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In many complex systems, whether biological or artificial, the thermodynamic costs of communication
among their components are large. These systems also tend to split information transmitted between any two
components across multiple channels. A common hypothesis is that such inverse multiplexing strategies reduce
total thermodynamic costs. So far, however, there have been no physics-based results supporting this hypothesis.
This gap existed partially because we have lacked a theoretical framework that addresses the interplay of
thermodynamics and information in off-equilibrium systems. Here we present the first study that rigorously
combines such a framework, stochastic thermodynamics, with Shannon information theory. We develop a
minimal model that captures the fundamental features common to a wide variety of communication systems,
and study the relationship between the entropy production of the communication process and the channel
capacity, the canonical measure of the communication capability of a channel. In contrast to what is assumed
in previous works not based on first principles, we show that the entropy production is not always a convex
and monotonically increasing function of the channel capacity. However, those two properties are recovered for
sufficiently high channel capacity. These results clarify when and how to split a single communication stream
across multiple channels.
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I. INTRODUCTION

One of the major thermodynamic costs of many complex
systems arises from communication among their separate sub-
systems. Examples include cellular sensing systems [1,2],
the human brain [3,4], ecosystems [5,6], wireless sensor net-
works [7–9], hardware implementations of machine learning
algorithms [10], and digital computers [11–13]. Similarly,
reducing the thermodynamic costs of communication be-
tween processing units and memory units of conventional von
Neumann computational architectures is one of the primary
motivations of the field of neuromorphic computing [14–16].
As emphasized in the latest “Physics of Life” report from
the National Academy of Sciences, it is crucial to understand
the common physical principles underlying communication
in biological systems, whether that be a set of interacting
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bacteria, a colony of insects, a flock of birds, or a human social
group [17]. It is important to appreciate that the information
transmission in different communication systems are subject
to different physical constraints associated to the transmission
process and media [e.g., diffusive, electronic, acoustic, etc.;
see Figs. 1(a)–1(c)]. In turn, each of these different constraints
impose their own, system-specific thermodynamic costs, since
they each limit what theoretical efficiencies the system can
exploit [18]. However, in order to uncover and investigate the
principles common to all types of communication systems, we
need a minimal model grounded in the features shared by all
of those systems.

One feature common to all of these systems is that they in-
volve an “output” component that is biased to change its state
to reflect the state of a separate “input” component, which is
set exogenously [Fig. 1(d)]. A minimal model that can apply
to diverse types of communication systems should include this
shared aspect of copying between two separate components.
Another feature common to many biological and artificial
communication systems is that they often split a stream of
information over multiple channels, i.e., they inverse multi-
plex. Sometimes this occurs even when a single channel could
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FIG. 1. Examples of communication channels include (a) neu-
ronal synapses, (b) CMOS inverters, or (c) adjacent animals in a
flock. These communication channels effectively d) consist of two
nodes: an input A and an output B, which attempts to copy the
state of A. The conditional probability distribution of the output state
given the input state, p(XB|XA), reflects the noisiness of the copying
process. Since this process must occur out of equilibrium, it requires
external work at a rate Ẇ and dissipates some amount of that work
in terms of entropy flow to the surrounding environment at a rate Ṡe.
(e) Such a communication channel can be modeled as a stochastic
process. For a fixed time period of length t , the system can have many
different realizations, or trajectories �x. These trajectories capture how
the state xA of the input and the state xB of the output coevolve. In
each trajectory, the output’s attempts to copy the state of the input
result in an entropy production (EP) σ (�x). Boxes highlighted in green
represent the time periods for which the state of the output matches
the state of the input. Note that there is stochasticity both in the
values of the states as well as in the timing of the state transitions. (f)
Averaged over all possible trajectories, the state occupancies of the
input and output define the conditional distribution p(XB|XA), and an
average EP 〈σ 〉 of the process. Typically the average EP rate, 〈σ̇ 〉,
accounts for most of the rate of entropy flow to the environment,
〈Ṡe〉.

handle the entire communication load. For example, multiple
synapses tend to connect adjacent neurons [19–22] and multi-
ple neuronal pathways tend to connect brain regions [23–25].
In engineering, spatial multiplexing techniques have made
multiple-input-multiple-output technology the gold standard
for modern wireless communication systems [26,27]. There-
fore, analyzing a minimal model of communication should
also result in greater insights into the thermodynamics inverse
multiplexing in many scenarios. It may even provide guidance
for the design of artificial inverse multiplexing systems.

Until now, it has been difficult to construct such a minimal
model using a physics-based formalism. The difficulty is that
communication systems operate very far from thermodynamic
equilibrium, which rules out conventional arguments based on
the quasistatic limit [28] or the linear-response regime [29].
However, the development of stochastic thermodynamics [30]
since the early 2000s has supplied a theoretical framework
that relates the dynamics of information in a system to the
free energy it dissipates in a process arbitrarily far from equi-
librium. Stochastic thermodynamics can allow us, therefore,
to investigate how this thermodynamic cost varies with com-
munication rate in a two-component copying system. That is
the goal of this article.

We begin by providing a background on communication
theory and stochastic thermodynamics. We then build on this
background to motivate a minimal model of communication
with a well-defined thermodynamics. In this simple model,
an exogenous agent modulates the energy levels of an output
system in order to transmit information. While the output
system is in contact with a single heat bath, the switching of
its energy levels acts as an external work source that takes it
out of equilibrium. Next, we present a preliminary analysis
of the thermodynamics of two types of communication en-
compassed by more general models. The first one is also a
energy-switching scenario, but relaxing some of the assump-
tions made in the simple model mentioned above (namely,
we consider several thermal baths and arbitrary relaxation
timescales). In the second one, called reservoir switching, the
exogenous agent does not change the energy levels of the out-
put system but modulates their coupling to different thermal
baths. These two communication types correspond roughly
to (i) wireless communication or intercellular communication
and (ii) wired electronic communication. We show that in
many examples of both types of communication, the thermo-
dynamic cost is a convex function of the communication rate
above a critical value of that rate. Regardless of the convexity
of this function, one might expect that increasing the speed of
information transmission through a channel requires a mono-
tonic increase in the thermodynamic costs [3,31]. However,
we find that in many cases this function is not monotonic.

