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Exploiting physical processes for fast and energy-efficient computation bears great potential in the ad-
vancement of modern hardware components. This paper explores nonlinear charge tunneling in nanoparticle
networks, controlled by external voltages. The dynamics are described by a master equation, which expresses
the time-evolution of a distribution function over the set of charge occupation numbers. The driving force behind
this evolution is charge tunneling events among nanoparticles and their associated rates. We introduce two
mean-field approximations to this master equation. By parametrization of the distribution function using its first-
and second-order statistical moments, and a subsequent projection of the dynamics onto the resulting moment
manifold, one can deterministically calculate expected charges and currents. Unlike a kinetic Monte Carlo
approach, which extracts samples from the distribution function, this mean-field approach avoids any random
elements. A comparison of results between the mean-field approximation and an already available kinetic Monte
Carlo simulation demonstrates great accuracy. Our analysis also reveals that transitioning from a first-order to a
second-order approximation significantly enhances the accuracy. Furthermore, we demonstrate the applicability
of our approach to time-dependent simulations, using Eulerian time-integration schemes.
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I. INTRODUCTION

Disordered networks of Au nanoparticles [1], intercon-
nected by organic molecules, exploit physical processes for
computation. Each nanoparticle (NP), serving as a conductive
island, is separated from its nearest neighbors by an insulating
organic molecule. When electrons accumulate on a particu-
lar NP, they can tunnel through the insulator to an adjacent
NP if the potential difference between both NPs exceeds the
repelling force of the Coulomb energy [2,3]. This Coulomb
blockade phenomenon equips each NP-to-NP junction with
a nonlinear activation function, establishing a network of
nonlinear functions analogous to a software-based artificial
neural network (ANN). For an extensive experimental study
on NP assemblies and their charge transport properties, refer
to [4].

The network is surrounded by electrodes categorized as
input, output, or control electrodes. Input and output elec-
trodes correspond to the input and output layers of an ANN,
while applying voltages to the control electrodes allows us
to modify the internal landscape of NP potentials. Different
potential landscapes, which affect the evaluation of those non-
linear functions, result in variable charge tunneling dynamics
and, ultimately, in variable input-output relationships. Con-
sequently, one can tune the set of applied control electrode
voltages through genetic algorithms or backpropagation [1,5]
and seek configurations in which the system can accomplish a
given task.

The phase space of the system encompasses all possible
charge occupation numbers within the network. Its charge
tunneling dynamics are defined by the master equation, for-
mulated as a set of differential rate equations [6,7]. The
time evolution described by these equations can be solved

with a kinetic Monte Carlo (KMC) algorithm [3,6,8–10].
This approach efficiently reduces the infinite phase space to
a physically meaningful subset, despite its intrinsic stochas-
tic nature. Attempting to formulate an exact deterministic
solution for the master equation, one faces exponential
computational complexity arising from the size of phase
space. Consequently, exact solutions are practically limited
to very small systems. A strategy to formulate a deter-
ministic solution with manageable polynomial complexity
involves the application of mean-field approximation. The
mean-field approximations simplify our network of NPs by
replacing interactions to any NP with an average or ef-
fective interaction, significantly reducing the computational
complexity. In this context, a first-order mean-field approx-
imation for charge tunneling dynamics was introduced in
[11]. These ideas have also been used to solve the mas-
ter equation in socioeconomic population dynamics and
migration processes [12–15]. In addition, similar concepts
have also been used to describe triplet-triplet annihila-
tion in the phosphorescent emission layers of light-emitting
diodes [16].

In this work, we present a systematic approach that extends
previous mean-field approximations to higher orders. We
apply the mean-field approximation to the master equation de-
scribing single electronic tunneling dynamics. However, these
concepts should also be applicable to any kind of stochastic
processes where constituents hop between neighboring dis-
crete sites. Specifically, we explore the second-order method,
demonstrating its superior performance over the first-order
method while maintaining high efficiency. An illustrative step
towards analyzing time dependency and the investigation of
nonlinear input-output electrode relationships is undertaken.
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FIG. 1. A 4×4 nanoparticle network with four electrodes U0, U1,
U2, and U3. The electrodes are attached at the corners. The tunnel
junctions are depicted as capacitors and resistors in parallel.

