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Annealing approach to root finding
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The Newton-Raphson method is a fundamental root-finding technique with numerous applications in physics.
In this study, we propose a parameterized variant of the Newton-Raphson method, inspired by principles
from physics. Through analytical and empirical validation, we demonstrate that this approach offers increased
robustness and faster convergence during root-finding iterations. Furthermore, we establish connections to
the Adomian series method and provide a natural interpretation within a series framework. Remarkably, the
introduced parameter, akin to a temperature variable, enables an annealing approach. This advancement sets the
stage for a fresh exploration of numerical iterative root-finding methodologies.
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I. INTRODUCTION

Root-finding algorithms are important to solve equations,
a fundamental task in quantitative theoretical science. Root-
finding and fixed-point iterations are intricately connected,
serving as essential tools in various fields such as opti-
mization and algorithm development. In physics, root-finding
methods can be smartly employed to find periodic orbits
[1,2] and estimate parameters [3] in nonlinear systems with
chaotic dynamics. Additionally, they can be used to identify
stationary states of potential energy functions in classical
systems [4,5], in a generic Turing reaction-diffusion system
[6], and in a nonlinear Schrödinger lattice [7], as well as to
find complex saddle points in quantum many-body systems
[8]. This application can be naturally extended to the max-
imization of log-likelihood [9] and the minimization of free
energy [10] of physical systems. They are also applicable
in solving differential equations of fluid dynamics [11] and
self-consistent equations in quantum heat transport problems
[12]. Recently, the rise of deep learning has introduced com-
plex, high-dimensional root-finding challenges, particularly in
optimizing architecturally intricate neural networks, driving
the need for further advancements in root-finding techniques.

Here, we introduce a concrete example how the root-
finding method can be applied to solve a physics problem. The
Kuramoto model [13] is paradigmatic in the theoretical study
of the spontaneous synchronization of physical constituents.
Consider a system of N physical rotors with configurations θi,
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interacting as described by

dθi

dt
= κ

∑
j �=i

�i j sin(θ j − θi + �i j ), (1)

where κ is an overall coupling constant, �i j is a real weight
matrix describing the edges of a weighted asymmetric di-
rected graph with no multiedges, and �i j is a matrix of phase
delays associated with the edge j → i. Note that we consider
the case where no rotor has intrinsic angular velocity. By
including slow learning dynamics for the � and � matrices
one could in principle store multiple patterns in the dynamics
of this system, which may be relevant for modeling neuronal
systems [14,15]. Now, suppose we consider the synchroniza-
tion state of the rotors in a common angular velocity ω, such
that

θi(t ) = ωt − φi, (2)

where φi is a rotor-specific phase shift. Given κ, � and �, is
there a vector of phase shifts φ such that synchronization can
occur for ω �= 0? To exhibit this as a problem of finding roots
for a set of N − 1 coupled equations, inserting Eq. (2) into
Eq. (1) gives

ω = κ
∑
j �=i

�i j sin(φi − φ j + �i j ) ≡ κ fi(φ), ∀i. (3)

We can set the initial phase shift φ0 = 0 for the rotor with
i = 0. Then ω(φ) is specified by

ω = κ
∑
j �=0

�0 j sin(−φ j + �0 j ), (4)
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and inserting this value of ω in the remaining N − 1 equa-
tions gives for all N > i > 0:∑

j �=0

�0 j sin(−φ j + �0 j ) = fi(φ). (5)

Now κ does not appear in Eq. (5) which is not surprising
because changing κ merely changes the scale of the time vari-
able in this system. When the rotors have intrinsic individual
frequencies, κ cannot be scaled out and the Kuramoto syn-
chronization phase transition occurs only for strong enough
coupling.

To demonstrate that this problem is an exercise in root
finding, consider the case of two rotors. Then there is one
equation determining φ1:

�01 sin(φ1 − �01) + �10 sin(φ1 + �10) = 0. (6)

It is evident that for appropriate choices of coupling weights
�01, �10 and edge-specific phase shifts �01, �10, this equa-
tion has a real root. In particular, the root then determines the
synchronization frequency as shown in Eq. (4).

Given the numerous applications, root-finding methods
historically predate even calculus, and continue to evolve,
with well-known methods like bisection, regula falsi, Newton-
Raphson, and secant methods [16]. Notably, the Newton-
Raphson method stands out as a powerful iterative approach
for root finding [17]. The iterative update of xn,

xn+1 = xn − f (xn)

f ′(xn)
, (7)

ultimately converges to the root, xroot, satisfying f (xroot ) = 0.
Note that f ′(xn) represents the slope of f (x) at x = xn.

Research efforts persist in exploring hybrid methods, par-
allelized techniques, and symbolic and numerical hybrids, all
aimed at enhancing efficiency, convergence, robustness, and
global optimization. Physical analogies have long been impor-
tant in numerical analysis. Can root finding also be phrased
in a physically motivated setting? In this study, we develop
an extended Newton-Raphson method, inspired by principles
from physics. The method can be summarized in two iterative
steps:

x̂n+1 = xn − f (xn)

f ′(xn)
,

xn+1 = x̂n+1 − β
f (x̂n+1)

f ′(xn)
. (8)

Here, we introduce an auxiliary parameter β, where β = 0
corresponds to the original Newton-Raphson method. Al-
though we present the method for a scalar variable, it can be
readily extended to encompass vector functions with multiple
variables. For the specific application to the synchronization
problem discussed above, we define

A−1
ik (φ) ≡ ∂

∂φk
fi(φ). (9)

The iteration to find φi involves two steps:

φ̂
(n+1)
k = φ

(n)
k −

∑
j

Ak j (φ
(n) ) f j (φ

(n) ), (10)

followed by

φ
(n+1)
k = φ̂

(n+1)
k − β

∑
j

Ak j (φ
(n) ) f j (φ̂

(n+1)). (11)

In fact, in this system there could well be multiple independent
synchronization frequencies for subsets of rotors, depending
on the structure of � and �.

This paper is organized as follows: In Sec. II, we provide a
physical perspective on the Newton-Raphson method, high-
lighting its limitations and proposing solutions. Section III
delves into the development of a parameterized variant of
the Newton-Raphson method, elucidating its iterative imple-
mentation of Eq. (8) and demonstrating superior convergence
and robustness through practical examples. Section IV ex-
plores the connection between the extended Newton-Raphson
method and the Adomian decomposition method, interpreting
the auxiliary parameter β as a natural expansion parameter for
the Adomian series. Finally, adopting the annealing concept in
physics [18], we show further computational improvement by
adjusting the β value during iterations.

II. PHYSICAL APPROACH TO FINDING ROOTS

We now rederive the Newton-Raphson method using an
alternative perspective from physics, naturally extending it
into an enhanced version.

A. Alternative perspective of the Newton-Raphson method

Suppose that we have a scalar function f (x) with a sin-
gle variable x, aiming to determine a root, xroot, such that
f (xroot ) = 0. Then, we consider an integral,

Z ≡
∫

dx exp

[
− 1

2g2
f (x)2

]
, (12)

where g is a real-valued scale parameter. We provide the math-
ematical justification for this form based on cohomological
quantum field theory in Appendix A. For any function h of x,
we expect that in the limit g ↓ 0,

〈h〉 ≡ 1

Z

∫
dx h(x) exp

[
− 1

2g2
f (x)2

]
→ h(xroot ), (13)

where xroot is a minimum or a root of f , assuming a unique
root or a unique minimum. In particular, the expectation value
of h(x) = x itself should be an estimate of xroot.

