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Generalized Langevin subdiffusion in channels: The bath always wins
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We consider subdiffusive motion, modeled by the generalized Langevin equation in an equilibrium setting, of
tracer particles in channels of indefinite length in the x direction: the channels of varying width and the channels
with sinusoidally meandering midline. The subdiffusion in the x direction is not affected by constraints put by
the channel. This is especially astonishing for meandering channels whose centerline might be quite long. The
same behavior is seen in a holonomic model of a bead on a sinusoidal and meandering wire, where some analytic
insights are possible.
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I. INTRODUCTION

The generalized Langevin equation (GLE) belongs to the
basic approaches for modeling anomalous, in particular, sub-
diffusive transport processes in complex media [1,2]. The
equation can in principle be derived from the underlying
Hamiltonian dynamics of a complex system [3] (see, e.g.,
[4,5] for modern developments). It allows for a clear physical
interpretation focused on the trajectories of individual parti-
cles’ motion, and is a valuable tool in physics of polymers and
living systems (e.g., at the subcellular scales) [6–9], giving
their description at least on the phenomenological level (see
[10,11] for reviews). The approach based on the GLE with
a power-law memory kernel was applied for modeling sub-
diffusive intramolecular motion (see, e.g., [12,13]), and such
equations should be kept in mind as a candidate for possible
explanations of anomalous diffusion of tracers in biological
fluids [14]. The GLEs with power-law memory kernels have
many unusual and counterintuitive properties.

Considering the case of a GLE with a power-law memory
kernel at equilibrium conditions (viscoelastic subdiffusion),
Goychuk [15] revealed the independence of the asymptotic
transport regime of the presence of periodic potential in one
dimension. However, the one-dimensional structure does not
allow for investigation of the role of boundary conditions and
other constraints which may be crucial in many physical and
biophysical situations. The only more or less investigated case
corresponds to confined geometries (see, e.g., [16]).

In our previous work [17] we considered a homoge-
nization problem for a subdiffusion, as described by the
GLE in an equilibrium setting, in a two-dimensional array
of solid obstacles. The main result of this work is that if
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the infinite motion in the system is possible, the long-time
(homogenized) behavior of the subdiffusion in such a system
is the same as in a homogeneous medium without obstacles:
not only the exponent but also the prefactor in the mean-
squared displacement (MSD) stay the same as they were
without obstacles. This finding is in stark contrast to what
is observed in diffusion, where the diffusion coefficient is
a monotonically decaying function of the packing fraction
of the obstacles (see, e.g., [18]). In this work we discuss a
simpler, quasi-one-dimensional situation for which the coun-
terintuitive behavior of the subdiffusing tracers gets evident.
The cases we have in mind correspond to diffusion in channels
of indefinite length in the x direction and of different shapes:
the channels of varying cross section and the meandering
channels, motivated by a variety of biophysical situations.

The cases of channels of varying cross section include
the transmembrane ion channels whose shape is modulated
by surrounding proteins (see, e.g., [19]). Due to biological
ubiquity, such situations for normal diffusion are considered
in many works; Refs. [20,21] give a pick of recent examples.
The transmembrane channels often exhibit anomalous diffu-
sion but are typically short, which implies complex effects at
entrance and exit, which we wanted to exclude by considering
infinite ones.

A case of a long channel of varying width corresponds
to pathological changes in the neuronal axons [22]. The
axons give also examples for meandering channels, having
undulated, approximately sinusoidal shape. Diffusion of intra-
cellular metabolites inside axons is revealed by means of the
diffusion-weighted magnetic resonance imaging (DW-MR)
[23,24]. The conventional shape-dependent models operate
with averaged apparent diffusion coefficients; there is, how-
ever, experimental evidence [25–27] that normal diffusion can
only explain the short-time evolution of the DW-MR signal.
For longer times, its multiexponential relaxation corresponds
to an anomalous (subdiffusive) transport [28].
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Yet another example where the effects of boundaries can
play a crucial role corresponds to the brain’s extracellular
space (ECS) filled by a physiological fluid comprising liquid
solvent with a variety of macromolecular compounds. The
transport through the ECS is heavily affected by its tortuosity
but not completely understood even in the case of normal
diffusion [29,30]. Recent experiments at the level of single-
particle tracking and mesoscopic ensemble measurements hint
onto subdiffusive motion [31,32].

In all these biological situations, there is a strong evi-
dence for anomalous diffusion but, so far, no clear hints on
a particular model of it. When discussing a particular model
as a candidate for explanation of experimental findings, one
should be aware of its properties [1,11]: The researcher should
keep in mind that the ones of subdiffusion (as described by
GLEs) in channels and meshes may be quite peculiar.

