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Microscopic particle separation plays a vital role in various scientific and industrial domains. Conventional
separation methods relying on external forces or physical barriers inherently exhibit limitations in terms of
efficiency, selectivity, and adaptability across diverse particle types. To overcome these limitations, researchers
are constantly exploring new separation approaches, among which ratchet-based separation is a noteworthy
method. However, in contrast to the extensive numerical studies and experimental investigations on ratchet
separation, its theoretical exploration appears weak, particularly lacking in the analysis of energy consumption
involved in the separation processes. The latter is of significant importance for achieving energetically efficient
separation. In this paper, we propose a nonequilibrium thermodynamic approach, extending the concept of
shortcuts to isothermality, to realize controllable separation of overdamped Brownian particles with low energy
cost. By utilizing a designed ratchet potential with temporal period τ , we find in the slow-driving regime that
the average particle velocity v̄s ∝ (1 − D/D∗)τ−1, indicating that particles with different diffusion coefficients
D can be guided to move in distinct directions with a preset D∗. It is revealed that an inevitable portion of
the energy cost in separation depends on the driving dynamics of the ratchet, with an achievable lower bound
W (min)

ex ∝ L2|v̄s|. Here, L is the thermodynamic length of the driving loop in the parametric space. With a
sawtooth potential, we numerically test the theoretical findings and illustrate the optimal separation protocol
associated with W (min)

ex . Finally, for practical considerations, we compare our approach with the conventional
ratchets in terms of separation velocity and energy consumption. The scalability of the current framework for
separating various particles in two-dimensional space is also demonstrated. This paper bridges the gap between
thermodynamic process control and particle separation, paving the way for further thermodynamic optimization
in ratchet-based particle separation.
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I. INTRODUCTION

The separation of micro- and nanoscale particles holds
significant importance across various scientific and indus-
trial domains [1–9]. In the biological field, the separation of
bio-samples, such as proteins and DNA fragments, is crucial
for disease detection and bioinformatics analysis [10–13].
In environmental science, the separation of contaminants is
vital for evaluating environmental protection efforts [14,15].
Additionally, the purification of nanocomponents is essen-
tial for the preparation of nanomaterials [3,4]. Numerous
physical methods have been investigated for achieving intact
particle separation, employing physical fields and/or barriers.
Common physical fields include electric, magnetic, gravita-
tional, centrifugal, temperature, and concentration gradients
[16–18]. Membranes with specific pore sizes are also widely
utilized for particle separation [19–23]. These techniques
leverage differences in particle size, shape, charge, electric
susceptibility, magnetic susceptibility, and other properties
to achieve separation. When evaluating different separation
methods, several criteria are considered, including resolution,
efficiency, throughput, application range, and economic fea-
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sibility [3,18]. While no single method excels in all these
aspects, ongoing innovations in physical fields and structural
designs of separating equipment continually enhance the ef-
fectiveness of particle separation techniques.

Recent years have seen active studies on ratchet-based
particle separation [9,24–30], using both numerical and exper-
imental methods, building on the concept of ratchet that dates
back to the work of Smoluchowski and Feynman [31–33].
For theoretical convenience, particle motion in ratchet de-
vices is typically modeled as Brownian motion within specific
potentials [28,33–43]. These ratchet potentials are usually
periodic in time and either periodic or tilted periodic in space.
In practical applications, ratchet potentials can be created
using tunable external fields or carefully designed geomet-
ric structures that particles encounter in fluidic environments
[25,29,35,44–51]. Directed motion arises due to the breaking
of spatial and/or temporal symmetry of the ratchet potentials
as well as the presence of thermal fluctuations [33,50,52].
The magnitudes of directed particle fluxes depend on the
particles’ diffusion coefficients and their responses to the ap-
plied ratchet potential, enabling particle separation [35,44–
48]. The phenomenon of velocity inversion, which occurs
as the parameters of the potential or environment change,
further enhances the application of ratchets in particle separa-
tion [30,37,50]. Since different particles experience velocity
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inversion at different parameter sets, separation in opposite
directions is possible. Despite extensive theoretical studies
on ratchets, few specifically focus on particle separation, and
even fewer address the energy consumption associated with
this process. From a thermodynamic standpoint, the latter is
crucial for achieving energetically efficient separation [5,53–
55]. Precise theoretical predictions of ratchet-based particle
separation will greatly facilitate the comprehensive optimiza-
tion of ratchet potentials and the enhancement of separation
performance.

The main difficulty hindering theoretical studies on
ratchet-based particle separation lies in capturing the nonequi-
librium evolution in time-dependent potentials, a common
challenge in nonequilibrium systems. Recently, the rapidly
developed field of thermodynamic process control, known as
swift state-to-state transformations, has inspiringly addressed
this difficulty through the concept of inverse engineering
[56,57]. Instead of solving the evolution with a given dynamic
equation, inverse engineering aims to design the equation to
achieve the desired evolution. Various specific formalisms
based on this engineering strategy have been demonstrated
successfully in different systems, including quantum, Hamil-
tonian, and stochastic systems [58–64]. In these regimes, the
driving terms in the dominant equations are typically divided
into two parts: a reference term, explicitly related to the sys-
tem’s evolution function, and an auxiliary term designed to
escort the evolution. Given the widespread success in control-
ling nonequilibrium evolution with well-designed interactions
or external potentials, it is intriguing to explore the impact
of introducing an auxiliary potential into the ratchet-based
particle separation scheme.

In this paper, we adopt the auxiliary potential in the form
of shortcuts to isothermality (ScI) [63,65], a well-developed
thermodynamic control strategy for Brownian particles. While
the original ScI theory is applicable to single-type particle
schemes [63], simultaneous consideration of multitype par-
ticles is necessary for the separation tasks. We investigate
the motion of overdamped Brownian particles with varying
diffusion coefficients, driven by a potential that combines
a conventional ratchet potential with an auxiliary potential
featuring a tunable reference diffusion coefficient. Our results
demonstrate that particle separation is achieved in a tractable
regime, namely, the slow-driving regime, where the average
steady-state particle flux depends linearly on the diffusion co-
efficient. Particles with diffusion coefficients larger or smaller
than the reference diffusion coefficient move in opposite
directions, resulting in spatial separation. These opposite
movements can be attributed to effective forces experienced
by the particles dependent on their diffusion coefficients, as
illustrated in Fig. 1(a). Simulation results depicted in Fig. 1(b)
clearly demonstrate efficient separation of various particle
types in two-dimensional space. The energetic cost associated
with the separation process is also determined. By utilizing the
tool of thermodynamic geometry [64,66–68], we further de-
rive the optimal driving protocol to minimize energy dissipa-
tion while maintaining particle flux. These analytical findings,
facilitated by the capabilities of ScI-assisted ratchet poten-
tials, enhance our understanding and practical optimization
of ratchet-based separation, reducing the need for extensive
numerical explorations or experimental investigations.

( )

(a)

FIG. 1. (a) Schematic diagram of ratchet-based particle separa-
tion using the shortcuts to isothermality. With the designed potential,
particles with different diffusion coefficients experience distinct
driving forces (see Appendix B 2), enabling directed movement in
different directions. (b) Two-dimensional separation of four types of
particles (see Sec. IV B for details). L and τ represent the spatial and
temporal periods of the ratchet potential, respectively.

The rest of this paper is organized as follows. In Sec. II,
we present the general theoretical framework of particle sep-
aration using ScI-assisted ratchets. The particle separation
velocity and the corresponding energetic cost are analytically
obtained. Then, in Sec. III, with a specific form of the ratchet
potential (sawtooth potential), the general framework is il-
lustrated and verified by numerical simulations. Furthermore,
we discusses several practical considerations about the pro-
posed ScI-assisted ratchets in Sec. IV, including comparisons
of separation velocities and energy cost between the current
framework and conventional ratchets, as well as extensions to
two-dimensional separations. The summary and discussion of
the current work is given in Sec. V.

II. GENERAL FRAMEWORK

In this section, we incorporate the theoretical structure of
ScI into ratchet-based particle separation and analyze two
essential quantities in the separation process: particle flux and
energetic cost.

Consider one-dimensional overdamped Brownian particles
with diffusion coefficient D, which are coupled to a bath
at temperature T and experience time-dependent potential
U (x, t ). The evolution of the particles is governed by the
overdamped Fokker-Planck equation [69],

∂tρ(x, t ) = −∂xĴtρ(x, t ), (1)

where ρ(x, t ) is the probability density of the particle at time
t and position x,

Ĵt ≡ −D[β∂xU (x, t ) + ∂x] (2)

is the current operator, and β ≡ 1/(kBT ) is the inverse
temperature, with kB being the Boltzmann constant. In the
original ScI framework [63,64], the total potential U (x, t )
consists of an original potential Uo(x, �λ), where �λ = �λ(t ) is a
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time-dependent parametric vector with N components, and an

auxiliary potential Ua(x, �λ, �̇λ), where Ȯ represents the time
derivative of an arbitrary physical quantity O. The auxil-
iary potential depends on the particle’s diffusion coefficient,
ensuring that the system evolves along the instantaneous equi-
librium distribution of Uo(x, �λ), regardless of how �λ varies.
To extend ScI into a particle separation scheme that involves
multitype particles, we replace the diffusion coefficient in

Ua(x, �λ, �̇λ) tailored for specific particles with a reference dif-
fusion coefficient D∗. The auxiliary potential, now represented

as U ∗
a (x, �λ, �̇λ), is in the form of

∂xU
∗
a (x, �λ, �̇λ) = 1

βD∗
�̇λ · [ �fo(x, �λ) + �j(�λ)]

ρo(x, �λ)
. (3)

Here, ρo(x, �λ) ≡ e−βUo(x,�λ)/
∫ L

0 e−βUo(x,�λ)dx is the normalized
equilibrium probability density over one period 0 � x � L
of the conventional periodic ratchet potential Uo(x, �λ) with
spatial period L; �fo(x, �λ) ≡ ∫ x

0
�∇λρo(x′, �λ)dx′, where �∇λ ≡

(∂λ1, ∂λ2 , . . . , ∂λN ); and �j(�λ) is an arbitrary x-independent
N-dimensional vector function. The total potential experi-
enced by the particles is U (x, t ) = U ∗(x, t ) = Uo(x, �λ) +
U ∗

a (x, �λ, �̇λ).

