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Efficiency bounds for bipartite information-thermodynamic systems
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In this paper, we introduce an approach to derive a lower bound for the entropy production rate of a
subsystem by utilizing the Cauchy-Schwarz inequality. It extends to establishing comprehensive upper and
lower bounds for the efficiency of two subsystems. These bounds are applicable to a wide range of Markovian
stochastic processes, which enhances the accuracy in depicting the range of energy conversion efficiency between
subsystems. Empirical validation is conducted using a two-quantum-dot system model, which serves to confirm
the effectiveness of our inequality in refining the boundaries of efficiency.
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I. INTRODUCTION

Over the past two decades, the field of stochastic thermody-
namics has witnessed remarkable progress, greatly enriching
our comprehension of physical phenomena occurring in small
fluctuating systems. This framework has unveiled the inher-
ent connection between thermodynamic irreversibility and
nonequilibrium fluctuations.

Simultaneously, the study of stochastic thermodynamics
has facilitated explorations into the interrelationship between
information and thermodynamics as well as the thermo-
dynamic limits of fluctuating mesoscopic systems [1,2]. A
pivotal discovery in this domain is Landauer’s principle [3],
which quantifies the heat dissipation required for the era-
sure of information in the limit of slow quasistatic processes
[4]. This principle has been empirically validated in both
classical and quantum frameworks [5–7]. In the era of high-
speed computational demands, a noteworthy breakthrough has
been the investigation of the energy consumption associated
with finite-time information erasure [8–10]. Leveraging the
unique synergy between information and thermodynamics,
researchers have devised various heat engines, such as the
Szilard engine [11–13] and molecular engines [14–16]. These
advancements have opened avenues for the design of minia-
ture heat engines.

On the other hand, thermodynamic inequalities have estab-
lished foundational limits on entropy production and energy
usage [16–18], deepening our understanding of thermody-
namics and providing valuable insights into microsystems.
A multitude of studies have corroborated the Clausius state-
ment of the second law of thermodynamics by employing
thermodynamic inequalities. This consensus and the substan-
tial research interests in this field signify its importance and
widespread relevance. [16,19–31]. In the pursuit of estab-
lishing theoretical bounds, researchers have adopted various
methodologies. Notably, Jensen [15,32] and Cramér-Rao [33]
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bounds represent significant approaches in delineating these
constraints.

While existing research has provided valuable insights into
the boundaries of energy conversion and entropy production,
in this paper, we adopt an alternative framework. Specifically,
we leverage the Cauchy-Schwarz inequality [21,22] within the
stochastic thermodynamics context to derive a more refined
lower bound for the entropy production rate in subsystems.
This approach enables us to obtain a accurate approximation
to the energy conversion efficiency of these subsystems.

The structure of this paper is organized as follows: Sec. II
delves into the examination of stochastic thermodynamics in
bipartite systems, where the efficiency bounds for subsystems
are derived. Section III focuses on the double-quantum-dot
(DQD) system and derives expressions for the associated ther-
modynamic quantities by calculating the transition frequency.
By building upon the DQD model, Sec. IV presents our
findings in a detailed discussion. Finally, we conclude with
Sec. V, which summarizes the key insights gained from the
study.

II. STOCHASTIC THERMODYNAMICS OF BIPARTITE
SYSTEMS

A. Stochastic dynamics for a bipartite system

We adopt a conventional stochastic process model for a
bipartite system Z , which is described thoroughly and exten-
sively in Ref. [34]. The state of Z is described by z = (x, y),
with x and y representing the particle counts in subsystems X
and Y , respectively. The time-dependent probability of state z
p(z) evolves following the Markovian master equation:

ṗ(z) =
∑
z′,v

Jv
zz′ . (1)

Here, the flux Jv
zz′ = W v

zz′ p(z′) − W v
z′z p(z) hinges on the

time-independent transition rate W v
zz′ from state z′ to state z

induced by reservoir v, and the reverse transition rate W v
z′z. The

transition rate matrix, being nonnegative W v
zz′ � 0 for z �= z′,
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restricts the bipartite structure from allowing simultaneous
state changes in both subsystems. Consequently, the form of
W v

zz′ is constrained to

W v
zz′ =

⎧⎪⎨
⎪⎩

W v
xx′|y, (x �= x′, y = y′),

W v
yy′|x, (x = x′, y �= y′),

0, (otherwise),
(2)

where W v
xx′|y signifies the transition rate for subsystem X mov-

ing from state x′ to state x given that subsystem Y is in state y
and similarly W v

yy′|x for transitions within subsystem Y .