II. TRANSPORT IN FINITE-WIDTH CHANNELS

We start our discussion by considering the situation for a
subdiffusion (as described by a GLE) in a two-dimensional
channel of indefinite length in the x direction, bounded by
the walls given by the two functions yu = fu(x) and yl =
fl (x) where the subscripts u and l stand for “upper” and
“lower,” i.e., a quasi-one-dimensional situation. We consider
two paradigmatic cases: the “lakes and straits” situation of
a symmetric channel of width periodically varying from its
minimum value W to the maximal value W + A (with A being
the amplitude of modulation) with period L, and a case of
a meandering channel with sinusoidal midline (typical width
W , amplitude of meandering A, period L). The corresponding
channels are shown in the upper panels of Figs. 1 and 2. For
normal diffusion, the first situation is well investigated, and
can be described by the Fick-Jacobs approach [33–36], and
the second one is considered in [37,38]. For our case of sub-
diffusive motion, the second situation is of an utmost interest,
stressing the difference in behavior of normal and anomalous
diffusion. Special interest lies in the fact that the limiting case
of a very narrow channel can be reduced to a one-dimensional
situation of a bead diffusing on a sinusoidal wire, for which
case the effective GLE in one dimension (1D) can be put down
and investigated, which will be done in Sec. III.

The motion of the particle is described by the generalized
Langevin equation in two dimensions in an equilibrium setting
and with the isotropic noise,

Mẍ(t ) +
∫ t

0
dt ′K̂ (t − t ′)ẋ(t ′) = ζ(t ), (1)

with M being the mass of the tracer particle, K̂ (t ) the memory
kernel, and ζ(t ) being the noise term. The noise is assumed
to be Gaussian, and to have zero mean. The coordinate x =
(x, y)T and the noise (random force) ζ(t ) = (ζx(t ), ζy(t ))T are
two-dimensional vectors, and the memory kernel K̂ (t ) is a
matrix; in what follows we will consider the isotropic situation
where ζx and ζy are two independent statistical copies of the
Gaussian noise ζ (t ), and the matrix K̂ (t ) is diagonal, with
two equal entries K (t ). For equilibrium bath, the memory
kernel and the correlation function of the noise Cζ ,ζ (t ) =

(a)

(b)

FIG. 1. The situation of the variable-width channel: (a) The
straight channel, and three channels with the different width varia-
tions (the parameters are given in Appendix A). (b) The MSD for
these four cases and the asymptotic subdiffusive dependence.

〈ζ (t ′)ζ (t ′ + t )〉 fulfill the fluctuation-dissipation relation

kBT K (t ) = Cζ ,ζ (t ) (2)

for t � 0. For t � 0, the kernel K (t ) will be assumed to be a
continuous function of t for all cases except for the purely dif-
fusive one (with the white noise), when it tends to a δ function.
Depending on the exact form of the kernel, the equation can
describe a variety of diffusive, subdiffusive, and superdiffu-
sive motions. Here, we concentrate on subdiffusion, although
a diffusive case will be considered as well, for comparison.
For subdiffusion, the free motion of the tracer at longer times
corresponds to

〈x2(t )〉 = 〈y2(t )〉 = D∗tα,

with 0 < α < 1, and with D∗ being the prefactor connected
with the (sub)diffusion coefficient. The kernel K (t ) follows a
power law [17]

K (t ) = 1

kBT
Cζ ,ζ (t ) = 2kBT

D∗
sin πα

πα
t−α ≡ K0t−α.
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(a)

(b)

FIG. 2. Sinusoidally modulated channels: (a) The straight chan-
nel (V-I), the same as in Fig. 1(a), and three different shapes (the
parameters are given in Appendix A). (b) The MSD for these cases
and the asymptotic subdiffusive dependence. The parameters of the
bath and initial conditions are the same as in Fig. 1.

In simulations for subdiffusion performed for the present work
we use α = 1

2 , kBT = 1, and K0 = 1 resulting in D∗ = 4/π

in dimensionless units. The mass of the particle is set to
M = 0.1. The method of simulations is detailed in Ref. [17],
and is also shortly described in Appendix A.

Let us now pass to the quasi-1D situation. The walls of the
channels are impenetrable for the diffusing tracer particle and
correspond to a specular reflection of the tracer’s velocity on
encounter with the wall, putting a nonholonomic constraint on
the motion. The motion is readily modeled by a combination
of Markovian embedding, as used in [15], and the “back-
ground field trick” for implementing the constraints [17]. The
Markovian embedding method corresponds to modeling the
bath by a collection of Ornstein-Uhlenbeck processes, and
allows for a very economical implementation of the bath
needing only some tens of overdamped harmonic oscillators
driven by the white noise. We note that at difference to several
situations involving polymers, the constraints on the tracer’s
motion do not affect the bath.

Figure 1 presents the results of the simulations for the
channel of varying width. The results for the straight channel
allow to grasp the timescales: The transition from the ballistic
regime to the subdiffusive one takes place at a time tc slightly
below unit time; further we note that the “mean free path” of
the particle, i.e., the length λ ∼ 〈v2〉1/2tc, is of the order or
smaller than the minimal channel’s width, so that the motion
in ballistic regime is hardly affected by the channel’s actual
shape.