A. Particle evolution in designed ratchet potential

The particle’s evolution is solved by substituting the ex-
pression of the total potential into Eq. (1). Given that Uo(x, �λ)

and ∂xU ∗
a (x, �λ, �̇λ) are both periodic, and so is the current op-

erator, it suffices to solve Eq. (1) within one period x ∈ [0, L]
[33]. Specifically, we define the reduced probability density
and the reduced probability current, respectively, as ρs(x, t ) ≡∑

n ρ(x + nL, t ) and Js(x, t ) ≡ ∑
n J (x + nL, t ), where n ∈ Z

and the probability current reads

J (x, t ) = Ĵtρ(x, t ). (4)

Providing that ρ(x, t ) is a normalized solution of Eq. (1),
ρs(x, t ) is also a solution which satisfies the periodic condition
ρs(x, t ) = ρs(x + L, t ) as well as the conservation condition∫ L

0 ρs(x, t )dx = 1. Moreover, the relation between ρs(x, t )
and Js(x, t ) is the same as Eq. (4).

To carry out further analytical discussion, we assume that
the parametric vector �λ changes slowly over time, so ρs(x, t )

can be expanded up to the linear term of �̇λ [70,71] as follows:

ρs(x, t ) ≈ ρo(x, �λ) + �̇λ · �ψ (x, t ), (5)

where �ψ (x, t ) is an N-dimensional vector function to be

solved. The equilibrium state is recovered when �̇λ = 0.
Substituting Eq. (5) into Eq. (1) and neglecting the terms
containing quadratic time derivative, we obtain

∂ �ψ (x, t )

∂x
+ β

∂Uo

∂x
�ψ (x, t ) =

(
1

D
− 1

D∗

)
[ �fo(x, �λ) + �C(t )],

(6)

with �C(t ) the constant of integration. Solving Eq. (6) with
boundary conditions �ψ (0, t ) = �ψ (L, t ) and

∫ L
0

�ψ (x, t )dx =

0, we find �C(t ) = −〈 �fo(x, �λ)〉+, where 〈· · · 〉± ≡∫ L
0 e±βUo(x,�λ) · · · dx/Z±(�λ) and Z±(�λ) ≡ ∫ L

0 e±βUo(x,�λ)dx.
The derivation details and the exact form of �ψ (x, t ) is given
in Appendix A. It follows from Eqs. (4) and (6) that

Js(x, t ) = −�̇λ · �f (x, �λ) +
(

1 − D

D∗

)
�̇λ · 〈 �f (x, �λ)〉+, (7)

where �f (x, �λ) ≡ �fo(x, �λ) + �j(�λ). Then the ensemble-
averaged velocity of the particle flux is given by
vs(t ) ≡ ∫ L

0 Js(x, t )dx [69].

B. Separating particles with different diffusion coefficients

We then investigate the particle flux in the steady state. To
induce steady-state evolution, we consider that the Brownian
particles are periodically driven, namely, �λ(t ) = �λ(t + τ ) and
�̇λ(t ) = �̇λ(t + τ ) with the temporal period τ . After enough
periods, ρs(x, t ) will enter steady periodic evolution (5) in-
dependent of the initial condition. It follows from Eq. (7) that
the average reduced probability current over a temporal period
J̄s ≡ τ−1

∫ t0+τ

t0
Js(x, t )dt is specifically obtained as

J̄s = 1

τ

(
1 − D

D∗

)
�rev − 1

τ

D

D∗

∮
I

d�λ · �j(�λ), (8)

where

�rev ≡
∮

I
d�λ ·

∫ L
0 eβUo(x,�λ) �∇λ

∫ x
0 ρo(x′, �λ)dx′dx∫ L

0 eβUo(x,�λ)dx
(9)

is the nondimensional integrated flow of reversible ratchets
[40,72] and I is a closed trajectory of �λ in the parametric
space. The derivation of Eq. (8) can be found in Appendix B 1.
Noticing that J̄s is independent of x, which is characteristic
of periodic evolution, the time-ensemble-averaged velocity
becomes v̄s ≡ τ−1

∫ t0+τ

t0
vs(t )dt = J̄sL.

As one of the main results of this paper, Eq. (8), appli-
cable to arbitrary Uo(x, �λ), indicates that Brownian particles
with different D can move at different velocities on av-
erage, thereby enabling their spatial separation. Physically,
the directed motion of particles is governed by an effective
force defined as Feff ≡ τ−1

∫ t0+τ

t0

∫
F (x, t )ρ(x, t )dx dt , where

F (x, t ) is the instantaneous force experienced by the par-
ticles. This effective force is in the same direction as the
average particle flux, with detailed derivations provided in
Appendix B 2. We stress here that (i) to generate nonzero �rev,
a spatially asymmetric Uo(x, �λ) is necessary (Proof is given
in Appendix B 3) and (ii) since �rev and J̄s are geometric
quantities in the N-dimensional parametric space that only
depend on the geometry of I , N � 2 is required to result in
nonzero �rev and J̄s. Particularly, when �j(�λ) = 0, the particles
with D > D∗ and those with D < D∗ will move in opposite
directions, which is consistent with a recent numerical study
[30]. In the cases with �j(�λ) �= 0, particles may be separated
with velocities different in magnitude but in the same direc-
tion, as illustrated in Sec. III B.

Moreover, it is worth mentioning that some previous the-
oretical results obtained in the solvable slow-driving regime
for conventional ratchets [38,40,73], which do not depend on
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the diffusion coefficient, indicate that even though slow-driven
conventional ratchets allow for directed particle transport,
they may fail to separate different particles with various D.
The particle separation demonstrated here is made possible
by the assistance of ScI-type auxiliary potential. In real-world
circumstances, different types of particles possess different
D due to variations in their shape, size, surface structure,
and other characteristics [74,75]. Therefore, by choosing an

appropriate D∗ to design U ∗
a (x, �λ, �̇λ) according to Eq. (3), the

desired particle separation can be achieved.

C. Energetic cost for particle separation

Besides the separation velocity discussed above, the energy
consumption in driving the particles is another typical aspect
of thermodynamic analysis requiring significant attention, a
quantity that can be analyzed with stochastic thermodynamics
[76,77]. When the particles of interest have entered the steady
periodic state, their energetics may be captured through the
above-solved reduced probability density and reduced proba-
bility current. According to the first law of thermodynamics,
the ensemble-averaged work needed in driving the particle
is W = 	E − Q, where Q is the ensemble-averaged heat
absorbed by the particle and 	E is the variation of internal en-
ergy E (t ) ≡ ∫

U ∗(x, t )ρ(x, t )dx. The total potential U ∗(x, t )
obtained by adding the integral of Eq. (3) on Uo(x, �λ) is a tilted
ratchet potential

U ∗(x, t ) = V ∗(x, t ) + ε∗(t )

L
x, (10)

where

ε∗(t ) = Z−(�λ)Z+(�λ)�̇λ · 〈 �f (x, �λ)〉+
βD∗ (11)

is the variation of U ∗
a (x, t ) from x0 to x0 + L, and

V ∗(x, t ) ≡ Uo(x, �λ) +
∫ x

0
∂x′U ∗

a (x′, t )dx′ − ε∗(t )x

L
(12)

is a spatially periodic function with period L. Here, we have
set U ∗

a (0, t ) = 0. Then the internal energy of the particle turns
out to be

E (t ) =
∫ L

0
V ∗(x, t )ρs(x, t )dx + ε∗(t )

L
〈x〉t , (13)

with 〈x〉t ≡ ∫
xρ(x, t )dx being the ensemble-averaged po-

sition of the particle. A detailed derivation of the above
expression is presented in Appendix C 1. For periodic driving

with �λ(t0) = �λ(t0 + τ ) and �̇λ(t0) = �̇λ(t0 + τ ), the variation of
the first term in Eq. (13) vanishes in a temporal period. Notic-
ing that ε∗(t0) = ε∗(t0 + τ ) and 	〈x〉t = v̄sτ , the variation of
internal energy in a period is

	E = ε∗(t0)J̄sτ =
(

1 − D

D∗

)
ε∗(t0)�rev. (14)

Hereafter, unless otherwise stated, we take �j(�λ) = 0 for sim-
plicity and the general cases with �j(�λ) �= 0 can be found in the
detailed derivations in the Appendices. While the above result
may depend on the initial conditions of the driving protocol,
there is no need to be concerned about the randomness of

the initial moments affecting the energy analyses in practi-
cal implementations, since this dependence diminishes as the
particle transport duration increases. Considering t0 ∈ (0, τ )
is a random moment taken as the initial time, the variation of
the internal energy from t0 to Nτ is

E (Nτ ) − E (t0) = Nε∗(0)J̄sτ

(
1 + E (0) − E (t0)

Nε∗(0)J̄sτ

)
, (15)

where we have used E (Nτ ) − E (0) = N[E (τ ) − E (0)] and
E (τ ) − E (0) = ε∗(0)J̄sτ . When N 
 1, the average en-
ergy consumption per single period becomes [E (Nτ ) −
E (t0)]/N ≈ ε∗(0)J̄sτ , which is independent of t0.