II. THEORETICAL BACKGROUND

As we want to validate the mean-field algorithm in a con-
trolled and simple environment, the network is modeled as
a collection of N gold-NPs arranged in a grid lattice, some
of which are connected to electrodes (see Fig. 1). We are
aware that different network structures might give rise to more
functionality. However, the focus in this paper is the testing
of the algorithm. Please note that the mean-field approach, as
defined and applied in this work, can be directly transformed
to much more general cases.

The occupation number n ∈ Z represents the number of
excess electrons residing on a NP (island). This description
will suffice to build the phase space �. For N particles, the
phase space is thus

� = ZN . (1)

The state of the system is described by a state vector �n ∈ �

which contains occupation numbers for excess electrons on
each island. The network topology is encoded in a capacitance
matrix, linking nearest neighbors by their mutual capacitance.
The internal electrostatic energy can thus be calculated. Due
to their proximity, electrons can tunnel through junctions be-
tween nearest neighbors. The tunnel rates will be described
according to a zero-dimensional orthodox tunnel theory [17].
The tunnel rate � for an electron from one position to another
depends on the difference in Helmholtz free energy �F asso-
ciated with this tunnel process,

� = −�F

e2R

[
1 − exp

�F

kBT

]−1

. (2)

We restrict our model to single-electron tunneling. For
a more complete description of single-electron tunneling

applied to nanoparticle networks, we refer the reader to
Ref. [8] or [10].

It is important to mention that the free energy �F gov-
erning the underlying transition rate not only depends on
the population of the two involved islands, but also on the
complete state vector �n due to the network of capacitors.

We introduce a distribution function ρ over phase space �

which assigns a probability ρ(�n) to each possible system state
�n [7,11]. The tunnel rates describe the tunneling of electrons
between islands or electrodes and can be interpreted as the
transition rate from states �n to �m, denoted as ��n �m. Hence,
the rate for an electron to tunnel from island i to island j is
the transition rate from state �n to state �n − �ei + �e j , where the
latter is missing one electron at index i and has an additional
one at index j. �ei is the ith basis vector in �. If an electrode is
connected to island i, two more transition rates are possible:
For an electron tunneling towards the island, a transition from
state �n to state �n + �ei, the rate ��n �n+�ei is associated. For the re-
verse process, a minus sign must be taken. All other transition
rates are zero.

The dynamics of the distribution function are governed by
the following master equation:

∂t ρ(�n) =
∑
�m �=�n

[� �m �n ρ( �m) − ��n �m ρ(�n)]. (3)

The equilibrium distribution function is found when ∂t ρ(�n) =
0 ∀�n. Afterward, expectation values of quantities of interest
can be taken. From a nanoparticle, the electron can hop to an-
other nanoparticle or to an attached electrode (or vice versa).
This is captured by the following phase-space functions: The
current flowing from particle i to particle j,

Ii j (�n) = ��n �n+ �e j−�ei − ��n �n− �e j+�ei ; (4)

the current flowing towards particle i from its attached elec-
trode,

Iei(�n) = ��n �n+�ei − ��n �n−�ei ; (5)

and the total current flowing to particle i,

Ii(�n) =
∑
j �=i

I ji(�n) + Iei(�n). (6)

Furthermore, phase-space functions with opposite sign are
introduced, which are useful later,

I†
i j (�n) = ��n �n+ �e j−�ei + ��n �n− �e j+�ei , (7)

I†
ei(�n) = ��n �n+�ei + ��n �n−�ei , (8)

I†
i (�n) =

∑
j �=i

I†
ji(�n) + I†

ei(�n). (9)

For the subsequent equations, we use the convention that
Iei = 0 if there is no direct connection between island i and
an electrode.

Since storing and updating the entire distribution function
is intractable for large systems, we will introduce efficient
mean-field algorithms. For this purpose, equations of mo-
tion for the first and second moment are derived. With the
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definition of the first moment,

〈ni〉 =
∑

�n
ni ρ(�n), (10)

its time evolution can be expressed as

∂t 〈ni〉 =
∑

�n
ni ∂tρ(�n). (11)

Inserting Eq. (3) leads to

∂t 〈ni〉 =
∑

�n
ni

∑
�m �=�n

[� �m �n ρ( �m) − ��n �m ρ(�n)]. (12)

Expanding the sum to express the equation as an expectation
value, one obtains

∂t 〈ni〉 =
∑

�v
ρ(�v)

∑
�n �=�v

(ni − vi )��v �n. (13)

