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Boundary-layer structures arising in linear transport theory
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We consider boundary-layer structures that arise in connection with the transport of neutral particles (e.g.,
photons or neutrons) through a participating medium. Such boundary-layer structures were previously identified
by the authors in certain particular cases [Phys. Rev. E 104, L032801 (2021)]. Extending the previous work to
anisotropic scattering and general Fresnel boundary conditions, this contribution presents computational algo-
rithms which (1) resolve the aforementioned layers as well as previously unreported boundary layers associated
with Fresnel boundary transmission and reflection, and (2) yield accurate simulations at fixed computational cost
for transport under phase functions with arbitrarily strong anisotropy. The present paper additionally includes (3)
Mathematical proofs which justify the numerical methods proposed for resolution of boundary-layer structures.
The impact of the new theory on algorithmic performance is demonstrated through a series of 1D computational
benchmarks that emulate typical photon- and neutron-transport applications such as, e.g., optical tomography,
and nuclear reactor analysis and design. Experimental results for transmission of photons through turbid media
are presented, exhibiting close agreement between simulated and experimental data. As illustrated by means
of a variety of numerical results, the proposed boundary-layer-based approach tackles transport problems with
unprecedented accuracy and efficiency.
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I. INTRODUCTION

We are concerned with the problem of transport of neutral
particles such as neutrons [1,2] and photons [3,4], wherein
interactions between particles are negligible and only interac-
tions between the particles and a background medium need to
be taken into account. The transport processes considered, in
which the background medium may absorb, emit, and/or scat-
ter neutral particles, is governed by the linear single-species
version of the Boltzmann equation, namely, the linear trans-
port equation—which is alternatively known as the radiative
transfer equation (RTE) and the neutron-transport equation in
the contexts of photon and neutron transport [5,6], respec-
tively. The linear transport equation presents the challenge of
high dimensionality: in full three-dimensional (3D) space the
solution (particle density) depends on three spatial variables
as well as two angular propagation variables and time, giving
rise, in all, to a computationally demanding six-dimensional
problem. Important applications include radiative heat trans-
port [7,8], gas dynamics [2], radiation transport in stellar
and planetary atmospheres [3,9,10], cancer diagnosis [11–13],
radiation therapy dose planning [14], finger joint arthritis di-
agnosis [15,16], studies of the human brain function [17,18],
optical and fluorescence tomography [19–21], and neu-
tron transport for nuclear reactor design [22–24], among
others [25–27].
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This paper presents numerical algorithms that enable ef-
fective treatment of certain boundary-layer structures arising
in the solutions of the linear transport equation which were
previously identified in Ref. [28] under the assumptions of
vacuum boundary conditions and isotropic scattering. As
noted in Ref. [28], if left unaddressed, the presence of un-
bounded derivatives in the boundary-layer regions poses a
significant challenge for the numerical solution of transport
equations. Expanding on the previous work, which, in partic-
ular, provides a means for accurate and inexpensive numerical
treatment of boundary layers, the methods introduced in the
present paper enable treatment of problems under strongly
anisotropic scattering (on the basis of a certain multiresolution
approach for the evaluation of the scattering integral), and they
can be applied under general Fresnel boundary conditions
(which, as shown in Sec. III A and throughout this paper,
themselves give rise to a different type of boundary-layer
structure). The proposed methods for regularization of both
types of boundary layers are based on the use of certain
regularizing changes of variables under which unbounded
derivatives are eliminated. These methods, which are pre-
sented here in a spatially one-dimensional (1D) context, are
directly applicable to fully 3D configurations. This paper
additionally includes (1) a mathematical analysis of the reg-
ularization process and associated algorithms, providing a
firm mathematical basis for the proposed methods and (2)
comparisons with experimental results for turbid media ex-
hibiting close agreement between experiments and numerical
simulations.

The linear-transport boundary layers identified in Ref. [28],
whose theoretical description and numerical resolution via
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changes of variables are detailed and generalized in the
present paper, are inherent in the transport equation solu-
tions near boundaries, and by extension, to the solutions of
Boltzmann-type equations. These boundary layers are unre-
lated to the ones widely discussed in the literature over a
period of various decades [29–33], which concern the asymp-
totic diffusion limit of the transport equation, that is, equations
of the form of Eqs. (1) or (3) in the limit of large scatter-
ing coefficient μs proportional to ε−1 and small absorption
μa = μt − μs, proportional to ε, where ε is a small parame-
ter. The boundary layers that arise in the resulting diffusion
approximation are independent of the angular variable ξ . In
contrast, the boundary layers considered in this paper exist for
arbitrary scattering and absorption coefficients, and they are
only observed for small values of ξ (directions nearly parallel
to the boundary) and for directions near the critical direction
ξ = ξ 0

c of total internal reflection.
The remainder of this paper is organized as follows.

Section II briefly sets up necessary notations and conven-
tions. Section III then develops the boundary-layer theory
for the linear transport equation and it presents mathematical
proofs showing that all associated boundary-layer structures
can be completely resolved by means of certain types of
changes of variables in the spatial and angular coordinates.
Section IV present numerical techniques based on the the-
oretical background provided by the previous sections as
well as a multiresolution algorithm tailored to handle effec-
tively the scattering integral under highly anisotropic phase
functions. Numerical and experimental results are then pre-
sented in Sec. V, highlighting the efficiency and accuracy
of the proposed algorithms, and including applications to
configurations involving collimated sources (such as those
necessary for modeling laser beams), as well as an ex-
perimental illustration demonstrating excellent agreement
between theory and experiment. Finally, Sec. VI presents
a few concluding remarks and it outlines future research
directions emerging from the present work, including, in
particular, the introduction of enhanced imaging techniques
based on joint inversion of fluorescence-microscopy and dif-
fuse optical-tomography data, as suggested in Ref. [34], with
the goal of overcoming some of the inherent limitations of the
fluorescence-microscopy technique in high-scattering media.

II. BACKGROUND

For simplicity and definiteness this paper focuses on 1D
configurations (Fig. 1) governed by the scalar radiative trans-
fer equation. The radiative transfer model is applicable to
propagation of monoenergetic particles, including neutron
transport [5] as well as photon transport under unpolar-
ized radiation as is often found in the context of light
propagation in highly scattering media such as biological
tissue [15,16,21,32]; discussions concerning the possible exis-
tence of polarization effects can be found in Refs. [35,36]. The
more general vector radiative transfer equation that accounts
for multiple polarization states [4,37], however, can be treated
similarly (cf. Remark 1). Both time dependent and steady state
configurations are considered in the results and discussion
section, but for definiteness, the boundary-layer analysis is
presented in the steady state context only. (A corresponding

FIG. 1. 1D finite “slab” geometry (from Ref. [28]): ξ = cos(θ ).

analysis for the time-dependent case, which can be treated
by means of similar techniques, is left for future work.) The
analysis given below can also be extended to the general
multidimensional case, for which the 1D configuration might
be considered as a limiting case near the domain boundary.

The 1D linear transport problem

ξ
∂

∂x
u(x, ξ ) + μt (x)u(x, ξ )

= μs(x)�(x, ξ ) + q(x, ξ ),

u(0, ξ ) = �0(ξ ) + R0(ξ )u(0, ξR), for ξ > 0,

u(1, ξ ) = �1(ξ ) + R1(ξ )u(1, ξR), for ξ < 0, (1)

where

�(x, ξ ) =
∫ 1

−1
p(ξ, ξ ′)u(x, ξ ′)dξ ′, (2)

describes the dynamics of the angular flux u(x, ξ ), where x,
ξ ′ = cos(θ ′) and ξ = cos(θ ) denote the spatial variable and
the cosines of the relevant propagation angles, as depicted
in Fig. 1, respectively. Here, calling μa(x) and μs(x) the
absorption and scattering coefficients, μt (x) = μs(x) + μa(x)
denotes the total transport coefficient. The phase function
p(ξ, ξ ′) models the density of probability that particles inci-
dent at x in directions between ξ ′ and ξ ′ + dξ ′ emerge from
x in the direction ξ after a scattering event. The “volumetric
source” q models the emission of particles, such as photons or
neutrons, within the medium, as a result of, e.g., fluorescence
or nuclear fission. The terms �i(ξ ) (i = 0, 1) can be used to
model a source of photons at the domain boundaries, as may
be given by a laser beam that injects radiation for optical
tomography applications, and finally, R0,1 denote the Fresnel
coefficients which, as discussed below in this section, them-
selves give rise to boundary-layer structures whose adequate
resolution impacts significantly on the accuracy of the numer-
ical solution of the transport equation.

The corresponding time-dependent problem,[
1

c

∂

∂t
+ ξ

∂

∂x
+ μt (x)

]
u(x, ξ , t )

= μs(x)�(x, ξ , t ) + q(x, ξ , t ), u(x, ξ , t = 0) = 0,
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u(0, ξ , t ) = �0(ξ, t ) + R0(ξ )u(0, ξR, t ), for ξ > 0,

u(1, ξ , t ) = �1(ξ, t ) + R1(ξ )u(1, ξR, t ), for ξ < 0, (3)

where

�(x, ξ , t ) =
∫ 1

−1
p(ξ, ξ ′)u(x, ξ ′, t )dξ ′ (4)

and where c denotes the speed of the particles in the
participating media (which is taken to equal c = 1 through-
out this paper), incorporates a time derivative in the
differential equation as well as the prescription of the values
of the solution at the initial time and time-dependent bound-
ary conditions, in addition to various elements present in
Eq. (1).

The previous contribution [28] announced results concern-
ing boundary-layer structures for the transport equations in
the presence of so-called vacuum boundary conditions—that
is, u(x, ξ ) = 0 at x = 0 and x = 1 for the relevant ranges
of incoming directions, namely 0 < ξ � 1 for x = 0 and
−1 � ξ < 0 for x = 1. [Clearly, the vacuum boundary con-
ditions coincide with Fresnel boundary conditions, displayed
in Eqs. (1) and (3), with R0,1 = 0 and �0,1 = 0.] Photon
transport theories (as, e.g., required for applications in optical
tomography) generally require the use of the Fresnel bound-
ary conditions with nonzero Fresnel coefficients. The Fresnel
coefficient, which depends on the indexes of refraction n�

and ns of the participating medium and its surroundings (both
of which are assumed throughout this paper to be spatially
constant for simplicity), quantifies the fraction of the radiation
arriving at the boundary in a given direction, that is reflected in
the corresponding specular direction. For the 1D slab geome-
try considered in this paper, radiation incident on the boundary
in the direction ξ = cos(θ ) is specularly reflected into direc-
tion ξR = −ξ . Calling α0 = π − θ the incidence angle with
respect to the normal ν̂0 = (1, 0, 0) at x = 0 and α1 = θ the
incidence angle with respect to the normal ν̂1 = (−1, 0, 0) at
x = 1, and letting α0,1 denote either α0 or α1 depending on
whether the normal at ν̂0 at x = 0 or ν̂1 at x = 1 is considered,
the corresponding Fresnel coefficient R0,1 (similarly equal to

either R0 or R1) is given by

R0,1(ξ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( n�−ns
n�+ns

)2
if α0,1 = 0,

1
2

(
sin2(α0,1

t −α0,1 )
sin2(α0,1

t +α0,1 )
+ tan2(α0,1

t −α0,1 )
tan2(α0,1

t +α0,1 )

)
if 0 < α0,1 < α0,1

c ,

1 if α0,1 � α0,1
c ,

(5)

where the critical angle is given by sin(α0,1
c ) = ns

n�
, with asso-

ciated critical directions

ξ 0
c = cos

(
α0

c

)
and ξ 1

c = cos
(
α1

c

)
(6)

(beyond which, for n� > ns, total internal reflection occurs
at the boundaries x = 0 and x = 1, respectively). Note that,
under the present assumptions of a constant index of refraction
we have

ξ 1
c = −ξ 0

c . (7)

The transmission angles α0,1
t are obtained from Snell’s law of

refraction sin(α0,1
t ) = n�

ns
sin(α0,1).

On the basis of the Fresnel coefficient we additionally
define the measurement operator

J +[u](t ) =
∫ 1

0
[1 − R1(ξ )]u(1, ξ , t )dξ, (8)

which quantifies the time-resolved outgoing flux of photons at
the boundary domain at x = 1.