Furthermore, the heat current reads [76,77]

Q̇(t ) ≡
∫

U ∗(x, t )∂tρ(x, t )dx, (16)

according to which the heat absorption in a temporal period is
obtained as (see Appendix C 2)

Q = −
∫ t0+τ

t0

dt λ̇αλ̇βGαβ (�λ). (17)

The Einstein notation has been adopted hereafter, and

Gαβ (�λ) ≡ 1

βD∗ Z−(�λ)Z+(�λ)

[
〈 fα (x, �λ) fβ (x, �λ)〉+

−
(

1 − D

D∗

)
〈 fα (x, �λ)〉+〈 fβ (x, �λ)〉+

]
(18)

is a positive semidefinite matrix with α, β = 1, 2, . . . , N (see
Appendix C 3 for proof). Hence, the particles release heat to
the environment on average.

For a given closed driving trajectory in the parametric
space, Cauchy-Schwarz inequality implies that the heat re-
lease in Eq. (17) is bounded from below as −Q � L2/τ ,

where L ≡ ∫ τ

0 dt
√

λ̇αλ̇βGαβ (�λ) is the so-called thermody-
namic length [64,66–68,71] of the driving loop. Therefore,
we have the work cost satisfying W � 	E + L2/τ , which,
together with Eq. (8), yields the second main result of this
paper (see Appendix C 4 for derivation):

W � 	E + D∗L2J̄s

(D∗ − D)�rev
. (19)

Note that the extra energetic cost as Wex ≡ W − 	E , which is
exactly equal to the heat dissipated to the bath, is proportional
to the irreversible entropy production in the slow-driving
regime [78]. Moreover, when the equal sign in the above
inequality is saturated, the minimal extra energetic cost for
particle separation is directly proportional to the particle flow,
namely, faster particle separation (shorter τ ) requires more
work consumption. For a given τ (corresponds to a certain
v̄s), the optimal driving protocol associated with the minimal
Wex is determined by

τ

√
λ̇αλ̇βGαβ (�λ) − L = 0, (20)

namely, the integrand of L is a time-independent constant
[67,68].
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FIG. 2. (a) One period of the original periodic potential Uo(x, �λ).
(b) The trajectory of the driving protocol �λ(t ) is an anticlockwise
circle with radius R. (c) The tilted total potential U ∗(x, t ) and the
periodic steady reduced probability density ρs(x, t ) at a certain time.

III. ILLUSTRATIONS WITH A SAWTOOTH POTENTIAL

To illustrate our general theoretical framework, we specify
Uo = Uo(x, �λ) as the sawtooth potential in this section. As one
of the most commonly used ratchet potentials, the sawtooth
potential shown in Fig. 2(a) reads

Uo(x, �λ) =

⎧⎪⎪⎨⎪⎪⎩
λ1
α

x
L , 0 � x

L � α

λ1 + λ2−λ1
1−2α

(
x
L − α

)
, α < x

L � 1 − α

λ2 − λ2
α

(
x
L − 1 + α

)
, 1 − α < x

L � 1,

(21)

where λ1 and λ2 serve as time-dependent parameters, i.e.,
�λ = (λ1, λ2), and α ∈ (0, 0.5) is a tunable parameter. The
expressions for Z±(�λ), ρo(x, �λ), and �fo(x, �λ) are coherently

derived from Uo(x, �λ) to obtain U ∗
a (x, �λ, �̇λ), which is shown

in Appendix D 1.
According to Eqs. (8) and (9), Uo(x, �λ) is related to the

average particle probability current through �rev. Therefore,
optimizing both the shape of the potential and the geometry
of the driving loop in the parametric space can induce a
large particle flux. In the two-dimensional parametric space
(λ1, λ2), using Green’s theorem, Eq. (9) turns out to be

�rev =
∫∫

�

(
∂C1

∂λ2
− ∂C2

∂λ1

)
dλ1dλ2, (22)

where (C1,C2) = �C(�λ) = −〈 �fo(x, �λ)〉+, and � is the region
enclosed by the driving loop I . To find favorable α and the
driving loop, we calculate (∂λ2C1 − ∂λ1C2) on the parametric
space and �rev at different α. The corresponding figures are
provided in Appendix D 2. It is found that (∂λ2C1 − ∂λ1C2)
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FIG. 3. The time-ensemble-averaged velocity of particles.
(a) The time-ensemble-averaged velocity ˜̄vs as a function of D/D∗

with τ̃ = 20. (b) ˜̄vs as a function of τ̃ for D/D∗ = 2 (circles and
dashed line) and D/D∗ = 1/2 (squares and dotted line). The marks
and lines are simulation results and analytical predictions, respec-
tively. In the simulations, characteristic quantities are set as L = 1,
β = 1, and D∗ = 1.

is always positive and exhibits large values within a closed
region containing the origin in the parametric space. Hence,
it is reasonable to choose the circle with a radius R and a
center at the origin as the driving loop I , as shown in Fig. 2(b).
In addition, the nondimensional quantity β−2(∂λ2C1 − ∂λ1C2)
is rather small when βλ1,2 > 7, so we set βR = 7. Then the
maximum value of �rev as a function of α appears around
α = 0.36, which is adopted as the value of α in the following
simulations. In Fig. 2(c), we present a snapshot of the total
potential U ∗(x, t ) and the steady reduced probability density
ρs(x, t ). Both ρs(x, t ) and the gradient of U ∗(x, t ) exhibit
periodic behavior in infinite space.

The dynamic equation governing the movement of the
overdamped Brownian particles reads [79]

ẋ = −βD∂xU
∗(x, t ) +

√
2Dξ (t ), (23)

where the normalized Gaussian white noise ξ (t ) satisfies
〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). We simulate the move-
ment of the particles by solving this equation with the Euler
algorithm [80]:

	x̃ = −D̃
∂Ũ ∗(x̃, t̃ )

∂ x̃
	t̃ +

√
2D̃	t̃ω(t̃ ). (24)

Here, ω(t̃ ) is a standard Gaussian random variable and
Õ denotes the dimensionless O, nondimensionalized by
three characteristic quantities L, β−1, and D∗. For example,
t̃ = D∗L−2t , x̃ = L−1x, D̃ = D∗−1D, Ũ ∗ = βU ∗, and ṽs ≡
D∗−1Lvs. In the following simulations, we set the number of
particles to N = 105 and the time step to 	t̃ = 10−4.

A. Separation velocity and energy cost

After confirming that the steady-state distribution of the
particles is indeed consistent with Eq. (5) in the slow driving
regime (shown in Appendix D 3), we first validate the effec-
tiveness of Eq. (8). The time-ensemble-averaged velocities
v̄s = J̄sL of particles for different diffusion coefficients are
plotted in Fig. 3(a). The theoretical prediction (solid line) is in
good alignment with the simulation data (circles). In Fig. 3(b),
we illustrate ˜̄vs as a function of τ̃ for D/D∗ = 2 (circles)
and D/D∗ = 1/2 (squares). As expected, the theoretical lines
coincide well with the simulated marks in the slow-driving
regime (τ̃ 
 1).

034105-5



XIU-HUA ZHAO, Z. C. TU, AND YU-HAN MA PHYSICAL REVIEW E 110, 034105 (2024)

-5 0 5-5
0

5
0

0.5

1(a)

20 40 60 80

10
0

10
1(b)

FIG. 4. Dependence of energy consumption in particle separa-
tion on driving protocols and duration. (a) Three different driving
protocols, i.e., path I (dotted line), path II (dashed line), and path III
(solid line). (b) The extra energetic cost Wex as a function of τ̃ with
D/D∗ = 2. The three data series from top to bottom, respectively,
correspond to paths I–III, and the lines are analytical results. The
other parameters in the simulations are the same as those used in
Fig. 3.

Furthermore, by definition [76], the energetics of the parti-
cle can be consistently obtained in simulations. The absorbed
heat and the input work of a particle from t to t + 	t with
position changing from x to x + 	x are, respectively,

	q ≡ U ∗(x + 	x, t + 	t ) − U ∗(x, t + 	t ), (25)

	w ≡ U ∗(x, t + 	t ) − U ∗(x, t ), (26)

representing the energy changes due to the variation of the
particle state and the potential parameters. Clearly, these defi-
nitions ensure the energy conservation law 	U ∗ = 	q + 	w

for each particle. Moreover, the ensemble average of 	q/	t
aligns with the continuous form of heat current (16) as 	t →
0 (see Appendix D 4 for proofs). We now test Eq. (19) with
three different protocols f (s) associated with the driving loop
illustrated in Fig. 2(b),

λ1 = R cos[2π f (s) + θ0], λ2 = R sin[2π f (s) + θ0], (27)

where s ≡ t/τ and θ0 = π/6. The time-dependent paths
are demonstrated in Fig. 4(a). Path I (dotted line): f1(s) =∑i=3

i=1 aisi, with a1 = a3 = 2, a2 = −3; path II (dashed line):
f2(s) = s; and path III (solid line): the optimal protocol ob-
tained numerically from Eq. (20) (see Appendix D 5 for
details). All three protocols satisfy the periodic conditions for
λμ(s) and dλμ/ds, where μ = 1, 2. The corresponding extra
work Wex are illustrated in Fig. 4(b) with same line styles,
where the dotted and dashed lines [plotted with Eq. (17)] and
the solid line [the lower bound of Eq. (19)] agree well with
the numerical results (marks). Clearly, the optimal protocol
indeed lead to lower Wex (circles) than those associated with
path I (triangles) and path II (squares).