The simulation results show that the final (sub)diffusion
along the x axis is not affected by the corrugation of the walls.
This result could be guessed since the arrangement is very
close to a one-dimensional version of the obstacle problem
of Ref. [17] (large voids between the obstacles connected
by narrow channels), and, moreover, infinite motion in the
x direction is possible. One could argue the the motions in
the y direction somehow decouple, and convince oneself that
there is nothing astonishing and nothing to worry about. This
argument, however, does not work for the case of a sinusoidal
channel in the case of strong modulation, where the horizon
of the free motion in the x direction is much smaller than the
modulation period. These results are presented in Fig. 2.

One readily infers that while the shape of the channel plays
the role at intermediate times, from the time when the motion
leaves the ballistic and enters the subdiffusive regime to some
upper crossover time corresponding to the (sub)diffusion time
over a period of the channel (∼102 in our setup), at longer
times the behavior is universal, and is not affected by the chan-
nel’s shape. Here there is already something to be astonished
about: In spite of the strong modulation, the parameters of
subdiffusion at longer time stay the same as they were for a
straight channel.

Let us consider the the length of the midline of the channel
between 0 and x, which is given by

s(x) =
∫ x

0

√
1 + m2 cos2

(
2π

L
x′
)

dx′

= L
√

1 + m2

2π
E

(
2πx

L

∣∣∣ m2

m2 + 1

)
(3)

with E (u|z) being the elliptic integral of the second kind, Eq.
17.2.8 in Abramowitz and Stegun’s Handbook [39]), and with
m = 2πA/L. Therefore, for large values of A the total length
of the midline is considerably larger than the displacement in
the x direction.

For x 	 L the expression has a linear main asymptotics
s(x) = κ (m)x. To see this, we first note that the integrand
in Eq. (3) is strictly positive: The length of the midline is a
monotonically growing function of x, and for large x we can
approximate this length by interpolating between the values
of x being the multiples of the period length, taking x = Ln.
Since the integrand is essentially periodic with a shorter pe-
riod L/4, we can then write

s(x = nL) = 4n
∫ L/4

0

√
1 + m2 cos2

(
2π

L
x′
)

dx′,
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and change the integration variable to ξ = 2πx′
L :

s(x = Ln) = Ln
2

π

∫ π
2

0

√
1 + m2 cos2 ξdξ

= Ln
2

π

√
1 + m2

∫ π
2

0

√
1 − m2

1 + m2
sin2 ξdξ

= Ln
2

π

√
1 + m2E

(
m2

m2 + 1

)
,

where E (x) is a complete elliptic integral of the second kind
[39]. Therefore, the asymptotic proportionality coefficient be-
tween s and x [s = κ (m)x] is

κ (m) = 2

π

√
1 + m2E

(
m2

m2 + 1

)
.

We note that for m = 0 one has κ = 1 and for m → ∞ one
has 2

π

√
1 + m2E (1) � 2m

π
, so that for large amplitudes of

modulation s(x) � (4A/L)x.
If we consider an inclined straight channel at angle φ with

the x axis, the subdiffusion in the x direction will be slower
than the one along the midline since 〈x2(t )〉 = 〈s2(t )〉 cos2 φ,
i.e., the MSD 〈x2(t )〉 at a given time will be by a factor cos2 φ

smaller than in a horizontal channel. If we, however, bend
the channel periodically in a manner of a folding rule, the
MSD is the same as in a much shorter horizontal channel. This
means that the (sub)diffusion along the midline of the modu-
lated channel is essentially considerably faster than without
modulation.

We note that the effect is only present for long-range mem-
ory kernels, and is absent in the case when the asymptotic
behavior is diffusive: in this case the corresponding MSD in
the x direction for a meandering channel is smaller than for a
straight one. The simulation results for this case are presented
in Fig. 6 in Appendix B, where also the corresponding discus-
sion is given.

III. GENERALIZED LANGEVIN EQUATION
FOR A BEAD ON A WIRE

To discuss the effect in its whole purity, we consider a
situation with a holonomic constraint being a limiting case
of a very narrow channel, i.e., a bead on a wire. We start
from deriving the GLE for this case following the lines of the
standard derivation of the GLE for a particle in a Kac-Zwanzig
bath. The form of this equation is different from the standard
one, Eq. (1), used in Sec. II. Then we proceed to show that our
Markovian embedding procedure leads to exactly the same
equation. In Sec. III C we present the results of simulation for
the case of sinusoidal and meandering wires.

A. Hamiltonian system: Bath of harmonic oscillators

Let us consider a simple example, a system with holonomic
constraint, a bead with mass M on a wire whose shape is
given by a function Y = Y (X ), in a contact with the bath. The
coordinates and momenta of the tagged particle (tracer) are
denoted by capital letters (at difference to the previous text),
the ones of the bath particles by the small ones. Parametriza-
tion by the length of the wire s leads to the simplest form of the

kinetic energy of the bead which is coordinate independent. In
this case, an effective one-dimensional GLE can be derived.
One considers the bath of harmonic oscillators (Kac-Zwanzig
bath [3]), i.e., the Hamiltonian situation, and eliminates the
bath variables [3,40,41].

In more detail, we start from a simple Hamiltonian model
which is used for establishing the standard GLE (the Kac-
Zwanzig model, where the bath is considered as an ensemble
of harmonic oscillators thermalized at the beginning [3]), and
repeat the steps now using generalized coordinate for the test
particle.