III. BOUNDARY-LAYER THEORY FOR THE LINEAR
TRANSPORT EQUATION

A. Integral equation formulation: Fresnel and incidence
boundary layers

An integral equation equivalent to Eq. (1) can readily be
obtained by utilizing an integrating factor and substituting
the x = 0 and x = 1 boundary conditions (1) in the resulting
equation. For ξ > 0 we thus obtain

u(x, ξ ) = (�0(ξ ) + R0(ξ )u(0, ξR))e− ∫ x
0 μt (y)dy/ξ + e− ∫ x

0 μt (y)dy/ξ

ξ

∫ x

0
e
∫ y

0 μt (z)dz/ξ q(y, ξ )dy

+ e− ∫ x
0 μt (y)dy/ξ

ξ

∫ x

0
e
∫ y

0 μt (z)dz/ξμs(y)
∫ 1

−1
p(ξ, ξ ′)u(y, ξ ′)dξ ′dy, ξ > 0, (9)

with a similar expression for ξ < 0. In view of the ideas underlying boundary-layer theory [38], the particular case of Eq. (9) in
which the quantities μs, μt , and q are spatially constant captures the leading order boundary-layer behavior [28] of the solution
u of the variable-coefficients problem—since, for a lowest-order asymptotic approximation u0(x, ξ ), where u(x, ξ ) ∼ u0(x, ξ )
as (x, ξ ) → (0+, 0+), the coefficients can indeed be assumed to be constant in a small neighborhood of the boundary points.
Assuming such constant coefficients and using Eqs. (2) and (9) leads to the near-boundary approximation

u(x, ξ ) ∼ u0(x, ξ ) = (�0(ξ ) + R0(ξ )u(0, ξR))e−μt (0)x/ξ + e−μt (0)x/ξ

ξ

∫ x

0
eμt (0)y/ξ q(0, ξ )dy

+ e−μt (0)x/ξ

ξ

∫ x

0
eμt (0)y/ξμs(0)�(y, ξ )dy, as (x, ξ ) → (0+, 0+), (10)
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with a similar result for (x, ξ ) → (1−, 0−). The exponen-
tial factor exp (−μt (0)x/ξ ) represent fast transitions in the
density of particles traveling near the boundary point x = 0 in
directions nearly parallel to the boundary (for which ξ is close
to zero). In particular, these exponential boundary-layer terms
entail unbounded derivatives in both, the x and ξ variables
as (x, ξ ) → (0+, 0+). Clearly, such boundary layers present a
challenge from a computational standpoint—since the numer-
ical solution of Eq. (1) requires, in particular, x differentiation
and integration respect to ξ across such structures.

The boundary-layer terms �0(ξ )e− ∫ x
0 μt (y)dy/ξ in Eq. (9)

and �0(ξ )e−μt (0)x/ξ in Eq. (10) represent the uncollided and
unabsorbed remainder of the incident flux entering through
the domain boundary x = 0; these terms are therefore called
“incidence boundary layers” (IBL). Similarly, the third and
fourth boundary-layer terms in Eqs. (9) and (10) incorporate
exponential increments and attenuations—arising from the
emission of particles resulting from the volumetric source q
in the third terms, and from particle scattering � in the fourth
terms, and they are therefore called “volumetric source bound-
ary layers” (VSBL). The terms R0(ξ )u(0, ξR)e− ∫ x

0 μt (y)dy/ξ

and R0(ξ )u(0, ξR)e−μt (0)x/ξ in these equations, finally, rep-
resent the uncollided and unabsorbed remainders of Fresnel
reflections of interior fields at the boundary x = 0, and they
incorporate boundary layers of a different kind, which we call
“Fresnel boundary layers” (FBL). Unlike the IBL and VSBL,
the Fresnel boundary layers around, e.g., x = 0 arises from a
singularity of the Fresnel reflection coefficient R0(ξ ) at the
boundary ξ 0

c between the angular regimes of partial and total
internal reflection, as discussed in what follows. Notably, un-
like the IBL and VSBL, the Fresnel boundary layers induce a
singular behavior throughout the spatial domain, and, strictly
speaking, they are not confined to the domain boundary. How-
ever, owing to the exponential factor that accompanies the
Fresnel coefficients, such singularities decay exponentially
fast with the distance to the boundary, they are therefore only
observed in a neighborhood of the boundary (see, e.g., Fig. 7),
and, in that sense, they are boundary layers as well.

As mentioned above, the FBL arise as ξ approaches the to-
tal internal-reflection direction ξ 0

c from the right (respectively,
ξ 1

c from the left). At such points all derivatives of R0,1(ξ )
become infinite, which gives rise to fast transitions in the solu-
tion u around the points (x, ξ ) = (0, ξ 0

c ) and (x, ξ ) = (1, ξ 1
c ),

as illustrated in the aforementioned Fig. 7. To see this for
R0(ξ ) (the case R1(ξ ) is analogous) we note a singularity that
arises in this function from the term

α0
t = arcsin

(
n�

ns

√
1 − ξ 2

)
(11)

that appears repeatedly in Eq. (5). Expanding n�

ns

√
1 − ξ 2

around ξ = ξ 0
c (for which n�

ns

√
1 − (ξ 0

c )2 = 1) we ob-

tain n�

ns

√
1 − ξ 2 ∼ 1 + n2

�

n2
s
ξ 0

c (ξ − ξ 0
c ) which, together with

Eq. (11) and arcsin(y) ∼ π
2 − √

2
√

1 − y for y � 1 yields

α0
t ∼ π

2
− n�

ns

√
2ξ 0

c

√
ξ − ξ 0

c , (12)

or, more precisely,

α0
t = F

(√
ξ − ξ 0

c

)
, ξ > ξ 0

c , (13)

where F = F (z) is a smooth function of z around z = 0. These
expressions encapsulate the singular character

R0(ξ ) = 1 − a
√

ξ − ξ 0
c + O

(
ξ − ξ 0

c

)
, (14)

for some real coefficient a > 0, or, more generally,

R0,1(ξ ) = S0,1
(∣∣ξ − ξ 0,1

c

∣∣ 1
2
)
, (15)

of the complete Fresnel coefficient and its unbounded deriva-
tives for ξ � ξ 0

c and ξ � ξ 1
c , where S0,1 = S0,1(z) is a smooth

function of z around z = 0. As indicated above, the exponen-
tially decaying factors that accompany the Fresnel coefficients
make the fast FBL transitions observable only in a small
region near the boundary points, as befits a boundary-layer
structure.

Remark 1. As suggested in Sec. II, with exception of minor
variations required to account for the simultaneous presence
of multiple polarization states, the theoretical and computa-
tional methods presented in this paper are applicable in the
context of vector radiative transfer equations for polarized
light. In particular, since Snell’s law (11) is valid for arbitrary
polarization states, the singular character of the Fresnel re-
flection matrix [37, Eq. (10)] is once again, as in Eqs. (13)
and (15), given by smooth functions of |ξ − ξ 0,1

c | 1
2 for ξ � ξ 0

c
and ξ � ξ 1

c . It follows that the change of variables (18), which
was designed to regularize functions containing such types
of singularities, also produces the required regularization for
the Fresnel reflection matrices and associated vector-transport
solutions that arise under polarized radiation.

B. Boundary-layer resolving changes of variables

As discussed in what follows, certain angular and spatial
changes of variables can be utilized to fully resolve nu-
merically the near-singular IBL, VSBL, and FBL structures
described in the previous section; such a result was previously
announced for the VSBL structures in Ref. [28]. The theo-
retical results presented in Secs. III C and III D, which are
illustrated in Fig. 6, show that, indeed, such transformations
“regularize” the problem: in the new variables the spatial
and angular derivatives remain uniformly bounded throughout
the spatial and angular domains, including points in space
arbitrarily close to the domain boundary and directions arbi-
trarily close to tangential to the boundary. As a result, use of
the new variables gives rise to rapidly convergent numerical
algorithms that, on the basis of relatively coarse discretiza-
tions, evaluate accurately the transport solution throughout the
angular and spatial domains, and, in particular, for arbitrarily
small values of ξ and for values of x arbitrarily close to the
boundaries x = 0 and x = 1.

As a simple example, let us consider the function w(ξ ) =√
ξ which, like the Fresnel coefficient, has infinite derivatives

at a point—in this case, the point ξ = 0. Clearly, use of the
change of variables ξ = rn with an integer n > 1 in an integra-
tion problem results in the smoother integrand nw(rn)rn−1 =
nr3n/2−1—which, of course, is infinitely differentiable for n
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even, and, in particular, for n = 2. Note that an equispaced
mesh in the r variable corresponds to a graded mesh in the ξ

variable: the mesh grading transforms a curve with an infinite
slope in the ξ variable into a curve with a finite slope in
the r variable—a property that will be exploited not only in
connection with the Fresnel boundary layers, but also, with
values n > 2, to resolve the challenging nearly singular ξ

dependence of the aforementioned IBL and VSBL.
As shown in Secs. III C and III D, changes of variables can

similarly be utilized to resolve the unbounded x derivatives
that occur in a family of functions such as w(x, ξ ) = 1 − e− x

ξ .
Whereas none of these functions has an infinite derivative,
the derivatives of the family of functions are collectively un-
bounded, as, e.g., the x-derivatives of wξ (x) (e.g., the first
derivative w′

ξ (x) = − 1
ξ
e− x

ξ ) tend to infinity as x and ξ ap-
proach zero with fixed values of x/ξ ; similar unbounded
behavior arises for other derivatives of this function with
respect to x and/or ξ . As in the case of the square-root func-
tion considered above, changes of variables can be utilized
to resolve the x near-singularity of the complete family. As a
simple preliminary illustration we note that, under the change
of variables

x = x(v) = ev

ev + 1
, (16)

the family wξ (x(v)) = 1 − e− x(v)
ξ has uniformly bounded

derivatives with respect to v. Indeed, for the first derivative,
for example, we obtain

d

dv
wξ (x(v)) = −(1 − x(v))

x(v)

ξ
e− x(v)

ξ ,

which is uniformly bounded, for all v and ξ , on account
of the boundedness of the functions (1 − x(v)) and Xe−X

with X = x(v)
ξ

. A similar calculation shows that all of the v

derivatives of wξ (x(v)) are uniformly bounded. Use of an
additional order-n algebraic change of variables ξ = �(r),
finally, ensures that the derivatives with respect to v of all
orders, and the derivatives with respect to r up to order (n − 1)
are uniformly bounded—for all v and r.

As mentioned above, the change of variables we use
to treat the Fresnel boundary-layer singularity expressed in
Eq. (14) is related to but different from the simple algebraic
transformation ξ = rn discussed previously. Like the simple
transformation, the alternative algebraic transformation we
use induces a mesh grading via a power-n expression which
maintains an adequate number of discretization points away
from the finely graded region next to the singular point (which
corresponds to ξ = r = 0 in the simple

√
ξ example consid-

ered above). In detail, instead of ξ = rn, in this paper we
use rescaled versions [via linear functions s = s(r)] of the
algebraic Martensen-Kussmaul (MK) change of variables [39]
given by

hN (s) = 2π
[v(s)]N

[v(s)]N + [v(2π − s)]N
, 0 � s � 2π,

v(s) =
(

1

N
− 1

2

)(
π − s

π

)3

+ 1

N

s − π

π
+ 1

2
.

Roughly speaking, this transformation accumulates one half
of the grid points toward the endpoints 0 and 2π , while the
other half is distributed fairly uniformly within the interior of
the interval [0, 2π ]. In the context of angular boundary-layer
resolution we utilize this transformation with two different
values of N , in conjunction with the linear rescaling

s = s(r) =
⎧⎨⎩π r

ξ 0
c

for 0 < r � ξ 0
c ,

π
r−ξ 0

c
1−ξ 0

c
for ξ 0

c < r � 1.
(17)

In detail, in view of the relation (7), we introduce the angular
change of variables

ξ = �(r) =
{

ψ (r) for 0 � r � 1,

−ψ (−r) for − 1 � r < 0,
(18)

where, for a given value n (taken to equal n = 3.2 throughout
this paper),

ψ (r) =
{ hn(s(r))

π
ξ 0

c , 0 < r � ξ 0
c ,

ξ 0
c + 1−ξ 0

c
π

h2(s(r)), ξ 0
c < r � 1.

(19)

Note that this change of variables results in a numerical grid
in the ξ variable that is refined near ξ = 0 and ξ = ±ξ 0

c ; as
shown in the following section, such graded refinements pro-
vide the necessary resolution of boundary layers. As discussed
in the following section, the function h2, that is to say, hN with
N = 2, which is used in the case ξ 0

c < r � 1 of definition (19),
exactly cancels the square-root singularity (15) in the Fresnel
coefficient. The function hN with N = n used for the case
0 < r � ξ 0

c , in turn, is utilized to smoothen the singularity of
the solution u near ξ = 0. A different use of the MK function
hN (s) is made in Sec. V A, with a different linear rescaling, to
adequately discretize a collimated boundary source.

The formal analyses presented in the following section for
both the angular and spatial regularization processes is based
on use of the convergent Neumann series representation [1,40]

u(x, ξ ) =
∞∑

m=0

um(x, ξ ), (20)

of the solution u, where um(x, ξ ) = Km[g + L[q]](x, ξ ) is de-
fined in Appendix A as the result of the action of the mth
power Km of a certain operator K on a “boundary-condition”
function g as well as the result L[q] of the action of an operator
L on the source function q in Eq. (1). Physically, um(x, ξ )
represents the density of photons at point x traveling with
direction given by ξ that have undergone a number m of
collision and scattering events.