We would like to make three remarks here. First, al-
though generated under path II, the results in Figs. 3(a) and
3(b) are independent of the specific choice of driving pro-
tocol f (s) since the time-ensemble-averaged velocity is a
geometric quantity (dynamic independent) in the parametric
space. Second, in the slow-driving regime, the 1/τ -scaling
exhibited by the particle flux [Fig. 3(b)] and energetic cost
[Fig. 4(b)] is a typical manifestation of finite-time irreversibil-
ity [63,64,71,78,81–83]. Third, the presented optimal path
[solid line in Fig. 4(a)] is associated with the minimum Wex

along a given trajectory in the parametric space. There may be

FIG. 5. Probability distributions of particles with D/D∗ = 2
(blue lines, on the left when t > 0) and D/D∗ = 1/2 (orange lines,
on the right when t > 0) driven by potentials with different �j(�λ). The
width of the histogram bars is 	x = 10−2L. The arrows indicate the
moving directions of the two particles, with the length of the arrows
representing the relative magnitudes of their velocities in each panel.
(a) �j(�λ) = 0; (b) j1(�λ) = −β2λ2/75, j2(�λ) = β2λ1/75. In this plot,
we use τ = 10D∗−1L2, β = D∗ = L = 1, and the driving protocol
follows path II.

different trajectories leading to the same particle flux but with
different energy cost. Determining the optimal trajectory and
the corresponding optimal driving protocol is an open ques-
tion for achieving globally optimal control in both dynamic
and geometric senses.

B. Same-direction separation with nonzero�j(�λ)

As a final illustration in this section, we demonstrate the
role of �j(�λ) in inducing rapid same-direction separation.
According to Eq. (8), �j(�λ) can be utilized to induce a
D-dependent probability current and hence particle flux. If
�j(�λ) = 0, the particles with D > D∗ and D < D∗ averagely
move in opposite directions; if �j(�λ) �= 0, it is more possible
that the particles with different D move in the same
direction, with separation occurring due to differences in
their velocity magnitudes. As an example, Figs. 5(a) and
5(b) respectively show the probability distributions of two
different particles driven by the potentials with �j(�λ) = 0
and �j(�λ) = (−β2λ2/75, β2λ1/75). The former scenario
facilitates the handling of separated particles due to their
opposite destinations, while the latter scenario results in
significantly faster separation.

IV. PRACTICAL APPLICATIONS

In this section, we present further discussions concerning
the practicality of our proposed separation scheme based on
ScI-assisted ratchets. First, according to Eq. (8), the velocity
difference 	v̄s = 	J̄sL of particles with diffusion coefficient
difference 	D, is specifically

	v̄s = −	DL

D∗τ

[
�rev +

∮
I

d�λ · �j(�λ)

]
. (28)

For the practical case with D∗ ∼ 10−5 cm2/s, L ∼
0.1 µm, f = τ−1 ∼ 100 kHz [30], 	D/D∗ ∼ 1% can result
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FIG. 6. The average velocities of two different particles driven
by different ratchets in (a) slow-driving regime and (b) fast-driving
regime. The green solid lines, blue dashed lines, and orange dash-
dotted lines represent the velocities induced by U ∗(x, t ), Uo(x, t ),
and Us(x, t ), respectively. The dotted lines in (a) are the analytical
predictions for U ∗(x, t ). The lines with dark colors correspond to the
particles with D/D∗ = 1/2, while those with light colors correspond
to D/D∗ = 2. In this plot, τ̃ ≡ D∗L−2τ , ˜̄vs ≡ D∗−1Lv̄s, and the parti-
cle number N = 105. The driving protocols of U ∗(x, t ) and Uo(x, t )
follow path II and �j(�λ) = 0.

in a velocity difference of at least |	v̄s| ∼ 0.1 mm/s, which
is achieved when �rev ∼ 1 [see Fig. 9(b)] and �j(�λ) = 0.

A. Comparison with conventional ratchets

In addition to simplifying theoretical analysis, we find that
the ScI-assisted ratchet may outperform conventional ratchets
in terms of both separation velocity and energetic cost. We
simulate the movement of Brownian particles driven by three
different ratchet potentials: the ScI-assisted ratchet U ∗(x, t ),
the no-ScI ratchet Uo(x, t ), and the flashing ratchet Us(x, t ).
Comparing the first two ratchets reveals the effect of intro-
ducing the ScI-type auxiliary potential. The third ratchet is
included to facilitate a comparison between our proposed sep-
aration scheme and a recent numerical study on ratchet-based
particle separation, specifically the application of flashing
ratchets for ion separation [30]. U ∗(x, t ) and Uo(x, t ) follow
the expressions used in Sec. III, while Us(x, t ) is the same
as that in Ref. [30], which is also provided in Appendix E 1.
All quantities in the simulations are nondimensionalized by
the same characteristic quantities D∗ = β = L = 1 used in
Sec. III.

FIG. 7. Energetic costs and particle diffusion ranges at given
velocity differences. (a) The total extra power required to induce
given velocity differences between two particles with three ratchets.
The three data series from top to bottom correspond to Us(x, t ),
Uo(x, t ), and U ∗(x, t ). (b) The particle diffusion range represented
by the average position and the associated standard deviation of the
distribution. The upper two blue bands, medium two green bands,
and lower two orange bands show the evolution driven by Uo(x, t )
(τ̃ = 0.33), U ∗(x, t ) (τ̃ = 2.5), and Us(x, t ) (τ̃ = 0.046). The dark
and light bands represent particles with D/D∗ = 1/2 and D/D∗ = 2,
respectively. In this plot, the driving protocol for Uo(x, t ) follows path
II, while U ∗(x, t ) follows the optimal path. Other parameters are the
same as those used in Fig. 6.

Figure 6 shows the average velocities of two different par-
ticles at different driving speeds (magnitude of the period τ̃ ).
The results corresponding to ratchets U ∗(x, t ), Uo(x, t ), and
Us(x, t ) are, respectively, represented by the green solid lines,
blue dashed lines, and orange dash-dotted lines, where the
lines with dark colors represent the particles with diffusion
coefficient D/D∗ = 1/2 and those with light colors represent
the particles with D/D∗ = 2. As illustrated in Fig. 6(a), in
the slow driving regime, the no-ScI and flashing ratchets are
unable to realize particle separation, while the ScI-assisted
ratchet can separate the two types of particles in different
directions. The two dotted lines are given by the analytical
expression (8) (�j(�λ) = 0), and they agree well with the nu-
merical results when τ̃ 
 1. The independence of particle flux
on the diffusion coefficient for the no-ScI ratchet and the flash-
ing ratchet when τ̃ 
 1 is demonstrated in theoretical works
[40,84]. To achieve particle separation with these two conven-
tional ratchets, the temporal period τ of the driving protocol
must be significantly shorter than the particle’s diffusion time
D∗−1L2, as shown in Fig. 6(b). As the period decreases, the
velocities of particles driven by U ∗(x, t ) and Us(x, t ) reverse,
where the reversal of particle velocities driven by U ∗(x, t ) is
visible in the inset of Fig. 6(b). The reversal driven by Us(x, t )
is the key motivation for using it in particle separation [30].
Although all three ratchets demonstrate the ability to separate
particles in the fast-driving regime, the velocity difference
induced by the ScI-assisted ratchet is surprisingly larger than
that induced by the other two conventional ratchets when
τ̃ � 10−1.

We further identify the working regime in which the ScI-
assisted ratchet is not only solvable but also outperforms the
other two ratchets, exhibiting lower energetic cost and smaller
diffusion range in particle separation. The average extra power
Pex ≡ Wex/τ required for inducing a given velocity difference
between the two particles is shown in Fig. 7(a), with a detailed
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algorithm provided in Appendix E 2. The energetic cost for the
flashing ratchet (data linked by the orange dash-dotted line) is
much higher than those for the other two continuous ratchets.
The dotted line is obtained with the analytical particle flux
(8) and the lower bound of (19). The ScI-assisted ratchet
(data linked by the green solid line) exhibits obvious superi-
ority in saving energy consumption in the predictable regime
of |	˜̄vs|.

Moreover, as a stochastic system, achieving particle sepa-
ration requires not only a difference in average velocity but
also a distinct separation in the particles’ distribution. We
simulate the evolution of particles, starting from a uniform
distribution in x̃ ∈ [0, 1], with three ratchets designed to in-
duce velocity differences around |	˜̄vs| ∼ 0.5. In Fig. 7(b),
the half-width of each band represents the standard deviation
of the particles’ distribution, with the median value indicated
by the average position of the particles. The distributions of
the two types of particles driven by the ScI-assisted ratchet
(the dark and light green bands in the middle) and the no-
ScI ratchet (the dark and light blue bands in the upper half)
are separated at t̃ = 10. In contrast, the particles driven by
the flashing ratchet (the dark and light orange bands in the
lower half) are not separated, despite inducing similar velocity
differences between the two particles. Compared to the no-ScI
ratchet, the ScI-assisted ratchet has the advantage of reducing
the device size required for observing separation.

