
PHYSICAL REVIEW E 110, 025304 (2024)

Lattice Boltzmann approach for acoustic manipulation
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We employ a lattice Boltzmann method to compute the acoustic radiation force produced by standing waves on
a compressible object for the density matched case. Instead of simulating the fluid mechanics equations directly,
the proposed method uses a lattice Boltzmann model that reproduces the wave equation, together with a kernel
interpolation scheme, to compute the first-order perturbations of the pressure and velocity fields on the object’s
surface and, from them, the acoustic radiation force. The procedure reproduces with excellent accuracy the
theoretical expressions by Gor’kov and Wei for the sphere as the 3D case and an infinitely long cylinder as the
2D case, respectively, even with a modest number of lattice Boltzmann cells. The proposed method shows to be
a promising tool for simulating phenomena where the acoustic radiation force plays a relevant role, like acoustic
tweezers or the acoustic manipulation of microswimmers, with applications in medicine and engineering.
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I. INTRODUCTION

The manipulation of particles by acoustic oscillating fields
in aqueous media has won relevance in recent years because of
its applications in biotechnology, health, and marine research,
among others [1–4]. Just like optical tweezers [5,6], stand-
ing acoustic waves can push objects immersed in a fluid to
the nodes (or antinodes) of the oscillating field, with many
practical advantages. Indeed, particles can be manipulated by
using acoustic standing waves that only require �105 times
less power than their optical counterpart [7]. Indeed, acoustic
tweezers can move objects from 100 nm to 10 mm in size by
using acoustic wave intensities between 10−2 and 10 W/cm2

[8]. Recently, acoustic transducers were used to extract kid-
ney stones from a pig in noninvasive surgery, demonstrating
the potential of acoustical tweezers in medicine [9]. Many
experiments showed the possibility of particle manipulation
and confinement, such as those by Crum [10] and Apfel [11],
where agreement with theoretical results was possible [12]. In
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another application, Zhang et al. showed how nodal planes
of acoustic standing waves can be used as virtual walls to
induce a rolling motion of self-assembled microswimmers
[13]. Acoustic radiation pressure can also be used to study
resonant modes on cylindrical capillary bridges, as shown in
Refs. [14,15]. More applications for acoustic tweezers can be
found in a recent review [16].

Historically, after the seminal work of King [17,18], in
1955 Yosioka and Kawasima [19] generalized the analysis
for compressible small objects, and in 1962 L. P. Gor’kov
developed [20] a multipole expansion for the calculation of
the time-averaged force by a plane standing acoustic wave on
a spherical particle immersed in an ideal (nonviscous, isen-
tropic, and irrotational) fluid. The nonviscous approximation
is valid if the object is large enough (Appendix D), and has
been successfully used for 60 years [19]. Interestingly, when
the wavelength is much larger than the particle size, the acous-
tic force can be cast into an effective potential, the so-called
Gor’kov potential. The two-dimensional case was studied by
Wu et al. in 1990 [21] and later by Wei et al. in 2004 [22],
who used scattering theory to solve the wave equation for a
compressible cylinder of infinite height in a standing wave (for
theoretical reviews, see Refs. [23–27]).

All these theoretical studies rely on the assumption that the
relevant macroscopic fields, like pressure and velocity, can
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be written as a perturbative expansion, where the first-order
contributions p1 for the pressure, and �u1 for the velocity, sat-
isfy the wave equation. Although the acoustic radiation force
depends on second-order contributions, they can be written in
terms of p1 and �u1, opening the possibility of solving the wave
equation—instead of the Navier-Stokes equations (NSEs)–
-for p1 and �u1, and use those results to compute the acous-
tic radiation force. Because the wave equation can be easily
solved with large precision, such a procedure will require
less computational effort than a direct NSE simulation (where
p1 and �u1 are just first-order perturbations of the computed
pressure and velocity fields), allowing us to simulate complex
shapes in 2D and 3D as required for today’s microfluidics
applications.