B. Information thermodynamics of the bipartite system

Due to the bipartite nature, the entropy production rate σ̇

of the bipartite system can be split into two components:

σ̇ = σ̇ X + σ̇Y . (3)

Herein, σ̇ X and σ̇Y represent the partial entropy production
rates resulting from transitions in X and Y , respectively, which
are expressed as

σ̇ X = 1

2

∑
x,x′,y,v

Jv
xx′|y ln

p(x′, y)W v
xx′|y

p(x, y)W v
x′x|y

, (4)

and

σ̇Y = 1

2

∑
y,y′,x,v

Jv
yy′ |x ln

p(y′, x)W v
yy′|x

p(y, x)W v
y′y|x

. (5)

The entropy flow toward the environment Ṡr is given by

Ṡr = ṠX
r + ṠY

r , (6)

where

ṠX
r = 1

2

∑
x,x′,y,v

Jv
xx′|y ln

W v
xx′|y

W v
x′x|y

(7)

and

ṠY
r = 1

2

∑
x,x′,y,v

Jv
yy′ |x ln

W v
yy′|x

W v
y′y|x

(8)

correspond to the energy flux from X and Y to their respective
environment. Here,

İX = 1

2

∑
x,x′,y,v

Jv
xx′|y ln

p(y | x)

p(y | x′)
(9)

and

İY = 1

2

∑
x,x′,y,v

Jv
yy′ |x ln

p(x | y)

p(x | y′)
(10)

quantify how information exchanges between the two subsys-
tems. When İX > 0, subsystem X is measuring Y ; vice versa,
İX < 0 signifies that X is consuming information to extract
energy.

From Eq. (4) to Eq. (10), it is evident that σ̇ X and σ̇Y

must be nonnegative, which can be split into three components

as [35]

σ̇ X = ṠX + Ṡr
X − İX � 0, (11)

σ̇Y = ṠY + Ṡr
Y − İY � 0. (12)

Upon reaching a steady state, the system settles into a
stationary probability distribution [ ṗ(x) = 0 and ṗ(y) = 0],
leading to ṠX (Y ) = 0. Thus, Eqs. (11) and (12) are simplified
as follows:

σ̇ X = ṠX
r − İX � 0, (13)

and

σ̇Y = Ṡr
Y − İY � 0. (14)

In scenarios where İX > 0, as Eq. (13), the information İX

is constrained by the entropy flow to the environment Ṡr
X ,

which represents the dissipation required for X to learn about
Y . Information then becomes a resource for energy extraction
or work execution via feedback on Y .

C. The thermodynamic efficiency of two subsystems

We now shift our focus to the nonequilibrium steady state,
in which each subsystem exchanges work and heat with its
respective external reservoirs. To articulate thermodynamic
quantities, it is assumed that the transition rates adhere to
the local detailed balance condition specified by the following
equation [33,36]:

ln
W v

xx′|y
W v

x′x|y
= β

(
εx′y − εxy + �v

xx′|y
)
, (15)

where β = (kBT )−1 is the inverse temperature by assuming
that all the reservoirs are at temperature T , εxy represents the
energy of state (x, y), and �

y
xx′ is the energy provided by

an external agent during the transition (x′, y) → (x, y). The
parameter �

y
xx′ will affect the heat flow. For the quantum dot

system interacting with an electron reservoir, −�
y
xx′ repre-

sents the chemical potential of the reservoir, which will be
further illustrated in Sec. III. The average rate of heat absorbed
by X from the environment is then determined by

Q̇X = −kBT

2

∑
x,x′,y,v

Jv
xx′|y ln

W v
xx′|y

W v
x′x|y

. (16)

The average rate of work done by the external agent on X
is identified as

Ẇ X = 1

2

∑
x,x′,y,v

Jv
xx′|y�

v
xx′|y. (17)

Subsequently, the average rate of change of internal energy,
interpreted as the work done by X on Y , is expressed as

Ẇ X→Y = 1

2

∑
x,x′,y,v

Jv
xx′|y(εxy − εx′y). (18)

The rates Ẇ Y , Q̇Y , and Ẇ Y →X are similarly defined for Y .
Note that each subsystem adheres to the first law of thermo-
dynamics that encapsulates local energy conservation [15]:

Ẇ X→Y = Ẇ X + Q̇X ,

Ẇ Y →X = Ẇ Y + Q̇Y . (19)
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Furthermore, at steady state, the powers and information flows
satisfy Ẇ X→Y + Ẇ Y →X = 0 and İX + İY = 0. On the basis
of Eqs. (19), (13), and (14), each subsystem conforms to the
second law of thermodynamics at the steady state:

σ̇ X = βẆ X − βẆ X→Y − İX � 0,

σ̇Y = βẆ Y − βẆ Y →X − İY � 0. (20)

Within this framework, each subsystem satisfies the first
and second laws. Without loss of generality, let Y be the
upstream subsystem, with the rate of work input to Y being
positive, denoted as Ẇ Y > 0. We will limit our discussion to
functional machines that produce work from subsystem X ,
i.e., Ẇ X � 0. They thus each have their own thermodynamic
efficiencies:

ηY := βẆ X→Y + İY

βẆ Y
,

ηX := −βẆ X

βẆ Y →X + İY
. (21)

As discussed in Ref. [15], the efficiency of subsystem Y ,
denoted as ηY , reflects how effectively Y transforms the input
work into free energy available for subsystem X . Conversely,
ηX measures the efficiency of X in converting this free en-
ergy back into output work. The product of these efficiencies
ηY ηX = −Ẇ X /Ẇ Y = ηT defines the overall thermodynamic
efficiency of the system. These efficiencies remain valid if
both ẆY and βẆY →X + İY are strictly positive. This ensures
that the conditions 0 � ηX � 1 and 0 � ηY � 1 are satisfied,
as derived from Eq. (20).

D. Bounds on the efficiencies of two subsystems

Equation (20) yields dual equalities:

σ̇ X − βẆ X = βẆ Y →X + İY = βẆ Y − σ̇Y . (22)

Applying any lower bounds σ̇ X
LB � σ̇ X and σ̇Y

LB � σ̇Y to
this equation facilitates the derivation of upper and lower
bounds on βẆ Y →X + İY :

σ̇ X
LB − βẆ X � βẆ Y →X + İY � βẆ Y − σ̇Y

LB. (23)

Dividing Eq. (23) by Ẇ Y results in upper and lower bounds
on the efficiency of Y :

ηT

(
1 + σ̇ X

LB

−βẆ X

)
� ηY � 1 − σ̇Y

LB

βẆ Y
. (24)

Conversely, multiplying the reciprocal of Eq. (23) by −Ẇ X

produces upper and lower bounds on the efficiency of X :

ηT

(
1 − σ̇Y

LB

βẆ Y

)−1

� ηX �
(

1 + σ̇ X
LB

−βẆ X

)−1

. (25)

In the context of Markovian dynamics, the recently derived
bound [35] provides tighter lower bounds of the partial en-
tropy production rates σ̇ X and σ̇Y for the Markovian dynamics

(also see Appendix):

σ̇ X �
(
ṠX

r

)2

�X
,

σ̇Y �
(
ṠY

r

)2

�Y
, (26)

where

�X = 1

2

∑
x,x′,y,v

(
ln

W v
xx′|y

W v
x′x|y

)2

W v
xx′|y p(x′, y), (27)

and

�Y = 1

2

∑
y,y′,x,v

(
ln

W v
yy′|x

W v
y′y|x

)2

W v
yy′|x p(y′, x). (28)

The inequalities specified in Eq. (26) clearly articulate the
dynamic behaviors within a system interacting with a thermal
bath. When bath v triggers a transition from state (x′, y) to
(x, y), according to Eq. (15), the energy absorbed by the
system during this process is represented by the equation

E (x, y) − E (x′, y) = −kBTv ln
W v

xx′ |y
W v

x′x|y
. Here, E (x, y) denotes the

energy of the state (x, y), kB is the Boltzmann constant, and
Tv represents the temperature of bath v. The transition prob-
ability coefficient W v

xx′|y p(x′, y) measures the rate at which
transitions between these states occur. Additionally, the factor
�X/Y can be understood as a dynamic activity factor, quanti-
fying the level of active transitions influenced by the energy
exchanges between the states and the bath. Inserting these
bounds into Eqs. (25) and (24) gives

ηT

[
1 +

(
ṠX

r

)2

−�XẆ X

]
� ηY � 1 −

(
ṠY

r

)2

�Y Ẇ Y
,

ηT

[
1 −

(
ṠY

r

)2

�Y Ẇ Y

]−1

� ηX �
[

1 +
(
ṠX

r

)2

−�XẆ X

]−1

. (29)