Since the majority of transition rates � is zero because of
single-electron tunneling, this expression simplifies to a very
descriptive form. For a given �v, ��v �n is nonzero if ∃ i, j with
i �= j and �n = �v ± �ei ∓ �e j for interparticle tunneling. If an
electrode is attached to island i, two further transition rates,
caused by the electrodes, can be nonzero: ��v �v±�ei �= 0. Further-
more, all rates where ni remains unchanged are not accounted
for in the summation above since (ni − vi ) = 0 in that case.
Equation (13) simplifies to

∂t 〈ni〉 =
∑
j �=i

〈I ji〉 + 〈Iei〉 (14)

= 〈Ii〉, (15)

using Eqs. (4) and (5). This equation just reflects the conser-
vation of electrons.

Analogously, the dynamics of higher-order moments are
derived. For the second-order moments 〈n2

i 〉, one can general-
ize Eq. (13) to

∂t
〈
n2

i

〉 =
∑

�v
ρ(�v)

∑
�n �=�v

(
n2

i − v2
i

)
��v �n. (16)

Again, when taking care about the possible transitions, in
analogy to the first-order method, one ends up, after a straight-
forward calculation, with

∂t
〈
n2

i

〉 =
∑
j �=i

(2〈niIji〉 + 〈I†
ji〉) + 2〈niIei〉 + 〈I†

ei〉. (17)

This can be abbreviated as

∂t
〈
n2

i

〉 = 〈2niIi〉 + 〈I†
i 〉. (18)

This procedure can be easily generalized to either mixed cor-
relation terms such as 〈nin j〉 or higher-order moments. Due
to the combination of simplicity and accuracy, observed after
incorporation of the 〈n2

i 〉 correlation, in this work we restrict
ourselves to the simplest extension beyond the first-order
case.

Taking the term I†
ji as an example, one might be tempted

to conclude that this term only depends on the populations of
islands i and j. However, this is not true since the free energy
�F , governing the underlying transition rates, depends on the
populations of all other NPs.

Note that all the equations so far are exact but intractable
since the expectation values still require knowledge of the full
exponentially complex distribution function. The mean-field
approximation will be introduced in the next section, which
allows one to express the expectation values just in terms of
the first and (possibly) second moment.

III. NUMERICAL METHODS

Strictly speaking, the calculation of, e.g., 〈Ii j〉 requires
knowledge of the full distribution ρ(�n, t ), which requires the
solution of the exact master equation (which we want to
avoid). Let us assume that we need to evaluate an expectation
value which explicitly depends on islands i and j such as 〈Ii j〉.
Then we can proceed as follows:

Mean-field approximation. Following [11], we neglect all
fluctuations of the electron occupation numbers nk where the
index k reflects all indices which fulfill k �= i and k �= j. The
{nk} are substituted by their average values {〈nk〉}. This is
a natural choice because the transition rates from NP i to
cluster j will naturally most strongly depend on the number
of electrons on both clusters, whereas one may hope that the
remaining clusters only act via their average electron occupa-
tion. Then the expectation value 〈Ii j〉 just requires an average
over the two-dimensional distribution ρ̃(ni, n j ).

Factorization. Furthermore, we neglect correlations among
adjacent clusters. Preliminary KMC simulations have shown
that these correlations are small. This step strongly sim-
plifies the realization of the next step. Thus, we write
ρ̃(ni, n j ) = ρ̃i(ni ) · ρ̃ j (n j ). To simplify the notation, we just
abbreviate each factor as ρ̃(n) with n ∈ {i, j}. When an is-
land is directly connected to an electrode, terms with just
one index also occur. For these terms, no factorization is
required.

Choice of ρ̃(n) based on knowledge of the first moment
[mean-field-1 (MF1)]. If only information about the first
moment is available, a natural choice, introduced in [11],
reads

ρ̃(n) =

⎧⎪⎨
⎪⎩

d for n = 
〈n〉�
1 − d for n = �〈n〉

0 otherwise,

(19)

with d = 〈n〉 − �〈n〉
. Notably, this distribution has a mean
〈n〉 and only assigns probabilities to the two occupation
numbers adjacent to its mean. Using those approximations,
Eq. (15) becomes closed for N particles. The variance reads
d − d2. This is the smallest possible variance of the electron
occupation number.