The origin s = 0 coincides with X = 0, and the position
of the tracer is parametrized as R = (X (s),Y (s))T. The bath
is considered as a Galilean-invariant (Kupferman’s) bath [40]
of harmonic oscillators coupled bilinearly both to X and to Y
coordinates. The total Hamiltonian of the system reads as

H = P2

2M
+
∑

i

{
p2

i

2mi
+ 1

2
miω

2
i [(X (s) − xi )

2

+ [Y (s) − yi]
2]

}
,

with P being the generalized momentum conjugated to s. The
Hamiltonian equations of motion for our system read as

Ṗ = −∂H

∂s
= dX

ds

⎡⎣−
⎛⎝ N∑

j=1

k j

⎞⎠X (s) +
∑

j

k jx j

⎤⎦
+ dY

ds

⎡⎣−
⎛⎝ N∑

j=1

k j

⎞⎠Y (s) +
∑

j

k jy j

⎤⎦ (4)

with k j = mjω
2
j and

ṗ j,x = −∂H

∂x j
= −k jx j + k jX (s), (5)

ṗ j,y = −∂H

∂y j
= −k jy j + k jY (s). (6)

Taking into account that P = Mṡ and that pj = mjq̇ j and
dividing the both parts of Eqs. (5) and (6) by mj we obtain
the final equations of motion

Ms̈ = dX

ds

⎡⎣−
⎛⎝ N∑

j=1

k j

⎞⎠X (s) +
∑

j

k jx j

⎤⎦
+ dY

ds

⎡⎣−
⎛⎝ N∑

j=1

k j

⎞⎠Y (s) +
∑

j

k jy j

⎤⎦ (7)

and

q̈ j = −ω2
j q j + ω2

j Q(s), (8)

where, in the second equation, q j is either x j or y j and Q is X
or Y , respectively, and denote Q[s(t )] by Q(t ) for simplicity.

We note that the bath equations do not depend on the
choice of the generalized coordinates for the bead. We start
from Eq. (8). The general solution to this equation for given
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Q(t ) is

q j (t ) = q j (0) cos ω jt + q̇ j (0)
sin ω jt

ω j

+ ω j

∫ t

0
dt ′Q(t ′) sin ω j (t − t ′).

Performing integration by parts,∫ t

0
dt ′Q(t ′) sin ω j (t − t ′) = Q(t ′)

cos ω j (t − t ′)
ω j

∣∣∣∣t
0

−
∫ t

0
dt ′Q̇(t ′)

cos ω j (t − t ′)
ω j

,

we restore the explicit dependence on the initial position Q(0):

q j (t ) = [q j (0) − Q(0)] cos ω jt + q̇ j (0)
sin ω jt

ω j
+ Q(t )

−
∫ t

0
dt ′Q̇(t ′) cos ω j (t − t ′)

with Q̇(t ) = d
dt Q = dQ

ds ṡ. We now introduce this solution into
Eq. (7):

Ms̈ = dX

ds

⎡⎣−
⎛⎝ N∑

j=1

k j

⎞⎠X (t ) +
∑

j

k jX (t )

⎤⎦
− dX

ds

∑
j

k j

∫ t

0
dt ′Ẋ (t ′) cos ω j (t − t ′)

+ dX

ds

∑
j

k j

{
[x j (0) − X (0)] cos ω jt + ẋ j (0)

sin ω jt

ω j

}
+ similar terms containing y and Y .

The two terms in the first line cancel. This equation has
the structure of a Newton’s equation with the friction term
keeping the memory on the previous particle’s velocities:

Ms̈ = −dX

ds

∫ t

0
dt ′Ẋ (t ′)K (t − t ′)

− dY

ds

∫ t

0
dt ′Ẏ (t ′)K (t − t ′)

+ dX

ds
F1(t ) + dY

ds
F2(t ) (9)

with Ẋ (t ′) = dX
ds ṡ calculated for the position s at time t ′

and the same for Y . We can interpret it as a generalized
(non-Markovian) Langevin equation, if we say that the forces
F1(t ), F2(t ) are fluctuating so strongly that they can be as-
sumed random. Here K (t ) is the friction memory kernel

K (t ) =
∑

j

m jω
2
j cos ω jt

(note that K (t ) has a dimension of the elastic constant, namely,
[K (t )] = MT−2) and F (t ) is the “noise” force

F (t ) =
∑

j

m jω
2
j

[
[q j (0) − X (0)] cos ω jt + q̇ j (0)

sin ω jt

ω j

]
.

Now we fix X (0) and Y (0) and equilibrate the bath at temper-
ature T by connecting it to an additional external bath which
is then removed (a harmonic bath, being integrable, does not
equilibrate by itself).