The systematic approach to analyzing Eq. (13) in the limit
g ↓ 0 is by using Laplace’s approximation for the integral.
In brief, this approximation requires us to find x∗ such that
f (x∗) f ′(x∗) = 0, and then do a Taylor expansion about x∗,
evaluating the integral as an integral over fluctuations about
x∗.

For the purposes of finding roots of f , this is pointless
as we have no idea where the root might be. Attempting to
localize the integral at an arbitrary specific value x0 using a
Taylor expansion leads to

Z =
∫

dx exp

[
− 1

2g2
( f (x0) + f ′(x0)(x − x0) + . . .)2

]
.

(14)
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Defining a fluctuation variable δ ≡ x − x0 with f0 ≡ f (x0)
and f ′

0 ≡ f ′(x0),

Z =
∫

dδ exp

[
− 1

2g2
( f0 + f ′

0δ + . . .)2

]
. (15)

Then, we can find a better stationary point by varying

1

2g2

[
f0 f ′

0δ + 1

2
( f ′

0δ)2

]
, (16)

which is stationary when

δ = − f0/ f ′
0. (17)

Since (up to higher order derivatives) this defines the expec-
tation value of δ, it follows that the estimate for the root of f
given by this is

xroot ≈ 〈x〉 = x0 − f0/ f ′
0, (18)

which is the Newton-Raphson update.
As the basic assumption of the Laplace approximation is

that the initial starting point is a stationary point of f 2 so that
the expectation value of fluctuations vanishes, this attempt to
expand the integral about an arbitrary value x0 tells us that
for a consistent Laplace approximation, we need to replace
x0 → x0 − f0/ f ′

0, and start over.

B. Inconsistency in the Newton-Raphson method

Laplace’s approximation holds true only when we expand
around a stationary point. As noted, the presence of a nonzero
right-hand side in Eq. (17) indicates that this condition does
not hold for arbitrary x0. However, there is another problem
with our approach. We assumed that the linear approxima-
tion was actually solving the equation of interest, namely
f (xroot ) = 0, but all we really solved was

fL(x) ≡ f0 + f ′
0(x − x0) = 0. (19)

This becomes apparent when we substitute the value x0 →
x0 + δ into Eq. (15), as the term f 2

0 /2g2 also undergoes
modification, although it did not contribute to the variational
equation, Eq. (16). Only if the corrections to Eq. (17) are of
order g and higher with δ = − f0/ f ′

0 = O(g) and f ′′
0 ≡ f ′′(x0),

f (x0 + δ) ≈ f0 + f ′
0δ + 1

2
f ′′
0 δ2 = O(g2), (20)

which is higher order in g. This result implies that the Laplace
approximation is naïvely self-consistent. However, it is im-
portant to note that f0/ f ′

0 = O(g) ⇔ f0/g = O( f ′
0). For an

arbitrarily chosen point x0, there is no assurance of such a
relationship between f0 and f ′

0, as g must be as small as
possible for the Laplace approximation to be valid. Hence,
we deduce that the genuine expansion parameter is f0/g, and
Eq. (17) must be amended.

One approach to addressing both problems at the same
time is to seek an enhanced integrand, often referred to as
an effective action in analogous contexts within physics. Typ-
ically, such an effective integrand is computed by taking
short distance scale fluctuations into account, leading to an
integrand governing longer distance fluctuations but neces-
sarily dependent on g. For instance, Lepage and Mackenzie
[19] demonstrated the reordering of strong-coupling terms

to derive an improved effective action in lattice gauge the-
ory. However, in our scenario, where only a single integral
is involved, such a strategy cannot be directly applied.
Nonetheless, we can explore the possibility of identifying a
conceptually similar effective equation to refine the Laplace
approximation, particularly in cases where the Taylor expan-
sion employed to derive Eq. (17) becomes invalid.

f0/ f ′
0 has the dimensions of length so fluctuations about

x0 are naturally considered big or small relative to this length
scale. Two clues toward finding such an effective variant of
Eq. (17) are the following:

(i) When an exact stationary point for the Laplace approx-
imation is not used, the leading correction to the logarithm of
the integral is singular in a power of g.

(ii) As mentioned above, the term f (x0)2/2g2, which did
not contribute to Eq. (17), becomes influential in determining
the next approximate stationary point of the Laplace approxi-
mation.

The consequences of f0/ f ′
0 not being small can be esti-

mated readily. Consider the next term in the Taylor expansion,

f (x0 + δ) = f0 + f ′
0δ + 1

2

f ′′
0

f ′
0

2 ( f ′
0δ)2. (21)

Using this equation, we vary f (x0 + δ)2/2g2 with respect to
the dimensionless variable � ≡ f ′

0δ/g. Note the power of g in
this definition, included so that the condition for validity of
the Laplace expansion becomes � 
 1. The variation gives

(
1

g
f0 + � + 1

2

f ′′
0

f ′
0

2 g�2

)(
1 + f ′′

A

f ′
0

2 g�

)
. (22)

Ignoring the second derivative, this implies � = − f0/g. This
is the standard Newton-Raphson update. For the validity of
the Laplace approximation, � 
 1, so we see again that f0/g
is the effective expansion parameter. However, if we include
the second derivative terms and estimate � from the resulting
quadratic equation, then we find that

� ≈ −1

g
f0− 1

2g
f 2
0

f ′′
0

f ′
0

2 , (23)

which implies that including nonlinearities, with higher
derivative terms in the function f for example, cannot be
accommodated in the Laplace approximation for arbitrarily
small f0/g in a consistent manner.

C. Correcting the Newton-Raphson method

Given the inconsistency in the Newton-Raphson method,
an improved effective version of Eq. (23) is needed that gives
a consistent order by order expansion in f0/g, but still gives
exactly the same formal stationary point equation for �. We
begin with a clue by observing

1

g2
f (x0 − f0/ f ′

0) ≈ 1

2

f 2
0

g2

f ′′
0

f ′
0

2 ∝
(

f0

g

)2

. (24)
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This motivates us to formulate an effective stationary point
equation,

� = −1

g
f0 − 1

g2
f (x0 + g�/ f ′

0)

≈ −1

g
f0 − 1

g2
f (x0 − f0/ f ′

0) + . . . . (25)

The presence of the second nonlinear term with the lower
power of g now becomes influential in determining the con-
sistency of the Laplace approximation, a role absent in the
contribution of the term f (x0)2/2g2 in Eq. (17). Another in-
sight into the lower power of g is that as g increases, f0/g
diminishes, aligning with the strong coupling limit in physics
parlance [20], consequently reducing the impact of the ad-
ditional term in Eq. (25). This term which becomes more
important as g ↓ 0 is enforcing the initial ultralocal exact
equation: f (x) = 0. The original Newton-Raphson linear term
is more important in the strong coupling limit and because it
incorporates the derivative of f , and not just the value of f , it
corresponds to a ‘hopping approximation’ to the actual equa-
tion of motion. In the Newton-Raphson scenario, the Laplace
approximation necessitates further corrections beyond the lin-
ear expansion of f (x)2/2g2 in integral evaluation. Hence, the
inclusion of the additional term with the lower power aims to
balance the update of the stationary point between the weak
and strong coupling evaluations of the integral.