Numerical determination of ρ̃(n) based on additional in-
formation about the second moment [mean-field-2 (MF2)].
Also incorporating information about the second moment
allows for a more realistic approximation of ρ̃(n). Here,
two different approaches are presented. First, we define ρ̃(n)
for all n ∈ [−20, 20] and guarantee that ρ̃(n) has the cor-
rect first and second moments. However, the choice is not
unique. Therefore, we additionally formulate an optimization
problem that the distribution ρ̃ shall maximize the entropy
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S = −∑
n ρ̃(n) log ρ̃(n) under boundary conditions,

G0 =
∑

n

ρ̃(n) − 1 = 0,

G1 =
∑

n

nρ̃(n) − 〈n〉 = 0,

G2 =
∑

n

n2ρ̃(n) − 〈n2〉 = 0. (20)

The solution can be directly obtained with the use of Lagrange
parameters, yielding the discrete Gaussian distribution,

ρ̃(n) = 1

Z
e− (n−μ)2

2σ2 for n ∈ Z. (21)

The Lagrange multipliers Z , μ, and σ are determined numer-
ically so that all three boundary conditions (20) are fulfilled.

Analytical determination of ρ̃(n) based on additional
information about the second moment [quick mean-field-2
(QMF2)]. For two reasons, the implementation of MF2 is rel-
atively slow. First, the distribution function has to be evaluated
for a large phase space; second, a numerical determination
of the Lagrange parameters is required. Here we suggest a
method which remedies both problems. First, we restrict our-
selves to a phase-space size of 4, i.e., we have to determine
four probabilities p1, . . . , p4. Here the four indices reflect
subsequent natural numbers such that the two lower ones
(n1, n2) are below or equal to the current estimate 〈n〉 and the
other two (n3, n4) just above. Second, rather than maximizing
the standard Shannon entropy, we maximize

S̃ = 1 −
4∑

m=1

p2
m. (22)

Together with the boundary conditions,
4∑

m=1

pm = 1, (23)

4∑
m=1

nm pm = 〈n〉, (24)

4∑
m=1

n2
m pm = 〈n2〉, (25)

we obtain, after a straightforward calculation,

p1 = 1
4 d2 − 11

20 d + 1
4 (�n)2 + 3

20 ,

p2 = − 1
4 d2 + 3

20 d − 1
4 (�n)2 + 11

20 ,

p3 = − 1
4 d2 + 7

20 d − 1
4 (�n)2 + 9

20 ,

p4 = 1
4 d2 + 1

20 d + 1
4 (�n)2 − 3

20 . (26)

Thereby, d = 〈n〉 − �〈n〉
 and (�n)2 is the current estimate
of the variance. The distribution will be referred to as p2-4
distribution.

This specific choice of S̃ can be rationalized in two ways.
First, if 1 − pn is not too large, S̃ emerges from a Taylor
expansion of the Shannon entropy. Second, in analogy to the
Shannon entropy, S̃ has the property that the maximum under
the normalization condition

∑
m pm = 1 reads pm = const.

Indeed, we later show that the resulting distribution ρ̃(n)

hardly differs from using the Shannon entropy. We are aware
that Eq. (22) is identical to the nonextensive Tsallis entropy
for q = 2 [18,19]. However, as outlined above, our choice of
entropy is of a pure mathematical nature of a locally defined
variable, such as the number of excess electrons on a specific
NP. Thus, there is no relation to the question about the exten-
siveness of the system.

One technical issue needs to be discussed in more detail.
Formally, the pi can turn out to be negative. This would inval-
idate the interpretation as probabilities. Here, we restrict this
discussion to d � 1/2. The results for d > 1/2 follow from
symmetry arguments and the relevant results for d > 1/2 are
found in the Appendix A.

From the general solutions, one would obtain p3 < 0
if (�n)2 > V+ ≡ 9

5 + 7
5 d − d2 and p4 < 0 if (�n)2 < V− ≡

3
5 − 1

5 d − d2. One can easily convince oneself that upon in-
creasing or decreasing (�n)2 first, p3 or p4 become negative,
respectively, whereas p1 and p2 are still positive.