We note that other kinds of initial equilibration procedures
can be assumed, leading to an initial “glitch” or “slip” [41] as
we will observe in our next variant of the model. In such an
equilibrated bath we get

〈q j (0) − Q(0)〉 = 0, 〈pj (0)〉 = 0

(with p j being either p j,x or p j,y) and, according to the
equipartition theorem,

mω2
j 〈[q j (0) − Q(0)]2〉 = kBT,

〈
p2

j (0)
〉 = kBT m,

while all second cross moments 〈q̃i p j〉 [with q̃ j = q j (0) −
Q(0)] for all i, j, and 〈q̃iq̃ j〉, 〈pi p j〉 with j = j vanish. Now
we evaluate the autocorrelation function of F (t ), say,

〈F1(t )F1(t ′)〉 = 〈F2(t )F2(t ′)〉

=
∑

j

m2
jω

4
j

[〈
q̃2

j (0)
〉
cos ω jt cos ω jt

′

+ 〈p2
j (0)

〉 sin ω jt sin ω jt ′

m2
jω

2
j

]

=
∑

j

m2
jω

4
j

[
kBT

mjω
2
j

cos ω jt cos ω jt
′

+ kBT

mjω
2
j

sin ω jt sin ω jt
′
]

=
∑

j

m jω
2
j kBT cos ω j (t − t ′) = kBT K (t − t ′)

(10)

and 〈F1(t )F2(t ′)〉 = 0. This is a corresponding fluctuation-
dissipation relation (of the second kind) for our non-
Markovian Langevin equation (9), which is, however, highly
nonlinear.

B. GLE for a bead on the wire from Markovian embedding

Let us now check whether our Markovian embedding
solves exactly the equation we have devised in the previous
section. In Markovian embedding we approximate the kernel
with the sum of exponentials

K �
N∑

n=0

ηn exp(−νnt ). (11)

Now, a system of overdamped oscillators (i.e., of Ornstein-
Uhlenbeck processes), each in its own bath, is coupled to the
bead which can only move in the direction of the wire. The
forces exerted by the bath oscillators on a bead are given by

fγ =
N∑

n=0

un,γ

(with u being the oscillators’ coordinates and γ numbers
the Cartesian components), like in Appendix A. The motion
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normal to the wire is prevented by normal forces of reaction,
and therefore the bath force with components fx and fy enters
the equation of motion of a bead as

Ms̈ =
(

dX

ds

)
fx +

(
dY

ds

)
fy, (12)

while the equations of motion of the oscillators read as

u̇n,γ = −ηnvγ − νnun,γ +
√

2νnηnkBT ξn,γ ,

where the projections of the bead’s velocity are

vx =
(

dX

ds

)
ṡ and vy =

(
dY

ds

)
ṡ.

Now we can formally integrate the equations of motion of the
bath particles assuming vγ (t ) known:

u = u(0)e−νt +
∫ t

0
[
√

2νηkBT ξ (t ′) − ηv(t )]e−ν(t−t ′ )dt ′

(the indices n and γ are omitted), take

fx =
N∑

n=0

un,1, fy =
N∑

n=0

un,2

and substitute the formal solutions for un,γ :

Ms̈ =
∑

n

{(
dX

ds

)
un(0)e−νnt

−
(

dX

ds

)∫ t

0

[
ηn

(
dX

ds

)
ṡ

]
e−νn (t−t ′ )dt ′

+
(

dX

ds

)∫ t

0
[
√

2νnηnkBT ξ (t ′)]e−νn(t−t ′ )dt ′
}

+ similar terms for Y.

Using Eq. (11), we recognize in the second term the memory
friction. The first term is a “slip” [41], which is zero on the
average, but nonzero in each particular realization. The “slip”
should be included into the noise term, and the sum of the first
and the third terms gives us the stationary noise with the corre-
lation function fulfilling the FDR provided 〈u2

n(0)〉 = ηnkBT .

C. Simulation results for sinusoidal and meandering channels

In our simulations, the wire’s shape is defined parametri-
cally by the following system of equations:

X = s − B sin

(
2

2πs

L

)
, (13)

Y = A sin

(
2πs

L

)
. (14)

In this case, the parameters A and L determine the ampli-
tude and period of the wire’s oscillations; the parameter B
determines an emergence of loops: for B = 0 the wire has si-
nusoidal shape Y = A sin 2πX

L . For B = (L/2π )/2 a periodic
set of points where the wire is vertical, dY/dX = ∞, emerges,
and for B > (L/2π )/2 the wire has meandering shape (the
projections of the wire onto the x axis are nonunique). The

FIG. 3. The MSD of a bead on a sinusoidal wire whose shape is
given by Y (X ) = A sin(2πX/L). The parameters of the bath are the
same as used in Figs. 1 and 2.

derivatives dX
ds and dY

ds for the coordinates given by Eqs. (13)
and (14) are

dX

ds
= 1 − 2B

2π

L
cos

(
2

2π

L
s

)
,

dY

ds
= A

2π

L
cos

(
2π

L
s

)
.