Here we show how to use a lattice Boltzmann method
(LBM) that simulates the wave equation [28] to compute the
acoustic radiation force on an object immersed in an invis-
cid fluid. Our approach reproduces with great accuracy the
theoretical predictions by Gor’kov [20] and Wei et al. [22]
at much lower computational costs than previous LBM ap-
proaches simulating the full Navier-Stokes equations [29,30].
The remainder of this paper is organized as follows: Section II
presents the acoustic radiation force as derived by King [17].
Next, Sec. III reviews the theoretical deduction of Gor’kov’s
potential, together with an analogous development by us for
the 2D case in Sec. IV. Then, Chopard’s LBM model for
waves is briefly explained in Sec. V, with some benchmarks
to validate the implementation in our simulation code. Our
results for the acoustic radiation force in the 3D case, where
the particle is defined from now on as a sphere and the acoustic
radiation force per length in the 2D case for an infinitely
long cylinder, are reported in Sec. VII, showing that the com-
puted forces follow the theoretical predictions with excellent
accuracy.

II. THE SECOND-ORDER ACOUSTIC RADIATION FORCE

The results in this section were developed by King [17].
Hereby, we present a summary of that work. Consider an
inviscid and compressible fluid in an irrotational flow with
pressure P, density ρ, velocity �u, and momentum �J = ρ�u. The
fluid is described by the mass conservation law,

∂ρ

∂t
+ �∇ · �J = 0, (1)

and Euler’s equation, which can be rewritten as a momentum
conservation law:

∂ �J
∂t

= −�∇P + �∇ · (�u ⊗ �J ) = −∇ · �. (2)

Here, � is the momentum flux density tensor, described as

� = IP + �u ⊗ �J. (3)

By second Newton’s law, the force �F acting on a static ob-
ject immersed in the fluid equals the momentum exchange
of the fluid across a volume control around the object [[31],
Appendix A]

�F =
∫

∂ �J
∂t

dV = −
∮

� · �dS. (4)

Acoustic waves propagate in the fluid as small variations
in pressure, density, and velocity around steady values. So,
the three fields can be written as follows:

ρ = ρ0 + ρ1, P = p0 + p1, �u = �0 + �u1, (5)

where p1, ρ1, and �u1 are first-order perturbations mentioned in
Sec. I, and we assume u0 = 0 (that is, the fluid is at rest). Since
acoustic waves in a fluid are adiabatic compressions [32],
the first-order pressure and density fluctuations are related as
[[33], p. 120]

p1 = c2
0ρ1, (6)

where c2
0 is the adiabatic speed of sound in the fluid. By taking

first-order contributions only [as in Eqs. (5)], Eqs. (2) and (1)
are linearized as

ρ0
∂ �u1

∂t
+ ∇p1 = 0, (7a)

∂ρ1

∂t
+ ρ0∇ · �u1 = 0. (7b)

By combining Eqs. (7), and (6), one obtains that p1 fulfills a
wave equation:

1

c2
0

∂2 p1

∂t2
= ∇2 p1. (8)

Since the flow is irrotational, the velocity �u = �u1 can be writ-
ten as the gradient of a scalar velocity potential φ, and Eq. (7a)
transforms to give

�u1 = ∇φ, p1 = −ρ0
∂φ

∂t
. (9)

By replacing Eqs. (9) into Eq. (7b), and using Eq. (6), we
obtain that the velocity potential also fulfills a wave equation:

1

c2
0

∂2φ

∂t2
= ∇2φ . (10)

In most experiments, the timescale of the object’s motion is
much larger than the oscillation period, and, thus, only the
time average of the acoustic radiation force 〈 �F 〉 is relevant
for particle’s dynamics. If only first order fluctuations were
considered (5), acoustic radiation force (4) would reduce to

�F = −
∮

P �dS (11)

because the term �u ⊗ �J is second order. Since the pressure
perturbation oscillates harmonically in time, p1 ∝ eiωt , the
time average of (11) automatically vanishes, and there is no
first-order contribution to the time-averaged force. The origin
of that force lies, therefore, in higher-order contributions. By
extending the fluctuations up to second order,

ρ = ρ0 + ρ1 + ρ2, (12a)

P = p0 + p1 + p2 and (12b)