B. Two-dimensional separation

The developed ScI-assisted ratchet can be straightfor-
wardly generalized to higher-dimensional space to simul-
taneously separate more kinds of particles. We consider a
two-dimensional ratchet to separate four kinds of particles,
each with different diffusion coefficients: D1 > D2 > D3 >

D4. The separation process consists of two steps. In the
first step, we apply a driving force Fx(x, t ) in the x di-
rection to these particles, where Fx(x, t ) = −∂xUo(x, �λ) −
β−1D∗−1

x ρ−1
o (x, �λ)�̇λ · �f (x, �λ) and D∗

x is a reference diffusion
coefficient. The dynamic equations in this step are

ẋ = −βD
∂Uo(x, �λ)

∂x
+

√
2Dξx(t ) − D

D∗
x

�̇λ · �f (x, �λ)

ρo(x, �λ)
, (29a)

ẏ =
√

2Dξy(t ), (29b)

where ξx(t ) and ξy(t ) are independent normalized Gaussian
white noise. The four types of particles will be separated
from left to right according to their different average
velocities in the x direction: v̄1x < v̄2x < v̄3x < v̄4x. In
the second step, once the particles with D2 and D3 have
been largely separated, we additionally apply driving
forces in the y direction on the particles. To achieve
efficient separation, the particles with D1,2 experience

FyL(y, t ) = −∂yUo(y, �λ) − β−1D∗−1
yL ρ−1

o (y, �λ)�̇λ · �f (y, �λ) while

the particles with D3,4 experience FyR(y, t ) = −∂yUo(y, �λ) −
β−1D∗−1

yR ρ−1
o (y, �λ)�̇λ · �f (y, �λ), where D∗

yL and D∗
yR are

different reference diffusion coefficients. The dynamic
equations in the second step are

ẋ = −βD
∂Uo(x, �λ)

∂x
+

√
2Dξx(t ) − D

D∗
x

�̇λ · �f (x, �λ)

ρo(x, �λ)
, (30a)

FIG. 8. The ratchet potential used for particle separation
in 2D space at time tmodτ = 0.5τ . (a) Potential in the first

step: U (x, y, �λ) = Uo(x, �λ) + β−1D∗−1
x

∫ x
0 ρ−1

o (x′, �λ)�̇λ · �f (x′, �λ)dx′.
(b) Potential in the second step: U (x, y, �λ) = Uo(x, �λ) + β−1D∗−1

x∫ x
0 ρ−1

o (x′, �λ)�̇λ · �f (x′, �λ)dx′ + Uo(y, �λ) + β−1D∗−1
yL/R

∫ y
0 ρ−1

o (y′, �λ)�̇λ ·
�f (y′, �λ)dy′.

ẏ = −βD
∂Uo(y, �λ)

∂y
+

√
2Dξy(t )

− D

[
�(−x + v̄mt )

D∗
yL

+ �(x − v̄mt )

D∗
yR

] �̇λ · �f (y, �λ)

ρo(y, �λ)
, (30b)

where �(x) is the Heaviside step function and v̄m is given by
the mean value of the theoretically obtained average velocities
in the x direction for D2 and D3. The average velocities of
the particles in the y direction satisfy v̄1y < v̄2y and v̄3y < v̄4y.
Consequently, the four types of particles will be transported
in different directions based on their distinct velocity vectors.

We simulate Eqs. (29a)–(30b) using the sawtooth po-
tential illustrated in Fig. 2(a) as Uo and the driving
protocol defined by βλ1 = 7 cos(2πt/τ + π/6) and βλ2 =
7 sin(2πt/τ + π/6). The vector function �j(�λ) is set as
j1(�λ) = −β2λ2/30 and j2(�λ) = β2λ1/30. The correspond-
ing potentials are illustrated in Fig. 8, and the separation
results are shown in Fig. 1(b). The driving period is τ =
10D−1

m L2 and the diffusion coefficients of the particles are
D1 = 10Dm, D2 = 25Dm/7, D3 = 5Dm/3, D4 = Dm/5. Ad-
ditionally, D∗

x = 2Dm, D∗
yL = 25Dm/2, and D∗

yR = Dm. Here,
Dm is a constant with the same dimension of diffusion
coefficient, used to nondimensionalize the dynamic equa-
tions. We would like to note that while nonzero �j(�λ)
typically induce particle separation in the same direction for
one-dimensional systems, separation in higher dimensional
systems is achieved in different directions, provided that �rev

is not negligible compared to
∮

I d�λ · �j(�λ) in Eq. (8) and
the reference diffusion coefficients for different axes are not
identical.

V. DISCUSSION

We have developed a general framework that integrates
thermodynamic process engineering into ratchet-based par-
ticle transport, allowing for the theoretically predictable
separation of Brownian particles with different diffusion
coefficients. The tractability of our approach stems from in-
corporating a ScI-type auxiliary potential into conventional
ratchets. Specifically, for general continuously varying ratch-
ets, we propose a designed auxiliary potential as an extension
of the original ScI theory to multitype particle systems. Based
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on this design, we have made several key analytical achieve-
ments: (i) We introduce a reference diffusion coefficient into
the driving potential [Eq. (3)], which can be adjusted to target
different separation goals. (ii) We derive a concrete expression
[Eq. (8)] for the average particle flux, induced by a diffusion-
coefficient-dependent effective force, facilitating particle sep-
aration in either the same or opposite directions (see Fig. 5).
(iii) We determine the optimal driving protocol that minimizes
energetic consumption [Eq. (19)] while maintaining a de-
sired particle flux, utilizing the principles of thermodynamic
geometry. These advancements provide a comprehensive
theoretical foundation for optimizing ratchet potentials and
enhancing the performance of particle separation.

As a demonstration of the effectiveness of our frame-
work, we have compared the performance of the ScI-assisted
ratchet with both the no-ScI ratchet [40] and the flashing
ratchet [30] in particle separation. We have outlined opera-
tional regimes where the ScI-assisted ratchet induces a larger
velocity difference and consumes less energy. This promising
result encourages a systematic expansion of the compari-
son across a broader range of parameters. Additionally, our
simulations indicate that different ratchets not only produce
varying separation velocities and energy consumption but also
result in different diffusion ranges. Investigating the trade-off
relations between these three quantities, separation velocity,
energy consumption, and diffusion range will be of signifi-
cant interest [17,18]. In this paper, we deal with overdamped
Brownian particles for simplicity. However, the ScI theory
does not preclude the case of underdamped regimes [63,64].
It is straightforward to adapt our framework to underdamped
systems, which may bring about various effects, such as nega-
tive mobility [28,85]. The impact of particle interactions also
deserves attention to better model realistic separation scenar-
ios [48,86]. Moreover, our framework holds the potential for
adaptation to particle separation according to properties other
than the diffusion coefficient, such as chirality [87,88] and
mass [28,89].

Our analytical results of the ScI-assisted ratchet are based
on the assumption of slow driving of the time-dependent
parameters, where the 1/τ scaling of the particle flux and
energy consumption is maintained. Notably, numerical illus-
trations have demonstrated that this separation framework
is also promising in a fast-driving regime. To explore the
full behavior in the fast-driving regime, one can extend our
analysis to consider the contributions from higher-order terms
or directly investigate the fast-driving limit [90]. Moreover,
although the framework is constructed in one-dimensional
systems, we have demonstrated its capacity to simultaneously
separate multitype particles in higher-dimensional systems
[see Fig. 1(b)]. Given the active progress in experimental stud-
ies on ratchets [49–51] and shortcuts to isothermality [91,92],
our framework could be realized and tested by integrating
state-of-the-art platforms and techniques. To simplify the im-
plementation of the ScI-assisted ratchet, the total potential
may be generally expanded to take the form of an additive-
multiplicative ratchet [93,94], which is feasible with current
experimental advancements [95]. Ratchet implementations
using optical techniques [96,97] are particularly promising
since existing demonstrations of ScI have been realized with
optical methods.

Currently, the combination of thermodynamic geometry
and thermodynamic process control in optimizing practi-
cal thermodynamic tasks, such as heat engine optimization
[98–100] and information erasure [71,101], has attracted
widespread research interest. Our work extends the applica-
tion scenarios in this area and lays the foundation for the
innovative incorporation of thermodynamic process engineer-
ing into particle separation technology. While our framework
offers a general construction, there are several challenges that
remain for further extension. First, there is a need for theo-
retical analysis of the fast-driving regime. While the original
ScI theory applies to single-type and arbitrarily fast-driven
systems, we have assumed slow driving to control the motion
of multitype particles simultaneously. The significant velocity
variations in the fast-driving regime highlighted by numerical
studies call for a systematic analysis to effectively describe
very rapid separations. Furthermore, the construction of the
ratchet potential may be modified based on alternative ther-
modynamic control strategies [61,102,103] other than ScI.
Lastly, from a more general practical perspective, further at-
tention needs to be focused on comparing the performance
of different separation methods, including various ratchets
and methods beyond ratchets, especially in terms of ener-
getic significance. Choosing different separation methods in
various parameter regions or combining multiple methods to
achieve overall superiority might be potential ways for future
optimization of particle separation.
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APPENDIX A: DERIVATION OF THE REDUCED
PROBABILITY DENSITY

In the slow-driving regime, the reduced probability density

is approximated as ρs(x, t ) = ρo(x, �λ) + �̇λ · �ψ (x, t ), where
�ψ (x, t ) is determined by Eq. (6). The general solution of

Eq. (6) is

�ψ (x, t ) =
(

1

D
− 1

D∗

)
e−βUo(x,�λ)

×
∫ x

0
eβUo(x′,�λ)[ �fo(x′, �λ) + �C(t )]dx′

+
(

1

D
− 1

D∗

)
�B(t )e−βUo(x,�λ), (A1)

where �B(t ) is a constant of integration. From the conditions
ρs(0, t ) = ρs(L, t ),

∫ L
0 ρs(x, t )dx = 1 and the definition of

ρo(x, �λ), we obtain �ψ (0, t ) = �ψ (L, t ) and
∫ L

0
�ψ (x, t )dx = 0,
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which are used to determine the expressions of �C(t ) and �B(t ):

�C(t ) = �C(�λ) = −
∫ L

0 eβUo(x,�λ) �fo(x, �λ)dx∫ L
0 eβUo(x,�λ)dx

, (A2)

�B(t ) = �B(�λ) = −
∫ L

0 e−βUo(x,�λ)
∫ x

0 eβUo(x′,�λ)[ �fo(x′, �λ) + �C(�λ)]dx′dx∫ L
0 e−βUo(x,�λ)dx

. (A3)

The expression of �ψ (x, t ) = �ψ (x, �λ) is totally determined by Uo(x, �λ) and is independent of �j(�λ).