Now a simple strategy can be formulated. In the case
of (�n)2 > V+, one chooses p3 = 0. The remaining pi are
completely determined by the three boundary conditions. One
obtains

p1 = 1
3

[
d2 − 2d + (�n)2

]
, (27)

p2 = 1
2

[−d2 + d − (�n)2 + 2
]
, (28)

p4 = 1
6

[
d2 + d + (�n)2

]
. (29)

In the regime V+ � (�n)2 < 2 + d − d2, all pm are positive.
In practical terms, this means that the reduction to a four-
dimensional phase space is consistent as long as the variance
is smaller than 2 (in the worst case, d = 0). As shown for the
specific examples below, this is always fulfilled. Otherwise, it
would be straightforward to generalize these ideas to, e.g., a
six-dimensional phase space.

In the other limit (�n)2 < V−, one should choose p4 = 0.
Again, from consideration of the three boundary conditions,
one obtains

p1 = 1
2

[
d2 − d + (�n)2

]
, (30)

p2 = −d2 − (�n)2 + 1, (31)

p3 = 1
2

[
d2 + d + (�n)2

]
. (32)

All pi are non-negative as long as (�n)2 � d − d2. Since d −
d2 is the minimum variance which may occur (see also the
discussion of the MF1 algorithm), one can always find a well-
defined distribution in the limit of low variances.

This procedure results in similar probabilities as the dis-
crete Gaussian at minimal computational cost. A comparison
is shown in Fig. 2. Indeed, using the p2-4 distribution shows
little deviations from the complete as well as from the re-
stricted Gaussian distributions.

In summary, the dynamics are projected onto the moment
manifold, which has a much lower dimensionality. The re-
sulting dynamics of moments together with the respective
mean-field distribution serve as an approximation to the true
dynamics.
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FIG. 2. Different approximations to the full Gaussian distri-
bution with 〈n〉 = 4.43 and (�n)2 = 0.6 are shown. Beyond the
distributions used in MF2 and QMF2, we have also included the
distribution resulting from maximization of the Shannon entropy,
restricted to a four-dimensional phase space, denoted as restricted
Gaussian distribution.

We mention in passing that the time evolution of the corre-
lation of two adjacent NPs involves terms such as 〈niIj〉. From
the definition of I j , it follows that three clusters are involved at
the same time. Whereas for the QMF2 algorithm the tunneling
rates have to be evaluated for 16 different cases (ni, n j ), an
additional factor of 4 would emerge when taking into account
the cross correlations.

To solve for the equilibrium configuration ∂t 〈ni〉 =
∂t 〈n2

i 〉 = 0, one can integrate the differential equations and
obtain the full time-resolved dynamics. Since this is usually
not required, more efficient algorithms finding the equilibrium
point can be used. The ADAM algorithm [20], commonly
used in machine learning to efficiently follow gradients of a
cost function, can be applied and provides faster convergence
and runtime performance by damping oscillations.

IV. SIMULATION RESULTS

Simulation results of first- and second-order methods are
compared for systems of one or multiple nanoparticles. For
one-particle systems, the exact distribution function can be
obtained by solving the master equation as the reference.
The abilities of MF1, MF2, and QMF2 will be assessed
and compared. Since solving the master equation becomes
computationally too complex for larger systems, a kinetic
Monte Carlo method [8] (KMC) is used for generating sam-
ples of the distribution function, and thus reference data for
larger systems. This method generates samples �n( j) ∈ � for
j = 1, . . . , M of the distribution function ρ. The first- and
second-order moments of the distribution can then be obtained
by an estimate,

〈ni〉 = 1

M

M∑
j=1

n( j)
i , (33)

〈
n2

i

〉 = 1

M

M∑
j=1

(
n( j)

i

)2
. (34)

The currents involving electrodes are calculated by counting
the number of jumps, �n → �n ± �ei, for a given amount of time.

FIG. 3. A circuit diagram of the single-electron transistor. To the
left and right, the two connected electrodes (source and drain) and
the gate, realized by the capacitively coupled silicon substrate, are
shown. Tunnel junctions are indicated as capacitors and resistors in
parallel.

A. Single-electron transistor

The single-electron transistor is an important example of a
network architecture consisting of just one nanoparticle. It is
placed on a silicon substrate and connected to two electrodes
who act as an input and output. Furthermore, a gate voltage
can be applied to the silicon substrate, allowing for further
manipulation of the potential landscape. A circuit diagram is
shown in Fig. 3.