To see that the power of g is now exactly correct in a formal
expansion, we use the linear Taylor expansion and get

1

g2
f (x0 + g�/ f ′

0) ≈ 1

g2
( f0 + g�) (26)

and inserting this expression back into Eq. (25), we get

� = −1

g

(
1 + 1

g

)
f0 − 1

g
� ⇔ � = −1

g
f0. (27)

In other words, the effective equation of motion, when g is
small, recapitulates Eq. (17). Finally, we accomplish both ob-
jectives of (i) having a leading correction singular in a power
of g and (ii) ensuring the term f (x0)2/2g2 plays a significant
role in the Laplace approximation. By substituting � = f ′

0δ/g
with δ = x − x0, the effective stationary point equation of
Eq. (25) can be expressed as follows:

1

g
f (x) + f0 + f ′

0(x − x0) = 0. (28)

This stationary equation can also be understood more intu-
itively. Consider the modified form of the partition function in
Eq. (15) as follows:

Z =
∫

dx exp

[
− 1

2g2
(α f (x) + (1 − α) fL(x))2

]
, (29)

where fL(x) ≡ f0 + f ′
0(x − x0) represents the linear Taylor

approximation of f (x) at x = x0. This interpolation between
f (x) and fL(x) encapsulates three essential properties:

(i) Setting α = 1 recovers the original partition function.
(ii) It closely resembles the original partition function

when fL(x) ≈ f (x) is a valid approximation.
(iii) The term α f (x) serves as a “tadpole” that diminishes

as x approaches xroot.

With a few algebraic manipulations and redefined parame-
ters in Eq. (29), we obtain

Z =
∫

dx exp

[
− 1

2g̃2
(β f (x) + fL(x))2

]
, (30)

where g̃ ≡ g(1 − α) and β = α/(1 − α). Subsequently, the
stationary equation leads to:

β f (x) + f0 + f ′
0(x − x0) = 0. (31)

Aside from coefficient differences, this equation mirrors
Eq. (28). As we will demonstrate, the coefficient acts as a
control parameter, rendering this distinction insignificant.

III. ITERATIVE ROOT FINDING

The revised stationary Eq. (31) serves as an iterative
root-finding method. This section elucidates its enhanced
convergence, robustness, and interpretation as an iterative
algorithm.

A. Iterative algorithm

We rewrite the stationary Eq. (31):

β f (x(β )) + f0 + f ′
0(x(β ) − x0) = 0 (32)

to find x(β ), in place of Eq. (17). Once we get to Eq. (32),
we can completely ignore the origins of this equation so the
numerical coefficient that we have not determined can simply
be absorbed into the definition of the abstract parameter β.

Here, we consider intuitively how this approach works.
Equation (32) incorporates the complete function f , not
just the linear Taylor expansion approximation and therefore
makes sense even when δ = x(β ) − x0 is not small since, for
β large, it dominates the other terms in Eq. (32) to move
δ toward xroot, as we show geometrically below. If f (x(β ))
and f0 have the same sign, then increasing β will result in
|x(β ) − x0| becoming larger, while the opposite sign will lead
to a smaller separation between x0 and x(β ). This will help the
iterative process [x0 → x(β )] converge faster (Fig. 1). For any
value β �= −1, if there is a fixed point, x∗, with a nonsingular
gradient, we have

(β + 1) f (x∗) = 0 ⇔ f (x∗) = 0. (33)

The intermediate values of x(β ) may vary with β, potentially
causing shifts in the basins of attraction as β changes (refer
to Sec. III E for further elucidation). Nonetheless, the fixed
point remains a root of f , unaffected by β, a fact that can also
be demonstrated through cohomological quantum field theory
(Appendix A).

We now explicitly present the revised iterative method as
an alternative to the Newton-Raphson method. Using Eq. (32),
let x(β ) be defined as the solution of

x(β ) = N (x0) − β f (x(β ))

f ′
0

(34)

with a nonlinear mapping of N (x) ≡ x − f (x)/ f ′(x). At a
fixed point, f (x∗) = 0, all β dependence vanishes. As we
expect based on our discussion above, the fixed point is a root
of f : x∗ = xroot. At β = 0, the infinite temperature limit, this
is clearly the Newton-Raphson iteration, and does not have
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FIG. 1. Improved convergence to roots: Comparison between Newton-Raphson method and the revised method. The Newton-Raphson
method progresses from an initial point x0 to x1, determined as the solution of fL (x1) = f0 + f ′

0(x1 − x0 ) = 0, whereas the revised method
advances x0 to x(β ), found as the solution of β f (x) + fL (x). The separation |x(β ) − x0| adjusts, either increasing or decreasing, to enhance
convergence toward xroot , contingent upon the relationship between f (x(β )) and f0: (a) when they share the same sign, or (b) when they have
opposite signs.

any x(β ) on the right hand side. For β > 0, it could also be
solved by inserting this definition of x(β ) into the right hand
side repeatedly. At the first order, we get

x(β ) = N (x0) − β f (N (x0))

f ′
0

. (35)

A fixed point of this equation does not immediately imply
that the fixed point is a root of f , because as it stands this
is not the original Eq. (34). A fixed point here implies only
that f (x∗) + β f (N (x∗)) = 0. Now this equation is satisfied
when x∗ is a root, xroot, of f , but the reverse implication is not
necessarily true, unless this continues to hold as we vary β

continuously.
Let us rewrite the first-order equation as

x(β ) = x1 − β f1/ f ′
0

= (1 − β )(x0 − f0/ f ′
0) + βx1 − β f1/ f ′

0

= x̃0 − f̃0/ f ′
0, (36)

where we denote x1 ≡ N (x0) = x0 − f0/ f ′
0 and f1 ≡ f (x1),

and define x̃0 ≡ (1 − β )x0 + βx1 and f̃0 ≡ (1 − β ) f0 + β f1.

Comparing this update with the Newton-Raphson form in
Fig. 2, we see that the function pair (x0, f0) determining
the next estimate is replaced in our approach with the pair
(x̃0, f̃0), but with the same slope, f ′

0. In other words, the line
going from (x0, f0) to (x1, 0) with slope f ′

0 is translated to a
parallel line going from (x̃0, f̃0), to (x(β ), 0) to find the next
estimate of the root, x(β ). Geometrically, this makes the next
step in the iteration larger or smaller depending on the relative
signs of f0 and f (x(β )), as discussed above.

Were we to repeat this process, we would get

x(β ) = N (x0) −
β f

[
N (x0) − β f (N (x0 ))

f ′
0

]
f ′
0

, (37)

and so on. Each order in β has one more function evaluation
and is higher order in β. It turns out that either of these
definitions of iterative determination of x(β ) gives exactly the
same fixed point structure, which exhibits a fractal nature. A
fixed point value that is a fixed point of both these versions
will in fact be a root. Henceforth, we proceed with the simplest

FIG. 2. Improved iteration to roots: Comparison between Newton-Raphson method and the revised method. In the Newton-Raphson
method, the progression from an initial point x0 to x1 = x0 − f0/ f ′

0 with a slope f ′
0. The revised method can be interpreted to provide an

interpolated point, (x̃0, f̃0 ), between (x0, f0 ) and (x1, f1), where fi ≡ f (xi ). Then, the next iterated point x̃1 is determined by a linear function
crossing (x̃0, f̃0 ) with the same slope f ′

0. The convergence behavior depends on the relationship between f0 and f1: (a) when they share the
same sign or (b) when they have opposite signs.
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choice, which can be described by two iterative steps:

x̂n+1 = N (xn) = xn − f (xn)

f ′(xn)
,

xn+1 = x̂n+1 − β
f (x̂n+1)

f ′(xn)
. (38)

This completes our derivation of Eq. (8). It is noteworthy that
this modified Newton-Raphson method, with a specific value
of β = 1, has been derived in Refs. [21–23]. The derivation
in Ref. [23] based on the Adomian method will be further
discussed in the subsequent section.