APPENDIX B: PARTICLE’S DIRECTED FLUX

1. Derivation of Eq. (8)

The detailed derivation of Eq. (8) is presented below. According to Eq. (7), the average probability current in a period is

J̄s ≡ 1

τ

∫ t0+τ

t0

Js(x, t )dt

= 1

τ

∫ t0+τ

t0

[
−�̇λ · �f (x, �λ) +

(
1 − D

D∗

)
�̇λ · 〈 �f (x, �λ)〉+

]
= 1

τ

∮
I

d�λ ·
[
− �f (x, �λ) +

(
1 − D

D∗

)
〈 �f (x, �λ)〉+

]

= 1

τ

∮
I

d�λ ·
[
−�∇λ

∫ x

0
ρo(x′, �λ)dx′ − �j(�λ) +

(
1 − D

D∗

)∫ L
0 eβUo(x,�λ) �∇λ

∫ x
0 ρo(x′, �λ)dx′dx∫ L

0 eβUo(x,�λ)dx
+
(

1 − D

D∗

)
�j(�λ)

]

= − 1

τ

∮
I

d�λ · �j(�λ) + 1

τ

(
1 − D

D∗

)∮
I

d�λ ·
∫ L

0 eβUo(x,�λ) �∇λ

∫ x
0 ρo(x′, �λ)dx′dx∫ L

0 eβUo(x,�λ)dx
+ 1

τ

(
1 − D

D∗

)∮
I

d�λ · �j(�λ)

= 1

τ

(
1 − D

D∗

)
�rev − 1

τ

D

D∗

∮
I

d�λ · �j(�λ). (B1)

In the above derivations, the periodicity of �λ has been used in
the third and fifth lines, the definitions of �f (x, �λ) and �fo(x, �λ)
have been used in the fourth line, and the definition of �rev has
been used in the last line. The dependence of J̄s on x vanishes
due to the periodicity of �λ. In fact, it can be directly deduced
that ∂x

∫ t0+τ

t0
Js(x, t )dt = 0 if ρs(x, t0) = ρs(x, t0 + τ ) by inte-

grating Eq. (1) from t = t0 to t = t0 + τ .

2. Expression of the effective force

The dependence of the effective force on the diffusion
coefficient can be used to explain the movements of dif-
ferent particles in the same ratchet potential. The effective
force Feff is defined as the time-ensemble average of force
F (x, t ), i.e., Feff ≡ τ−1

∫ τ

0

∫
F (x, t )ρ(x, t )dx dt . For particles

driven by Uo(x, �λ) + U ∗
a (x, �λ, �̇λ), F (x, t ) = −∂xUo(x, �λ) −

∂xU ∗
a (x, �λ, �̇λ), then we find

Feff = 1

τ

∫ τ

0

∫ [
−∂Uo(x, �λ)

∂x
− ∂U ∗

a (x, �λ, �̇λ)

∂x

]
ρ(x, t )dx dt

= 1

τ

∫ τ

0

∫
1

β

(
1

D
J (x, t ) + ∂ρ(x, t )

∂x

)
dx dt

= 1

τ

1

βD

∫ τ

0

∫
J (x, t )dx dt

= 1

τ

1

βD

∫ τ

0

∫ L

0
Js(x, t )dx dt

= 1

βD

∫ L

0
J̄sdx = v̄s

βD
= L

βτ

(
1

D
− 1

D∗

)
�rev

− L

βτ

1

D∗

∮
I

d�λ · �j(�λ). (B2)

In the above derivation, we have used the definitions of J (x, t ),
Js(x, t ), v̄s, and the fact that ρ(x, t ) vanishes at infinity. The
direction of Feff is consistent with the direction of the average
velocity v̄s, depending on the values of D.

3. Necessity of asymmetric potentials for nonzero �rev

According to Eq. (9), the reversible integrated flow �rev

reads

�rev =
∮

I
d�λ ·

∫ L
0 eβUo(x,�λ) �fo(x, �λ)dx∫ L

0 eβUo(x,�λ)dx
. (B3)

If the potential Uo(x, �λ) is symmetric, namely, there is al-
ways a reference axis to make Uo(x, �λ) = Uo(−x, �λ) for
any x, then ρo(x, �λ) = ρo(−x, �λ) and �fo(x, �λ) = − �fo(−x, �λ).
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Defining y = −x, one has

�rev =
∮

I
d�λ · − ∫ L

0 eβUo(−y,�λ) �fo(−y, �λ)dy

− ∫ L
0 eβUo(−y,�λ)dy

=
∮

I
d�λ · − ∫ L

0 eβUo(y,�λ) �fo(y, �λ)dy∫ L
0 eβUo(y,�λ)dy

= −�rev, (B4)

which obviously indicates �rev = 0. Hence, an asymmetric
Uo(x, �λ) is needed to generate nonzero �rev.

APPENDIX C: DERIVATIONS OF ENERGETIC
QUANTITIES

1. Derivations of the internal energy and its variation

Substituting the total potential (10) into the definition of
internal energy, we have

E (t ) =
∫

U ∗(x, t )ρ(x, t )dx

=
∫

V ∗(x, t )ρ(x, t )dx + ε∗(t )

L

∫
xρ(x, t )dx

=
∑
n∈Z

∫ (n+1)L

nL
V ∗(x, t )ρ(x, t )dx + ε∗(t )

L
〈x〉t

=
∑
n∈Z

∫ L

0
V ∗(x′ + nL, t )ρ(x′ + nL, t )dx′ + ε∗(t )

L
〈x〉t

=
∑
n∈Z

∫ L

0
V ∗(x′, t )ρ(x′ + nL, t )dx′ + ε∗(t )

L
〈x〉t

=
∫ L

0
V ∗(x′, t )

∑
n∈Z

ρ(x′ + nL, t )dx′ + ε∗(t )

L
〈x〉t

=
∫ L

0
V ∗(x, t )ρs(x, t )dx + ε∗(t )

L
〈x〉t , (C1)

where the spatial periodicity of V ∗(x, t ) and the definition of
ρs(x, t ) have been used. 〈x〉t ≡ ∫

xρ(x, t )dx is the ensemble-
averaged position of the particles at time t .

Considering that the first term in E (t ) as well as ε∗(t ) are
temporally periodic, the variation of E (t ) from t = t0 to t =
t0 + τ is

	E = ε∗(t0)

L
v̄sτ = ε∗(t0)J̄sτ

= ε∗(t0)

[(
1 − D

D∗

)
�rev − D

D∗

∮
I

d�λ · �j(�λ)

]
, (C2)

which becomes more compact as Eq. (14) by setting �j(�λ) = 0.

2. Derivation of ensemble-averaged heat absorption

The ensemble-averaged heat current is

Q̇ =
∫

U ∗(x, t )
∂ρ(x, t )

∂t
dx

= −
∫

U ∗(x, t )
∂J (x, t )

∂x
dx

= − U ∗(x, t )J (x, t )
∣∣+∞
−∞ −

∫
F (x, t )J (x, t )dx

= −
∑
n∈Z

∫ (n+1)L

nL
F (x, t )J (x, t )dx

= −
∑
n∈Z

∫ L

0
F (x + nL, t )J (x + nL, t )dx

= −
∫ L

0
F (x, t )Js(x, t )dx

=
∫ L

0

[
∂Uo(x, �λ)

∂x
+ ∂U ∗

a (x, t )

∂x

]
Js(x, t )dx, (C3)

where F (x, t ) ≡ −∂xU ∗(x, t ) and Js(x, t ) is the reduced prob-
ability current. In the above derivation, we have used the fact
that the physical current J (x, t ) vanishes at infinity and the
spatial periodicity of F (x, t ). Substituting the expressions of
∂xU ∗(x, t ) and Js(x, t ) into the above equation, we obtain

Q̇ =
∫ L

0

[
∂Uo(x, �λ)

∂x
+ 1

βD∗
�̇λ · �f (x, �λ)

ρo(x, �λ)

][
−�̇λ · �f (x, �λ) +

(
1 − D

D∗

)
�̇λ · 〈 �f (x, �λ)〉+

]
dx

= −
∫ L

0

∂Uo(x, �λ)

∂x
�̇λ · �f (x, �λ)dx +

(
1 − D

D∗

)
�̇λ · 〈 �f (x, �λ)〉+

∫ L

0

∂Uo(x, �λ)

∂x
dx

− 1

βD∗

∫ L

0

[�̇λ · �f (x, �λ)]2

ρo(x, �λ)
dx + 1

βD∗

(
1 − D

D∗

)
�̇λ · 〈 �f (x, �λ)〉+

∫ L

0

�̇λ · �f (x, �λ)

ρo(x, �λ)
dx

= −
∫ L

0

∂Uo(x, �λ)

∂x
�̇λ ·
[∫ x

0

�∇λρo(x′, �λ)dx′
]

dx − �̇λ · �j(�λ)
∫ L

0

∂Uo(x, �λ)