We then investigate the consequences of this result for
when and how one should split a single information stream
across multiple physical channels. In particular, we derive a
Pareto front representing the trade-off between minimizing
total thermodynamic cost and maximizing total information
transmission rate shared across a fixed number of commu-
nication channels. We end by discussing our model in the
broader context of the thermodynamics of computation and
by suggesting future work.

034101-2



ENTROPY PRODUCTION IN COMMUNICATION CHANNELS PHYSICAL REVIEW E 110, 034101 (2024)

II. BACKGROUND ON SHANNON INFORMATION
THEORY AND STOCHASTIC THERMODYNAMICS

Claude Shannon’s channel coding theorem states that one
can pass messages through a noisy communication channel
with vanishingly low error [32]. A channel approaches this
error-free limit if the messages sent through it are encoded
with an appropriate codebook into strings of letters from a fi-
nite, discrete alphabet. These encoded strings can be decoded
to recover the original message at the output of the channel.
Importantly, one can implement error-free communication in
noisy channels in this way only up to a finite maximum baud
rate, called the channel capacity. Exceeding that rate imposes
a nonzero probability of error. A channel’s capacity therefore
serves as the primary measure of its communication capabil-
ities. This capacity equals the maximal mutual information
between input and output attainable by varying the input al-
phabet distribution [32,33].

The channel coding theorem further states that one can
achieve the channel capacity with negligible error using any
one of many possible optimal encodings of information at the
source [34]. These encodings produce sequences that look
as if they were identically and independently drawn from
the input distribution that maximizes the mutual information
between input and output [35]. This theorem led to massive
engineering efforts toward developing error-correcting codes
that achieve this bound [36,37]. Such coding strategies are
now widespread in digital communication systems [38–42].
Moreoever, the study of codes that approach the Shannon
bound has been one of the major areas of research in modern
information theory for several decades.

The duality between information and Shannon entropy
creates a tight link between information theory and thermo-
dynamics [43–45]. Stochastic thermodynamics has revealed
that the entropy produced over any finite time interval in a
single realization of a nonequilibrium process [46] can be
negative, in defiance of the second law. This entropy produc-
tion (EP) recovers non-negativity only when averaged over
all possible realizations (trajectories) [47,48]. Throughout the
paper, we refer to the EP as the thermodynamic cost. This
measure is crucial in many powerful results, including bounds
on the precision of generalized currents [49,50] and the speed
of changes in a system’s probability distribution over states
[51]. The EP has also been applied to study the dynamics of
information [52].

Unfortunately, most of the prior work in stochastic ther-
modynamics involving mutual information and “information
processing” fails to relate the EP to the channel capacity. In
fact, most of these results do not consider a system dedicated
to communication. Some studies analyze how components
influence one another in multipartite systems of multiple
feedback controllers by quantifying the “information flow”
between subsystems [53–56]. Other studies, e.g., on Bayes’
nets [57], use the “transfer entropy” rather than the channel
capacity to characterize information transferred from inputs
to outputs. Studies of specific models for biomolecular copy-
ing processes [58] and cellular sensing [18,59,60] have made
analogies with information theory and the channel coding
theorem, but are limited in scope to only biological systems.
Similarly, the analysis of channel capacity in Ref. [61] applies

only to the very restricted domain of electronic circuits com-
prising a set of transistors running subthreshold.

An early connection between channel capacity and ther-
modynamic cost appeared naturally in the study of continuous
Gaussian channels. These channels are an idealization of the
information transmission through a telegraphic or telephonic
line or radio link. Without additional constraints such contin-
uous channels have infinite capacity, which is not physical. A
natural and realistic constraint is to impose a maximum power
on the physical signal used to transmit information. Since the
medium through which the signal propagates is linear, the
power is just a quadratic function of the signal intensity. Under
the previous assumptions, it was understood early on that the
capacity C of a Gaussian channel is related to its bandwidth
W , its noise spectral density N0 and the power P of the input
signal as [31]

C = W ln

(
1 + P

N0W

)
. (1)

In the infinite bandwidth limit we have C � P/N0. Also, for
a medium in thermal equilibrium at temperature T the power
spectral density of the noise is N0 = kbT , which implies that
one must transmit a signal with an energy of at least E = nkbT
in order to communicate n bits. However, one must note that
the input power P is not necessarily dissipated in the transmis-
sion medium, and cannot be directly related with the entropy
produced in the transmission process. Therefore, until now the
literature has lacked an investigation of the quantitative rela-
tionship between the channel capacity and the EP that could
apply to all types of communication, even those with a finite
set of discrete symbols. We conduct exactly this investigation,
justifying the features of our minimal model with the rigor
of Shannon information theory. As a final comment, note that
according to Eq. (1) the transmitted power P is an increasing
convex function of the channel capacity C. Those two proper-
ties, the monoticity and the convexity of the thermodynamic
cost for any C, are sometimes assumed in some works that are
not based on first principles [62]. Interestingly, as we will see,
they are not preserved in general models of communication
channels with discrete set of symbols. They are, however,
recovered for sufficiently large channel capacity.