As is often the case in practice [and as established in Ap-
pendix B for the 1D Henyey-Greenstein phase function given
in Eqs. (44) and (45)], the phase function p = p(ξ, ξ ′) and its
derivatives are assumed to be bounded: for each integer j � 0
there exists a constant Cj > 0 such that∣∣∣∣ ∂ j

∂ξ j
p(ξ, ξ ′)

∣∣∣∣ < Cj for − 1 � ξ, ξ ′ � 1. (21)

It follows that provided u = u(x, ξ ) is a bounded function of x
and ξ (as it generally may be expected on physical grounds),
for each integer j � 0 there exists a constant Dj > 0 such
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that for −1 � ξ � 1 and 0 � x � 1 we have for the collision
integral (2) ∣∣∣∣ ∂ j

∂ξ j
�(x, ξ )

∣∣∣∣ < Dj, (22)

a fact that will exploited in the theoretical study of angular
boundary layers presented in Sec. III C. Similarly, defining

�m(x, ξ ) =
∫ 1

−1
p(ξ, ξ ′)um(x, ξ ′)dξ ′, (23)

we may generally assume∣∣∣∣ ∂ j

∂ξ j
�m(x, ξ )

∣∣∣∣ < Em
j , (24)

for certain constants Em
j . Naturally, our formal study of so-

lution smoothness under the changes of variables introduced
above assumes that the boundary sources �0(ξ ) and �1(ξ ) and
the interior source q(x, ξ ) are smooth functions, with bounded
derivatives of all orders, with respect to x and ξ . For nota-
tional simplicity we present proofs for the case of spatially
constant absorption and scattering coefficients, μa(x) = μa,
μs(x) = μs, and μt (x) = μt = μa + μs.

C. Boundary-layer regularization I: Angular regularization

This section shows that the change of variables (19) regu-
larizes the exponential and algebraic boundary layers [namely,
the quantities (A2) and (A3) that, in view of Eqs. (A7)
through (A11), are a part of the terms (A11) of the Neumann
expansion (A9) of the solution, see also Fig. 7] that occur in
the integrand p(ξ, ξ ′)u(x, ξ ′) of the collision integral (2), with
respect to the integration variable ξ ′ for ξ ′ around ξ ′ = 0.
(Without loss of generality we restrict our proof to the case
ξ > 0; the case ξ < 0 follows analogously.) More precisely,
the results in this section show that the collision integrand that
results upon the change of integration variables ξ ′ = ψ (r),
namely, [p(ξ, ψ (r))u(x, ψ (r)) dψ

dr (r)], has bounded deriva-

tives ∂
j

r with respect to r, of orders j � (n − 1) for 0 � r � 1
and for all x, 0 � x � 1—and, thus, integration of this inte-
grand on the basis of, e.g., the Gauss-Legendre rule gives rise
to high-order convergence, of orders consistent with with clas-
sical error estimates [41] for the Gauss-Legendre quadrature
rule: the �-point Gauss-Legendre quadrature error decreases
like 32V/[15π (n − 1)(2� − n + 2)n−1] for � � n−1

2 , provided
the derivatives of the integrated function up to order (n − 1)
are bounded by the constant V > 0. Since, in the present case
ξ � 0 the function u(x, ξ ) has bounded derivatives outside a
half-neighborhood of ξ = 0 to the right of ξ = 0 and a half
neighborhood of ξ = ξ 0

c to the right of ξ = ξ 0
c (see Fig. 7), we

show that under the composition u(x, ψ (r)) the resulting inte-
grand has bounded derivatives of order 0 � j � (n − 1), for
0 � r � 1, in both, half-neighborhoods of r = 0 and r = ξ 0

c
to the right of r = 0 and r = ξ 0

c , respectively.
We establish first the derivative boundedness near r = 0

and to the right of this point. To do this, noting that the
change of variables (19) behaves asymptotically like the nth
power function, ψ (r) ∼ rn, as r → 0+, it suffices to show that
the change of variables ξ ′ = ζ1(r) = rn results in the desired
bounded integrand derivatives for the region 0 � r < ξ 0

c and

up to and including r = ξ 0
c from the left. Under the present hy-

pothesis Eq. (21) that the phase function p(ξ, ξ ′) has bounded
derivatives, and since ζ ′

1(r) = nrn−1, it suffices to show that
∂ j

∂r j (u(x, rn)rn−1) is bounded for 0 � r < ξ 0
c and up to and

including r = ξ 0
c from the left, and for 0 � j � (n − 1). We

do this by showing, by induction in m, that the same is true for
each term um in the Neumann series (20) of u. That is to say
that for some positive constant Aj , we show inductively that

∂ j

∂r j
(um(x, rn)rn−1) < Aj, 0 � j � n − 1, (25)

and thus, the jth derivative of the integrand in the scattering
integral is bounded for such values of r and j.

Proof of Eq. (25). We first consider the case m = 0 for
which, in view of Eqs. (A1), (A2), and (A11) in Appendix A,
∂ j/∂r j (u0(x, rn)rn−1) equals

∂ j

∂r j
(�0(rn)e−μt x/rn

rn−1 + L[q](x, rn)rn−1), (26)

and we consider, in turn, each one of the two terms on the
right-hand side of Eq. (26). In regard to the first right-hand
term, given that, by assumption, the boundary source term
�0(ξ ) has bounded derivatives of all orders, it suffices to
show that e−μt x/rn

rn−1 has bounded derivatives for the relevant
orders of differentiation. Using Eqs. (A12) and (A13), and
calling X = μt x/rn we obtain the expression

∂ j

∂r j
(e−μt x/rn

rn−1) = rn− j−1
j∑

�=0

j−�−1∑
s=0

a�,sX
j−�−se−X , (27)

with real coefficients a�,s. Since, for any real constant M � 0,

X Me−X is bounded for all X � 0, (28)

and since all of the exponents (n − j − 1) on the right-hand
side of the equation are nonnegative for 0 � j � (n − 1), it
follows that the left-hand quantity in Eq. (27) is bounded for
this range of values of j, as desired. For the second term in
Eq. (26), in turn, using Eq. (A2) in the case ξ > 0 considered
presently, together with Eq. (A16), we obtain

∂ j

∂r j
(L[q](x, rn)rn−1)

= rn− j−1
j∑

k=0

j∑
�=1

j−k∑
s=1

α j,k,�,sr
sn

×
∫ x

0

∂sq

∂ξ s
(y, rn)

[
μt (y − x)

rn

]�

e−μt (y−x)/rn
dy, (29)

for certain coefficients α j,k,�,s. Then, using Eq. (28) with
X = μt (y − x)/rn, and since, by hypothesis, the source term
q(y, ξ ) has bounded derivatives, it follows that the integrand
on the right-hand side of Eq. (29), and, thus, the complete
right-hand side, is also bounded for all 0 � j � n − 1 and for
0 � r � ξ 0

c . The m = 0 case of the inductive proof has thus
been concluded.

To complete the inductive proof in the present case (in the r
region to the left of r = ξ 0

c ), we assume that for a given m the
derivatives ∂

j
r (rn−1um) are bounded for 0 � j � (n − 1), and

we show that the same is true for the derivatives ∂
j

r (rn−1um+1),
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or, equivalently, in view of Eq. (A7) through (A11), that the
terms

∂ j

∂r j
(R0(rn)um(0,−rn)e−μt x/rn

rn−1)

and
∂ j

∂r j
(μsL[S[um]](x, rn)rn−1) (30)

are bounded for 0 � j � (n − 1). By the induction hypothesis
and in view of Eqs. (27) and (28) we see that the first term
derivatives are bounded for 0 � j � (n − 1). For the second
term, in turn, using once again Eq. (A2), in conjunction with
Eqs. (A4), (A16), and (23), we obtain

∂ j

∂r j
(L[S[um]](x, rn)rn−1)

= rn− j−1
j∑

k=0

j∑
�=1

j−k∑
s=0

α j,k,�,sr
sn

×
∫ x

0

∂s�m

∂ξ s
(y, rn)

[
μt (y − x)

rn

]�

e−μt (y−x)/rn
dy.

In view of Eq. (24) together with the bound (28) with X =
μt (y − x)/rn we see that the integrand on the right-hand side
is bounded, and, thus that, for 0 � j � (n − 1), so is the
complete second term in Eq. (30).

Having established the integrand derivative boundedness
under the change of variables (19) in the region 0 � r <

ξ 0
c and up to and including r = ξ 0

c from the left, we now
proceed to establish the corresponding boundedness in the
remaining region ξ 0

c < r � 1 up to and including r = ξ 0
c

from the right—in which the change of variables (19) be-
haves asymptotically like ψ (r) ∼ ξ 0

c + b(r − ξ 0
c )2 as r → ξ 0

c
from the right for a certain real constant b. In view of this
asymptotic character, it suffices to show that under the change
of variables ξ ′ = ζ2(r) = ξ 0

c + b(r − ξ 0
c )2, the jth derivative

∂ j

∂r j (u(x, ζ2(r)) dζ2(r)
dr ) is bounded for ξ 0

c � r � 1, which we
establish, as in the previous case 0 � r < ξ 0

c , by showing,
inductively, that the same is true for each Neumann-series
term um. In other words, we show that

∂ j

∂r j

(
um(x, ζ2(r))

dζ2(r)

dr

)
(31)

is bounded for all nonnegative integers m and for ξ 0
c < r � 1

up to and including r = ξ 0
c from the right.

Once again, we begin with the case m = 0, for which
Eq. (31) equals

∂ j

∂r j

(
�0(ζ2(r))e−μt x/ζ2(r) dζ2(r)

dr

)
+ ∂ j

∂r j

(
L[q](x, ζ2(r))

dζ2(r)

dr

)
,

both of whose terms are clearly bounded since ξ > ξ 0
c > 0. To

complete the inductive proof we assume the derivatives (31)
are bounded for a certain integer m, and we show that the
same is true for m + 1. To do this we note that, under the ζ2

change of variables, the jth derivatives of the (m + 1)th term
of the Neumann expansion equal the sum of the following two

terms:

∂ j

∂r j

(
R0(ζ2(r))um(0,−ζ2(r))e−μt x/ζ2(r) dζ2(r)

dr

)
and

∂ j

∂r j

(
μsL[S[um]](x, ζ2(r))

dζ2(r)

dr

)
.

But, by the induction hypothesis um(x, ζ2(r)) has bounded
derivatives with respect to r for ξc < r � 1 up to and includ-
ing r = ξ 0

c from the right, and, thus, to show that the same is
true for um+1(x, ζ2(r)) it suffices to show that ∂ j

∂r j R0(ζ2(r))
is itself bounded. But, from Eq. (15), for a certain smooth
function S we have that

R0(ζ2(r)) = S
(√

b
(
r − ξ 0

c

))
for ξ 0

c � r � 1. It follows that R0(ζ2(r)) is smooth for ξ 0
c <

r � 1 and up to and including r = ξ 0
c from the right and,

thus the jth derivatives of um+1 are bounded in that region,
as desired. The inductive proof is now complete, establishing
that

∂ j

∂r j

(
p(ξ, ψ (r))u(x, ψ (r))

dψ

dr
(r)

)
is bounded for all 0 � r � 1, 0 � x � 1 and 0 � j � (n − 1).

D. Boundary-layer regularization II: Spatial regularization

The discussion in this section shows that the change of
variables (16) regularizes the solution u(x, ξ ) in the both the
left and right boundary-layer regions, namely μt x

ξ
< ε (0 <

ξ � 1) and μt (x−1)
ξ

< ε (−1 � ξ < 0), respectively—which,
e.g., for small values of |ξ |, are small regions near x = 0
and x = 1 within the physical domain 0 � x � 1. (Here 0 <

ε � 1 is an arbitrary number.) In the present context the so-
lution u(x, ξ ) is said to be regularized in the sense that the
v-derivatives of the composition u(x(v), ξ ) of arbitrary order
are bounded for all values of v for which x(v) is contained
within the left and right boundary-layer regions. This fact is
established in this section (using ε = 1 for definiteness) by
showing that each term um in the Neumann series (A9) has
this property, that is to say, for each nonnegative integer j
there exists a positive constant Bj such that∣∣∣∣ ∂ j

∂v j
um(x(v), ξ )

∣∣∣∣ < Bj (32)

for all v and ξ , with −∞ < v < ∞ and |ξ | � 1, such
that (x(v), ξ ) lies in either of the two boundary-layer re-
gions. As in Sec. III C, without loss of generality we
restrict our proof to the case ξ > 0; the case ξ < 0 follows
similarly.