�u = �0 + �u1 + �u2, (12c)

one obtains that the gradient for the perturbations in the pres-
sure field can be written in terms of first-order contributions
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FIG. 1. Decomposition into incident and scattering fields.

only (please see Appendix A for details) as

∇(P − p0) = ∇
(

p2
1

2ρ0c2
0

− ρ0

2
u2

1 − ρ0
∂φ

∂t

)
, (13)

leading to the following expression for the acoustic radiation
force, written in index notation:

〈Fi〉 = −
∮ 〈(

−ρ0
u2

1

2
+ p2

1

2ρ0c2
0

)
δi j + ρ0u1iu1 j

〉
dS j, (14)

where the triangular brackets 〈·〉 denote time averages. The
contribution of the term ρ0

∂φ

∂t in Eq. (13) vanishes because
the velocity potential φ ∝ eiωt is also harmonic. Equation (14)
allows us to compute the time-averaged acoustic radiation
force (or force per length in the 2D case) on an immersed
object from the pressure (p1) and velocity (�u1) fields obtained
by simulating the acoustic waves directly [Eqs. (8) and (7a)]
instead of solving the full Navier-Stokes equations.

III. ACOUSTIC RADIATION FORCE ON A SPHERE

The results presented in this section were deducted by
Yosioka and Kawasima [19] by using a Hankel functions
expansion, and by Gor’kov via a multipole expansion [20,31].
We aim to compute the average force by acoustic waves acting
on a spherical object immersed in a liquid. Let us assume
that the object’s radius Rp is much smaller than the wave-
length λ, i.e., Rp 	 λ or kRp 	 1. Also, it is assumed that
the viscous penetration depth δ = √

2ν/ω, with ν the kinetic
viscosity, is much smaller than Rp, so the condition δ/Rp 	 1
is satisfied. Under such condition, viscosity can be neglected
(for a more detailed discussion on the effects of viscosity, see
Appendix D). Note that larger values of kRp would also break
the validity of the presented model. Improved models on the
acoustic radiation force using expansions to greater orders in
kRp are found in Refs. [34,35]. With this approximation, it is
possible to solve Eq. (10) by dividing the potential, pressure,
and velocity fields into an incident and a scattered part as
shown in Fig. 1 [20], that is,

φ = φin + φsc, p1 = pin + psc, �u1 = �uin + �usc. (15)

The incident fields (in) are the solution for the ongoing waves
as if there was no spherical particle, while the scattered fields

FIG. 2. The object’s pulsating expansions and contractions in-
duce spherical waves coinciding with the monopole term of the
scattered velocity potential field.

(sc) are the differences between the total fields and the in-
cident ones. By replacing (15) into (14), three main terms
appear: The first one only depends on the incident fields and
does not contribute to the force; the second one depends on the
scattered field φsc only, which will be proportional to R6

p and
thus vanishes because of Rp 	 λ. The last and only surviving
term depends on both φin and φsc, and the force reduces to (see
Appendix B for details)

〈 �F 〉 = −ρ0

∫ 〈
�uin

(
∇2φsc − 1

c2
0

∂2φsc

∂t2

)〉
dV. (16)

The term between parenthesis is not zero because the object
acts as a local source for the scattered field. Thus, a retarded-
time multipolar expansion is proposed as a solution for φsc,

φsc = −a(t ′)
r′ − �A(t ′) · �r′

r′3 + · · ·
≈ φmp + φdip, (17)

where �r′ = �r − �vt is the position of the center of the sphere,
moving with velocity �v, and t ′ = t − r/c is a retarded time
(with t ′ ≈ t close to the object) [36,37]. If kRp is greater
enough, more terms should be considered in (17) in this ex-
pansion. Corrections for larger kRp are not reviewed in this
paper, but the reader should refer to Refs. [34,35].