III. STOCHASTIC THERMODYNAMICS
OF COMMUNICATION CHANNELS

We analyze the thermodynamics of communication chan-
nels operating at their channel capacity. In Shannon’s model
of communication, a process external to the system sets the in-
put state so that its dynamics reflect samplings from the input
distribution that achieves the channel capacity. This external
system effectively acts as a work reservoir, and could follow
arbitrary (potentially non-Markovian) dynamics. The input
could be set deterministically or stochastically, periodically
according to a clock, according to a continuous-time Markov
chain (CTMC), etc. This feature is physically motivated by
the fact that in many real communication channels the input
is set by an exogenous process. Therefore, we ignore the ther-
modynamics of the external system that sets the input. Finally,
the coupling between input and output is nonreciprocal, in that
the output dynamics depends on the state of the input but not
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vice versa. This common assumption is sometimes called “no
back-action” [18,55,60,63–66].

We consider a communication channel in which the input
A sends letters xA from the alphabet XA = {1, 2, . . . , L} in
any way that reflects the distribution πXA . The communication
channel is defined by how the output B changes its state,
xB ∈ XB = {1, 2, . . . , L}, in response to the input state. At any
given time, the rates of state transitions in the output depend
on the current state of the input. The energies of different
output states may depend on the state of the input according to
a Hamiltonian function H (xB|xA). In addition, the coupling of
the output system to different thermodynamic reservoirs may
also depend on the state of the input A.

A. A minimax bound on the channel capacity

To begin, we derive a general bound on the capacity of a
channel that will be useful for the subsequent thermodynamic
analysis. The joint distribution for input-output pairs can be
written as pxB,xA = pxB|xAπxA in terms of the conditional dis-
tribution pxB|xA . The mutual information between input and
output can be written as:

I (A : B) =
∑

xA

(
pxB|xA

∥∥pxB

)
πxA , (2)

where pxB = ∑
xA

pxB,xA is the unconditional distribution over
outputs and (p‖q) is the Kullback-Leibler divergence or rel-
ative entropy between distributions p and q. The channel
capacity is defined as the maximum of I (B : A) over all pos-
sible input distributions πxA . Thus, we do a unconstrained
optimization of the function G ≡ I (B : A) − α(

∑
xA

πxA − 1)
over {πxA � 0} and the Lagrange multiplier α. After some
algebra, we find:

∂G

∂πxA

= −1 − α + D
(
pxB|xA

∥∥pxB

)
. (3)

Then, for the optimal solution satisfying ∂G/∂πxA = 0, the
relative entropy D ≡ D(pxB|xA ||pxB ) must be independent of
xA. Also, in that case we have I (A : B) = D. Therefore, the
channel capacity is C = D.

This analysis does not provide an explicit expression for
the channel capacity, since that would require finding the
distribution πxA solving ∂G/∂πxA = 0. However, it allows to
obtain a useful upper bound. Indeed, for any xA, we have:

C = D
(
pxB|xA

∥∥pxB

) =
∑

xB

pxB|xA log

(
pxB|xA

pxB

)

�
∑
x′

A,xB

πx′
A

pxB|xA log

(
pxB|xA

pxB|x′
A

)

=
∑

x′
A

πx′
A

(
pxB|xA

∥∥pxB|x′
A

)
, (4)

where in the second line we used Jensen’s inequality. It fol-
lows that

C � max
x′

A

(
pxB|xA

∥∥pxB|x′
A

)
(5)

for any xA. Then

C � min
xA

max
x′

A

(
pxB|xA

∥∥pxB|x′
A

)
. (6)

The meaning of this inequality is clear if we interpret the
relative entropy (pxB|xA‖pxB|x′

A
) as a distance between those

conditional output distributions. Indeed, if that distance is
small, then it means that the output distribution does not
change too much for different inputs, and therefore the mutual
information between input and output must also be small.

B. Energy-switching communication: The case of a single
reservoir and timescale separation

Before studying the problem in full generality, we examine
what probably is the simplest model of communication chan-
nel with a well-defined thermodynamics. As we will see, this
model is already nontrivial, and displays many features shared
by more general settings examined later.

In this model, the output system B is in contact with a
single thermal reservoir at temperature T , and the only effect
of the input A is to control the energies of the output states
according to the Hamiltonian:

H (xB|xA) =
{−ε xB = xA

0 otherwise . (7)

Thus, the output state matching the input state is ener-
getically favored. Eq. (7) can also be understood as the
time-independent Hamiltonian of the global system. For a
constant input xA, the steady state of the output is given by
the equilibrium distribution:

pxB|xA =
{

eβε

eβε+L−1 xB = xA
1

eβε+L−1 otherwise
, (8)

where β = 1/T (we take kb = 1). Recall that L is the number
of distinct states in both the input and output systems. The
average energy and entropy of the output are therefore inde-
pendent of the input and read, respectively

U = −ε
eβε

eβε + L − 1
and S = ln(eβε + L − 1) + βU .

(9)

Also, we suppose that the waiting times between successive
changes of the input are much longer than the relaxation time
of the output. Under this timescale separation assumption, the
entropy produced during the relaxation of the output following
a change xA → x′

A in the input is given by the relative entropy
between the initial and the final distributions [45]. Thus, we
have:

σxA→x′
A

≡ (
pXB|xA

∥∥pXB|x′
A

) = −β
ε + LU

L − 1
, (10)

where the notation indicates that the average defining the KL
divergence is only over values of xB, conditioned on XA = xA,
not over values of xA.

However, since the right-hand side of Eq. (10) is inde-
pendent of the input transition, the average rate of entropy
production is just σ̇ = fsσ , where fs is the average frequency
of input transitions, and we define σ := σxA→x′

A
. Note that

Eq. (10) and the minimax bound of Eq. (6) allow us to relate
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FIG. 2. Entropy production versus channel capacity for the chan-
nel given in Eq. (8).

the entropy production with the channel capacity. This will
be used later to define the thermodynamic efficiency of the
channel.