Remark 2. Our spatial regularization proof relies on the
fact that all spatial derivatives of the solution u with respect
to x are bounded outside the boundary-layer regions—i.e.,
for μt x

ξ
> 1, 0 < ξ � 1, and for μt (x−1)

ξ
> 1, −1 � ξ < 0—as

might be expected from standard asymptotic boundary-layer
theory with asymptotic matching [38]. Existing theoretical
results in suitable functional spaces [42] only provide limited
insights in this regard. But, certainly, computational investi-
gations available in the literature [30,43], as well as our own
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high-resolution simulations such as those presented in Fig. 6,
computationally demonstrate the needed derivative bounded-
ness outside the boundary-layer regions. A theoretical proof
of the away-from-boundary derivative boundedness, which
would certainly be valuable, and which could be based on
consideration of asymptotics of integrals, is beyond the scope
of this paper and is left for future work.

Proof of Eq. (32). The proof is presented in what fol-
lows for all nonnegative integers m and j and for spatial
and angular points x(v) and ξ in the left boundary-layer
region |X | = |μt x(v)/ξ | < 1, ξ > 0 (the proof in the right
boundary layer |μt (x(v) − 1)/ξ | < 1, ξ < 0 is analogous).
Proceeding by induction in m we thus first consider the jth
derivative in the case m = 0 which, in view of Eq. (A10), is

given by

�0(ξ )
∂ j

∂v j
e−μt x(v)/ξ + ∂ j

∂v j
L[q](x(v), ξ ). (33)

Using X = μt x(v)
ξ

and Eq. (A18), the first term in Eq. (33) is
seen to equal

�0(ξ )e−X
j∑

k=1

j∑
�=0

bk,�X kx(v)� (34)

for some real coefficients bk,�; clearly, in view of Eq. (28) this
term is bounded for all relevant values of (v, ξ ). Integrating
by parts j + 1 times and utilizing Eq. (A20), for the second
term we obtain

∂ j

∂v j
L[q](x(v), ξ ) =

j+1∑
�=1

(−1)�−1 ξ�−1

μ�
t

∂ j

∂v j

(
∂�−1

∂x�−1
q(x(v), ξ ) − e−μt x(v)/ξ ∂�−1q

∂x�−1
(0, ξ )

)
+ (−1) j+1 ξ j

μ
j+1
t

[
e−μt x(v)/ξ

×
j∑

m=1

(
μt x(v)

ξ

)m j∑
�=0

bm,�x(v)�
∫ x(v)

0
eμt y/ξ

∂ j+1

∂y j+1
q(y, ξ )dy +

j∑
m=1

j−m∑
α=1

j−m∑
β=0

m−1∑
s=0

m−1−s∑
γ=1

j−m∑
δ=0

a j,m,α,β,γ ,δ

×
(

μt x(v)

ξ

)α+γ

x(v)β+δ ∂s

∂vs

(
∂ j+1

∂x j+1
q(x(v), ξ )

dx(v)

dv

)]
.

Since, by assumption, the function q is smooth, with, say, | ∂�

∂x� q(x, ξ )| < C� for each integer � and all relevant values of x and ξ ,
we have ∣∣∣∣∫ x

0
eμt y/ξ

∂�

∂y�
q(y, ξ )dy

∣∣∣∣ � C�

ξ

μt
(eμt x/ξ − 1),

which, upon substitution in the previous expression with � = j + 1, presents ∂ j

∂v j L[q](x(v), ξ ) as a sum of terms containing
nonnegative powers of the bounded quantities ξ , x(v), as well as derivatives of x(v) and derivatives of q, all of which are also
uniformly bounded.

To complete the inductive proof we assume that, for all integers j, the j derivative ∂
j
v um of the mth Neumann series term um

is bounded in the boundary-layer regions, and we show that the same is true for the (m + 1)th term um+1. To do this, we first
differentiate Eq. (A11) to obtain

∂ j

∂v j
um+1(x(v), ξ ) = ∂ j

∂v j
(R0(ξ )um(0,−ξ )e−μt x(v)/ξ ) + ∂ j

∂v j
(μsL[S[um]](x(v), ξ )). (35)

The derivatives in the first term on the right-hand side were already shown to be bounded as part of the m = 0 proof [cf. Eq. (34)
and associated text]. For the second right-hand term, in turn, using Eqs. (23) and (A21) with f = �m we obtain

∂ j

∂v j
L[S[um]](x(v), ξ ) =

j∑
k=1

j−k∑
w,α=1

k−1∑
s=0

k−s−1∑
β=0

s∑
�=0

s−�∑
δ,γ=1

d j,k,w,α,β,δ,γ ,s,�
X δ+w+1

μt
(x(v) − 1)k−s−βx(v)α+β+γ ∂�

∂v�
�m(x(v), ξ )

+ e−μt x/ξ

ξ

∫ x(v)

0
eμt y/ξ�m(y, ξ )dy

j∑
k=1

X k
j∑

�=0

bk,�.

In view of the induction hypothesis, Eq. (23) and Remark 2 we
see that the �th derivative term on the right-hand side of this
equation is bounded. Since �m(y, ξ ) is also bounded [ j = 0
in Eq. (24)], however, we see that∫ x(v)

0
eμt y/ξ�m(y, ξ )dy � Em

0 x(v)eμt x(v)/ξ ,

for some constant Em
0 which, upon substitution on the right-

hand produces a term bounded by a constant time |X |. Since

|x(v)| � 1, it follows that the right-hand side in this equation
is bounded by a linear combination of powers of |X |. Since
additionally |X | < 1 in the boundary-layer region, it follows
that the left-hand side in Eq. (35) is bounded in the boundary-
layer region as well, and the proof is complete.

Figure 6 illustrates this result by displaying the (clearly
bounded) v derivatives for a numerical solution of the full
transport problem in the complete spatioangular domain. A
generalization of this result to the case of spatially varying
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parameters μs(x), μa(x), and μt (x) proceeds similarly, pro-
vided the derivatives of these functions are adequately
bounded.

IV. NUMERICAL METHODS

This section introduces numerical methods, based on the
theoretical results presented in Secs. III C and III D, for the nu-
merical solution of the time-independent and time-dependent
transport problems (1) and (3). Throughout this section, the
solution of the transport equation under the changes of vari-

ables (16) and (18) will be denoted either by

U (v, r) = u(x(v), �(r)) (36)

or by

U (v, r, t ) = u(x(v), �(r), t ), (37)

depending on whether the time-independent or time-
dependent problem is considered.

A. Transport problem in the (v, r) and (v, r, t ) variables

Using Eq. (36), upon application of the changes of
variables (16) and (18), the time independent transport prob-
lem (1) becomes

(2 + 2 cosh(v)) �(r)
∂

∂v
U (v, r) + μt (x(v))U (v, r) = μs(x(v))

∫ 1

−1
p(�(r), �(r′))U (v, r′)

d�

dr
(r′)dr′ + q(x(v), �(r)),

U (−∞, r) = R0(�(r))U (−∞, �−1(�R(r))) + �0(�(r)), 0 � r � 1,

U (∞, r) = R1(�(r))U (∞, �−1(�R(r))) + �1(�(r)), −1 � r < 0. (38)

A similar expression results under such changes of variables for the time dependent transport problem (3):[
1

c

∂

∂t
+ �(r)(2 + 2 cosh(v))

∂

∂v
+ μt (x(v))

]
U (v, r, t ) = μs(x(v))

∫ 1

−1
p(�(r), �(r′))U (v, r′, t )

d�

dr
(r′)dr′ + q(x(v), �(r), t ),

U (v, r, t = 0) = 0, U (−∞, r, t ) = R0(ξ )U (−∞, �−1(�R(r)), t ) + �0(�(r), t ), 0 � r � 1,

U (∞, r, t ) = R1(ξ )U (∞, �−1(�R(r)), t ) + �1(�(r), t ), −1 � r < 0. (39)

Naturally, Eq. (39) is the relevant equation for time-
dependent problems, which, containing transient data in-
formation, provides in many cases the most useful model
for the solution of the inverse transport problem. Addition-
ally, this equation may be useful even for solution of the
time-independent problem—via time relaxation. In detail,
considering, e.g., boundary condition functions of the form
�0(�(r), t ) = T (t )�̃0(�(r)) and �1(�(r), t ) = T (t )�̃1(�(r))
[where T (t ) denotes a suitable time profile that smoothly
transitions from T (0) = 0 to T (t1) = 1 for some t1 > 0] and
evolving the system up to sufficiently large times t > t1 over
several hundred (respectively, several thousand) time steps for
low (respectively, large) values of the scattering coefficient μs,
results in convergence to the desired stationary solution. Alter-
natively, the time-independent problem can be solved directly
on the basis of direct discretization of the time-independent
equation (38). The time-relaxation approach, which does not
require inversion of the full spatioangular matrix system, does
depend on implicit solution of the time-dependent problem
for a sufficiently long time period, as described above. While
the time-independent-equation approach does not require time
evolution, in turn, the computational cost for the inversion of
the system matrix grows quickly as the discretization is re-
fined. In practice we have found excellent agreement between
the results provided by these approaches for the solution of
time-independent problems. Roughly speaking, further, we
have found that for high-accuracy and/or low-to-moderate
values of μs the approach based on the time-dependent
equation is preferable, while use of the time-independent

equation is advantageous for large values of the scattering
coefficient—which, in the time dependent-equation approach
demands long relaxation times.

The proposed discretized version of the time-independent
problem (38) can be expressed in the form

[�D + μtI − μsS]�u = �q, (40)

where D, �, and S denote a discrete differential operator in
the variable v; a matrix corresponding to the coefficient (2 +
2 cosh(v)) �(r) multiplying the v derivative in the equation;
and the discretized scattering operator introduced in Eq. (42)
below, respectively. The discrete version D of ∂

∂v
operator is

obtained by direct differentiation of Fourier series obtained
by means of the Fourier-continuation method (FC) [44–47],
which enables representation of general smooth nonperi-
odic functions by Fourier-series with high accuracy and
negligible numerical dispersion. The quantities �u = (ui,m) ≈
(u(x(vi), �(rm))) and �q = (qi,m) = (q(x(vi ), �(rm))), in turn,
denote the numerical approximation of the solution and the
source function at the points (x(vi ), �(rm)), where vi and
rm denote the discretization points in the v and r variables,
respectively: vi (respectively, rm) provides a uniform dis-
cretization of the domain −vmin � vi � vmax (respectively,
multi-interval Gauss-Legendre discretizations, as detailed in
Sec. IV B).

The discrete scattering operator S is used to incorporate
in the discrete setting the scattering integral � displayed
in Eq. (2), which occurs on the right-hand side of Eq. (1).
In detail, upon application of the change of variables (18)
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and (19) and subsequent discretization of the resulting integral
using Gauss-Legendre quadrature in the variable r in each
of the four intervals implicit in that change of variables, we
obtain a discretized version of the collision term which, for a
given function u = u(x, ξ ′), or, more generally, for a possibly
time-dependent function u = u(x, ξ ′, t ) as considered below
in this section, may be expressed in the form

�(xi, ξ j, t ) ∼
M∑

m=1

wm p(ξ j, ξm)u(xi, ξm, t ). (41)

Here the weights wm equal the product of the Gauss-Legendre
integration weights and the Jacobian of the change of vari-
ables used, and, as indicated above, xi = x(vi ) and ξk = �(rk ).
Utilizing the ordering

�u = [u1,1, . . . , uN,1, . . . , u1,M , . . . uN,M
]T

of the unknowns �u = (ui,m) for N spatial points and M
discrete directions, the scattering integral �(xi, ξ j ) associ-
ated with the approximation u(xi, ξm) ≈ ui,m may be ex-
pressed in the form �(xi, ξ j ) ≈ S�u, where, letting Pm, j =
diag(wm p(ξ j, ξm)) ∈ RN×N , S ∈ R(N×M )2

denotes the matrix

S =

⎡⎢⎣P1,1 . . . PM,1
...

. . .
...

P1,M . . . PM,M

⎤⎥⎦. (42)

The proposed numerical solver for the time-dependent
problem (39), which discretizes time on the basis of the (im-
plicit) third-order backward differentiation formula (BDF3)
[48, Ch. 3.12], amounts to an implicit version of the FC–DOM
method [28,49] that additionally incorporates the changes of
variables inherent in Eq. (39) as well as the phase-function
treatment described in Sec. IV B. As described in what fol-
lows, further, to avoid the joint-inversion of a spatioangular
discretization matrix as well as the application of the inverse
matrix at each time step, the proposed algorithm evaluates the
collisional term and Fresnel boundary conditions by utilizing
third-order polynomial extrapolation. In detail, let t n = n�t ,
un

i, j ∼ u(x(vi ), ξ j, t n), and for j = 1, . . . , M, un
j = (un

i, j )
N
i=1.