We start from thermalized u and V = ṡ (and s = 0) and
integrate

u̇n,X = −ηn

[
1 − 2B

2π

L
cos

(
2

2π

L
s

)]
V − νnun,X

+
√

2νnηnkBT ξn,X , (15)

u̇n,Y = −ηnA
2π

L
cos

(
2π

L
s

)
V − νnun,Y

+
√

2νnηnkBT ξn,Y , (16)

where the notation ṡ = V is introduced, and then

MV̇ =
[

1 − 2B
2π

L
cos

(
2

2π

L
s

)] N∑
n=0

un,X

+ A
2π

L
cos

(
2π

L
s

) N∑
n=0

un,Y . (17)

Integrating the obtained V and substituting s in Eq. (13), we
get the desired distribution of walker’s projections allowing
the determination of the MSD dependence on time.

1. Sinusoidal wire

Let us start from the case of a wire having sinusoidal shape
y = A sin 2πx

L . The results of simulations for a bead on the
wire in a contact with exactly the same bath as before, in
Sec. II, are shown in Fig. 3. For long times, this figure repro-
duces practically the same behavior as the one in the narrow
channel, Fig. 2. The shift of the curves (on double-logarithmic
scales) in the ballistic regime is due to the fact that now the
ballistic motion corresponds not to the free one, but to the
one on the inclined wire (so the corresponding velocity is not
〈v2〉1/2 but 〈v2

x 〉1/2).
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The corresponding result for an exponentially decaying
kernel is presented in Fig. 7 of Appendix B: in this case the
terminal diffusion coefficient is diminished exactly by a factor
κ2(m), as it should be. We note that in our parametrization for
this case (dX/ds)2 + (dY/ds)2 = 1, and see that for the case
of a white noise with K (t ) = γ δ(t ) the equation reduces to
a simple one for an underdamped particle in a generalized
coordinate s, Ms̈ = −γ ṡ + √

2γ kBT ξ . This is the terminal
situation for other integrable kernels leading to a Markovian
limit.

For subdiffusion, the kernel is not integrable, and the in-
tegrals are dominated by the long-time behavior of K . If a
motion of a bead on the inclined straight wire is considered,
dX/ds = cos φ and dY/ds = sin φ are constant, and the equa-
tion reduces to the one-dimensional GLE for the motion along
the wire, Ms̈(t ) + ∫ t

0 dt ′K̂ (t − t ′)ṡ(t ′) = ζ (t ), with ζ (t ) being
a single noise fulfilling Eq. (2). The projection on the x axis
then corresponds to a slower (sub)diffusion than along the
wire.

The situation with a sinusoidal wire is different. Assuming
that the dynamics at long times is described by the over-
damped limit of Eq. (9), i.e., that its left-hand side can be set to
zero, we can divide both parts of the equation by dX/ds > 0,
which is equivalent to introducing x as a generalized coordi-
nate. We get∫ t

0
dt ′Ẋ (t ′)K (t − t ′)+ dY

dX

∣∣∣∣
t

∫ t

0
dt ′
(

dY

dX

∣∣∣∣
t ′

)
Ẋ (t ′)K (t − t ′)

= ζx(t ) + dY

dX

∣∣∣∣
t

ζy(t ). (18)

In the second integral, the slowly decaying memory kernel
is weighted with the trajectory-dependent oscillating function
dY
dX |t dY

dX |t ′ , and the same weight appears in the correlation
function of the second noise. Then, a plausible explanation
of our numerical findings is that these oscillations effectively
lead to vanishing of the corresponding contributions under
integration for long-time lags, leaving us with the equation for
unperturbed motion in the x direction. However, the mathe-
matical proof of this vanishing is missing: We would be happy
if the problem attracts attention of mathematically oriented
researchers.

2. Meandering wire

The case of B > L/4π , with two examples of which are
depicted in Fig. 4 (M-II) and (M-III), is more sophisticated.
We note that in this case X can hardly be used as a general-
ized coordinate due to its nonuniqueness, and the discussion
around Eq. (18) gets inapplicable.

Simulations were carried out by direct numerical integra-
tion of Eqs. (15)–(17) with the time step dt = 10−3 and the
statistical ensemble of 104 realizations. In this set of simula-
tions, the initial thermalized velocities were aligned with the
tangent to a wire at the starting point of motion (at the origin
of coordinates).

Results of simulations corresponding to the shapes de-
picted in Fig. 4 in comparison with the same on a straight
line are presented in Fig. 5. One can see that asymptotic
universality of the MSD’s time dependence persists in this
case too, while the short-time behavior is different. For the

FIG. 4. Examples of meandering channels corresponding to
Eqs. (13) and (14) with L = 1 and A = 1/(2π ), B = 0 (M-I), A =
1/(2π ), B = 0.5/(2π ) (M-II), and A = B = 1/(2π ) (M-III).

case shown in Fig. 4 (M-II) the particle starts at a practically
vertical portion of the curve, and does not show any ballistic
motion at all in projection on the x axis (at short times the
particle moves only in vertical direction). The projection of
its position onto the x axis shows a “superaccelerated” motion
corresponding to leaving the vertical part of the curve and
acquiring a nonzero x coordinate. In the case of a significantly
meandering channel, Fig. 4 (M-III), the ballistic motion at
short time is present, and the oscillation of the MSD around
the behavior corresponding to the straight wire corresponds
to the change in the direction of motion along the x axis
when the coordinate s continuously grows. For longer times,
these effects die out due to averaging, leading to the universal
behavior which sets on after the particle has diffused over a
period of the curve.