These two inequalities encapsulate a thorough formulation
of our principal results, providing a systematic method for
establishing efficiency boundaries for subsystems in relation
to their interactions with the environment and determining
minimal rates of entropy production. Then we define

ηY
L = ηT

[
1 +

(
ṠX

r

)2

−�XẆ X

]
,

ηY
U = 1 −

(
ṠY

r

)2

�Y Ẇ Y
,

ηX
L = ηT

[
1 −

(
ṠY

r

)2

�Y Ẇ Y

]−1

,

ηX
U =

[
1 +

(
ṠX

r

)2

−�XẆ X

]−1

.

As noted, Eq. (29) bears similarity to Eq. (18) from Ref. [15].
This is because we have employed the same procedure to
determine the bound on the efficiency of the two subsystems.
Specifically, this involves substituting the explicit expression
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FIG. 1. The schematic diagram of a double-quantum-dot system.

for the lower bound of the entropy production rate. How-
ever, owing to the differing system descriptions used, we
have employed distinct approaches to derive the lower bound
of the entropy production rate. In Ref. [15], the model is
characterized by the overdamped Langevin equation, and the
lower bound on the entropy production rate was derived us-
ing Jensen’s inequality as detailed in Ref. [32]. Our findings
are anchored within the framework of stochastic thermo-
dynamics. For establishing the lower bound of the entropy
production rate, we utilized the Cauchy-Schwarz inequal-
ity. Unlike Jensen’s inequality, which necessitates convexity
of the function, the Cauchy-Schwarz inequality imposes no
such restriction. This property renders the Cauchy-Schwarz
inequality more versatile within the context of stochastic
thermodynamics.

III. DQD SYSTEM

The DQD system consists of two quantum dots interacting
via a Coulomb repulsion U . The DQD (see Fig. 1) is modeled
by the Hamiltonian:

HS = εX d†
X dX + εY d†

Y dY + Ud†
X dX d†

Y dY , (30)

where d†
X (dX ) creates (annihilates) one electron on QD X with

energy εX , and d†
Y (dY ) creates (annihilates) one electron on

QD Y with energy εY . Here, QD X (Y ) is weakly coupled to
two Fermi reservoirs XL and XR (Y L and Y R). Thus, elec-
trons are transported through parallel interacting channels.
The Hamiltonian of the reservoirs is given by

HB =
∑

k

∑
α∈{X,Y }

∑
β∈{L,R}

εkαβc†
kαβ

ckαβ, (31)

where c†
kαβ

(ckαβ ) is the creation (annihilation) operator at en-
ergy level εkαβ in bath αβ. The interaction between the DQD
and the environment reads

HI =
∑

k

∑
α∈{X,Y }

∑
β∈{L,R}

× (tkαβdαc†
kαβ

+ t∗
kαβckαβd†

α ), (32)

where tkαβ denotes the coupling strength of the transi-
tion between QD α and reservoir αβ at energy level εkαβ .
We use x0 and y0(x1 and y1) to denote that X and Y

are in empty (filled) states, respectively. The energy eigen-
states of the DQD coincide with the localized Fock states
|(x0, y0)〉, |(x1, y0)〉, |(x0, y1)〉, and |(x1, y1)〉, where their re-
spective eigenvalues are 0, εX , εY , and εX + εY + U .

For a nondegenerate system weakly coupled to different
environmental modes, the dynamics of the populations satis-
fies Eq. (1). The transition rates follow from Fermi’s golden
rule and are given by

W v
x1x0|yi

= 
v
yi

f v
yi
,

W v
x0x1|yi

= 
v
yi

(
1 − f v

yi

)
,

W v
y1y0|xi

= 
v
xi

f v
xi
,

W v
y0y1|xi

= 
v
xi

(
1 − f v

xi

)
,

where f v
xi

= {1 + exp[βv (εY + iU − μv )]}−1 and f v
yi

= {1 +
exp[βv (εX + iU − μv )]}−1(i = 0, 1) are the Fermi distribu-
tion functions, βv = 1/(kBTv ), and 
v

yi
(
v

xi
) is a positive

constant that characterizes the height of the potential barrier
between X (Y ) and reservoir v. The potential barrier of Y ,
characterized by 
v

xi
, depends on the state of X , and vice versa.