Then, using the RN×N versions (one ξ j at a time) Î and D̂
of the identity operator I and the FC-based spatial differential
operator D used in the time independent case, the resulting
discrete version of Eq. (39) can be expressed in the form

[Î + β�tξ j (2 + 2 cosh(v))D̂ + β�tμt Î]un+1
j

=
2∑

k=0

αkun−k
j + β�tμs�̃

n+1
j + β�tqn+1

j ,

where αk and β are the BDF3 coefficients. Here �̃n+1
j denotes

a numerical value of the scattering integral (2) obtained by the
substitution u = ũn+1

i, j , where

ũn+1
i, j =

2∑
k=0

(−1)k

(
3

k + 1

)
un−k

i, j

equals the third order-accurate polynomial extrapolation of
the solution values un−k

i, j for 0 � k � 2. This extrapolated
solution value is also used to evaluate the right-hand sides

of the Fresnel boundary condition terms in Eq. (3). As sug-
gested above, the use of these extrapolated quantities leads to
significant dimensionality reductions, from dimension NM to
dimension N , in the linear operator that needs to be inverted
and applied for the time evolution under the implicit BDF3
algorithm—while preserving the accuracy order and time-
stability inherent in the BDF3 algorithm—and thus results in
very significant efficiency gains without loss of accuracy and
without stringent CFL restrictions.

B. Scattering operator and efficient treatment
of anisotropic scattering

Viewing the problems (1) and (3) as 3D problems in
the infinite slab 0 � x � 1, −∞ < y, z < ∞ with rotational
invariance around the x̂ = (1, 0, 0) direction (that is, with
invariance in the azimuthal variable ϕ around the x axis)
and with translation invariance along the ŷ = (0, 1, 0) and
ẑ = (0, 0, 1) directions, we denote by

ω̂(ξ, ϕ) = ξ x̂ + cos(ϕ)
√

1 − ξ 2ŷ + sin(ϕ)
√

1 − ξ 2ẑ,

the 3D unit vector in the direction determined by the an-
gles ϕ and θ , where, letting θ denote the polar angle (i.e.,
the angle between ω̂ and the x axis) adopting the notation
used in previous sections, we set ξ = cos(θ ). To model the
anisotropic scattering of photons within the medium we em-
ploy the Henyey-Greenstein phase function

η = 1 − g2

4π (1 + g2 − 2gω̂(ξ, ϕ) × ω̂(ξ ′, ϕ′))3/2
, (43)

where ω̂(ξ, ϕ) and ω̂(ξ ′, ϕ′) indicate the incident and
outgoing directions of photons undergoing a scattering event,
and where g denotes the anisotropy factor. Note that since
ω̂(ξ, ϕ) × ω̂(ξ ′, ϕ′) = ξξ ′ +

√
(1 − ξ 2)(1 − ξ ′2) cos(ϕ − ϕ′)

we have η = η(ξ, ξ ′, ϕ − ϕ′). The phase function (43) has
been shown to accurately describe scattering interactions
in biological tissue, with a typical anisotropy-factor value
around g = 0.9 [50–53].

In the 3D slab context introduced above, the scattering
integral resulting from use of the Henyey-Greenstein phase
function (43) is given by

�(x, ξ ) =
∫ 1

−1
dξ ′u(x, ξ ′)

∫ 2π

0
η(ξ, ξ ′, ϕ − ϕ′)dϕ′,

where the fact that � is independent of ϕ, as suggested by
the notation in this equation, follows from the facts that,
under the azimuthal invariance inherent in the slab geometry,
the angular flux u does not depend on the azimuthal angle
[1, Ch. 2], and that owing to the cos(ϕ − ϕ′) dependence of
the phase function η, the integral of η with respect to ϕ′ does
not depend on ϕ either. The 1D phase function can thus be
defined by

p(ξ, ξ ′) =
∫ 2π

0
η(ξ, ξ ′, ϕ − ϕ′)dϕ′. (44)
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Calling α(ξ, ξ ′, g) = 1 + g2 − 2gξξ ′ and β(ξ, ξ ′, g) =
2g
√

1 − ξ 2
√

1 − ξ ′2, we obtain [54, p. 182]

p(ξ, ξ ′) = 1 − g2

4π

∫ 2π

0

dϕ′√
(α − β cos(ϕ′))3

= 1 − g2

π (α − β )
√

α + β
E

⎛⎝√ 2β

α + β

⎞⎠, (45)

where E denotes the complete elliptic integral of the second
kind [54, p. 860].

Using the change of variables ξ ′ = �(r) [cf. Eq. (18)] we
obtain

�(x, ξ )=
3∑

i=1

∫ bi

ai

p(ξ,�(r))u(x, �(r))
d�

dr
dr, (46)

where ai and bi (i = 1, . . . , 3) denote the endpoints of each
one of the subintervals in the partition � ∈ [−1,−ξ 0

c ] ∪
[−ξ 0

c , ξ 0
c ] ∪ [ξ 0

c , 1] of the integration interval [−1, 1]—which
is used in our algorithm to avoid integration over points of
discontinuity of the integrand, which would result in poor con-
vergence of the corresponding discrete quadrature methods.

It is important to note that, for the values of g close to
1 that generally arise in the context of modeling of biolog-
ical tissue, the 1D phase function (45) is highly peaked for
(ξ − ξ ′) close to zero [since so is Henyey-Greenstein phase
function for (ξ − ξ ′, ϕ − ϕ′) is close to (0,0)], and, thus, for
such values of g, the direct numerical evaluation of the scat-
tering integral �(x, ξ ) with any reasonable accuracy requires
use of a large number of discretization points—each one of
which gives rise to a new unknown in the resulting discrete
system. To avoid such a computational burden, we propose an
approach based on use of a Legendre polynomial expansion in
conjunction with a certain precomputation strategy. In detail,
for an appropriately selected positive integer L, the proposed
approach is based on consideration of the Lth order Legendre
approximation

u(x, �(r))
d�

dr
≈

L∑
n=0

3∑
i=1

ci
n(x)Pn(ζ i(r)), (47)

of the integrand factor u(x, �(r)) d�
dr in Eq. (46) for each one

of the integration intervals used, where Pn denotes the Legen-
dre polynomial of order n, and where ζ i : [ai, bi] → [−1, 1],
ζ i(r) = 2r−ai−bi

ai−bi
, is the linear mapping from the integration

interval to the domain of definition of the Legendre polyno-
mials, namely, the interval [−1, 1].

In view of the classical expression for the Legendre coeffi-
cients [55], it is easy to check that the coefficients in Eq. (47)
are given by

ci
n(x) =

(
2n + 1

bi − ai

)∫ bi

ai

u(x, �(r))
d�

dr
Pn(ζ i(r))dr.

Then, substituting Eq. (47) into Eq. (46) yields

�(x, ξ ) ∼
L∑

n=0

3∑
i=1

ci
n(x)�i

n(ξ ), (48)

with coefficients

�i
n(ξ ) =

∫ bi

ai

p(ξ,�(r))Pn(ζ i(r))dr, (49)

which can be precalculated with limited overall computational
effort [since �i

n(ξ ) does not depend on either x or t], even for
highly peaked phase functions p (i.e., for |g| close to one).
Once obtained, the coefficients �i

n(ξ ) can be used multiple
times to evaluate Eq. (46) for all x and t in the computational
domain, merely on the basis of the Legendre coefficients
ci

n(x)—whose calculation, only requires an integration grid
adequate for resolution of the variation of the integrand
for given initial conditions, boundary conditions and source
function, but independently of the value of the anisotropy
coefficient g. In our implementation, the coefficients �i

n(ξ )
are themselves evaluated by means of the Gauss-Legendre
quadrature rule, using sufficiently many discretization points
to adequately resolve the (potentially highly peaked) phase
function. For example, for the anisotropy coefficient g = 0.95
and using an angular integration grid (in the ξ variable) con-
taining M = 40 points, the coefficients �i

n(ξ ) were obtained
with a relative error of 1.7 × 10−9 by means of an 2000-point
Legendre rule in the variable r for all polynomials up to order
L = 8. The proposed strategy provides a rigorous and efficient
computational approach for the resolution of numerical issues
widely discussed in the literature, and typically referred to as
“false scattering” [56–58].

V. NUMERICAL RESULTS

This section illustrates the character of the proposed
solvers, showcasing, in particular, their speed and accuracy
as well as their ability to effectively resolve the boundary-
layer structures identified in Sec. II as well as the highly
peaked anisotropic phase functions [Eqs. (43) through (45)]
that are found often in practice. In detail, using the 1D prob-
lems (1) and (3) as testbeds for the proposed techniques, this
section presents results demonstrating, (i) the accuracy and
efficiency that results from the proposed changes of spatial
and angular variables (Secs. V A and V B); (ii) the geometrical
structure of boundary layers under vacuum, incidence and
Fresnel boundary conditions, as well as the effects produced
by the proposed changes of variables on the boundary-layer
geometry (Sec. V C); and (iii) excellent agreement between
simulated and experimental data (Sec. V D).

A. Numerical convergence

For accuracy assessments we utilize numerical conver-
gence tests for a generic scattering medium with absorption
coefficient μa = 0.1/cm, scattering coefficient μs = 10/cm,
anisotropy factor g = 0.8 and refractive index n� = 1.33, sur-
rounded by vacuum (ns = 1). We solve the time-dependent
transport problem Eq. (3) with q = 0 and with �0 = �1 = T (t )
[where T (t ) denotes a smooth step function that transitions
from 0 to 1, over the time interval 0 � t � t f ], up to time t f /2
[at which the slope of the step function T (t ) is largest] and
for various spatial mesh sizes �v, time step �t , number M
of discrete directions ξ j and orders L of the Legendre poly-
nomial expansion (47) that underlies the scattering integral
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FIG. 2. Convergence of the proposed linear-transport algo-
rithm with boundary-layer resolution. Solid curves: error E�

[Eq. (50)]; dashed curves: order of convergence lines. Top panel:
E�(�v f , M, �t f , Lf ) as a function of the number M of an-
gular discretization points in Eq. (41). Bottom panel: error
E�(�v f , Mf , �t f , L) as a function of the order L in the Legendre
expansion (47). Here �v f , Mf , �t f , and Lf denote the fine-grid
values listed in the text.

expression (48). To estimate the accuracy of the method we
consider the error quantities

E� = E�(�v, M,�t, L)

= max
v,r

|�g(x(v), �(r)) − � f (x(v), �(r))|, (50)

in the grid values �g of the scattering integral (evaluated
by comparison with the corresponding fine-grid scattering-
integral values � f ), as well as the error

EU = EU (�v, M,�t, L)

= max
v,r

|Ug(v, r) − Uf (v, r)|, (51)

in the grid solution Ug of the angular flux (evaluated by com-
parison with the corresponding fine-grid angular-flux values
Uf ). The fine-grid values � f and Uf were obtained us-
ing the grid parameters �v f = 5 × 10−2, M f = 200,�t f =
2.5 × 10−3, and L f = 40.

The top (respectively, bottom) panel of Fig. 2 displays the
error E� as a function of M (respectively, as a function of L),
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Δt

O(Δt3)
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Δv

O(Δv8)
EU(Δv, Mf , Δtf , Lf)

FIG. 3. Same as Fig. 2 but for the error EU [Eq. (51)] in the
angular flux instead of E�. Top panel: error EU (�v f , Mf , �t, Lf )
as a function of the time step �t . Bottom panel: Error
EU (�v, Mf , �t f , Lf ) as a function of the spatial mesh size �v.

with all other mesh sizes set to the fine-grid values. Similarly,
the top (respectively, bottom) panel of Fig. 3 presents the
error EU as a function of �t (respectively, �v), with all other
mesh sizes once again set to the fine-grid values. Taken as
a set, the results in Figs. 2 and 3 illustrate that under the
boundary-layer resolution achieved via the spatial and angular
changes of variables introduced in Sec. III B and illustrated
in Fig. 6 (cf. Fig. 5) the proposed algorithms in the (v, ξ , t )
variables achieve high orders of convergence. Additionally,
the top panel in Fig. 2 shows that use of the expansion (47)
together with the precomputations (49) produces the rapidly
convergent expression (48) for the scattering integral � even
in presence of a strongly peaked Henyey-Greenstein phase
function p.