The monopole term φmp = a(t )/r‘ can be found by as-
suming that the particle is able to compress and expand
isotropically as shown in Fig. 2, changing its volume Vp in
response to the incident perturbations pin as

d pin = −Bp
dVp

Vp
or

∂ pin

∂t
= −Bp

Vp

dVp

dt
, (18)

with Bp = c2
pρp the particle’s bulk modulus, cp the parti-

cle’s speed of sound, and ρp the particle’s density. Thus, by
using (6):

dVp

dt
= −Vp

c2
0

ρpc2
p

∂ρin

∂t
. (19)

Now, let us consider a spherical region 
 of radius R
 concen-
tric to the sphere of radius Rp, with λ  R
 > Rp. When the
sphere expands, the mass flux leaving 
 through its surface
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∂
 equals the rate at which the sphere pushes fluid out of it,

ṁ = ∂

∂t
[(ρ0 + ρin )Vp] (20)

=
∫




ρ̇dV =
∮

∂


(ρ0∇φmp) · r̂dS = 4πa(t )ρ0, (21)

with r̂ the radial unitary vector. By (18) and (19), the total
derivative in (20) becomes

ṁ = −Vp
c2

0

ρpc2
p

∂

∂t

(
ρ0ρin + 1

2
ρ2

in

)
+ Vp

∂ρin

∂t
. (22)

Because the incident density is a perturbation of the total
density of the fluid (i.e., ρ0  ρin) the term 1

2ρ2
in is much

smaller than ρ0ρin and can be vanished. Therefore,

ṁ = 4πa(t )ρ0 = Vp
∂ρin

∂t

(
1 − ρ0c2

0

ρpc2
p

)
, (23)

and a(t ) turns out to be

a(t ) = R3
p

3ρ0
f1

∂ρin

∂t
, with f1 = 1 − ρ0c2

0

ρpc2
p

. (24)

The dipole term

φdip = − �A · �r′/r′3 (25)

comes into play when the sphere moves with a changing
velocity �v in a fluid with velocity �u1. The velocity potential
for this situation is the sum of the one for a sphere at rest in
a fluid approaching with velocity �u1 plus the one of a sphere
moving with velocity �v in a fluid at rest [38]:

φ =
(

1 + R3
p

2r‘3

)
(�u1 · �r′) − R3

p

2r‘3
(�v · �r′). (26)

The potential can be rearranged as

φ = − R3
p

2r‘3
(�v − �u1) · �r′ + (�u1 · �r′), (27)

where the last term is easily identified as the incident potential
φin, and the first term, as the one of a sphere moving in a
fluid at rest with velocity (�v − �u1) (see Fig. 3). Indeed, by
comparing φin in (27) with (25), one can identify

�A(r′) = −R3
p

2
(�v − �u1). (28)

On the one side and according to Ref. [38], the force on the
sphere produced by that potential is

Fsc = −Ma

(
∂�v
∂t

− ∂ �u1

∂t

)
, (29)

with

Ma = 2
3πR3

pρ0 (30)

the added mass for the sphere. On the other hand, if the sphere
was made of fluid, it would move with velocity �v = �u1 and,
therefore, the force on the sphere from a potential φ = �u1 · �r′
must be exactly the one we need to move that fluid sphere with

FIG. 3. The accelerated motion of the object pushes the sur-
rounding fluid and induces an added mass, i.e., a drag force
proportional to the acceleration. That force allows to compute the
dipole term of the scattered velocity potential field.

an acceleration ∂ �u1
∂t :

Fin = M f
∂ �u1

∂t
, with M f = 4

3
πR3

pρ0. (31)

The total force acting on the sphere of density ρp and mass
Mp = 4πR3

p/3ρp is the sum of those two forces. Thus,

Mp
∂�v
∂t

= −Ma

(
∂�v
∂t

− ∂ �u1

∂t

)
+ M f

∂ �u1

∂t
. (32)

By replacing the expressions for the masses, we obtain(
ρp + ρ0

2

)∂�v
∂t

= 3

2
ρ0

∂ �u1

∂t
. (33)

If we assume that �v = 0 when �u1 = 0, integrating with respect
to time t gives us

�v = 3ρ0

2ρp + ρ0
�u1 (34)

and the vector field �A(t ) becomes

A(t ) = R3
p

2
f2�u1, with f2 = 2(ρp − ρ0)