B. Convergence

We now demonstrate that there is actually a benefit of
this β dependent reformulation in terms of root-finding
performance. The quadratic convergence of the Newton-
Raphson method, near a root, xroot, is demonstrated by Taylor
expanding

f (x) ≈ f ′
root (x − xroot ) + 1

2 f ′′
root (x − xroot )

2, (39)

where f ′
root ≡ f ′(xroot ) and f ′′

root ≡ f ′′(xroot ). By inserting this
Taylor approximation into the Newton-Raphson update of
xn+1 = N (xn), we obtain the the expected quadratic conver-
gence:

xn+1 − xroot ≈ 1

2

f ′′
root

f ′
root + f ′′

root (xn − xroot )
(xn − xroot )

2. (40)

Similarly, for our β dependent update, we get

xn+1 − xroot ≈ 1 − β

2

f ′′
root

f ′
root

(xn − xroot )
2, (41)

exactly in line with the intuition we gave above. Of course,
the number of iterations is never zero so, more precisely,
this only shows that the convergence at β = 1 is faster than
quadratic. See Homeier [24,25] for the significance of cubic
convergence in modified Newton-Raphson methods. Here we
see that for problems where the first derivative at the root is
finite, we should use the largest value of β for which a fixed
point exists. However, as we shall show explicitly in the case
of f (x) = x1/3, a fixed point may not exist for β = 1.

Close to a root, the order of convergence depends on the
parameter β, being quadratic for the Newton-Raphson case
with β = 0. Theorem 1 in Ref. [26] proves that the order of
convergence is maximized for β = 1, achieving local order
three for a similar iterative algorithm. The cubic convergence
for β = 1 has also been demonstrated in other studies [27,28].
However, the theorem does not specify the convergence order
for other values of β. We conducted numerical validation
to assess the convergence order across a range of nonlinear
functions, and confirmed the quadratic convergence for β �= 1
and the cubic convergence only for β = 1 (refer to Sec. III D
in details).

C. Cube-root function

The cube root is a well-known analytically solvable func-
tion that is not well-suited for finding roots using the
Newton-Raphson algorithm. In fact, for f (x) = x1/3, we get

f (x)/ f ′(x) = 3x. It follows that

xn+1 = N (xn) = −2xn, (42)

which clearly does not converge. For our β dependent up-
date, Eq. (38), we have N (x) = −2x, and so f (N (x))/ f ′(x) =
(−2x)1/3/(x−2/3/3) = −21/3 × 3x. Therefore, Eq. (38) im-
plies

xn+1 = xn(−2 + 3 × 21/3β ). (43)

For convergence we must have

| − 2 + 3 × 21/3β| < 1, (44)

which requires

1

3 × 21/3
< β <

1

21/3
. (45)

Moreover, the swiftest convergence occurs at βmin = 22/3/3.

It is worth noting that β = 0 (Newton-Raphson method) and
β = 1 (Adomian’s method) do not fall within the range of
convergent values. These observations regarding the strong-
coupling approach to root determination of the cube-root
function are empirically validated in one of the examples.
Remarkably, by tuning β to this particular value, convergence
becomes seemingly independent of the initial point in this
instance. This surprising convergence is indicative of a more
interesting role for β in the size of the basins of attraction to a
given root as we shall show in Sec. III E.

D. Numerical results

We now explicitly compare key numerical figures of the
extended Newton-Raphson method. Specifically, the original
Newton-Raphson method corresponds to the case of β = 0
in the parameterized Newton-Raphson method. To conduct
the comparison, we tested various types of nonlinear func-
tions, some of which were adopted from Weerakoon and
Fernando [29].

Tables I and II show four metrics:
(i) Iteration number: The average number of iterations per

initial point after discarding divergent initial points.
(ii) Convergence percentage: The percentage of initial

points that successfully converge to a root before reaching a
preset maximum number of iterations (set to 50 iterations in
this study).

(iii) Computation time: The average execution time per
point relative to the Newton-Raphson method. Divergent ini-
tial points are excluded from this calculation.

(iv) Convergence order: The estimated order of conver-
gence as iteration progresses.

Given that finding real roots for real-valued function
f (x) = 0 with x ∈ R can be extended to finding zeros for
complex-valued functions f (z) = 0 with z ∈ C, we explore
the Newton-Raphson methods in the complex plane. For
each function, we iterate the method starting from an ini-
tial point z0 ∈ C, chosen from a regular grid in the square
[−2, 2] × [−2, 2]. We select a grid of 1000 by 1000 points
evenly spaced across this square and iterate each initial point
until the criterion |zn+1 − zn| < ε is satisfied, with a threshold
ε = 10−14. If the iteration does not satisfy the criterion within
50 iterations, then we consider the trajectory divergent. Here,
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TABLE I. Numerical performance of the extended Newton-Raphson method. For five different values of β, we evaluate: (i) the average
number of iterations required for convergence (Iteration number); (ii) the percentage of initial points that converge (Convergence percentage);
and (iii) the relative computation time compared to the β = 0 case (Computation time). Note that β = 0 represents the original Newton-
Raphson method. In each category, the best performance—shortest iteration number, highest convergence percentage, and least computation
time among different β values—is highlighted in bold.

