting period to depend upon
the most recent selection. The waiting time distribution might
then affect the transmission of commodity price fluctuations.
Such an approach would still be Markovian in the strictest
sense of the word, but may introduce memory effects in a
similar way as a formally non-Markovian model would. Other
memory effects arising at the macroscopic level of prices
could be included by use of fractional calculus and other
emerging econophysics techniques [37].

This paper finished by considering a concrete example
where a monolayer catalyst competes with a pure platinum
catalyst. The inclusion of this example was not contrived. On
the contrary, we wish to expand the remit of materials science
to include questions related to price stability and marketplace
competitiveness. This paper has taken only a baby step in this
direction. Indeed, future work in this direction will require
us to use survey data to characterize real-world markets and
consumer attitudes towards material characteristics and price.
As presented here, this work simply shows that under the right
market conditions, material properties can have a profound
modulating effect on the fluctuations which ripple through the
price system. The fact that physicists have powerful and ma-
ture tools at their disposal for computing material properties
puts them in a unique position to study this area in detail.

V. CONCLUSIONS

The transmission of fluctuations between the prices of
products is an important aspect of real-world price dynamics,

FIG. 6. Time-series data for the price of platinum. Data obtained
from Ref. [38]. Flow diagram for fitting time-series model.

but the factors which modulate such transmissions are poorly
understood. In this paper we presented a model for the price
of a product which competes directly with a commodity in a
specific market. By aggregating the choices of individual con-
sumers, we found that commodity price fluctuations transmit
to the price of the product by way of a sigmoidal activation
function, similar to the ones which appear in studies of neu-
ron dynamics. Importantly, we identified the role of product
characteristics in modulating the transmission of commodity
price fluctuations: high log characteristic ratios between the
product and commodity tend to suppress the transmission of
commodity price fluctuations, and low log characteristic ratios
tend to enhance the transmission. This point was confirmed in
numerical simulations, which showed a dramatic reduction in
product price fluctuations for large values of the log character-
istic ratio. On the other hand, these simulations demonstrated
that such desensitization to commodity price fluctuations is
dependent upon the state of the market. In particular, such
desensitization might not occur when the consumer popula-
tion is highly homogeneous in its attitudes towards product
characteristics and price.
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APPENDIX

Platinum prices were simulated using a time-series model.
This mode was fit to the real price of platinum recorded during
the period January 1, 2016, to July 1, 2022 [see Fig. 6(a)]
(data source: [38]). The time-series model was built in a
stepwise manner according to the scheme in Fig. 6(b). In
the following, we let yt denote the price of platinum at time
t and zt = ln yt . All hypothesis tests and model parameter
estimations were performed within the R statistical environ-
ment. In the first step, the KPSS test was used to determine
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whether zt possessed a unit root. We were able to reject the
null hypothesis that there is no unit root (test statistic = 2.32),
suggesting that zt is not stationary. The KPSS test was per-
formed with the function ur.kpss in the package TSERIES [39].
In the second step, we attempted to fit an ARIMA model to the
time series zt . The model which minimized the AIC (Akaike
Information Criterion) was an ARIMA(0,1,0) model, which
is equivalent to a random walk with Gaussian-distributed
steps. In order to confirm whether this is an appropriate
model for zt , a Jarque-Bera test was conducted. The null
hypothesis (that zt − zt−1 is normally distributed) was rejected
(P value <2.2 × 10−16). Based on this result, we reject the
ARIMA(0,1,0) model as a model for zt . Finally, we conducted
the Breusch-Pagan test to check for heteroskedasticity. The
null hypothesis [homoskedasticity in the residuals of zt with
respect to the ARIMA(0,1,0) model above] was rejected (P
value = 9.5 × 10−4), suggesting heteroskedasticity in the time
series zt . The ARIMA model was fit using the function arima
with the package STATS. The Jarque-Bera test was performed
using the function arque.bera.test in the package TSERIES. The
Breusch-Pagan test was performed using the function bptest
in the package LMTEST [40].

The presence of heteroskedasticity suggests that we fit a
GARCH(p, q) model to zt . The GARCH(p, q) model has the

form rt = μ + εt , where E (ε2
t |Ft−1) = σ 2

t ,

σ 2
t = ω +

p∑
i=1

αtε
2
i−1 +

q∑
i=1

βiσ
2
i−1, (18)

and Ft−1 denotes the sigma field generated by ε j , j =
0, . . . , t − 1. In the third step, a GARCH(1,1) model fitted to
zt resulted in μ = 6.85 (P value = 0), ω = 1.33 × 10−4 (P
value = 1.0 × 10−6), α1 = 0.89 (P value = 0), and β1 = 0.10
(P value = 8.17 × 10−3). This model achieved an AIC of
−2.77. Finally, a GARCH(1,1) + ARMA(1,1) model was fit
to zt , resulting in μ = 6.79 (P value = 0), ω = 1.0 × 10−6

(P value = 0.34), α1 = 3.5 × 10−2 (P value = 0), β1 = 0.96
(P value = 0), an autoregression parameter of 0.99 (P value
= 0), and a moving average parameter of 1.77 × 10−2 (P
value = 0.46). This model achieved an AIC of −5.75. While
the GARCH(1,1) + ARMA(1,1) model contained two statis-
tically insignificant parameters, we opted to use it over the
simpler GARCH(1,1) model because its simulated sample
paths appeared to resemble the original platinum price data
(yt ) when exponentiated and plotted. These models were fit
using the functions ugarchspec and ugarchfit in the package
RUGARCH [41].
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