∂x
dx + 0

− 1

βD∗ Z−(�λ)Z+(�λ)〈[�̇λ · �f (x, �λ)]2〉+ + 1

βD∗

(
1 − D

D∗

)
Z−(�λ)Z+(�λ)[�̇λ · 〈 �f (x, �λ)〉+]2

= −
[
Uo(x, �λ)�̇λ ·

∫ x

0

�∇λρo(x′, �λ)dx′
]∣∣∣∣∣

L

0

+
∫ L

0
Uo(x, �λ)�̇λ · �∇λρo(x, �λ)dx − 0
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− 1

βD∗ Z−(�λ)Z+(�λ)〈[�̇λ · �f (x, �λ)]2〉+ + 1

βD∗

(
1 − D

D∗

)
Z−(�λ)Z+(�λ)[〈�̇λ · �f (x, �λ)〉+]2

= 0 + �̇λ · �∇λ

∫ L

0
Uo(x, �λ)ρo(x, �λ)dx − �̇λ ·

∫ L

0
[ �∇λUo(x, �λ)]ρo(x, �λ)dx

− 1

βD∗ Z−(�λ)Z+(�λ)〈[�̇λ · �f (x, �λ)]2〉+ + 1

βD∗

(
1 − D

D∗

)
Z−(�λ)Z+(�λ)[〈�̇λ · �f (x, �λ)〉+]2

= �̇λ · �∇λ

∫ L

0
Uo(x, �λ)ρo(x, �λ)dx + 1

β
�̇λ · �∇λ ln Z−

− 1

βD∗ Z−(�λ)Z+(�λ)〈[�̇λ · �f (x, �λ)]2〉+ + 1

βD∗

(
1 − D

D∗

)
Z−(�λ)Z+(�λ)[〈�̇λ · �f (x, �λ)〉+]2. (C4)

Then, the heat absorbed by the particle in a temporal period is

Q =
∫ t0+τ

t0

Q̇dt

=
∮

I
d�λ · �∇λ

{∫ L

0
Uo(x, �λ)ρo(x, �λ)dx + 1

β
ln Z−

}
− 1

βD∗

∫ t0+τ

t0

dt

{
Z−(�λ)Z+(�λ)〈[�̇λ · �f (x, �λ)]2〉+ −

(
1 − D

D∗

)
Z−(�λ)Z+(�λ)[〈�̇λ · �f (x, �λ)〉+]2

}
= 0 − 1

βD∗

∫ t0+τ

t0

dtZ−(�λ)Z+(�λ)

{
〈[�̇λ · �f (x, �λ)]2〉+ −

(
1 − D

D∗

)
[〈�̇λ · �f (x, �λ)〉+]2

}
= −

∫ t0+τ

t0

dt λ̇αλ̇β

1

βD∗ Z−(�λ)Z+(�λ)

{
〈 fα (x, �λ) fβ (x, �λ)〉+ −

(
1 − D

D∗

)
〈 fα (x, �λ)〉+〈 fβ (x, �λ)〉+

}
≡ −

∫ t0+τ

t0

dt λ̇αλ̇βGαβ (�λ), (C5)

where we have used the condition that the driving trajectory in the parametric space is a loop.

3. The positive semidefiniteness of Gαβ(�λ)

In the following, we present a proof that Gαβ (�λ) is a positive semidefinite matrix. First, Gαβ (�λ) = Gβα (�λ) by definition.
Second, for any N-dimensional vector �v = (v1, v2, . . . , vN ), we have

�vG(�λ)�vT = vαGαβ (�λ)vβ

= vα

1

βD∗ Z−(�λ)Z+(�λ)

{
〈 fα (x, �λ) fβ (x, �λ)〉+ −

(
1 − D

D∗

)
〈 fα (x, �λ)〉+〈 fβ (x, �λ)〉+

}
vβ

= 1

βD∗ Z−(�λ)Z+(�λ)

{
〈[�v · �f (x, �λ)]2〉+ −

(
1 − D

D∗

)
[〈�v · �f (x, �λ)〉+]2

}
� 1

βD∗ Z−(�λ)Z+(�λ)

{
[〈�v · �f (x, �λ)〉+]2 −

(
1 − D

D∗

)
[〈�v · �f (x, �λ)〉+]2

}
= 1

βD∗ Z−(�λ)Z+(�λ)

{
D

D∗ [〈�v · �f (x, �λ)〉+]2

}
�0, (C6)

where the inequality 〈[�v · �f (x, �λ)]2〉+ � [〈�v · �f (x, �λ)〉+]2 is obtained via the Cauchy-Schwarz inequality. Here, the inner product
of functions M and N is defined as

〈M, N〉 ≡ 〈MN〉+ =
∫ L

0 eβUo(x,�λ)MNdx∫ L
0 eβUo(x,�λ)dx

. (C7)

Therefore, Gαβ (�λ) is positive semidefinite and Q � 0.
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4. The lower bound of work cost

Using the Cauchy-Schwarz inequality, one derives the lower bound of work cost in a temporal period on given driving loop
as follows:

W = 	E − Q = 	E +
∫ t0+τ

t0

dt λ̇αλ̇βGαβ (�λ)

�	E + 1

τ

[∫ t0+τ

t0

dt
√

λ̇αλ̇βGαβ (�λ)

]2

= 	E + L2

τ
= 	E + D∗L2J̄s

(D∗ − D)�rev − D
∮

I d�λ · �j(�λ)
, (C8)

which turns out to be Eq. (19) when �j(�λ) = 0. We have used Eq. (8) in the last line of the above derivation. The equality in the

above expression is achieved when the driving dynamics satisfies
√

λ̇αλ̇βGαβ (�λ) = const. We do not consider the effect of the
driving dynamics on 	E , as the average value of this quantity over the initial moment taking from 0 to τ is a geometric quantity,

	E ≡ 1

τ

∫ τ

0
dt0[E (t0 + τ ) − E (t0)]

= 1

τ

[∫ τ

0
dt0ε

∗(t0)

][(
1 − D

D∗

)
�rev − D

D∗

∮
I

d�λ · �j(�λ)

]
= 1

βD∗τ

[∮
I

d�λ · Z−(�λ)Z+(�λ)〈 �f (x, �λ)〉+
][

�rev − D

D∗

∮
I

d�λ · 〈 �f (x, �λ)〉+
]
, (C9)

which is independent of the driving protocol for a given driving loop.

APPENDIX D: ILLUSTRATION DETAILS

1. Calculate the specific expression of the auxiliary potential

To obtain the expression of the auxiliary potential, according to Eq. (3), we need to calculate Z−(�λ), ρo(x, �λ) and �fo(x, �λ).
First, according to Eq. (21), Z−(�λ) is specifically obtained as

Z−(�λ) ≡
∫ L

0
e−βUo(x,�λ)dx = −αL

β

e−βλ1 − 1

λ1
− L − 2αL

β

e−βλ2 − e−βλ1

λ2 − λ1
+ αL

β

1 − e−βλ2

λ2
, (D1)

which further gives

∂Z−
∂λ1

= −αL

β

−βλ1e−βλ1 − e−βλ1 + 1

λ2
1

− L − 2αL

β

β(λ2 − λ1)e−βλ1 + e−βλ2 − e−βλ1

(λ2 − λ1)2
, (D2)

∂Z−
∂λ2

= L − 2αL

β

β(λ2 − λ1)e−βλ2 + e−βλ2 − e−βλ1

(λ2 − λ1)2
+ αL

β

βλ2e−βλ2 − 1 + e−βλ2

λ2
2

, (D3)

and

ρo(x, �λ) ≡ e−βUo(x,�λ)

Z−(�λ)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
Z−(�λ)

e−βλ1
x

αL , 0 � x � αL

1
Z−(�λ)

e−β[λ1
L−x−αL
L−2αL +λ2

x−αL
L−2αL ], αL < x � L − αL

1
Z−(�λ)

e−βλ2
L−x
αL , L − αL < x � L.

(D4)

For 0 < x � αL, the first and second components of �fo(x, �λ) are, respectively,

fo1(x, �λ) ≡
∫ x

0

∂ρo(x′, �λ)

∂λ1
dx′ = − 1

Z−(�λ)

1

βλ2
1

[
αL − (αL + βλ1x)e−βλ1

x
αL
]− 1

Z2−(�λ)

∂Z−
∂λ1

αL

βλ1

(
1 − e−βλ1

x
αL
)

(D5)

and

fo2(x, �λ) ≡
∫ x

0

∂ρo(x′, �λ)

∂λ2
dx′ = − 1

Z2−(�λ)

∂Z−
∂λ2

αL

βλ1

(
1 − e−βλ1

x
αL
)
. (D6)
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For αL < x � L − αL,

fo1(x, �λ) =
∫ αL

0

∂ρo(x, �λ)

∂λ1
dx +

∫ x

αL

∂ρo(x′, �λ)

∂λ1
dx′

= − 1

Z−(�λ)

αL

βλ2
1

[1 − (1 + βλ1)e−βλ1 ] − 1

Z2−(�λ)

∂Z−
∂λ1

αL

βλ1
(1 − e−βλ1 ) − β

1

Z−(�λ)

1

β2(λ1 − λ2)2
[1 + β(λ1 − λ2)]

× (2αL − L)e−βλ1 − β
1

Z−(�λ)

1

β2(λ1 − λ2)2
[L − 2αL − αLβ(λ1 − λ2) + β(λ1 − λ2)(L − x)]e−β( L−x−αL

L−2αL λ1+ x−αL
L−2αL λ2 )

− 1

Z2−(�λ)

∂Z−
∂λ1

L − 2αL

β(λ1 − λ2)

[
e−β

λ1L−(λ1−λ2 )x−(λ1+λ2 )αL
L−2αL − e−βλ1

]
, (D7)

fo2(x, �λ) =
∫ αL

0

∂ρo(x, �λ)

∂λ2
dx +

∫ x

αL

∂ρo(x′, �λ)

∂λ2
dx′

= − 1

Z2−(�λ)

∂Z−
∂λ2

αL

βλ1
(1 − e−βλ1 )