Note that ln
W v

x1x0 |y0
W v

x0x1 |y0

= βv (εX − μv ) and ln
W v

x1x0 |y1
W v

x0x1 |y1

= βv (εX +
U − μv ). Thus, for the quantum dot model, the parameter �

y
xx′

in Eq. (15) is equal to −μv and will affect the heat flow.
For the purpose of reducing the number of parameters, the

energy dependencies of the tunneling rates are parameterized
by dimensionless parameters δ and �, i.e.,


Y L
x0

= 

e�

cosh(�)
, 
Y L

x1
= 


e−�

cosh(�)
,


Y R
x0

= 

e−�

cosh(�)
, 
Y R

x1
= 


e�

cosh(�)
,


XL
y0

= 

eδ

cosh(δ)
, 
XL

y1
= 


e−δ

cosh(δ)
,


XR
y0

= 

e−δ

cosh(δ)
, 
XR

y1
= 


eδ

cosh(δ)
. (33)

The dimensionless parameters δ and � thus allow us to
control the tunneling rates under different conditions. When
δ = � = 0, this corresponds to the scenario of completely
symmetric and equal tunneling rates. Conversely, in the limit
where δ approaches infinity, an electron in channel X can
only enter and exit from reservoir XL at energy εX , whereas
tunneling processes to reservoir XR are permitted at energy
εX + U . In this limit, transport is possible only through energy
exchange with channel Y . Similarly, the parameter � controls
the behavior of channel Y . According to Eqs. (7)–(10), (27),
and (28), the entropy flows associated with subsystem X and
Y :

ṠX
r = −β�μX

(
JXR

x0x1|y0
+ JXR

x0x1|y1

)
= −βU

(
JY L

y1y0|x0
+ JY R

y1y0|x0

)
, (34)

ṠY
r = −β�μY

(
JY R

y0y1|x0
+ JY R

y0y1|x1

)
− βU

(
JXL

x1x0|y0
+ JXR

x1x0|y0

)
, (35)
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FIG. 2. The efficiencies ηX and ηY , upper bounds ηX
U and ηY

U , and lower bounds ηX
L and ηY

L for the double-quantum-dot system vary with
the dimensionless Coulomb interaction strength βU and the parameters δ and � associated with the tunneling rate, where β(μX R − μX L ) = 1,
β(μY R − μY L ) = 2, 
 = 1, εX = (μXR+μXL )

2 − U
2 , and εY = (μY R+μY L )

2 − U
2 . For (a) and (b), the variations are with βU and δ, where � = 1.5.

For (c) and (d), the variations are with βU and �, where δ = 1.5.

the rates of information:

İX = (
JY L

y1y0|x0
+ JY R

y1y0|x0

)
ln

p(x0, y1)p(x1, y0)

p(x0, y0)p(x1, y1)
, (36)

İY = (
JXL

x1x0|y0
+ JXR

x1x0|y0

)
ln

p(y0, x1)p(y1, x0)

p(y0, x0)p(y1, x1)
, (37)

and the coefficients:

�X = 1
2 (εX − μXL )2

[
W XL

10|0 p(0, 0) + W XL
01|0 p(1, 0)

] + 1
2 (εX − μXR)2

[
W XR

10|0 p(0, 0) + W XR
01|0 p(1, 0)

]
+ 1

2 (εX + U − μXL )2
[
W XL

10|1 p(0, 1) + W XL
01|1 p(1, 1)

] + 1
2 (εX + U − μXR)2

[
W XR

10|1 p(0, 1) + W XR
01|1 p(1, 1)

]
, (38)

�Y = 1
2 (εY − μY L )2

[
W Y L

10|0 p(0, 0) + W Y L
01|0 p(1, 0)

] + 1
2 (εY − μY R)2

[
W Y R

10|0 p(0, 0) + W Y R
01|0 p(1, 0)

]
+ 1

2 (εY + U − μY L )2
[
W Y L

10|1 p(0, 1) + W Y L
01|1 p(1, 1)

] + 1
2 (εY + U − μY R)2

[
W Y R

10|1 p(0, 1) + W Y R
01|1 p(1, 1)

]
. (39)

IV. RESULTS AND DISCUSSION

Figure 2 plots the efficiencies ηX and ηY , upper bounds ηX
U

and ηY
U , and lower bounds ηX

L and ηY
L for subsystems X and Y

varying with the dimensionless Coulomb interaction strength
βU and the parameter δ and � associated with the tunneling
rate.