In this symmetric case the channel capacity is achieved for
a uniform input distribution and simply reads:

C = ln(L) − S, (11)

where S is the entropy of the output system given in Eq. (9).
We want to study the relationship between the channel

capacity and the entropy production. From the previous equa-
tions it follows that:

dσ

dC
= −dσ

dS
= 1

L − 1

[
L + ε + LU

βU (ε + U )

]
. (12)

Note that dσ/dC � 0, since U � −ε/L. Then, the entropy
production increases with the channel capacity.

After some algebra, the second derivative of the entropy
production with respect to the channel capacity can be found
to be

d2σ

d2C
= 1

L − 1

1

β2U 2(ε + U )

[
ε + (β−1 + U )

ε + LU

ε + U

]
.

(13)

It can be seen that d2σ/d2C � 0 if and only if

e2βε (βε − 1) − eβε (L − 2) + (βε + 1)(L − 1) � 0, (14)

which is always true for L = 2. For a given L > 2, we have
d2σ/d2C < 0 for small βε and d2σ/d2C > 0 for large βε.
As a consequence, as a function of the channel capacity C,
the entropy production σ is concave for small C and convex
above a critical value. Finally, we note that in the limit βε � 1
in which C approaches ln(L), the entropy production diverges
as

σ � ln

(
L − 1

ln(L) − C

)
+ ln

(
1 + ln

(
L − 1

ln(L) − C

))
. (15)

Figure 2 shows the entropy production as a function of the
channel capacity. The concave region at low capacity is too
flat and too small to notice in the plot. Another interesting

0.0 0.2 0.4 0.6 0.8 1.0

C/ ln(L)

0.4

0.5

0.6

0.7

0.8

η

L = 100

L = 1000

L = 10000

FIG. 3. Efficiency versus channel capacity for the channel given
in Eq. (8).

quantity to study is the ratio η ≡ C/σ between channel ca-
pacity and entropy production, which can be considered the
thermodynamic efficiency of the channel. It is shown in Fig. 3,
where we see that we always have η � 1. That this must be the
case is a direct consequence of Eqs. (6) and (10).

C. General case

We now study more general models where we relax the
main assumptions made above, namely (i) that the output
system is in contact with a single thermal bath, (ii) that its
relaxation time is shorter than the typical time between input
transitions, and (iii) that the only effect of the input is to mod-
ulate the energies of the output states. The dynamics of both
input and output states is modeled as a CTMC [Figs. 1(e) and
1(f)]. Then, the joint distribution pxA,xB (t ) evolves according
to the master equation:

ṗxA,xB (t ) =
∑
x′

A,x′
B

Rx′
A,x′

B
xA,xB px′

A,x′
B
(t ), (16)

where Rx′
A,x′

B
xA,xB are the elements of a L2 × L2 rate matrix. Each

nondiagonal element of that matrix indicates the probability
of observing a state transition (x′

A, x′
B) → (xA, xB) at any given

time. The diagonal elements are such that the normalization is
preserved. The input and output together evolve as a bipartite
process [67], so only one subsystem changes state at any given
time. Thus, each nondiagonal element of the rate matrix obeys

Rx′
A,x′

B
xA,xB = δ

x′
B

xB Jx′
A

xA (xB) + δ
x′

A
xA Kx′

B
xB (xA), (17)

where δx′
x is the Kronecker delta function that equals 1

when x′ = x, and equals 0 otherwise. Additionally, the out-
put B changes its state due to interactions with a set of N
equilibrium reservoirs V := {v1, v2, . . . , vN }, at temperatures
{T1, T2, . . . , TN }. We denote the temperature of reservoir v

as Tv . This means that the overall rate matrix Kx′
B

xB (xA) can
be written as a sum over the rate matrices representing each
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reservoir’s effect on the output’s state transitions:

Kx′
B

xB (xA) =
N∑

ν=1

Kx′
B

xB (xA; v). (18)

Each rate matrix specific to reservoir v follows local-detailed
balance:

ln
Kx′

B
xB (xA; v)

KxB

x′
B

(xA; v)
= − 1

Tv

(H (xB|xA) − H (x′
B|xA)). (19)

The previous condition allows to decompose each matrix
Kx′

B
xB (xA; v) as the product of a diagonal matrix encoding the

equilibrium distribution corresponding to temperature Tv , and
a symmetric matrix that contains the information about how
the output system is coupled to that environment (and thus
determines how the relaxation to the previous equilibrium
takes place). Indeed one can write the nondiagonal elements
Kx′

B
xB (xA; v) as

Kx′
B

xB (xA; v) =
∑

x′′
B

πxB (xA; v)δx′′
B

xB Sx′
B

x′′
B
(xA; v), (20)

where Sx′
B

xB (xA; v) are the elements of a symmetric matrix and
πxB (xA; v) = e−H (xB|xA )/Tv/Z , with Z = ∑

xB
e−H (xB|xA )/Tv , is the

equilibrium output distribution corresponding to reservoir v.
Note that although every reservoir-specific rate matrix is de-
tailed balanced, the overall rate matrix is not detailed balanced
in general unless there is only a single reservoir or all of them
are at the same temperature. The bipartite nature of the overall
system’s evolution implies that the rate of entropy production
σ̇ can be split as [53,66]:

σ̇ = σ̇A + σ̇B, (21)

whereas σ̇A represents the cost of switching the input and σ̇B

represents the thermodynamic cost of the copying process. At
any given time, the later can be computed as:

σ̇B =
∑
v,xA,
x′

B,xB

Kx′
B

xB (xA; v)pxA,x′
B
(t ) ln

Kx′
B

xB (xA; v)pxA,x′
B
(t )

KxB

x′
B

(xA; v)pxA,xB (t ) (22)

A similar expression holds for σ̇A. Within this minimal model,
we analyze two general methods that can modulate the output
dynamics in real communication systems. In the “energy-
switching” case, different values of the input modulate the
energies of different output values, as in the simple case
above. Intercellular chemical communication in biological or-
ganisms can be modeled in this way. For example in cellular
sensing, the concentration of a ligand (input) modulates the
free energy of receptor binding (output) [60,68]. Additionally,
we can model wireless communication in terms of energy
switching, where electromagnetic waves sent by the transmit-
ter modify the potential energy function of electrons at the
receiver. In the “reservoir-switching” case, different values
of the input modulate the coupling of the output to different
reservoirs. We can model wired electronic communication in
circuits in this way, where the input voltage modulates the
output wire’s couplings with different chemical reservoirs of
electrons [69].