2ρp + ρ0
. (35)

By plugging (24) and (35) into (17) and (16), and by
solving the integration (see Appendix C for details), we have

〈Fi〉 = −∂iVp

(
f1

1

2ρ0c2
0

〈
p′2

in

〉 + 3

4
ρ0 f2

〈
v2

in

〉) = −∇U, (36)

where the potential U is defined as

U = Vp

(
f1

1

2ρ0c2
0

〈
p′2

in

〉 + 3

4
ρ0 f2

〈
v2

in

〉)
, (37)

that is, the Gor’kov potential. This potential is commonly used
for acoustic levitation of small objects, even regardless of the
object‘s shape as soon as R0 	 λ is satisfied. In the particular
case of incident stationary waves,

p1(x, t ) = Pa sin(ωt )(cos kx), (38)

with Pa the pressure amplitude, Eqs. (9) give us the velocity
as

u1x(x, t ) = − Pa

c0ρ0
cos ωt sin kx. (39)
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By plugging (38) and (9) into the Gor’kov potential and solv-
ing the time-average integration, this potential for standing
waves becomes

U = VpP2
a

4ρ0c2
0

(
f1 cos2 kx + 3

2
f2 sin2 kx

)
. (40)

The force can be gathered using (36), (24), and (35), leading
to

Fx = −πR3
pP2

a k

3ρ0c2
0

�(ρ̃, κ̃ ) sin 2kx, (41)

where ρ̃ = ρp/ρ0, κ̃ = κp/κ0 and �(ρ̃, κ̃ ) is defined as

�(ρ̃, κ̃ ) = 5ρ̃ − 2

2ρ̃ + 1
− κ̃ . (42)

This is the theoretical result to compare with in 3D.

IV. ACOUSTIC RADIATION FORCE PER LENGTH
ON A CYLINDER

The results of this section were developed by Wei et al.
[22]. Nevertheless, instead of following the deduction by Wei
et al., let us develop the same procedure as in the previous
section, but in two dimensions, a procedure that will give the
same results. As in (16), the acoustic radiation force per length
is computed from the scattered potential as

〈Fi〉 = −ρ0

∫ 〈
ui

in

(
∇2φsc − 1

c2
0

∂2φsc

∂t2

)〉
dA. (43)

Because the cylinder is infinite in height, (43) computes a
force per unit length since the cylinder would get an infinite
surface and the integration is done along the circular boundary
of its cross section. A retarded time multipolar expansion is
also a good approximation in 2D,

φsc = −a(t ′) ln r − �A(t ′) · �r′

r′2 + · · · , (44)

with �r′ = �r − �vt and t ′ = t − r/c ≈ t .
As in the 3D case, the scalar field a(t ) in the monopole

term φmp = −a(t ′) ln r can be found by assuming an isotropic
compression and expansion of the cylinder due to the incident
field pin by

d pin = −B2D
p

dAp

Ap
or

∂ pin

∂t
= −B2D

p

Ap

dAp

dt
, (45)

with Ap the cylinder’s area, B2D
p = −AdP/dA = c2

pρp the par-
ticle’s bulk modulus in 2D. Furthermore, since pin = ρinc2

0,
with c0 the speed of sound in the fluid:

dAp

dt
= −Ap

c2
0

ρpc2
p

∂ρin

∂t
. (46)

Consider a circular region � of radius R� concentric to the
cylinder with λ  R� > Rp. On the one side, the mass flux
leaving � through its boundary ∂� equals the rate at which
the cylinder pushes fluid out of it,

ṁ =
∮

∂�

(ρ0 �∇φmp) · r̂dl = 2πa(t )ρ0. (47)

On the other hand,

ṁ = ∂

∂t
[(ρ0 + ρin )Ap] ≈ Ap

∂ρin

∂t

(
1 − ρ0c2

0

ρpc2
p

)
, (48)

where we used (45) and (46). By equaling (47) and (48) by
taking into account once again that 1

2ρ2
in is much smaller than

ρ0ρin, we finally get

a(t ) = R2
p

2ρ0

∂ρin

∂t
f1, with f1 = 1 − κp

κ0
. (49)