Iteration number Convergence percentage Computation time

Functions β = −1 −0.5 0 0.5 1 β = −1 −0.5 0 0.5 1 β = −1 −0.5 0 0.5 1

f1(x) = (x2 − 1)(x2 + 1) 18.4 15.7 11.3 11.0 10.5 75 80 100 91 90 1.50 1.29 1.0 0.92 0.89
f2(x) = x3 − 1 15.5 13.3 9.1 9.1 8.4 92 96 100 99 99 1.55 1.35 1.0 0.94 0.93
f3(x) = x12 − 1 18.5 16.3 16.4 12.7 11.5 44 56 84 67 66 1.11 0.93 1.0 0.73 0.67
f4(x) = (x2 − 4)(x + 1.5)(x − 0.5) 12.6 10.4 8.0 7.4 6.4 98 97 100 100 100 1.50 1.27 1.0 0.89 0.79
f5(x) = (x + 2)(x + 1.5)2(x − 0.5)(x − 2) 12.1 10.3 28.9 25.6 22.2 42 43 96 99 99 0.42 0.35 1.0 0.85 0.76
f6(x) = sin(x) 9.7 7.7 6.6 6.0 5.5 87 84 100 95 92 1.42 1.09 1.0 0.87 0.82
f7(x) = (x − 1)3 + 4(x − 1)2 − 10 17.9 14.5 9.7 9.1 8.4 97 97 100 100 100 1.74 1.44 1.0 0.92 0.83
f8(x) = sin(x − 14/10)2 − (x − 14/10)2 + 1 11.3 9.4 8.9 7.5 6.5 60 59 71 64 64 1.25 1.04 1.0 0.86 0.76
f9(x) = x2 − ex − 3x + 2 8.1 7.1 6.2 5.8 5.0 97 97 100 99 98 1.20 1.13 1.0 0.93 0.79
f10(x) = cos(x − 3/4) − x + 3/4 10.8 8.8 8.6 7.1 6.3 61 63 93 75 72 1.23 0.97 1.0 0.8 0.72
f11(x) = (x + 1)3 − 1 15.1 12.7 9.0 8.9 8.1 93 96 100 99 99 1.50 1.29 1.0 0.96 0.85
f12(x) = (x − 2)3 − 10 17.5 14.7 9.3 9.8 8.9 87 92 100 97 98 1.84 1.54 1.0 1.01 0.96
f13(x) = (x + 5/4)e(x+5/4)2 − sin(x + 5/4)2 17.0 13.2 11.6 9.7 9.4 55 60 96 82 80 1.46 1.12 1.0 0.81 0.80
+3 cos(x + 5/4) + 5
f14(x) = x + sin(2/x)x2 15.5 13.5 10.9 9.5 10.3 35 57 99 88 74 1.41 1.22 1.0 0.86 1.08

the convergence order was estimated using the following
formula [30]:

qn = log |en+1/en|
log |en/en−1| , (46)

where en ≡ zn − zn−1. When |en| < ε the iterations stop and
we pick the last value of the series qn as the order of con-
vergence. For each function, we select an initial point that

converges to one of the roots for at least eight iterations to
obtain a valid estimation of the convergence.

We investigate the impact of the parameter β in the
extended Newton-Raphson method by using some repre-
sentative values of β ∈ {−1,−0.5, 0, 0.5, 1}. We found that
positive values of β improve the efficiency of the root-finding
iteration compared to the original Newton-Raphson method
(β = 0). Specifically, the case β = 1 consistently shows su-
perior performance (Table I). The mean number of iterations

TABLE II. Annealing effect on iterative root finding. The numerical performances of fixed β versus annealing βn are compared. The
evaluations include: (i) the average number of iterations required for convergence (Iter. number); (ii) the percentage of initial points that
converge (Conv. percentage); (iii) the relative computation time compared to the β = 0 case (Comp. time); and (iv) the order of convergence
(Conv. order). Note that the fixed β = 0 and β = 1 represent the original and the modified Newton-Raphson method, respectively. The
iteration-dependent βn is formulated in Eq. (71). The convergence order is estimated by Eq. (46). In each category, the best performance—
shortest iteration number, highest convergence percentage, least computation time, and largest convergence order among different β values—is
highlighted in bold.

Iter. number Conv. percentage Comp. time Conv. order

Functions β = 0 β = 1 βn β = 0 β = 1 βn β = 0 β = 1 βn β = 0 β = 1 βn

f1(x) = (x2 − 1)(x2 + 1) 11.3 10.5 7.9 100 90 100 1.0 0.89 1.02 2.00 2.99 4.08
f2(x) = x3 − 1 9.1 8.4 6.5 100 99 100 1.0 0.93 1.07 2.00 3.01 4.14
f3(x) = x12 − 1 16.4 11.5 12.8 84 66 87 1.0 0.67 1.26 2.00 2.92 4.17
f4(x) = (x2 − 4)(x + 1.5)(x − 0.5) 8.0 6.4 5.4 100 100 100 1.0 0.79 1.07 1.99 2.94 3.95
f5(x) = (x + 2)(x + 1.5)2(x − 0.5)(x − 2) 28.9 22.2 18.6 96 99 100 1.0 0.76 1.17 0.99 1.00 1.00
f6(x) = sin(x) 6.6 5.5 5.0 100 92 99 1.0 0.82 1.18 3.00 4.97 6.85
f7(x) = (x − 1)3 + 4(x − 1)2 − 10 9.7 8.4 7.3 100 100 100 1.0 0.83 1.44 2.00 3.02 4.36
f8(x) = sin(x − 14/10)2 − (x − 14/10)2 + 1 8.9 6.5 6.1 71 64 73 1.0 0.76 1.27 2.00 2.98 2.58
f9(x) = x2 − ex − 3x + 2 6.2 5.0 4.2 100 98 100 1.0 0.79 0.99 2.00 3.09 4.25
f10(x) = cos(x − 3/4) − x + 3/4 8.6 6.3 6.3 93 72 93 1.0 0.72 1.17 2.00 3.02 3.89
f11(x) = (x + 1)3 − 1 9.0 8.1 6.3 100 99 100 1.0 0.85 1.23 2.00 2.93 4.08
f12(x) = (x − 2)3 − 10 9.3 8.9 7.0 100 98 100 1.0 0.96 1.34 2.00 2.99 3.92
f13(x) = (x + 5/4)e(x+5/4)2 − sin(x + 5/4)2 + 3 cos(x + 5/4) + 5 11.6 9.4 8.5 96 80 97 1.0 0.80 1.34 2.00 3.02 3.64
f14(x) = x + sin(2/x)x2 10.9 10.3 8.0 99 74 81 1.0 1.08 1.28 2.00 2.99 3.99
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(a)

(b)

(c)

FIG. 3. Newton fractals and basin entropy. Colors represent different basins of attractors (roots). In particular, the colors in the basins of
attraction have been shaded such that darker colors correspond to longer iterations to converge to roots. The basins of three functions are
computed for β ∈ {−1,−0.5, 0, 0.5, 1}: (a) top row f2(z) = z3 − 1, (b) central row f7(z) = (z − 1)3 + 4(z − 1)2 − 10, and (c) bottom row
f14(z) = z + z2 sin(2/z). The corresponding basin entropy Sb in the right plot quantifies the unpredictability of roots as a function of β over
the range [−1, 1] in steps of 0.01. Sb has been computed on a grid of 1000 times 1000 initial points with a covering of boxes of size 20 times
20. The method to determine the final root is described in Sec. III D.

decreases monotonically as β changes from −1 to 1. However,
this trend for positive β is accompanied by higher instabili-
ties as the convergence percentage of initial points decreases.
The relative computation time compared to the original
Newton-Raphson method is reduced. Since additional oper-
ations for the extended method are negligible, the reduced
number of iterations directly leads to shorter computation
times.

In general, negative values of β lead to poorer perfor-
mance, except for the function f5. A closer examination of the
convergence percentage reveals more than half of the initial
points do not converge for negative β. This can be understood
visually from Fig. 1, where unlike postive β, negative β causes
the next iteration points to move farther away from the roots.

Table II showed quadratic convergence for β = 0 and cubic
convergence for β = 1. Notably, we encountered anomalous
convergence in the case of the function f6(x) = sin(x), which
exhibits vanishing curvature with f ′′

6 (xroot ) = 0. Additionally,
we noted linear convergence near a doubly degenerate real
root for f5(x).