D. Energy-switching scenario

In the energy-switching method of communication, the en-
ergy levels of different output states depend on the input state.
We analyze the class of channels for which the output achieves
its lowest energy state when it matches the current state of the
input, and all other “mismatched states” have the same higher
value of energy. Thus the Hamiltonian is also given by Eq. (7).
As before, since the Hamiltonian is symmetric with respect
to every letter in the input alphabet, the channel capacity-
achieving input distribution πXA is the uniform distribution
(πxA = 1/L). Additionally, we set all nonzero off-diagonal
entries of the matrix S(xA; v) to a constant rv , so that the
couplings of the output to its different reservoirs cannot be
modulated by the state of the input. Therefore, every nonzero
off-diagonal rate matrix element equals

Kx′
B

xB (xA; v) =
{

rv
eε/Tv

L(eε/Tv +(L−1)) =: αν x′
B �= xA; xB = xA

rv
1

L(eε/Tv +(L−1)) =: ζν xB �= xA
.

(23)

In our simulations for the energy-switching case, the input
dynamics follow a telegraph process [70], which is consistent
with a CTMC. A telegraph process serves as an accurate
model for any real communication channel (e.g., synaptic
release [15]) for which the waiting times for the input in
any given state follows an exponential distribution. The input
switches its state with average rate fs, which is a positive
real number. This means that each state transition in the input
is equally likely, so that Rx′

A,xB
xA,xB = Jx′

A
xA (xB) = fs, for x′

A �= xA.
Therefore, the nonzero off-diagonal elements of the overall
channel’s rate matrix are

Rx′
A,x′

B
xA,xB =

⎧⎪⎪⎨
⎪⎪⎩

fs x′
A �= xA; x′

B = xB

α := ∑N
ν=1 αν x′

A = xA; x′
B �= xA; xB = xA

ζ := ∑N
ν=1 ζν x′

A = xA; xB �= xA

.

(24)

We first analyze the situation where the channel is in a
nonequilibrium steady-state (NESS), which means∑

x′
A,x′

B

Rx′
A,x′

B
xA,xBπx′

A,x′
B

= 0. (25)

Solving for the joint steady-state distribution πXA,XB , we obtain

πxA,xB =
{

α+ fs

L[α+(L−1)ζ+L fs]
:= pm

L xA = xB

ζ+ fs

L[α+(L−1)ζ+L fs]
:= pe

L otherwise
. (26)

This means that the conditional steady-state distribution of the
output state given the input state reads

πxB|xA =
{

pm xB = xA

pe otherwise (27)

and the marginal steady-state distribution over just the output
states is uniform. Note that the previous conditional distribu-
tion differs from an equilibrium distribution even in the case
there is a single thermal reservoir, except in the limit fs → 0.
The reason is that the changing input plays the role of a work
reservoir that parametrically changes the energy landscape of
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(a) (b)

FIG. 4. Results for the case when the state energies of the communication channel’s output vary with the input state. Here the output
couples to two reservoirs with temperatures T1 and T2. We vary the noise in the channel by holding the temperature of one reservoir fixed and
varying the temperature of the other reservoir. Black dots in each graph indicate T1 = T2. (a) These plots reflect the case of a binary alphabet
(L = 2) and for energy bias ε = 2. (a, top left) We first analyze the case of zero input signal rate: fs = 0. We find that the EP rate 〈σ̇ 〉 = 〈σ̇B〉 as
a function of T1 has a single global root when T1 = T2. The derivative of the EP rate is negative (non-negative) to the left (right) of this root. (a,
top right) The channel capacity C is a positive function of T1 and its derivative is nonpositive. (a, bottom) Combining these two relationships,
we find that the EP rate has at most one minimum with respect to the channel capacity. As a result, 〈σ̇ 〉(C) is a convex and nonmonotonic
function (see proof in the Appendix). (b) Plots of the function 〈σ̇B〉(C) for (top) different signaling rates fs > 0, (middle) different alphabet
lengths L, and (bottom) different energy biases ε. We observe in all plots that the EP rate retains a single global minimum (marked by black
dots) with respect to the channel capacity. We considered r1 = r2 = 1 in all cases.

the output. In the opposite limit fs → ∞ the conditional dis-
tribution is just uniform, since the output cannot adapt to the
rapidly changing input. Since the input distribution is chosen
so that the system runs at its channel capacity, the value of the
channel capacity in the NESS is simply given by the mutual
information between the input and the output:

C = I (A : B) = S(B) − S(B|A), (28)

= ln L + pm ln pm + (L − 1)pe ln pe. (29)

Figure 4 shows results of analyzing how the thermodynamic
cost varies with the channel capacity when we adjust the
amount of noise in the channel. We restrict attention to the
case when the system is out of equilibrium due to the presence
of two thermal reservoirs at different temperatures (N = 2).
The coupling constants are taken to be r1 = r2 = 1. To adjust
the noise level in the channel, we sweep the temperature of

one reservoir T1 while holding fixed the temperature of the
other at T2 [71]. We find that 〈σ̇B〉 as a function of C is convex
with a single global minimum that occurs at a positive value
of the channel capacity. In particular, this means that the ther-
modynamic cost is not a monotonic function of the channel
capacity. We prove this convex, nonmonotonic relationship in
the limit of low signaling rate (see the Appendix).