The calculated mean occupation number 〈n〉 and its pre-
dicted standard deviation �n are displayed in comparison to
the correct master equation solution in Fig. 4. The first-order
distribution [Eq. (19)] cannot account for high variances,
which naturally appear in the master equation. The second-
order method (MF2), using the full Gaussian distribution,
does surpass this problem and accurately reproduces the mean
and variance of the occupation number. The QMF2 method
using the p2-4 distribution performs similarly to the MF2
method, thus providing a much closer approximate to the
true distribution function and the ability to calculate more
exact expectation values (such as the output current) or even
evaluate the standard deviation of those.

B. Multiparticle systems

As a more relevant example, we consider square-shaped
networks of nanoparticles of different sizes l×l×1 for 2 �
l � 10, exploring system sizes of up to one-hundred nanopar-
ticles, which enter the range of experimentally realized
systems. Four electrodes are attached to the corners of the
network, providing a variety of input voltages, as well as a
gate voltage. The systems are equilibrated and currents at
electrode 3, being signified as the output-electrode, are calcu-
lated. An example of such a system is shown in Fig. 1. While
the system size is varied from 2×2×1 up to 10×10×1, the
electrode positions stay at the corners. As the MF2 method is
numerically quite expensive for large systems, the focus lies
on the QMF2 method.

Obtaining the equilibrium occupation numbers for the
KMC, MF1, and QMF2 algorithms and plotting them in their
spatial configuration (here for a 10×10 system) results in
Fig. 5.

1. Accuracy comparison

The main improvement of the second-order method lies
in the estimation of electrode currents, which are the main
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FIG. 4. For a nonzero gate voltage of 0.05 V, the first-order
method has problems replicating the mean occupation number and
its variance. The second-order methods still accurately reproduce
the mean and variance of the master equation. The shaded areas
represent the interval of ±�n predicted by the methods compared
to the master equation. It can be seen that for low input voltages, no
charge resides on the island, a nonlinear effect called the Coulomb
blockade (see [8]).

point of interest when mapping functionalities to input-output
electrode dependencies. Compared to the KMC reference
data, whose currents are sampled up to numerical precision
of 0.5%, requiring an average amount of 74×106 samples,
the first-order method estimates the currents with a rela-
tive error of (10.47 ± 0.5)% on average over all system
sizes, which is outperformed by the second-order method
with an error of (3.25 ± 0.5)%, shown in Table I. As the
estimation of mean occupation numbers behaves similarly
in MF1 and QMF2, the improved output current estimation

FIG. 5. For a random voltage configuration, the mean occupation
numbers are plotted, from left to right, for the KMC, first-order MF1,
and second-order QMF2 method. Its spatial variation is reflected by
the colour-code. Results of all methods lie in qualitative agreement.
E1 = −0.10 V, E2 = −0.23 V, E3 = 0.07 V, E4 = 0.05 V are set
and the gate voltage is G = 0.13 V.

arises through the additional incorporation of the second
moment.

2. Predicted means and variances

To evaluate the response to adiabatically changed voltage
configurations, 200 continously varied voltage configurations,
shown in Fig. 6, are applied to a 4×4 system, as used above.
The predicted quantities 〈ni〉, 〈n2

i 〉 and their deviations in dif-
ferent algorithms are depicted as the system is equilibrated for
each voltage configuration. See Fig. 7 for the island connected
to electrode U0. Naturally, the second-order method QMF2
more closely matches the variances. However, importantly, for
some configurations (e.g., around 130–140), the first moment
is also predicted much better, although for this specific island
in this regime the variance is close to is minimum value, i.e.,
seeing similar results for MF1 and QMF2. This exemplifies
the superiority of QMF2, even if one is only interested in the
first moments.

C. Time-dependent systems

The algorithms at hand not only allow for equilibrium-
state analysis, but can be easily used to calculate the
system’s response to time-dependent voltage configurations.
A Fourier analysis is conducted to quantify different types of

TABLE I. Relative errors in output current (±0.5%).

System size MF1 (%) QMF2 (%)

4 6.72 2.89
9 7.81 2.29
16 9.20 2.50
25 10.53 3.02
36 11.66 3.44
49 12.04 3.29
64 12.39 4.14
81 12.40 4.62
100 11.50 5.52
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FIG. 6. 200 voltage configurations for the four electrodes (U0

to U3) are taken continuously to show the response of the system.

nonlinearities characteristic to the system. The system in
question is a 3×3 system (analogous to the systems above)
with two input electrodes attached at the diagonals. Output
electrodes are attached to the remaining corners with a voltage
set to zero. Two cosine voltages are applied with amplitude
U0 = 0.1 V and different frequencies, ω1 = 2 GHz and ω2 =
7 GHz. A nonlinear frequency mixture is observed when the

FIG. 7. The mean and the interval of ±�n resulting from the
first- and second-order methods are shown for the island connected
to electrode U0. The KMC means are highlighted as red crosses, and
the red shaded area corresponds to their standard deviation. It can be
seen that the second-order method achieves a better approximation
than the first-order method, thus allowing for more precise estimation
of the expectation values.