E. Basin entropy

For nonlinear functions with multiple roots, different ini-
tial points z0 approach different roots or zeros or attractors.
Consequently, the set of initial points converging to the same
root z∗ is defined as the basin of attraction of the root z∗. It
is well known that the basin of attractors exhibits a fractal
structure for the Newton-Raphson method. Here, we investi-
gate whether our iteration method alters the Newton-Raphson
basin of attractors. A remarkable characteristic of the basins

resulting from the numerical method is the intricate nature of
the boundary between them. For initial points located on this
boundary, the uncertainty in the final root is maximized. This
aspect could be perceived as a drawback of the method, as a
“poor” initial point might result in convergence to any root of
the function. Nonetheless, for functions with unknown roots,
our interest lies in identifying all roots in principle. As we
will explore in the next section, this characteristic can also
contribute to an enhancement in the speed of convergence.

We investigate the impact of our method on the boundaries
of the basins generated by iterations from initial points. Upon
initial inspection of the basins for the function f2(z) = z3 − 1,
a significant alteration in the boundary between β = −1 and
β = 1 becomes evident [Fig. 3(a) and top row]. Formally, in
the complex plane, this boundary constitutes the set of points
that never converge to a root and forms a Julia set [31]. Fur-
thermore, the example illustrated in Fig. 3(a) top row exhibits
the property of Wada, wherein a single boundary simultane-
ously separates three basins. This property entails a unique
form of unpredictability, as a point on the boundary can
ultimately converge to any of the roots. Similar phenomena
have been observed on boundaries for other modified Newton
methods dependent on parameters, as discussed in Ref. [32],
where the modifications introduce nontrivial transformations
of the boundaries. Here, we provide quantitative insight into
these transformations.

The unpredictability of the final root for initial points near
the boundary can be quantified using the basin entropy [33].
This metric assesses the local entropy within boxes of side
length l by initially estimating the probability pi of each final
attractor i inside the box with the naïve frequency estimator.
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These estimated probabilities serves to compute the Gibbs (or
Shannon) entropy of the box: Sb = −∑

i pi log pi. The basin
entropy is then calculated as the average of the box entropy
with a covering of nonoverlapping boxes over the portion of
the phase space studied.

In the examples shown in Fig. 3, the basins of the roots
are computed over a grid of 1000 × 1000 initial points in the
complex plane using the methods of Sec. III D. A box size of
20 × 20 initial points is used to estimate the pi probabilities.

In Fig. 3, we depict the evolution of the basin entropy for
three functions across the range of β values from −1 to 1. It is
evident that unpredictability consistently increases for β �= 0.
While we cannot offer a rigorous explanation for this phe-
nomenon, we can provide heuristic arguments regarding the
emergence of new fractal structures in the phase space. One
mechanism contributing to the formation of fractal bound-
aries is the stretching and folding action of small areas. The
roots of the derivative f ′(x) serve as sources of instabilities
in the Newton-Raphson method, as initial points near these
points can be dramatically dispersed. Subsequent iterations
tend to bring these points back toward one of the roots. Small
variations in the initial points near these roots can result in
convergence to any of the roots, characteristic of chaotic be-
havior.

We consider our iterative method, expressed as xn+1 =
N (xn) − β f (N (xn))/ f ′(xn), where N (x) = x − f (x)/ f ′(x).
When close to a singular xs, where f ′(xs) = 0, we can ap-
proximate a linear relation, f ′(x) � c2δx with c2 ≡ f ′′(xs) and
δx ≡ x − xs. Consequently, N (x) � −c0/δx with c0 ≡ f (xs).
The amplitude of the next iteration, given by

xn+1 � − c0

δxn
− β f (−c0/δxn)

c2δxn
, (47)

depends on the proximity to the singularity, δxn = xn − xs,
and the value of f (−c0/δxn). Generally, uncertainty increases
near these points due to these significant jumps. For complex
functions, new structures emerge near the singularity, visible
as the blobs in Fig. 3 for β �= 0.

This rise in basin entropy signifies an enhanced mixing
property in the phase space, facilitating more thorough explo-
ration of roots. The algorithm can traverse a broader range of
regions in the phase space before settling on a local solution.
A recent study implemented a deflated version of the Newton-
Raphson method [34], aiming to reveal additional roots of
a function by avoiding convergence to already known solu-
tions. Similarly, our parameterized Newton-Raphson method
enhances root searching efficiency in phase space due to the
fractal nature of the boundary.

IV. LINK TO THE ADOMIAN METHOD

The self-consistent stationary Eq. (34) is reminiscent of
the Adomian method [35,36]. Notably, the Adomian method
has previously yielded an enhanced Newton-Raphson ap-
proach, corresponding precisely to the scenario when β = 1
in our formulation. In this section, we provide an overview
of the Adomian method, establish connections between our
approach and the Adomian method, and extend the fixed β

method to an annealing approach with varying β.

A. Adomian method

We first give an extensive introduction to the Adomian
method because it may not be familiar to all readers. The
canonical form for employing the Adomian decomposition is
given by

a = C + F (a), (48)

where C is a constant and F (a) is a nonlinear function of the
variable a. Utilizing a series solution approach, we express

a = a0 + a1 + a2 + · · · ,

F (a) = A0(a0) + A1(a0, a1) + A2(a0, a1, a2) + · · · . (49)

Equating terms between the two sides in Eq. (48) requires ex-
plicit choices because there is no formal expansion parameter
in the series. With specific choices, this leads to the following
relationships:

a0 = C,

a1 = A0(a0),

a2 = A1(a0, a1),

... , (50)

where An represents the Adomian polynomial:

An = 1

n!

[
dn

dβn
F (a0 + βa1 + β2a2 + · · · )

]
β=0

. (51)

Here are a few initial terms:

A0(a0) = F (a0),

A1(a0, a1) = a1F ′(a0). (52)

We emphasize that there is no unambiguous way to compare
terms between the left and right hand sides of Eq. (50): For
example,

a0 = C − ε,

a1 = ε − ε2 + A0(a0),

a2 = ε2 − ε3 + A1(a0, a1),

... (53)

for an arbitrary ε with |ε| < 1, also solves Eq. (48). Results on
convergence have been proved with hypotheses on the size of
derivatives and it has been noted that the decomposition must
be chosen appropriately [37], as there is no canonical choice
for the matching of terms.

Let us apply the Adomian decomposition to the root-
finding problem, f (x) = 0. Utilizing a linear approximation
of f (x) in proximity to x gives

f (x − a) = f (x) − a f ′(x). (54)

Rearranging this equation into the canonical form for Ado-
mian decomposition yields

a = f (x)

f ′(x)︸ ︷︷ ︸
C

− f (x − a)

f ′(x)︸ ︷︷ ︸
F (a)

. (55)
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By focusing solely on the zeroth-order term, a0 = C =
f (x)/ f ′(x), we can approximate a ≈ a0. The iterative up-
date of xn+1 = xn − a is expected to satisfy f (xn+1) = f (xn −
a) = 0 for root finding. Then, xn − xn+1 = a = a0 results in

xn+1 = xn − f (xn)

f ′(xn)
, (56)

which is equivalent to the Newton-Raphson method.
Chun [23] has expanded the analysis by considering an

additional step:

f (x − a) = f (x) − a f ′(x) + 1

2
a2 f ′′(x)︸ ︷︷ ︸
g(x,a)

. (57)

Once again, rearranging this equation, assuming f (x − a) = 0
at x − a, allows it to be expressed in the canonical form for
Adomian decomposition:

a = f (x)

f ′(x)︸ ︷︷ ︸
C

+ g(x, a)

f ′(x)︸ ︷︷ ︸
F (a)

. (58)

This decomposition is certainly not unique (see Abbasbandy
[38] for an alternative decomposition).