− β

Z−(�λ)

1

β2(λ1 − λ2)2

{
(L − 2αL)e−βλ1 − [L − 2αL + αLβ(λ1 − λ2) − β(λ1 − λ2)x]e−β( L−αL−x

L−2αL λ1+ x−αL
L−2αL λ2 )}

− 1

Z2−(�λ)

∂Z−
∂λ2

L − 2αL

β(λ1 − λ2)

[
e−β

λ1L−(λ1−λ2 )x−(λ1+λ2 )αL
L−2αL − e−βλ1

]
. (D8)

For L − αL < x � L,

fo1(x, �λ) =
∫ αL

0

∂ρo(x, �λ)

∂λ1
dx +

∫ L−αL

αL

∂ρo(x, �λ)

∂λ1
dx +

∫ x

L−αL

∂ρo(x′, �λ)

∂λ1
dx′

= − 1

Z−(�λ)

αL

βλ2
1

[
1 − (1 + βλ1)e−βλ1

]− 1

Z2−(�λ)

∂Z−
∂λ1

αL

βλ1
(1 − e−βλ1 )

− β
1

Z−(�λ)

1

β2(λ1 − λ2)2

{
[1 + β(λ1 − λ2)](2αL − L)e−βλ1 + (L − 2αL)e−βλ2

}
− 1

Z2−(�λ)

∂Z−
∂λ1

L − 2αL

β(λ1 − λ2)
(e−βλ2 − e−βλ1 ) − 1

Z2−(�λ)

∂Z−
∂λ1

αL

βλ2

(
e−βλ2

L−x
αL − e−βλ2

)
, (D9)

fo2(x, �λ) =
∫ αL

0

∂ρo(x, �λ)

∂λ2
dx +

∫ L−αL

αL

∂ρo(x, �λ)

∂λ2
dx +

∫ x

L−αL

∂ρo(x′, �λ)

∂λ2
dx′

= − 1

Z2−(�λ)

∂Z−
∂λ2

αL

βλ1
(1 − e−βλ1 ) − β

Z−(�λ)

1

β2(λ1 − λ2)2
{(L − 2αL)e−βλ1 − (L − 2αL)[1 − β(λ1 − λ2)]e−βλ2}

− 1

Z2−(�λ)

∂Z−
∂λ2

L − 2αL

β(λ1 − λ2)
(e−βλ2 − e−βλ1 ) − β

1

Z−(�λ)

1

β2λ2
2

{
[αL + (L − x)βλ2]e−βλ2

L−x
αL − αL(1 + βλ2)e−βλ2

}
− 1

Z2−(�λ)

∂Z−
∂λ2

αL

βλ2

(
e−βλ2

L−x
αL − e−βλ2

)
. (D10)

The expression of U ∗
a (x, �λ, �̇λ) is consistently obtained by integrating ∂xU ∗

a (x, �λ, �̇λ) = β−1D∗−1ρ−1
o (x, �λ)�̇λ · [ �fo(x, �λ) + �j(�λ)],

with given expression of �j(�λ).

2. Determine the parameters of the sawtooth potential

The values of (∂λ2C1 − ∂λ1C2) on the parametric space and
�rev as a function of α are shown in Fig. 9.

3. Illustration of steady periodic evolution

It is demonstrated by simulations that in the slow-
driving regime, the analytical probability density ρs(x, t ) =
ρo(x, �λ) + �̇λ · �ψ (x, �λ) is consistent with the reduced distri-

bution of the Brownian particles when they enter the steady
periodic state. Simulate the evolution of the particles with
Eq. (24), where Uo is expressed as Eq. (21) and �j(�λ) = 0.
The driving loop is βλ1 = βR cos(2π f (s) + θ0) and βλ2 =
βR sin(2π f (s) + θ0), where s ≡ t/τ , θ0 = π/6 and βR =
7. Beginning with a uniform distribution on x ∈ [0, L], the
particles enter the steady state after several driving periods,
i.e., their reduced probability distribution on [0, L] is pe-
riodic. Figures 10(a) and 10(b) show the evolution of the
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FIG. 9. (a) The value of (∂λ2C1 − ∂λ1C2) on the parametric space. (b) �rev as a function of α where the driving loop is a circle with βR = 7.

steady-state distribution under the protocol along paths II
and III defined in Sec. III, respectively. The normalized his-
tograms in the upper panels of Figs. 10(a) and 10(b) represent
the actual distributions ρ(x, t )	x at different times and those

in the lower panels represent the corresponding reduced dis-
tributions ρs(x, t )	x ≡ ∑

n∈Z ρ(x + nL, t )	x. The analytical
predictions (red lines in the lower panels) coincide well with
the simulation results.

FIG. 10. Evolution of the steady-state distribution. The histograms in each subfigure’s upper and lower panels represent actual and reduced
distributions, respectively. The red solid lines are analytical predictions. (a) The distributions under the protocol along path II. (b) The
distributions under the protocol along path III. The parameters in the simulations are τ = 20D∗−1L2, D/D∗ = 2, β = L = D∗ = 1, the particle
number N = 105, and the time step 	t = 10−4D∗−1L2. The width of the histogram bars is 	x = 10−2L. The initial distributions at t = 0 are
uniform distributions on x ∈ [0, L].
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FIG. 11. Different driving protocols along the same loop. (a) A
simple protocol expressed as trigonometric functions. (b) The opti-
mal protocol.

4. Continuous limit of the heat current used in simulations

In the limit of 	t → 0, the ensemble-averaged heat current
given by Eq. (25) becomes

Q̇ = 〈q̇〉 = lim
	t→0

〈
	q

	t

〉
= lim

	t→0

〈
U ∗(x + 	x, t + 	t ) − U ∗(x, t + 	t )

	x

	x

	t

〉
=
〈
∂U ∗(x, t )

∂x
ẋ

〉
=
∫

ρ(x, t )
∂U ∗(x, t )

∂x

J (x, t )

ρ(x, t )
dx

=U ∗(x, t )J (x, t )
∣∣+∞
−∞ −

∫
U ∗(x, t )

∂J (x, t )

∂x
dx

=
∫

U ∗(x, t )
∂ρ(x, t )

∂t
dx, (D11)

where 〈· · · 〉 represents the average over different particle tra-
jectories and we have used the natural boundary condition that
the physical current J (x, t ) vanishes at infinity. This is exactly
the same with the definition of continuous heat current (16)
we used in the theoretical derivations.

5. Determine the optimal driving protocol

The optimal protocol �λ(t ) associated with the driving loop
βλ1 = βR cos(2π f (s) + θ0) and βλ2 = βR sin(2π f (s) + θ0)
can be numerically obtained from the equation

	s =
√

	λα	λβGαβ (�λ)

L ≡ 	l, (D12)

where s ≡ t/τ . Since the thermodynamic length L =∫ τ

0 dt
√

λ̇αλ̇βGαβ (�λ) is independent of the protocol [66,67],

we first calculate the value of L and generate a series of �λ,
namely, {�λ(i)}, at s = 0,	, 2	, . . . , i	, . . . , n	 ≡ 1 with a
simple driving protocol f (s) = s [shown in Fig. 11(a)]. Here
	 is a small positive interval, n ∈ Z and 0 � i � n. Then we
calculate the value of 	l ( j) from �λ( j−1) to �λ( j), which gives the
optimal variation of s denoted by 	s( j)

op through Eq. (D12).
Combining the series {�λ(i)} and {0, s(i)

op = ∑i
j=1 	s( j)

op }, one
obtains the optimal driving protocol illustrated in Fig. 11(b).

APPENDIX E: DETAILS FOR PRACTICAL
CONSIDERATION

1. The flashing ratchet

The flashing ratchet is noncontinuous in time, as Us(x, t ) =
g(t )V (x), with

V (x) =
{

Vmax
x

xcL , 0 � x < xcL

Vmax
L−x

L−xcL , xcL � x < L,

g(t ) =
{

1, 0 � t < rτ

A, rτ � t < τ.
(E1)

The parameters of Us(x, t ) are set to be the same as those
in Fig. 2 of Ref. [30]: xc = 0.7, βVmax = 100, r = 0.25, and
A = −0.5.

2. The average extra power for three ratchets in simulations

The average power of extra work is defined as Pex ≡ Wex/τ ,
where Wex = W − 	E is the extra work in a period τ . For
continuous ratchets U ∗(x, t ) and Uo(x, t ), the energetic quan-
tities in simulations are consistently obtained as Eqs. (25) and
(26). The input work to the particles when using Us(x, t ) is
obtained by the variation of the internal energy when g(t )
undergoes a jump, that is,

Wjump = 〈Us(x, t+
jump)〉jump − 〈Us(x, t−

jump)〉jump, (E2)

where tjump = rτ, τ , and 〈· · · 〉jump is the ensemble average
under the distribution at t = tjump. There is no input work
when g(t ) remains constant.

The data shown in Fig. 7(a) represent the total power re-
quired for simultaneously driving two different particles. To
achieve minimal total extra work on a given driving loop,
according to Eqs. (17)–(20), the optimal driving protocol for

U ∗(x, t ) ensures that
√

λ̇αλ̇β[G(1)
αβ (�λ) + G(2)

αβ (�λ)] remains con-

stant, where G(1)
αβ (�λ) is the matrix for D/D∗ = 1/2 and G(2)

αβ (�λ)
for D/D∗ = 2. In addition, the data in Fig. 7(a) is obtained
in the regime τ̃ ∈ [1, 80] for U ∗(x, t ), τ̃ ∈ [0.22, 1.25] for
Uo(x, t ), and τ̃ ∈ [0.043, 0.0651] for Us(x, t ).
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