FIG. 8. Subjecting the system to two different input signals at
different electrodes (diagonals), the output current not only includes
their frequencies but also a nonlinear response consisting of linear
combinations of those frequencies.

system is subjected to the two different oscillating input volt-
ages. The inputs couple and produce linear combinations of
their frequencies in the output spectrum, showing that the
system is, in practice, capable of multiplying two signals at
different electrodes; see Fig. 8. This behavior corresponds to
an AND logic gate. Further tuning of control voltages could
result in more complex nonlinear behavior (e.g., calculating
exponentials, acting as Boolean logic gates, or performing
high-dimensional input-output transformations).

V. CONCLUSION

To and enable an appropriate analysis of the system’s prop-
erties to ultimately exploit the inherent physical phenomena
for computation, the system’s dynamics have to be simulated.
A corresponding master equation governs the dynamics as a
probability flow in the discrete phase space. This is infeasible
to solve directly because the dimensionality of the phase space
grows exponentially with the number of particles. Consider-
ing just two possible occupation numbers 0 and 1 for 100
islands would already exceed the capabilities as 2100 configu-
rations result. Beyond the standard KMC approach, we aimed
to find methods to explore the dynamics deterministically.
Conceptually, this is analogous to expressing the solution of
a Langevin equation via a Fokker-Planck equation. For this
purpose, guided by [11], we have derived equations governing
the dynamics of the distribution’s moments. Finding appropri-
ate mean-field distributions by maximization of entropy and
substituting the true distribution led to a class of mean-field al-
gorithms. Its first- and second-order methods were presented.
The incorporation of higher-order moments or information
about covariances could further improve the accuracy, albeit
with the disadvantage of longer simulation times. Already
when transitioning from first to second order, a great improve-
ment of accuracy is observed, enabling sufficient analysis of
the system’s properties.
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We remind the reader that the Coulomb blockade of each
nanoparticle is essential as it makes the system a concate-
nation of nonlinear switches which create its ability to map
from inputs to outputs nonlinearly with rich and reconfig-
urable dynamics. These effects can easily be reproduced with
the presented algorithms. Furthermore, input-output relation-
ships can be computed, be it adiabatic or time dependent.
Time-dependent investigations, which by simple Eulerian in-
tegration are easily obtained, were performed to show that the
system nonlinearly couples the inputs of different electrodes,
which is a prerequisite of evolving versatile functionalities.

Further investigations are needed to understand the ef-
fects of covariance between occupation numbers, which in
the aforementioned algorithms was neglected. A further in-
crease in accuracy could be expected at the cost of a longer
runtime. The covariances could be key to understanding the
systems’ behavior for very low input voltages, for which
all current algorithms have difficulty. Also, a C++ accel-
erated implementation would allow for quicker and more
effective research. Using frameworks such as TENSORFLOW

or JAX, an autodifferentiable implementation of the algorithm
could be created to allow for identification of appropriate
voltage configurations for difficult tasks, as backpropagation
could be used and genetic algorithms become inefficient in
high-dimensional spaces. It could be attempted to evolve the

system into classifiers or perform regression problems, as
it is commonly done to benchmark algorithms and network
architectures in Deep Learning. The flexibility of the system
to change its input-output relationship could thus be assessed.
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APPENDIX: p2-4 DISTRIBUTION

For p1 = 0, the other probabilities amount to

p2 = 1
2 d2 − 3

2 d + 1
2 (�n)2 + 1, (A1)

p3 = −d2 + 2d − (�n)2, (A2)

p4 = 1
2 d2 − 1

2 d + 1
2 (�n)2. (A3)

Setting p2 = 0, the other probabilities amount to

p1 = 1
6

[
d2 − 3d + (�n)2 + 2

]
, (A4)

p3 = 1
2

[−d2 + d − (�n)2 + 2
]
, (A5)

p4 = 1
3

[
d2 + (�n)2 − 1

]
. (A6)
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