B. Time-domain simulation with collimated pulsed beams

This section demonstrates the performance of the proposed
linear-transport and radiative-transfer solver in the context of
one of its typical applications, namely, transport of photons in
biological tissue for optical tomography (OT). In OT a laser
beam illuminates the imaged sample through its boundary and
an image is then produced from the diffuse reflected and/or
transmitted light. It is well accepted that the scattering of
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FIG. 4. Detector readings J +(t ) in arbitrary units (arb. units)
for the S and R methods and for the various grids described in
Table I; cf. Ref. [58, Fig. 7]. Top panel: S method curves for the
grids G1–G4 compared to the reference R method curve for the fine
grid G8 described in the text. Bottom panel: R method curves for
the grids G5–G7 once again compared to the reference R-G8 curve,
illustrating the significantly faster convergence of the R method.

photons by biological tissue is characterized by the combi-
nation of a scattering coefficient μs with values of up to
hundreds per cm together with a 3D phase function (43)
[and, thus, for the 1D cases considered in this paper, the
phase version (45)] with anisotropy factors in the range
0.71 � g � 0.97 [51,59]. For our test we thus consider
the time-dependent RTE problem (3) with g = 0.95, μs =
100/cm, μa = 0.01/cm, n� = 1.37, and ns = 1, with a
source �0(ξ, t ) = T (t )δ(ξ − ξ�) at x = 0 which, using a
smooth Gaussian-like window function T (t ), models a laser
pulse collimated in the direction ξ = ξ� incident on the left
sample boundary, and without sources [�1(ξ, t ) = 0] imposed
on the x = 1 boundary. (In the specific numerical test case
presented below in the section the value ξ� = 1, which corre-
sponds to normal incidence, was used.)

Given the singular character of the collimated boundary
source �0(ξ, t ) considered here, this benchmark addition-
ally provides guidelines on a possible implementation of the
proposed algorithm in certain practical settings wherein the
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ξ
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u(x, ξ)

FIG. 5. Volumetric source boundary layer [�i(ξ ) = 0, i = 0, 1
and R0,1(ξ ) = 0] for isotropic scattering media with μs = 0.5, μa =
0.1, μt = μs + μa = 1, and q = 1, exhibiting the characteristic large
slopes, with infinite slopes in the limits as (x, ξ ) → (0+, 0+) and
(x, ξ ) → (1−, 0−).

assumption of smoothness of the boundary sources � j (intro-
duced in Sec. III C) is not fulfilled. To efficiently treat such a
collimated irradiation, the angular photon flux is expressed as
the sum [60,61]

u(x, ξ , t ) = u1(x, ξ , t ) + u2(x, ξ , t ) (52)

of uncollided and diffuse fluxes denoted by u1(x, ξ , t ) and
u2(x, ξ , t ), respectively. The uncollided flux, which contains
the singularity of the solution, is taken to equal the solution of
the equation[

1

c

∂

∂t
+ ξ

∂

∂x
+ μt (x)

]
u1(x, ξ , t ) = 0,

u1(x, ξ , t = 0) = 0,

u1(0, ξ , t ) = R0(ξ )u1(0, ξR, t ) + �0(ξ, t ), ξ > 0,

u1(1, ξ , t ) = R1(ξ )u1(1, ξR, t ), ξ < 0,

which can readily be obtained in closed form, given below, via
application of the method of characteristics and consideration
of multiple reflections. It follows that the diffuse flux satisfies
the RTE[

1

c

∂

∂t
+ ξ

∂

∂x
+ μt (x)

]
u2(x, ξ , t )

= μs(x)
∫ 1

−1
p(ξ, ξ ′)[u2(x, ξ ′, t ) + u1(x, ξ ′, t )]dξ ′,

u2(x, ξ , t = 0) = 0,

u2(0, ξ , t ) = R0(ξ )u2(0, ξR, t ), ξ > 0,

u2(1, ξ , t ) = R1(ξ )u2(1, ξR, t ), ξ < 0, (53)

whose solution can be be obtained effectively by means of the
linear-transport solver presented in this paper (Sec. IV).
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The multiple reflections inherent in the solution u1(x, ξ , t )
are accounted for in the closed form expression

u1(x, ξ , t ) = e− ∫ x
0

μt (x′ )
ξ

dx′
δ(ξ − ξ�)

∞∑
n=0

R0(ξ )2n

× e−2n
∫ 1

0
μt (x′ )

ξ
dx′

T

(
t − 2n

cξ
− x

cξ

)
, ξ > 0,

u1(x, ξ , t ) = e− ∫ x
1

μt (x′ )
ξ

dx′
δ(ξ − ξ�,R)

×
∞∑

n=0

R1(ξ )2n+1e(2n+1)
∫ 1

0
μt (x′ )

ξ
dx′

× T

(
t + 2n + 1

cξ
+ 1 − x

cξ

)
, ξ < 0.

The integral of the function u1(x, ξ , t ) which appears in the
RTE for u2 can also be obtained in closed form:∫ 1

−1
p(ξ, ξ ′)u1(x, ξ ′, t )dξ ′ = p(ξ, ξ�)e− ∫ x

0
μt (x′ )

ξ�
dx′

×
∞∑

n=0

[
R0(ξ�)2ne−2n

∫ 1
0

μt (x′ )
ξ�

dx′
T

(
t − 2n

cξ�

− x

cξ�

)

+ p(ξ, ξ�,R)e
− ∫ x

1
μt (x′ )
ξ�,R

dx′
R1(ξ�,R)2n+1

× e
(2n+1)

∫ 1
0

μt (x′ )
ξ�,R

dx′
T

(
t + 2n + 1

cξ�,R
+ 1 − x

cξ�,R

)]
.

Note that, for the large μt (x) values typically encountered
in biological applications, only a few terms in this equation
need to be retained. Further, as evidenced by this δ-function
(collimated incident-beam) expression, the right-hand side of
Eq. (53), and therefore the diffuse solution u2, inherit the sharp
ξ slope around ξ = ξ� that is characteristic of the phase func-
tion p for the presently assumed high values of the anisotropy
coefficient g. To numerically resolve the aforementioned sharp
u2 slope in the ξ variable around ξ = ξ� in addition to the inci-
dence and Fresnel boundary-layer structures (see Sec. III A),
we utilize a modified version of the change of variables (17)–
(19)—which introduces graded meshes not only around ξ = 0
and ξ = ξ 0

c , but also around ξ = ξ�. For the case ξ� = 1 con-
sidered in this section, this can be achieved by introducing
modified versions of the functions s(r) and ψ (r) in Eqs. (17)
and (19). The new versions of these functions are obtained
by redefining them in the region ξ 0

c < r � 1 according to the
expressions

s(r) = 2π

(
r − ξ 0

c

1 − ξ 0
c

)
,

ψ (r) = ξ 0
c + 1 − ξ 0

c

2π
h(s(r)). (54)

Figure 4 and Table I demonstrate the benefits that ensue,
even for the challenging high-g and collimated-illumination
problem considered in this section, as a result of the pro-
posed “resolution” method (referred to in this section as the
R method), which incorporates (i) the introduction of the
boundary-layer-resolving changes of variables (16) and (18)–
(19) (for spatial and angular boundary layers, respectively,

TABLE I. Convergence of S and R methods.

N M T L vmax tc(s) ε

S-G1 100 80 1 × 104 – – 5.8 2.2 × 10−1

S-G2 200 80 2 × 104 – – 26.1 2.7 × 10−1

S-G3 250 100 2 × 104 – – 59.1 2.9 × 10−2

S-G4 250 120 2 × 104 – – 80.4 2.7 × 10−3

R-G5 80 40 5 × 103 5 10 2.3 1.0 × 10−2

R-G6 100 44 5 × 103 5 15 3.4 1.4 × 10−3

R-G7 150 60 2 × 104 10 15 50.0 7.6 × 10−5

see also point (iii) below); (ii) the phase-function resolving
precomputation strategy embodied in Eqs. (48) and (49); as
well as, (iii) the modified version (54) of the angular change of
variables that additionally resolves the aforementioned sharp
slope in the ξ variable around ξ = ξ�. To appreciate these
benefits we compare the results obtained by means of the
R method to those produced by a “standard” implicit FC-
based method, referred to in this paper as the S method,
which utilizes equispaced spatiotemporal grids together with
Gauss-Legendre angular integration on the entire interval
−1 � ξ � 1, and without use of any of the resolving changes
of variables (i) and (iii) or precomputation strategy (ii). Fig-
ure 4 thus compares the values of the detector readings J +(t )
[Eq. (8)] produced by the S and R methods. Clearly, as the
grids are refined, the curves S-G1 to S-G4 (method S with
grids G1 through G4; see Table I) eventually approach the ac-
curate R-G8 curve J +

f (t ) (method R with a fine G8 described
containing N = 1080 equispaced spatial discretization points
in the interval [vmin, vmax] = [−27, 27] and T = 20 000 dis-
cretization points in the time interval [0,20] together with
M = 120 angular quadrature points and a Legendre polyno-
mial expansion as described in Sec. IV B of order L = 20).
The lower panel in the figure demonstrates a much faster
convergence for the R method as the grids are refined. Table I
displays the relative L2 error

ε =
√√√√∫ tmax

0 |J +(t ) − J +
f (t )|2dt∫ tmax

0 J +
f (t )2dt

,

corresponding to each one of the grids considered. Once
again we see that the R method is advantageous even for the
highly anisotropic and collimated-beam problem (anisotropy
factor g = 0.95) considered. For instance, the S-G4 detector
readings, which contain an error of 2.7 × 10−3, required a
computing time of 80.4 s, while a slightly better error (1.4 ×
10−3) was produced with R-G2 in only 3.4 s—approximately
24 times faster.

C. Illustration of boundary-layer structures
and their analytic regularization

In practice, the proposed changes of variables in the ξ and
x variables result in spatial and angular grids meshes that are
graded toward the various boundary-layer structures identi-
fied, and thus produce the desired boundary-layer resolution.
The geometry underlying the boundary-layer structures is
demonstrated in Secs. V C 1 and V C 3; the graded grids that
result from the changes of variables used can be appreciated in
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FIG. 6. From top to bottom and left to right: transport solution u(x(v), ξ ) and its first, second, and third derivatives with respect to the
variable v. In this example we have set �i(ξ ) = 0, i = 0, 1 and R0,1(ξ ) = 0, in anisotropic scattering media with μs = 0.95, μa = 0.05,
g = 0.8, and q = 1. The red curve ξ = x(v) delimits the boundary-layer region. Inside the boundary layer [x(v) < ξ ] in the new v variable all
derivatives become vanishingly small as v → −∞ for all finite values of ξ .

Figs. 5 and 7. The resolution effect is discussed in a particular
example in Sec. V C 2 and is illustrated in Fig. 6.

−1
−0.5

0
0.5

1 0

0.5

11

2

3

ξ
x

u(x, ξ)

FIG. 7. Boundary layers under the presence of Fresnel and In-
cidence boundary conditions. In this problem two isotropic sources
injecting radiation at x = 0 and x = 1 [�i(ξ ) = 1, i = 0, 1 in Eq. (1)]
were considered, with q = 0, μa = 0.1, μs = 9.9, g = 0.8, ns = 1,
and n� = 1.33, giving ξ 0,1

c � ±0.6593. Note the high slopes that
now occur for (x, ξ ) → (0+, 0+) and also for (x, ξ ) → (0+, ξ 0

c ).

1. Volumetric source boundary layers

This section concerns applications for which the indices
of refraction of the media and its surroundings coincide
(n� = ns), and for which there are no sources in the bound-
ary of the domain �. In such cases, which arise often in
applications wherein the neutral particles originate in the
interior of the participating media, such as the transport of
both photons produced by fluorescence as well as neutrons
originating in nuclear fission reactions, vacuum boundary
conditions (u(x, ξ ) = 0 at x = 0 and x = 1 for all incom-
ing directions) must be imposed. In such cases the first
summand on the right-hand side of Eq. (10), which con-
tains the boundary-conditions term (�0(ξ ) + R0(ξ )u(0, ξR)),
vanishes, and only the volumetric terms remain—thus giving
rise to the “volumetric source boundary layers” illustrated in
Fig. 5. As can be appreciated in the figure, these boundary
layers are characterized by large slopes in both the spatial
and angular variables x and ξ near the boundary points x = 0
and x = 1 for values of the angular variable ξ close to ξ = 0
(with ξ > 0 for x near 0 and ξ < 0 for x near 1). Infinite
slopes actually occur in the limits as (x, ξ ) → (0+, 0+) and
(x, ξ ) → (1−, 0−).

2. Volumetric source boundary layer under spatial
and angular changes of variables

The effect produced by the spatial change of variables (16)
is demonstrated in Fig. 6 for a problem with vacuum boundary
conditions. This figure thus displays the solution u(x(v), ξ )
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FIG. 8. Transport solution u(x, ξ ) exhibiting the boundary-layer structures for increasing values of n�, starting from n� = ns (vacuum).
The top panels display the analytic solution (D1) for problem parameters μs = 0, μa = q = 1. The bottom panels, in turn, display the numerical
solution obtained for μs = q = 1, μa = 0, and g = 0.5. From left to right we have set: n� = ns = 1, n� = 1.01, and n� = 1.1, respectively.

and its derivatives with respect to v variable in the region
ξ > 0 [the values for ξ < 0 are not shown, since the solution u
satisfies the symmetry relation u(x, ξ ) = u(1 − x,−ξ ) for the
problem considered here]. The red curve ξ = x(v) delimits
the boundary-layer region considered in the regularization
proof presented in Sec. III D; see also Remark 2. Clearly, as
established in Sec. III D, the v-derivatives of the transport
solution are bounded throughout the spatioangular domain.
A similar regularization effect is observed for the function
u(x, �(r))d�/dr: derivatives of this function with respect to
r are bounded up to order (n − 1) [Eq. (25)]; an illustration of
this regularization effect is omitted, for brevity.