E. Reservoir-switching scenario

The channel can alternatively modulate the coupling of the
output system with its different reservoirs. For this reservoir-
switching case, the energies H (xB|xA) = H (xB) of the output
states do not depend on the input. So the equilibrium dis-
tributions πxB (xA; v) corresponding to each reservoir are
independent of the input state. Then, for communication to be
possible, the components of the symmetric matrix Sx′

B

x′′
B
(xA; v)
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in Eq. (20) must be input dependent. Importantly, this kind
of communication protocol is used to transfer information
between different components of modern electronic circuits.
For example, consider a CMOS inverter [Fig. 1(b)], which
is the electronic implementation of a NOT gate. The output
voltage v of the inverter connects to two chemical reservoirs
of electrons at fixed voltages V1 and V2 (with V1 > V2), through
two complementary MOS transistors (a nMOS and a pMOS).
Increasing vin increases the conductivity of the nMOS tran-
sistor and decreases the conductivity of the pMOS transistor.
So for high input voltage, the output’s interaction with the
reservoir at voltage V2 dominates, making v � V2 at steady
state. The situation reverses for low input voltages, resulting
in v � V1. However, the energy associated to an output voltage
v is always E (v) = Cov

2/2 (Co is the output capacitance),
independently of the input. We consider the following min-
imal model of the reservoir-switching case. The input can
fluctuate between L = 2 states. Transition xA : 0 → 1 has rate
f+ and the reverse transition has rate f−. The output has a
single ground state with zero energy, and M degenerate ex-
cited states with energy ε. Over that set of microscopic states,
we define two macrostates xB = 0 or xB = 1 corresponding
respectively to the ground state being occupied, or any of the
excited states being occupied. The output is in contact with
two thermal reservoirs at temperatures Tv (v = 1, 2) that can
induce transitions between the ground and excited microstates
but not between the excited microstates themselves. In this
case, the coarse grained rates between macrostates satisfy the
local detailed balance conditions [72]:

ln
λ+(xA; v)

λ−(xA; ν)
= − 1

Tv

(ε − Tv ln(M )), (30)

where λ+(xA; v) is the rate of the transition xB : 0 → 1 in-
duced by the reservoir v for input xA, and λ−(xA; v) is the rate
of the reverse transition. The term ln(M ) takes into account
the internal entropy of the macrostate xB = 1. The equilibrium
distributions πxB (xA; v) are then:

πxB (xA; v) =
{

Me−ε/Tv

1+Me−ε/Tv
xB = 1

1
1+Me−ε/Tv

xB = 0
, (31)

that as noted before and in contrast to the energy-switching
case, are actually independent of xA. Let us consider now that
T1 � ε � T2 and that λ±(0; 1) � λ±(0; 2) and λ±(1; 1) �
λ±(1; 2). That means that when the input is xA = 0, the out-
put system is more strongly coupled to the cold reservoir at
temperature T1, while for input XA = 1 the output is more
strongly coupled to the hot reservoir at T2. As a consequence,
if the frequency of input changes is sufficiently low, then for
xA = 0 the ground state xB = 0 will be occupied with higher
probability, and for xA = 1 the system will be most proba-
bly excited. In this way, communication is possible without
requiring energy modulation. The stationary input distribu-
tion always satisfies πxA=0/πxA=1 = f−/ f+. Note that in this
case the channel capacity is not necessarily maximized by
a uniform input distribution. Thus, for a fixed average input
transition rate 〈 f 〉 ≡ f+ f−/( f− + f+), one needs to find the
ratio f−/ f+ that maximizes the channel capacity given all the
other parameters. This is done numerically in what follows.
Also, we parametrize the transition rates with the constants

(a)

(b)

FIG. 5. Entropy production rate versus channel capacity for the
minimal model of reservoir switching. The parameters are T1/ε =
0.1, β(1) = β(0)−1 = 0.1, and M = 4. The temperature T2 was var-
ied in the range (10−1, 102) to obtain each of the curves.

α, β(0) and β(1) by considering λ−(0; 1) = λ−(1; 1) = α〈 f 〉
and λ−(xA; 2) = β(xA)λ−(xA; 1). The rest of the rates are
determined by Eq. (30). In Fig. 5 we show the entropy pro-
duction rate versus the channel capacity for different values
of al pha. All the other parameters are fixed as indicated in
the caption with the exception of T2, that was swept to obtain
each curve. We see that as we increase α, which corresponds
to making the output system faster compared to the chang-
ing input, it is possible to achieve higher channel capacities
at the expense of a higher entropy production rate. For the
parameters in Fig. 5(a) the entropy production rate is a convex
and monotonic function of the channel capacity. However, the
convexity is lost for lower values of α, as shown in Fig. 5(b).

IV. THERMODYNAMICS INFORMS WHEN AND HOW
TO INVERSE MULTIPLEX

We have found that in most cases, for both types of com-
munication analyzed above, the EP is a convex function of
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the channel capacity. So by the theory of convex optimiza-
tion, a thermodynamic benefit to inverse multiplexing must
arise. In what follows, we analyze when one can reduce
thermodynamic cost by splitting information streams across
multiple channels. We additionally analyze how to distribute
information transmission rates across multiple channels in
order to reach the minimum achievable thermodynamic cost.
In doing so, we derive the Pareto front that represents the set
of “optimal” tuples (C, 〈σ̇ 〉) one can achieve for any given
fixed number of channels.

A. M-channel capacity

Consider concurrently operating M channels with ca-
pacities C1,C2, . . . ,CM ; inputs A1, . . . , AM ; and outputs
B1, . . . , BM . We set the inputs simultaneously at the beginning
of each channel use. We know that the mutual information be-
tween the inputs and outputs of M channels is upper bounded
by a value that can only be achieved if the inputs are in-
dependent [31] (see the Appendix). So the capacity of this
multi-channel setup equals the sum of the capacities of each
channel.