IV. CONCLUSIONS

We simulated subdiffusive motion of particles, as described
by generalized Langevin equation with equilibrium bath, in
quasi-one-dimensional channels of two geometries: the chan-
nels of varying width, and meandering ones. In both cases,
the final regime of the transport along the x direction is not

FIG. 5. The MSD of a bead on meandering wires whose shape
is in Fig. 4. The parameters of the bath are the same as used in
Figs. 1–3.
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affected by modulation, i.e., is governed only by the properties
of the bath: “The bath always wins.” This is especially aston-
ishing for sinusoidal channels with finite horizon since the
length of the midline of the channel corresponding to the
displacement �x is considerably longer than �x. The effect
is associated with slowly decaying kernels, and is absent in
the diffusive motion. Going to the limit of narrow channels,
one could consider a holonomic situation (a bead on either
a sinusoidal or a meandering wire) for which the effective
GLE can be put down and simulated, showing a very similar
behavior. The situation might be of importance for subdif-
fusive motions of particles in constrained (but not confined)
geometries, if the constraint on the particle does not affect the
bath: Discussing experimental results on subdiffusive motion
in complex geometries one should keep in mind the existence
of situations when the geometry of constraints ceases to mat-
ter. These situations should be distinguished from cases of
polymers’ motion in a channel or their reptation, where the
molecule (being a part of the bath for a tagged particle whose
position is monitored) is affected by constraints.
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APPENDIX A: SIMULATION ALGORITHM
FOR FINITE-WIDTH CHANNELS

To simulate subdiffusion in two-dimensional channels with
impenetrable walls, the two-step algorithm with fictional
“background field” proposed in the work [17] was used.
It modifies the Euler-Maruyama explicit scheme applied to
the system representing the GLE via the bath of N two-
dimensional Ornstein-Uhlenbeck processes

ẋγ = vγ ,

Mv̇γ =
N∑

n=0

un,γ , (A1)

u̇n,γ = −ηnvγ − νnun,γ +
√

2νnηnkBT ξn,γ ,

where γ numbers the Cartesian components, ηn and νn are
parameters of the Markovian embedding (see [17] and below),
M is the particle’s mass, and T is the system’s temperature (in
simulations we use M = 0.1 and kBT = 1).

The choice of νn is νn = ν0b−n, and ηn = C(α, b)να
n , with

ν0 = 103 and C ≈ 1.2874, was like in [17]. We use the decade
scaling b = 10 with N = 16 components per coordinate. Our
simulation parameters are α = 0.5 (relatively deep in the
subdiffusion domain), M = 0.1, kBT = 1, and K0 = 1. The
initial conditions correspond to centered Gaussian distribu-
tions of v and un,α with 〈vα (0)2〉1/2 ≡ √

kBT/M = √
10, and

〈un,α (0)2〉1/2 = √
ηnKBT . The tracer starts at the origin of the

coordinate system.
The modification of Euler-Maruyama integrator is as fol-

lows: Each step of integration �t (it was taken 10−4 for t < 1
and 10−3 otherwise) corresponds to adding the corresponding
random Gaussian variables to the bath variables un,α , and
updating un,α , and the tracer’s velocity and position. This

initial scheme would approximate the trajectory of the tracer
by segments of straight lines between x(t ) = (x(t ), y(t )) and
x(t + �t ) = (x(t + �t ), y(t + �t )).

To account for specular reflections, each time step �t
is subdivided into smaller substeps dt = �t/10, which
correspond to subdivision of each such segment into 10 sub-
segments of the same length numbered by n = 1, . . . , 10,
since the tracer’s velocity on a segment is not updated.

The boundaries of the channel are defined by level lines
of a function G(x, y), which we call the “background field.”
For each point of this subdivision x(t + ndt ), we calculate the
value of the indicator function g(x),

g(x, y) = − 1
2 {sign[G(x, y) − l] + 1}, (A2)

which is equal to 0 within the channel and −1 outside of it.
Here l is the “height” of the level. The normal to the chan-
nel’s boundary is given by the normalized gradient A(xh) =
−∇G(xh)/|∇G(xh)| of the field G at the hitting point xh.
Staring from the beginning of the ith step at ti we calculate
approximate positions xn = x(ti ) + v(ti )ndt , n = 1, . . . , 10,
and the corresponding values of gn = g(xn). The time from
the beginning of the step to hitting the boundary is then
�t ′ = �t + dt

∑10
n=1 gn and the position at which the particle

hits the obstacle is

xh = x(ti ) + v(ti)

(
�t + dt

10∑
n=1

gn

)
.