3. Boundary-layer pairs under general Fresnel-Incidence
boundary conditions

As discussed in Sec. III C, under Fresnel boundary condi-
tions unbounded derivatives emerge in the limits as (x, ξ ) →
(0+, ξ 0

c ) and (x, ξ ) → (1−, ξ 1
c ), where ξ 0

c and ξ 1
c denote the

critical abscissas of total internal reflection defined in Eq. (6);
the existence of such Fresnel boundary layers is illustrated in
Fig. 7—which displays these boundary layers in addition to
the ξ = 0 boundary layers of the type considered in Sec. V C 2
(Incidence boundary layers). As established in Sec. III C, the
proposed changes of variables completely regularize the Fres-
nel boundary layers: as indicated in connection with Eq. (31),
the r derivatives of the solution u with respect to r are bounded
to all orders of differentiation.

4. Special case: Volume-source and Fresnel
boundary-layer transition

In cases in which Fresnel boundary conditions are imposed
(with index of refraction of the medium n� exceeds that of
the surroundings ns, for which total internal reflection occurs)
and in absence of boundary sources, the FBL takes on spatial

characteristics that differ from those studied previously in this
paper. Under such scenarios, the Fresnel coefficient equals
1 in a neighborhood of ξ = 0 and, in the assumed absence
of boundary sources �i(ξ ), the Fresnel boundary conditions
become, e.g., u(0, ξ ) = u(0,−ξ ) for ξ > 0, and they there-
fore imply continuity of the angular flux u at (x, ξ ) = (0, 0)
and (x, ξ ) → (1, 0)—thereby eliminating the discontinuous
boundary layers considered previously.

Such boundary-layer character may be illustrated by con-
sideration of the transition that occurs as the index of
refraction of the medium n� is increased from an initial value
n� = ns—which corresponds to vacuum boundary conditions
under the present assumptions �i = 0—to a range of values
n� > ns, for which total internal reflection occurs. This sec-
tion presents two such illustrations, namely: (i) in the case
which an exact solution, Eq. (D1), may be obtained—with
�i = 0, i = 1, 2, in absence of scattering (μs = 0), and with
constant values of q and μa, with solutions depicted in the
upper row of images in Fig. 8; and (ii) by consideration of nu-
merical solutions including nonvanishing scattering, with the
parameter values given in Fig. 8, and with solutions depicted
on the lower row of images in the figure. Transitions from pure
VSBL structures to FBL structure can be clearly appreciated
in both of these rows of images, as the discontinuity at x = 0,
which is present in the first image of each row, is clearly
absent in all other images (cf. Fig. 7 where both a ISL and
FSL coexist). However, the VSBL structure is not completely
absent in the second row of images—which may be explained
by consideration of the higher-order terms in the Neumann
series (20), which contain the VSBL singularity albeit with
diminished strength—on account of the fact that the higher-
order Neumann series terms contain the VSBL in integrated
form. For the exact solution in the first row of images in
Fig. 7, all of the Neumann series terms of orders � 1 vanish,
and, thus, for n� > ns the VSBL (which in principle for the
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LED

Microscope

Sample

Height

FIG. 9. Sketch illustrating the proof of concept experiment used
to measure transmitted photons through a sample, which are sub-
sequently collected by an optical microscope. In particular note the
LED source, the sample height, and the microscope, in an overall
photon transmission setup.

q �= 0 value used would retain some degree of singularity) is
completely eliminated.

D. Comparison of simulations and experiments

This section presents a comparison of computational re-
sults with experimental data for transmission of light across
a turbid media. The experimental data used for our compar-
isons was obtained from a commercial confocal laser scanning
microscope otherwise used in the context of fluorescence mi-
croscopy. In our proof of concept experiment, we substitute
the fluorescence excitation light by a steady-state light emit-
ting diode (LED) with a peak emission at 635 nm wavelength.
Figure 9 presents the experimental setup. An LED injects
radiation into a sample consisting of a mixture of distilled
water and milk with varying milk concentrations and heights.
Milk is a natural emulsion composed of fat particles dispersed
in milk plasma. The plasma itself is a colloidal structure
of proteins and minerals suspended in water. The protein
molecules aggregate into small particles called micelles, typ-
ically ranging in size from 40 to 300 nm. Fat globules sizes,
which are typically influenced by a variety of factors, range
from 1 to 15 µm. All of these colloidal particles contribute
significantly to light scattering, especially in visible and
near-infrared.

The radiation emitted by the LED and transmitted through
the sample is collected by the microscope as indicated in the
figure. To compare experimental and simulated results, we
employ the optical parameters reported in Ref. [62], for milk
at the 680 nm light wavelength, and we thus use a diffraction
grating and a bandpass filter to select the transmitted photons
in the window between 660 and 700 nm that lie in the tail of
the LED spectrum.

Further details on the instrumentation utilized and the
propagation of uncertainties can be found in Appendix C. Fig-
ure 10, which displays the transmitted photon flux [Eq. (8)],
demonstrates the ability of the proposed 1D numerical method
to accurately reproduce the experimental observation of the
intensity of photons collected by the microscope.
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FIG. 10. Comparison of experimental and simulated normalized
photon flux values J̃ + [Eqs. (8) and (C1)] for photons collected by a
confocal microscope through samples containing either milk or an
emulsion of milk in distilled water (3% fat milk was used in all
cases). Top panel: results for samples of varying heights with whole
milk. Bottom panel: data for samples made of emulsions of milk in
distilled water at various concentrations. In all the experiments we
maintained the sample height constant.

VI. CONCLUSIONS AND OUTLOOK

This work generalized and completed a 1D description
of boundary layers that arise in linear transport theory, in-
cluding associated theoretical analysis and construction of
numerical solvers. Ongoing work seeks to generalize these
ideas and methods to the full 3D context, in the spirit of the
three-dimensional implicit-explicit FC-based computational
fluid-dynamics algorithms presented in Ref. [46]. In partic-
ular, this paper proposed changes of variables that capture the
underlying physics of the problem—such as the exponential
Incidence and volume source boundary layers that occur at
directions nearly parallel to the boundary, and the sharp gra-
dients introduced by either boundary conditions of Fresnel
type and by collimated boundary sources. Additionally, this
paper proposed a precomputation-based integration strategy
for the evaluation of the scattering integral which is capable
of resolving highly anisotropic phase functions with high
accuracy and low computational cost. The efficiency of the
overall proposed algorithm was demonstrated through a series
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of benchmarks and models that mimic typical applications
of photon and neutral particle linear transport. In a realistic
test case presented in Sec. V B, for example, the proposed
approach was shown to produce simulated detector readings
with engineering accuracy in a computing time that is 24
times faster than a similar algorithm which does not properly
resolve the boundary-layer structures, and Sec. V D demon-
strates excellent agreement between theory and experiment.
Such accurate simulations of detector readings are crucial
elements for the solution of inverse problems in optical and
fluorescence tomography since, as is well known [21,63],
numerical errors may destabilize associated inverse-problem
reconstructions.

We submit that, in view of their high near-boundary
accuracy, the methods developed in the present work can
additionally be extended to assist confocal fluorescence
microscopy (CFM) techniques—by using, as proposed in
Ref. [34], a combination of CFM and fluorescence tomog-
raphy methods to help bypass a fundamental limitation in
the CFM methods concerning the imaging of deep tissues
in high-scattering media. Indeed a combined inverse prob-
lem solver can be envisioned that incorporates not only the
ballistic photons (which are exponentially attenuated after a
few millimeters [60]; see also Refs. [64–72]) and associated
interference phenomena that are crucial in the CFM setting
but which are not captured by radiative transfer theory, as
well as the scattered photons, which can be detected several
centimeters away from the source. Following Ref. [34] we hy-
pothesize that an effective imaging algorithm could thus result
by exploiting such combined data and incorporating simulta-
neous forward photon transport solvers and accurate forward
solvers for the ballistic propagation of light as described by
Maxwell’s equations, in an overall effective transport and
Maxwell inverse problem solver capable of deeper imaging
than is possible for the CFM microscopy technique alone.

Although beyond the scope of this work, which has been
aimed at the transport of neutral particles, the boundary layers
analyzed here—inherent to the solutions of Boltzmann-type
equations near boundaries—are also expected to emerge in
more general and broader contexts. Examples include nonlin-
ear transport theories relevant in several research areas, as well
as multigroup neutron transport.
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APPENDIX A: NEUMANN EXPANSION, OPERATORS,
AND IDENTITIES

This section reviews a well-known Neumann series for-
malism which is utilized as part of the theoretical analysis
presented in this paper. For notational simplicity this discus-
sion restricts attention to Eq. (1) with spatially constant values
of the coefficients μa, μs, and q; the generalization to the case
of variable coefficients is straightforward.

The construction relies on a number of functions and oper-
ators, including the function

g(x, ξ ) =
{

�0(ξ )e−μt x/ξ ξ > 0,

�1(ξ )e−μt (x−1)/ξ ξ < 0,
(A1)

and the operators

L[ f ](x, ξ ) =
⎧⎨⎩

e−μt x/ξ

ξ

∫ x
0 eμt y/ξ f (y, ξ )dy ξ > 0,

e−μt x/ξ

ξ

∫ x
1 eμt y/ξ f (y, ξ )dy ξ < 0,

(A2)

G[ f ](x, ξ ) =
{
R0(ξ ) f (0,−ξ )e−μt x/ξ ξ > 0,

R1(ξ ) f (1,−ξ )e−μt (x−1)/ξ ξ < 0,
(A3)

and

S[ f ](x, ξ ) =
∫ 1

−1
p(ξ, ξ ′) f (x, ξ ′)dξ ′. (A4)

Using these basic elements together with the integrating factor
for the differential equation it is easy to check that the solution
of Eq. (1) satisfies the integral equation

u(x, ξ ) = G[u](x, ξ ) + μsL[S[u]](x, ξ ) + g(x, ξ ) + L[q](x, ξ ), 0 < |ξ | � 1, (A5)

or, equivalently,

(I − K )[u](x, ξ ) = g(x, ξ ) + L[q](x, ξ ), (A6)

where

K = G + μsLS. (A7)

Inverting the left-hand operator in Eq. (A6) and using the geometric series for the resulting inverse operator, we obtain the
convergent expansion [1,40]

u(x, ξ ) = (I − K )−1[g + L[q]](x, ξ ) =
∞∑

m=0

Km[g + L[q]](x, ξ ), (A8)
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or, in other words,

u(x, ξ ) =
∞∑

m=0

um(x, ξ ), (A9)

where

u0(x, ξ ) = g(x, ξ ) + L[q](x, ξ ), m = 0, (A10)

and

um(x, ξ ) = K[um−1](x, ξ ), m � 1. (A11)

The analysis presented in Secs. III C and III D relies on use of a number of identities whose derivation results from straightfor-
ward but somewhat tedious manipulations, which can be established by mathematical induction. In particular, Sec. III C, where
the change of variables ξ = ζ1(r) = rn (ξ > 0) is employed, relies on use of the following identities, where a�, bs, c�, and ds are
real coefficients:

∂ j

∂r j
(rn−1 f (x, rn)) =

j∑
�=0

a�r ( j+1−�)(n−1)−� ∂ j−�

∂ξ j−�
f (x, rn), (A12)

∂α

∂ξα
e−μt x/ξ = e−μt x/ξ

ξ 2α

α−1∑
s=0

bsξ
s(μt x)α−s, (A13)

∂ j

∂r j

(
e−μt (y−x)/rn

r

)
= 1

r j+1

j∑
�=1

c�

(
μt (y − x)

rn

)�

e−μt (y−x)/rn
, (A14)

∂ j

∂r j
f (x, rn) = rn− j

j−1∑
s=0

ds(r
n)s ∂s+1

∂ξ s+1
f (x, rn). (A15)

Using Eqs. (A14) and (A15) we further obtain

∂ j

∂r j

(∫ x

0

e−μt (y−x)/rn

r
v(y, rn)dy

)
=

j∑
k=0

(
j

k

)
rn− j−1

∫ x

0

j−k∑
s=1

ds(r
n)s ∂s

∂ξ s
v(y, rn)

j∑
�=1

c�

(
μt (y − x)

rn

)�

e−μt (y−x)/rn
dy. (A16)

Section III D, in turn, which utilizes the change of variables x(v) = ev

ev+1 , relies on the identities (A17) through (A21) (where
a�, bk,�, c j,m,α,β,γ ,δ and d j,k,w,α,β,δ,γ ,s,�, denote real constants), all of which are valid for j � 1 and ξ > 0. In particular, use of
simple differentiation rules yields the identities