C = max
pXA1

,...,XAM

I
(
XA1 , . . . , XAM ; XB1 , . . . , XBM

)
, (32)

=
M∑

i=1

max
pXA1

,...,XAM

I
(
XAi ; XBi

)
, (33)

=
M∑

i=1

max
pXAi

I
(
XAi ; XBi

) =
M∑

i=1

Ci. (34)

The only joint input distribution that achieves this maxi-
mum channel capacity is πXA1 ,...,XAM

= ∏M
i=1 πXAi

. So by the
channel-coding theorem, optimal codebooks make it appear
as if the inputs were generated in each channel from its
capacity-maximizing input distribution, independently from
one another. Additionally, since the inputs to all of the chan-
nels are statistically independent, there is no unavoidable
mismatch cost, as arises for example in the parallel bit erasure
of statistically coupled bits [73].

B. M-channel EP rate and thermodynamic benefits
of inverse multiplexing

Since we model the multi-channel setup as if it is running at
its capacity, each of the constituent channels is an independent
CTMC, governed by its own master equation. Therefore, the
total EP rate of the combined system is simply the sum of the
EP rates of each channel [66]:

σ̇ =
M∑

i=1

σ̇i =
M∑

i=1

gi(Ci ), (35)

where gi(Ci ) expresses channel i’s EP rate σ̇i as a convex func-
tion gi of its channel capacity, Ci. We can use the water-filling
algorithm to minimize the total EP rate of a set of M channels
subject to a desired total channel capacity Cd = ∑M

i=1 Ci, via

the Lagrangian [74]:

L =
M∑

i=1

g(Ci ) + λ

(
Cd −

M∑
i=1

Ci

)
. (36)

Differentiating with respect to Cj ,

∂L
∂Cj

= g′
i(Cj ) − λ = 0, (37)

which means

Cj = (g′
i )

−1(λ), (38)

where λ is chosen to satisfy

M∑
i=1

Ci =
M∑

i=1

(g′
i )

−1(λ) = Cd . (39)

In particular, this suggests that if gi = g∀ i, then it is optimal
to use M channels with identical capacity Cd

M . This finding
leads to important insights regarding how to choose between
different inverse multiplexing setups. For example, a setup
of two channels with capacities CA and CB is identical in
an information-theoretic sense to a setup with two identical
channels each with capacity 1

2 (CA + CB). However, from a
thermodynamic viewpoint, it would be better to use the two
identical channels because that would minimize EP rate due
to the convexity of the EP rate with respect to the channel
capacity. If we know the functional form of g(C), then we
can also use the method outlined in Ref. [3] to calculate
the energetically optimal number of independent, identical
channels to use in order to achieve a desired total information
rate. More generally, for any set of functions {gi}, we can find
the λ that satisfies Eq. (39) (in addition to the positivity of
the channel capacity), and plug it into the Lagrangian. In this
way we can obtain the optimal distribution {Ci} of information
transmission rates across M channels that are not necessarily
identical.

C. Pareto-optimal fronts for inverse multiplexing

These results suggest that for any number M of channels,
there exists a Pareto front of points (C, σ̇ ) that each minimizes
σ̇ = ∑M

i=1 σ̇i and simultaneously maximizes C = ∑M
i=1 Ci.

We plot examples of these Pareto fronts in Fig. 6. The plots
reveal that higher channel capacities benefit from splitting
information rates across more channels. More specifically,
there exist thresholds, C(m), above which it reduces the total
EP to split information transmission across m + 1 channels
instead of m channels.

V. DISCUSSION

A convex relationship between thermodynamic cost and
channel capacity, as well as the energetic benefits of inverse
multiplexing that follow, has previously been demonstrated
in communication channel models with Gaussian noise [31].
However, for those models, the “power” does not correspond
to actual dissipated energy per unit time. This relationship
has also been justified semiformally for biological systems
[3,4,62]. Due to their assumptions, both of these kinds of
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FIG. 6. For a collection of M channels implementing energy
switching with capacities {C1, . . . ,CM}, these Pareto fronts are col-
lections of points (C, 〈σ̇ 〉) that each minimizes 〈σ̇ 〉 = ∑M

i=1〈σ̇i〉
and simultaneously maximizes C = ∑M

i=1 Ci. All other possible (but
nonoptimal) combinations {C1, . . . ,CM} lie to the top right of each
front. Above each threshold C (m) splitting information transmission
across m + 1 channels instead of m channels reduces the total EP. In
these plots, fs = 0.1, L = 4, and ε = 2.

studies derive that thermodynamic cost increases monotoni-
cally with channel capacity. To the best of our knowledge,
ours is the first study to use physics to demonstrate that, in
many cases, the thermodynamic cost is actually not necessar-
ily a monotonic nor convex function of the channel capacity.
However, we find that those two properties are recovered
for sufficiently large channel capacity, so the thermodynamic
benefits of splitting an information stream among multiple
channels still arises. This paper also presents the first anal-
ysis of inverse multiplexing treated with the rigor provided
by stochastic thermodynamics. Our results help illuminate
observations in biological communication, and may provide
heuristics for an engineer designing communication systems.
There are several stochastic thermodynamics formulations
one can use to continue to investigate the thermodynamic
costs of communication. In the main text we use the one
in which the dynamics of the system of interest (SOI) is
Markovian, due to its coupling with infinite reservoirs that
are at thermal equilibrium. Another formulation, called the
“inclusive Hamiltonian,” or “strong-coupling” model, treats
the case where the reservoirs are finite. There, the joint system
comprising the SOI and the reservoirs evolves with unitary
Hamiltonian dynamics [75–78]. So the dynamics of the SOI
is non-Markovian in general. There has been a very prelimi-
nary analysis of thermodynamically motivated rate distortion
functions for communication channels using this formulation
[79]. In the main text we have also assumed that the output
has “no back-action” onto the input, so they each obey LDB
separately. This nonreciprocity approximates most real-world
observable dynamics well [64]. However, strictly speaking,
many systems violate this approximation when modeled at
finer scales due to microreversibility and the consequent prop-
erty that the entire system obeys LDB [80]. For the purposes

of these investigations, we have not considered the thermo-
dynamic cost of the input encoding function and the output
decoding function. However since different coding strategies
(“codebooks”) would likely incur different thermodynamic
costs, we suggest that future work should investigate their
stochastic thermodynamics. Such analyses would naturally
extend to investigations of the thermodynamic costs of dif-
ferent error-correcting codes.
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APPENDIX: MATERIALS AND METHODS