This time, considering a ≈ a0 + a1 up to the first order, the
Adomian decomposition provides

a0 = C = f (x)

f ′(x)
, (59)

a1 = F (a0) = g(x, a0)

f ′(x)
= f (x − a0)

f ′(x)
, (60)

where we utilized g(x, a0) = f (x − a0) − f (x) + a0 f ′(x) =
f (x − a0). Consequently,

a ≈ a0 + a1 = f (x)

f ′(x)
+ f (x − a0)

f ′(x)
. (61)

Again, given that xn − xn+1 = a = a0 + a1, this leads to

xn+1 = xn − f (xn)

f ′(xn)
−

f
(
xn − f (xn )

f ′(xn )

)
f ′(xn)

= N (xn) − f (N (xn))

f ′(xn)
, (62)

which corresponds to Eq. (37) in our formulation with β = 1.
The Adomian polynomial approach, when truncated to

a specific number of terms in ai, i � m, offers a path-
way to derive alternative root-finding iterations. Although
the higher-order forms involve algebraic complexities, these
truncations result in progressively higher orders of conver-
gence for well-behaved functions. This observation led to
Chun’s conjecture [23] that such truncations exhibit conver-
gence order m + 2. Therefore, when m = 0, it corresponds to
the Newton-Raphson iteration, which demonstrates quadratic
convergence.

Let us revisit our self-consistent stationary Eq. (34):

x(β ) = N (x0)︸ ︷︷ ︸
C

−β f (x(β ))

f ′
0︸ ︷︷ ︸

F (x(β ))

. (63)

This equation adheres to the canonical form of the Ado-
mian method. One notable distinction is the inclusion of the
parameter β. In the limit of small β, the so-called “high-
temperature” limit, the second term can be regarded as a
perturbation. We now explore the high-temperature limit, and
consider a series solution:

x(β ) = a0 + βa1 + β2a2 + . . . . (64)

Here, the nonlinear function F (x(β )) can also be expressed
using the Adomian polynomial in Eq. (51). When we truncate
x(β ) = a0 + βa1 to the first order of β, we obtain:

a0 = N (x0),

a1 = − f (a0)

f ′
0

. (65)

This yields:

x(β ) = a0 + βa1 = N (x0) − β f (N (x0))

f ′
0

, (66)

which corresponds to Eq. (35). Hence, our formulation can
be interpreted within the context of the Adomian method.
However, the inclusion of the auxiliary parameter β holds sig-
nificant importance in the Adomian decomposition. It ensures
an unambiguous comparison between series and the Adomian
polynomial, providing an exact term-by-term mapping with
correct orders of β.

We note that there is no need to use Eq. (49) at all as
we can work directly with x(β ) in our iteration, Eq. (66).
Also noteworthy is the fact that as we directly find x(β ) fixed
points, no derivatives of f beyond the first are ever explicitly
required in the iteration.

B. Annealing

Indeed, the physical intuition gained from considering
Eq. (63) as a high-temperature expansion suggests that an-
nealing the temperature during iterations could improve the
performance of the root-finding algorithm. In our physi-
cal analogy, the auxiliary parameter β in Eq. (37) can be
interpreted as the inverse of temperature in statistical me-
chanics. With the high-temperature analogy in mind, it is
natural to view the original Newton-Raphson update as the
high-temperature limit (β = 0), where only the linear Taylor
expansion of the function is used, making the hopping term
dominant. In contrast, the Adomian update represents the low-
temperature limit (β = 1), where the exact minimum encoded
in the β-dependent term is balanced with the linear hopping
term. As the temperature is decreased, the importance of the
ultralocal exact root should increase. While exploration over
as broad an area as possible is essential at the beginning,
focusing on the root location by gradually decreasing the
temperature should help in getting to the actual root. In fact, if
we increase the inverse temperature from β = 0, which corre-
sponds to Newton-Raphson, to a final value β after even one
step, then we find that the total number of iterations needed
decreases and the dependence of the number of iterations on
the final value of β becomes much smoother as well. However,
if β is ramped up too gradually, then there is no benefit to
be had for most of the test functions we considered. This
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annealing approach is similar to multipoint methods in that
the update formulation changes with each iteration step [39].

Let us now derive an annealing schedule from first princi-
ples. First, we introduce shorthand notation:

fn ≡ f (xn), f ′
n ≡ f ′(xn),

f̂n+1 ≡ f (x̂n+1), f̂ ′
n+1 ≡ f ′(x̂n+1).

Then, our update is represented as

x̂n+1 = xn − fn

f ′
n

,

xn+1 = x̂n+1 − β
f̂n+1

f ′
n

, (67)

where x̂n+1 is the Newton-Raphson update. A Taylor expan-
sion of f (xn+1) with the second equation gives the following
relation:

f (xn+1) = f

(
x̂n+1 − β

f̂n+1

f ′
n

)

≈ f (x̂n+1) − f ′(x̂n+1)β
f̂n+1

f ′
n

. (68)

This implies

f 2
n+1 =

[
f̂n+1 − β

f̂ ′
n+1 f̂n+1

f ′
n

]2

(69)

with our shorthand notation. Therefore,

f 2
n+1 � f̂ 2

n+1, if

∣∣∣∣∣1 − β
f̂ ′
n+1

f ′
n

∣∣∣∣∣ � 1. (70)

In other words, our update makes f 2(xn+1) smaller than the
Newton-Raphson update f 2(x̂n+1), when β f̂ ′

n+1/ f ′
n is small

enough to justify the Taylor expansion of f around x̂n+1. Now,
suppose we take

βn ≡ 2 f ′
n

2

f̂ ′2
n+1 + f ′

n
2
� 0. (71)

This choice guarantees Eq. (70) because

1 − βn
f̂ ′
n+1

f ′
n

= ( f̂ ′
n+1 − f ′

n)2

f̂ ′2
n+1 + f ′

n
2

� 1. (72)

Therefore, the annealing schedule in Eq. (71) suggests an
approach to setting βn depending on the derivatives of the
function at the previous value of xn and the Newton-Raphson
update value x̂n+1. Equation (71) has appropriate limits of
1 or 0 when f ′

n is large or small depending on the value
of f̂ ′

n+1 of course. When f ′
n is large and xn is proximate to

roots, we expect the two derivative values are close, so βn ≈ 1
with |1 − βn f̂ ′

n+1/ f ′
n| � 1. When it is small at the singularity,

however, βn ≈ 0 with a finite derivative value f̂ ′
n+1.

Table II summarizes the results for fixed values of β,
and for the annealing schedule βn defined in Eq.(71). The
annealing schedule enhances the effectiveness of the β value
near roots. The estimated order of convergence near a root is
qn � 4 for most functions.

The mean number of iterations has been computed for
a 1000 × 1000 regularly spaced grid using the same meth-
ods and parameters as in Sec. III D. The best results have
been highlighted in bold. There is no function for which the
Newton-Raphson algorithm performs better than the anneal-
ing schedule. We caution that the derived annealing schedule
in Eq. (71) does require an additional derivative evaluation
f ′(x̂n+1). This extra computational cost is reflected in the
total time per iterations. The time per point is indeed higher
despite the reduction in the number of iterations due to the
added derivative. A possible optimization is to approximate
this derivative with first-order approximations using the pre-
viously evaluated functions.