From Fig. 2(a), it is evident that, for subsystem X , the
discrepancy between the upper bound ηX

U and the actual ef-
ficiency ηX is very minimal, and this difference decreases

significantly as the value of δ increases. Furthermore, when δ

is held constant, the lower bound ηX
L becomes progressively

tighter as βU decreases. It is worth emphasizing that, when
both βU and δ are small, the three efficiencies—upper bound,
actual efficiency, and lower bound—converge closely to one
another.

On the other hand, Fig. 2(b) presents the results for
subsystem Y . These results indicate that the upper bound
ηY

U becomes tighter primarily when βU is small. As βU
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increases, this upper bound approaches the general result,
namely, ηY � 1. Therefore, the discussion mainly pertains to
the lower bound ηY

L , which becomes very tight under low
limits. When βU is fixed, a larger δ improves the effec-
tiveness of the lower bound as a limit. Similarly, when δ

is fixed, a larger lower limit of βU enhances the effective-
ness of this boundary. When both βU and δ are large, the
lower bound is notably stringent. When we adjust βU and
�, the results are shown in Figs. 2(c) and 2(d). It can be
observed that the overall trend is consistent with the adjust-
ments of βU and δ. These show that our boundaries are
reliable.

Additionally, it is important to note that, in the definition
of efficiency in Eq. (21), we assume Ẇ X � 0 and Ẇ Y > 0 for
this model. Therefore, for the quantum dot model described
in Sec. III, there exists a certain range of parameter values
that enable the proper operation of the bipartite system. For
example, as shown in Fig. 2(a), when both βU and δ are small,
the three efficiencies converge. This convergence occurs be-
cause a small value of βU indicates a very weak interaction
between the two subsystems. Simultaneously, within the range
of small values of δ, the work Ẇ X tends to zero. This results in
the bipartite system failing to operate normally. Consequently,
all three efficiencies converge toward zero under these
conditions.

V. CONCLUSIONS

In this paper, we successfully establish a foundational
lower bound on the entropy production rate of subsystems by
employing the Cauchy-Schwarz inequality, leading to a signif-
icant advancement in understanding the efficiency boundaries
of dual subsystems. The derivation of these efficiency bounds,
grounded in the lower limit of entropy production, ensures
applicability to both finely and coarsely grained systems. Our
empirical investigations, utilizing the DQD system, not only
validate the proposed inequalities but also demonstrate their
capability to significantly tighten the efficiency boundaries.
In this paper, deeply rooted in the principles of stochastic
thermodynamics, we offer invaluable insights applicable to a
wide range of quantum dot systems.
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APPENDIX: DERIVATION OF THE BOUND OF THE ENTROPY PRODUCTION RATE OF SUBSYSTEM X

In this section, we provide a brief derivation of the limit of the entropy-production rate. First, we evaluate the upper bound of
|ṠX

r | as follows:

∣∣ṠX
r

∣∣ =
∣∣∣∣∣∣
1

2

∑
x,x′,y,v

Jv
xx′|y ln

W v
xx′|y

W v
x′x|y

∣∣∣∣∣∣
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∣∣∣∣∣∣∣
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2
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xx′|y
W v
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√
W v

xx′|y p(x′, y) + W v
x′x|y p(x, y)

Jv
xx′|y√
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∣∣∣∣∣∣∣
(1)
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]√√√√ ∑
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(
Jv

xx′|y
)2

W v
xx′|y p(x′, y) + W v

x′x|y p(x, y)

(2)
� 1

2

√√√√√ ∑
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(
ln

W v
xx′|y

W v
x′x|y

)2[
W v

xx′|y p(x′, y) + W v
x′x|y p(x, y)

]√√√√1

2
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xx′|y ln

W v
xx′|y p(x′, y)

W v
x′x|y p(x, y)

= 1

2
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(
ln

W v
xx′|y

W v
x′x|y

)2[
W v

xx′|y p(x′, y) + W v
x′x|y p(x, y)
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σ̇ X
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ln
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xx′|y

W v
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W v
xx′|y p(x′, y)σ̇ X

=
√

�X σ̇ X . (A1)

This evaluation incorporates the Cauchy-Schwartz inequality [21,22] and the inequality (x−y)2

x+y � x−y
2 ln x

y for nonnegative x and y
in steps (1) and (2), respectively. With the application of Eq. (A1), we naturally derive the lower limit on the entropy-production
rate of subsystem X , as presented in Eq. (26) in the main text.
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