∂ j

∂v j
x(v) = x(v)

j−1∑
�=0

a�x(v)�(x(v) − 1) j−�, (A17)

∂ j

∂v j
e−μt x(v)/ξ = e−μt x(v)/ξ

j∑
k=1

(
μt x(v)

ξ

)k j∑
�=0

bk,� x(v)�. (A18)

Integrating by parts k times in Eq. (A2), in turn, we obtain

L[ f ](x(v), ξ ) =
k∑

�=1

(−1)�−1 ξ�−1

μ�
t

(
∂�−1

∂x�−1
f (x, ξ ) − ∂�−1 f

∂x�−1
(0, ξ )e−μt x/ξ

)
+ (−1)ke−μt x/ξ

ξ k−1

μk
t

∫ x

0
eμt y/ξ

∂k

∂yk
f (y, ξ )dy. (A19)

Combining Eqs. (A18) and (A19) and using Leibnitz’ integral and product rules, further, the relation

∂ j

∂v j
L[ f ](x(v), ξ ) =

k∑
�=1

(−1)�−1 ξ�−1

μ�
t

∂ j

∂v j

(
∂�−1

∂x�−1
f (x(v), ξ ) − e−μt x(v)/ξ ∂�−1 f

∂x�−1
(0, ξ )

)

+ (−1)k ξ k−1

μk
t

[
e−μt x(v)/ξ

j∑
m=1

(
μt x(v)

ξ

)m j∑
�=0

bm,�x(v)�
∫ x(v)

0
eμt y/ξ

∂k

∂yk
f (y, ξ )dy

+
j∑

m=1

j−m∑
α=1

j−m∑
β=0

m−1∑
s=0

m−1−s∑
γ=1

j−m∑
δ=0

c j,m,α,β,γ ,δ

(
μt x(v)

ξ

)α+γ

x(v)β+δ ∂s

∂vs

(
∂k

∂xk
f (x(v), ξ )

dx(v)

dv

)]
(A20)

025306-19



GAGGIOLI, ESTRADA, AND BRUNO PHYSICAL REVIEW E 110, 025306 (2024)

results. In a variant of Eq. (A20), utilizing once again Leibnitz’ rules in conjunction with the identities (A17) and (A18), but
without use of integration by parts, we obtain

∂ j

∂v j
L[ f ](x(v), ξ ) =

j∑
k=1

j−k∑
w,α=1

k−1∑
s=0

k−s−1∑
β=0

s∑
�=0

s−�∑
δ,γ=1

d j,k,w,α,β,δ,γ ,s,�
1

μt

(
μt x(v)

ξ

)δ+w+1

(x(v) − 1)k−s−βx(v)α+β+γ ∂�

∂v�
f (x(v), ξ )

+ e−μt x/ξ

ξ

∫ x(v)

0
eμt y/ξ f (y, ξ )dy

j∑
k=1

(
μt x(v)

ξ

)k j∑
�=0

bk,�. (A21)

APPENDIX B: DERIVATIVE-BOUNDEDNESS FOR
THE 1D HENYEY-GREENSTEIN PHASE FUNCTION

The analysis in Sec. III C and the fast convergence of the
Legendre expansion of the phase function used in Sec. IV B
both require the 1D phase function p(ξ, ξ ′) to have bounded
derivatives of various orders for all −1 � ξ, ξ ′ � 1. This sec-
tion shows that this assumption does indeed hold true, to all
nonnegative orders of differentiation, for the 1D version of
the phase function considered most often for photon transport
in the context of biological applications and used throughout
this paper, namely, the 1D Henyey-Greenstein phase function.
More precisely, in what follows we show that, for any given
real anisotropy parameter g �= ±1 (|g| < 1 in the biological-
matter context of this paper), the 1D Henyey-Greenstein phase
function (44) is an analytic function of both ξ ′ and ξ for
(ξ, ξ ′) ∈ [−1, 1] × [−1, 1]—a condition that amply ensures
the claimed derivative boundedness.

Using the relations ξ = cos(θ ), ξ ′ = cos(θ ′) and

ω̂(ξ, ϕ) = ξ x̂ + cos(ϕ)
√

1 − ξ 2ŷ + sin(ϕ)
√

1 − ξ 2ẑ,

and letting γ = ω̂(ξ, ϕ) × ω̂(ξ ′, ϕ′) the scalar-product term in
Eq. (B2), simple algebra gives

γ = ω̂(ξ, ϕ) × ω̂(ξ ′, ϕ′)

= ξξ ′ +
√

1 − ξ 2
√

1 − ξ ′2 cos(ϕ − ϕ′). (B1)

In view of Eq. (44) the 1D HG phase function is given by
integration of Eq. (43) with respect to ϕ′:

p(ξ, ξ ′) =
∫ 2π

0
η(ξ, ξ ′, ϕ − ϕ′)dϕ′

= 1

4π

∫ 2π

0

1 − g2

(1 + g2 − 2gω̂(ξ, ϕ) × ω̂(ξ ′, ϕ′))3/2
dϕ′.

(B2)

We note the square-root terms in Eq. (B1), whose derivatives
with respect to ξ ′ (respectively, ξ ) become unbounded as
ξ ′ → 1 (respectively, ξ → 1)—in spite of which, as claimed
above and shown in what follows, the 1D phase function (B2)
has finite derivatives of all orders for −1 � ξ, ξ ′ � 1.

(Although convenient, the use made in this paper of the
variables ξ and ξ ′ is not essential: the variables θ and θ ′
could be used instead, leading directly to finite phase-function

derivatives, even in the 3D case, as needed both in the analysis
presented in Sec. III C and to achieve the fast convergence of
a Legendre expansion of the phase function underlying the
techniques presented in Sec. IV B.)

To establish the analyticity result for (ξ, ξ ′) ∈ [−1, 1] ×
[−1, 1], we let γ0 = 1+g2

2g , we define

η̃(γ ) = 1 − g2

4π (1 + g2 − 2gγ )3/2
= C

1

(1 − γ

γ0
)3/2

,

where C = 1 − g2

4π (2gγ0)3/2
,

and we use the Taylor series (1 − γ

γ0
)−3/2 =∑∞

j=0 b j (
γ

γ0
) j ,

which we may express in the form

η = C
∞∑
j=0

b j

[
ξξ ′ +

√
1 − ξ 2

√
1 − ξ ′2 cos(ϕ − ϕ′)
γ0

] j

.

(B3)

Since |γ | � 1 for (ξ, ξ ′) ∈ [−1, 1] × [−1, 1], and since
|γ0| = | 1+g2

2g | > 1 (under the standing assumption g �= ±1),
we have | γ

γ0
| < 1, and, thus, the quantity in square brackets

in Eq. (B3) is smaller than one in absolute value for (ξ, ξ ′) ∈
[−1, 1] × [−1, 1]. It follows that the square-bracket quantity
remains smaller than one for ξ and ξ ′ in a sufficiently small
complex neighborhood V ⊂ C2, [−1, 1] × [−1, 1] ⊂ V , of
the 2D real domain [−1, 1] × [−1, 1]—wherein, on account
of the square-root terms, the quantity in square brackets
becomes multivalued as a function of ξ and ξ ′. Clearly, it fol-
lows that the series (B3) converges uniformly for (ξ, ξ ′, (ϕ −
ϕ′)) ∈ V × R. Expanding each binomial term in Eq. (B3) we
obtain the similarly uniformly convergent multivalued series

η(ξ, ξ ′, ϕ − ϕ′) = C
∞∑
j=0

b j

γ
j

0

j∑
k=0

(
j

k

)
(ξξ ′) j−k

× (
√

1 − ξ 2
√

1 − ξ ′2 cos(ϕ − ϕ′))k .

(B4)

Termwise integration of this uniformly convergent series with
respect to ϕ′, in accordance with Eq. (B2), eliminates all mul-
tivalued (odd k) terms (since

∫ 2π

0 cos(ϕ − ϕ′)kdϕ′ = 0 for k
odd). Further, as the even k powers cancel the square roots, the
integrated version of Eq. (B4) presents p(ξ, ξ ′) as a uniformly
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convergent series of single-valued analytic functions defined
in V . It follows that the 1D phase function p(ξ, ξ ′) equals the
sum of a uniformly convergent series of analytic functions
of ξ and ξ ′ for (ξ, ξ ′) ∈ V , and thus, as it follows from an
application of the Weierstrass complex-variables theorem on
analyticity of uniform limits of analytic functions is itself an
analytic function in this region, as needed.

APPENDIX C: DETAILS ON EXPERIMENTAL SETTING
AND ERROR ESTIMATES

With reference to Sec. V D, experimental data was pro-
duced using a FLUOVIEW FV1000 confocal laser scanning
microscope. Given the character of the 1D model used, the
laser was turned off and an LED photon source was uti-
lized instead in a transmission configuration, as illustrated
in Fig. 9. An objective lens UPLSAPO of 10X and 0.40
numerical aperture was employed. The microscope was set
on the XYT scan mode (scanning the sample’s lower sur-
face in Fig. 9) with sampling speed of 40.0 µs/Pixel, with
pixel size set to 0.414 µm/Pixel, and with an image size of
52.578 µm × 52.578 µm—for a total 128 × 128 pixels. The
collimator aperture was set to 770 µm. To reduce statistical
errors 100 consecutive images were collected for each sample
and the experimental value of the photon flux J +[u] for a
given sample [Eq. (8)] was taken to equal the average of the
1 638 400 intensity values obtained for all pixels and all 100
images per sample. For comparison purposes, for both the
experimental and simulated photon flux data [Eq. (8)], the
normalized photon flux values

J̃ +
i [u] = J +

i [u]∑
j J +

j [u]
(C1)

were evaluated, and are displayed in Fig. 10. In Eq. (C1), for
each of the datasets considered (various heights of pure milk,
on the one hand, and various concentrations of the milk-water
emulsion for a constant height, on the other hand) the index i
denotes the various experimental and simulated data points
obtained. Using measuring pipettes, milk, and water mix-
tures were prepared at various volume concentrations, and the
heights of the samples (Fig. 9) were determined based on the
volume of each sample. Considering the precision of the in-
strumentation used and accounting for appreciation errors due
to surface tension effects, a volume error of δV = 200 mm3

was assumed.
Letting h, Vm, and Vw denote the height of the sample

and the milk and water volumes, respectively, and calling
V = Vm + Vw and

V (%) = 100 ×
(

Vm

V

)
, (C2)

we obtain the relation

δJ̃ +
i (h,V (%)) =

∣∣∣∣∣∂J̃ +
i

∂h

∣∣∣∣∣δh +
∣∣∣∣∣ ∂J̃ +

i

∂V (%)

∣∣∣∣∣δV (%) (C3)

for the error in the detector readings resulting from uncertain-
ties in the sample height and concentration. Here, assuming
the errors in determination of volumes of milk, water, and
milk-water mixture all coincide, δVm = δVw = δV , we have
set

δV (%) = 100 × δV

V

(
1 − Vm

V

)
. (C4)

Since the sample was contained in a cylindrical recipient
of radius r, finally, and since the δh error stemming from
radius-measurement error were found to be orders of
magnitude smaller than the error resulting from volume-
measurement errors, the former errors were disregarded and
the height error was thus estimated via the expression

δh � δV

πr2
. (C5)

The two derivatives in Eq. (C3) were estimated on the
basis of detector readings produced by the numerical solver
for various heights and concentrations. The milk utilized in
our samples is not exactly the same as the one used in the
reference [62] from which we obtained values of the optical
parameters μs and μa used in Sec. V D: 3% fat milk was uti-
lized for the comparisons in that section, while reference [62]
provides μs and μa parameter values for 3.5% fat milk. It was
not possible to estimate the errors introduced by such differ-
ences in fat concentration. Although this might constitute a
source of systematic error, the good agreement observed be-
tween experimental and simulated detector readings suggest
that such discrepancies may possibly be safely disregarded.

APPENDIX D: SCATTERING-FREE ANALYTICAL
SOLUTION

An analytical solution, which displays the boundary-layer
phenomenology in the simple scattering-free case, can eas-
ily be obtained under the assumption of constant optical
parameters and sources together with the scattering-free con-
dition μs = 0. In particular, Eq. (1) with constant parameters
�i(ξ ) = 0, μt (x) = μa(x) = μa, and q(x, ξ ) = q, admits the
analytical solution

u(x, ξ ) =
⎧⎨⎩

q
μa

[
1 η0(ξ )

eμax/ξ

]
ξ > 0,

q
μa

[
1 − η1(ξ )

eμa (x−1)/ξ

]
ξ < 0,

(D1)

where

η0,1(ξ ) = R0,1(|ξ |) − 1

R0,1(|ξ |)e−μa/|ξ | − 1
.
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