1. Proof of the form of EP rate versus channel capacity in the
energy-switching case in the nonequilibrium steady state

This proof is for the case when N = 2, L = 2, and fs = 0.
Zero signaling rate corresponds to communication protocols
in which the input is set once, at time t = 0, by sampling from
πXA remains fixed for the rest of the trajectory, during which
only the output can change state. While holding T2 fixed and
varying T1, we seek to derive the properties of

d〈σ̇ 〉
dC

= d〈σ̇ 〉/dT1|T2

dC/dT1|T2

. (A1)

First, we note that C is always non-negative due to the
non-negativity of the mutual information. Its derivative with
respect to the temperature of one reservoir

∂C

∂T1
= ∂ pm

∂T1
(1 + ln pm) + ∂ pe

∂T1
(1 + ln pe), (A2)

= ∂ pm

∂T1
ln

pm

pe
, (A3)

= 1

r1 + r2

∂α1

∂T1
ln

α

ζ
, (A4)

= −εα1ζ1

T 2
1 r1

ln
α

ζ
, (A5)

� 0 ∀ T1 ∈ (0,∞), (A6)

is always nonpositive. So the channel capacity is a nonincreas-
ing function of the temperature of (any) reservoir. We then find
that the EP rate can be factorized (assuming the rv are fixed,
positive reals):

〈σ̇ 〉 =
(

1

r1
+ 1

r2

)−1(
e

ε
T1 − e

ε
T2

)(
ε

T1
− ε

T2

)

× ln

(
r1e

ε
T1 + r2e

ε
T2

r1 + r2

)
. (A7)

Since (e
ε

T1 − e
ε

T2 )( ε
T1

− ε
T2

) � 0 and the argument of the loga-
rithm is a function that is always � 1, the EP rate is always
non-negative. (This is a fact of stochastic thermodynamics
as well—that the ensemble-average EP rate is non-negative.)
Furthermore, it is clear that the EP rate has a singular root
that is achieved when T1 = T2, which gives an EP rate of zero.
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This singular root must be a minimum since the EP rate is
everywhere non-negative. The EP rate has no other roots, so
by Rolle’s theorem,

d〈σ̇ 〉
dT1

{
< 0 T1 < T2

> 0 T1 > T2
. (A8)

Therefore,

d〈σ̇ 〉
dC

{
> 0 T1 < T2

< 0 T1 > T2
, (A9)

which is exactly what we observe in Fig. 4. We also note the
limits

lim
T1→0

C = ln 2 − S

{
η1 + η2

(
e

ε
T2

e
ε

T2 + 1

)
, η2

(
1

e
ε

T2 + 1

)}
, (A10)

:= Cmax(T2) � 0, (A11)

lim
T1→∞

C = ln 2 − S

{
η1

2
+ η2

(
e

ε
T2

e
ε

T2 + 1

)
,
η1

2
+ η2

(
1

e
ε

T2 + 1

)}
,

(A12)

:= Cmin(T2) � 0, (A13)

where η1 = r1
r1+r2

and η2 = r2
r1+r2

. So, the channel capacity
has minimum and maximum values. We also find that, at the
minimum, the channel capacity equals

C(T1 = T2 = T ) = ln 2 − S

({
e

ε
T

e
ε
T + 1

,
1

e
ε
T + 1

})
, (A14)

which is strictly positive unless T = ∞. Furthermore, we
write the limits on the entropy production rate

lim
T1→0

〈σ̇ 〉 = ∞, (A15)

lim
T1→∞

〈σ̇ 〉 =
(

1

r1
+ 1

r2

)−1
ε

T2

(
e

ε
T2 − 1

)
ln

(
r1 + r2e

ε
T2

r1 + r2

)
,

(A16)

:= 〈σ̇ 〉†(T2) � 0. (A17)

Putting Eq. (A9) together with these limit analyses results in
the fact that the EP rate as a function of the channel capacity is
convex with a single global minimum that occurs at a positive
value of the channel capacity. (The channel capacity is zero
when T1 = T2 = ∞.) Additionally, the EP rate diverges as the
channel capacity approaches its maximum value Cmax(T2), as
depicted in Fig. 4. So for this energy-switching case, the EP is
a convex, nonmonotonic function of the channel capacity.

2. Mutual information is maximized when channels
are independent

For any number M � 2 of channels [31],

I
(
XA1 , . . . , XAM ; XB1 , . . . , XBM

)
, (A18)

= H
(
XB1 , . . . , XBM

) − H
(
XB1 , . . . , XBM

∣∣XA1 , . . . , XAM

)
,

(A19)

= H
(
XB1 , . . . , XBM

) −
M∑

i=1

H
(
XBi

∣∣XA1 , . . . , XAM

)
, (A20)

= H
(
XB1 , . . . , XBM

) −
M∑

i=1

H
(
XBi |XAi

)
, (A21)

�
M∑

i=1

H
(
XBi

) −
M∑

i=1

H
(
XBi |XAi

)
, (A22)

=
M∑

i=1

I
(
XAi ; XBi

)
. (A23)

Equation (A22) achieves equality when the M channels are all
independent.
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