Now we can update the position

x(ti+1) = xh + V

(
�t + dt

10∑
n=1

gn

)
,

where V is the velocity after reflection given by

V = v(ti ) + 2A|A · v(ti )|.
Now one can update the particle’s velocity

v(t j+1) = V +
∑

k

un(t j )�t,

and, finally, the bath variables

un(t j+1) = un(t j ) − [ηnv(t j+1) + νku(t j )]�t + σ�
√

�t,

with � being a Gaussian variable with zero mean and unit
variance, and σ = √

2νnηnkBT .
For different channel shapes we use the following back-

ground field functions:

G(x, y) = d sin

(
2πx

L

)
+ y2

for the case of the variable-width channel,

G(x, y) =
[

y − d sin

(
2πx

L

)]2

for (S-I) and

G(x, y) =
[

y − d sin

(
2πx

L

)]2

+ d

2

∣∣∣∣sin

(
2πx

L

)∣∣∣∣
for (S-II) to (S-IV), respectively. Here, the second term is
added to partly compensate the difference in the thickness
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TABLE I. List of parameters defining the channel’s shape.

Channel d L l

(V-I) 0 1
(V-II) 0.4 12 0.7
(V-III) 2 12 2.2
(V-IV) 4 12 4.2
(S-I) 1 6 0.25
(S-II) 0.75 12 0.75
(S-III) 2 12 2
(S-IV) 3 12 2.9

of the channel in the direction normal to its midline at
different x.

The parameters d and L, and the parameter l in Eq. (A2)
are given in Table I.

APPENDIX B: DIFFUSIVE CASE

The diffusion situation is mimicked by switching off all
bath oscillators except for the fastest one, now producing the
noise with exponentially decaying (i.e., integrable) correla-
tion function of the noise and the memory kernel K (t ) =
η exp(−νt ) with ν = ν0 and η = C(α, b)να

0 .
The results for the same channels as in Fig. 2 of the main

text are shown in Fig. 6 below, and the terminal behavior
corresponds indeed to a slower diffusion than in the straight
channel, i.e., to D < D(0) with D(0) being the diffusion coef-
ficient in the straight channel.

The value of D(0) can be obtained from the general ex-
pression for the MSD [Eq. (8) of Ref. [17]], with the function
H (t ) given by its Laplace transform H (s) [Eq. (4) of the same
work]. Since only the long-time asymptotic of the MSD is
needed, the function H (s) can be approximated in the leading
order in s for s → 0. The result is D(0) = kBT ν/η, and in

FIG. 6. The MSD in sinusoidally modulated channels in the dif-
fusive regime, as obtained by switching off all bath oscillators except
for the “fastest” one. Note the double-logarithmic scales.

FIG. 7. The MSD on a sinusoidally modulated wire in the diffu-
sive regime, as obtained by switching off all bath oscillators except
for the “fastest” one.

our case is equal to D(0) ≈ 25. The corresponding behavior
is indicated in the figure by a thin dotted line.

The slowdown of diffusion in meandering channels is due
to two factors: to the meandering of the centerline, and to the
variation of the channel’s width. The effect of width varia-
tion (leading to diffusion in presence of entropic barriers) is
well investigated (see, e.g., [42]), while the combination of
width modulation with curved midline was considered only
relatively recently [37]. Both effects lead to slowdown of
diffusion, but the expressions for the terminal diffusion co-
efficient are simple only for narrow channels, which is not the
case in our simulations.

The effect of meandering midline can be, however, consid-
ered in all its purity for a one-dimensional situation of a bead
on a wire, in which case D = κ−2(m)D(0) [with the parameter
κ (m) defined in the main text]. For normal diffusion, this case
indeed corresponds to a limit of narrow meandering channel
of a constant width, a so-called serpentine channel [37,38].

The simulations for the case of a bead on a wire corre-
sponding to the same parameters as in Fig. 3 of the main
text are presented in Fig. 7. This case corresponds to the
contribution of the length of the midline only. The wires con-
sidered correspond to centerlines of channels S-I to S-IV, and
to an additional wire with A = 1, L = 12 showing a slightly
stronger modulation than the centerline than S-II.

To stress the change of the terminal diffusion coefficient
due to modulation we compared the numerical results with the
ones obtained in calculations. The results of such comparison
are given in Table II. The table shows the corresponding
values of κ2(m) and the values of the reduced asymptotic
diffusion coefficient, i.e., of the ratio

D̃ = DA,L

D0
κ2(m) (B1)

with the values DA,L obtained by a linear fit 〈x2〉 = 2DA,Lt
of the data presented in Fig. 7 for 103 < t < 104. The table
shows that the corresponding ratio is unity within the statisti-
cal uncertainty.
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TABLE II. The reduced asymptotic diffusion coefficient,
Eq. (B1), for the bead-on-the wire model.

A L κ2(m) D̃

1 6 1.523 1.002
0.75 12 1.076 0.982
1 12 1.135 1.045
2 12 1.523 1.022
3 12 2.142 1.091

For comparison, we show in Table III the values of D̃ for
thick sinusoidal channels corresponding to the results shown

TABLE III. The reduced asymptotic diffusion coefficient for
“thick” channels with sinusoidal centerline.

Channel D̃

(S-I) 0.48
(S-II) 0.85
(S-III) 1.2
(S-IV) 0.63

in Fig. 6. These may differ from unity considerably, showing
that the meandering of the centerline might or might not be
the main source of change in diffusion coefficient.
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