In the supplemental Julia scripts available at [40], compu-
tations are provided for all the standard test functions listed in
Table I.

V. DISCUSSION

Root finding is a technique that is central to many quan-
titative science and engineering problems. This paper has
investigated an alternative root-finding approach that has the
potential to offer several benefits: improved efficiency and
enhanced numerical stability, broader applicability to com-
plex nonlinear functions that abound in real-world problems,
and more thorough investigation of possible roots because of
higher basin entropy, all while not increasing the order of
derivatives needed for application. More fundamentally, the
physical picture of the variation in the root basins of attrac-
tion as the temperature is decreased and the cohomological
field theory explication of roots as transcendental cohomology
classes are, to the best of our knowledge, new contributions to
the theoretical underpinnings of numerical analysis and algo-
rithms. We have just scratched the surface of the applications
of this technique, as is evident from the connection we made
to the Adomian method, which has been used for solving non-
linear, and even stochastic, ordinary and partial differential
equations. This connection implies that our approach could
be applied to all these problem areas as well.

In particular, the homotopy analysis method (HAM) is a
well-known approach to solving nonlinear problems due to
Liao [41], motivated by topological homotopy theory. HAM
unifies the Adomian method and a host of other numeri-
cal methods using an auxiliary parameter that constructs a
homotopy to handle the nonlinear nature of the problem.
This so-called convergence control parameter is then used
to show convergence of a series solution. As HAM can be
combined with spectral or Padé approximation methods, it
would be interesting to see if HAM could be combined
with our approach, Eq. (32), to completely avoid a series
expansion.
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APPENDIX A: TOPOLOGICAL FORMULATION
OF ROOT FINDING

We formulate a rigorous topological formulation of root
finding to show that root-finding iterations are explicit rep-
resentatives of the same cohomology class. The derivation
below is self-contained but we note that it is an extension of
cohomological quantum field theory [42].

We introduce two anticommuting variables, b and c, with
the following properties:

bc = −cb, b2 = 0, c2 = 0, (A1)

and a Grassmann integration over these variables defined by∫
db1 = 0,

∫
dbb = 1,

∫
dc1 = 0,∫

dcc = 1,

∫
dbc = 0,

∫
dcb = 0, (A2)

extended by linearity and all the standard properties of in-
tegration. We also introduce an anticommuting derivation, s
(called the BRST operator in the physics literature) as follows:

sx = c, sc = 0, sb = λ, sλ = 0, (A3)

where λ is a commuting variable for consistency with the fact
that combinations of anticommuting quantities, in this case s
and b, are commuting quantities. It is trivial to verify that s2 =
0, which implies that s can be used to define a cohomology
theory.

Now we define a gauge fermion depending on a parameter
g as follows:

� = b(i f (x) − g2λ/2), (A4)

where f is the function for which we want to find roots. The
action of s on � gives

s� = λ(i f (x) − g2λ/2) − ib f ′(x)c, (A5)

where the negative sign of the second term arises when the
derivation s anticommutes past b.

Consider the measure

dμ ≡ dxdλdbdc exp(s�)g/
√

2π, (A6)

which is invariant under the action of s. If we integrate a
general function h(x, c, b, λ) with respect to this measure,
then the value of the integral will depend on the parameter
g. However, suppose that h satisfies sh = 0. Then a change in
g will lead to a change in the value of the integral of the form

δI =
∫

dμ(−scλ/2)h, (A7)

but the invariance of the measure under the action of s allows
an integration by parts to give us

δI =
∫

dμ(cλ/2)sh = 0. (A8)

Thus, for very specific functions that satisfy sh = 0, the value
of their integral does not depend on the parameter g. More-
over, if we change h to h + sk, where k is an arbitrary function

of the variables, then we see by the same argument that the
value of the integral of h does not depend on k. Functions that
satisfy sh = 0 are called closed functions and functions that
are of the form sk are called exact functions.

These are the axioms that define a cohomology theory,
and therefore closed functions fall into equivalence classes,
defined up to the arbitrary addition of exact functions.

How is this formal development relevant for finding roots?
A formal Laplace approximation to the measure gives the
“equations of motion”:

xroot : f (xroot ) = 0, λ = 0, c f ′(xroot ) = 0, f ′(xroot )b = 0.

(A9)

Thus, this measure is localizing at the roots of f . Integrating
over λ in

Z =
∫

dμ exp(s�) (A10)

gives

Ẑ =
∫

dxdbdc exp(− f (x)2/2g2 − ic f ′(x)b), (A11)

where we should now expect to use the λ equation of motion
to verify that s2 = 0. The striking thing about this expression
is that if we make g small, we see that any closed func-
tion will depend only on the value of x at which f (x) = 0.

Therefore, this formulation of our physical approach exhibits
root finding as a mathematically rigorous cohomology theory.
Any nontrivial cohomology class in this problem will have to
be a transcendental function, since it is easily demonstrated
that the cohomology class of any polynomial function of the
variables is guaranteed to be trivial.

Let us now demonstrate that the cohomology operator s can
help us check if an expression for a root of f (x) is, or is not, g
independent. Consider the formal series

xroot ≡ x − h(x) − h(x − h(x)) − . . . , (A12)

where we have defined h ≡ f / f ′, and this is simply the series
of corrections of the Newton-Raphson algorithm. We claim
that sxroot = 0. This is explicitly verified as follows:

sxroot = c − f ′(x)

f ′(x)
c + f (x)

f ′(x)2
c + ..., (A13)

where the first two terms obviously cancel. This general pat-
tern continues because s acting on the nth term gives

s(xn − xn−1) = f (xn−1)

f ′(xn−1)2
sxn−1 − sxn−1. (A14)

As the previous n − 1 terms sum up precisely to sxn−1 because
this is a telescoping series, we have a cancellation. Since the
equation of motion is f (xroot ) = 0, we see that if the series
converges, it is a representative of the cohomology class de-
fined by the root.

In particular, some algebra shows that our β dependent
variations on the representative series also have the same type
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of telescoping structure:

s(xn − xn−1) = f (xn−1)

f ′(xn−1)2

[
1 + β

(
f (x̂n−1)

f (xn−1)
− f ′(x̂n−1)

f ′(xn−1)

)]
sxn−1 − sxn−1, (A15)

where we have defined x̂n−1 ≡ xn−1 − h(xn−1). Thus, inde-
pendent of β, this defines a cohomology class. To see the
promised simplification produced by our choice of coefficient
in Eq. (25), a little scrutiny reveals that if the series is con-
verging, the term f ′(x̂n−1)/ f ′(xn−1) → 1, which leads to a
cancellation at β = 1, giving

s(xn − xn−1) = f (x̂n−1)

f ′(xn−1)2
sxn−1 − sxn−1. (A16)

As x̂n−1 is the Newton-Raphson iterate of xn−1, this suggests
faster convergence, provided of course that the assumptions
made in this simplification are valid. This cohomological ex-
planation also removes any mystery in the invariance of the
roots no matter what value of g we use for approximating the
integral: we simply have to ensure that the expression for the
root is a closed function for the cohomology operator s. We
show in Sec. III B that the faster convergence suggested above
can be explicitly demonstrated with the usual derivation used
to show the quadratic convergence of the Newton-Raphson
algorithm.
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