Like in the 3D case, the velocity potential around a cylinder
traveling with velocity �v in a fluid moving with velocity �u1 is
[38]

φ = (1 + R2
p

r‘2
)
(
�u1 · �r′) − R2

p

r‘2
(�v · �r′), (50)

that can be rearranged as

φ = − R2
p

r‘2
(�v − �u1) · �r′ + e(�u1 · �r′). (51)

Here, again, the last term is the incident potential φin, and the
first term, the one of a cylinder moving in a fluid at rest with
velocity (�v − �u1). By comparing φin in (51) with the dipole

potential φdip = − �A(t )·�r′
r′2 , we identify

�A(r′) = −R2
p(�v − �u1). (52)

The force on the cylinder produced by that potential is

Fsc = −Ma

(
∂�v
∂t

− ∂ �u1

∂t

)
, with Ma = πR2

pρ0 (53)

the added mass for the cylinder [39].
As in the 3D case, if the cylinder were made of fluid, it

would move with velocity �v = �u1 and, therefore, the force on
the cylinder from a potential φ = �u1 · �r′ must be exactly the
one we need to move that fluid cylinder with an acceleration
∂ �u1
∂t :

Fin = M f
∂ �u1

∂t
, with M f = πR2

pρ0. (54)

The total force per length acting on the cylinder of density ρp

and mass Mp = πR2
pρp is the sum of those two contributions.

Thus,

Mp
∂�v
∂t

= −Ma

(
∂�v
∂t

− ∂ �u1

∂t

)
+ M f

∂ �u1

∂t
. (55)

By replacing the expressions for the masses, we obtain

(ρp + ρ0)
∂�v
∂t

= 2ρ0
∂ �u1

∂t
. (56)

If we assume that �v = 0 when �u1 = 0, integrating with respect
to time t gives us

�v = 2ρ0

ρ0 + ρp
�u1 (57)

and the vector field �A(t ) becomes

A(t ) = R2
p f2�uin, with f2 = ρ0 − ρp

ρ0 + ρp
. (58)
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FIG. 4. D3Q7 (a) and D2Q5 (b) velocity sets and their corre-
sponding weights.

After plugging in (49) and (58) into (43) and using the
same standing incident wave written in (38) and (39), the
two-dimensional Gor’kov’s potential takes the form deducted
by Wei et al.,

U = Ap p2
0

4ρ0c2
0

( f1 cos2 kx + f2 sin2 kx), (59)

and the acoustic radiation force per length is

Fx = −πR2
pP2

a k

4ρ0c2
0

�(ρ̃, κ̃ ) sin 2kx, (60)

where ρ̃ = ρp/ρ0, κ̃ = κp/κ0, and �(ρ̃, κ̃ ) is defined as

�(ρ̃, κ̃ ) = 3 − ρ̃

1 + ρ̃
− κ̃ . (61)

This last expression of the force-per-length (60) coincides
with Eqs. (18) and (22) of the paper of Wei et al. [[22],
p. 204],validating this shorter deduction.

V. LATTICE-BOLTZMANN FOR ACOUSTICS

In an LBM, space is divided into cells, and a set of velocity
vectors �vi allows for transport from each cell to the neighbor-
ing ones (Fig. 4). At each cell position �x and associated with
each velocity vector �vi, there is at least one variable fi(�x, t ),
called a distribution function, which represents the density of
some hypothetical particles there, moving with that velocity
and transporting information from cell to cell. At each time
step, the fi are, first, mixed inside every cell into new values
f new
i by using Boltzmann’s transport equation (collision) and

then transported to the neighboring cells along the vector they
are associated with (advection). Because all the information
for the collision is inside the cell itself and the advection is
blind, all cells can evolve each time step in a fully indepen-
dent way. That makes the LBM suitable to run in parallel on
multiple CPUs or graphic cards [40,41].

In an LBM for acoustics [28], the fluid density ρ1, the
momentum �J1 = ρ0�u1, and the pressure p1 at any cell are
computed as

ρ1 =
∑

i

fi, �J1 =
∑

i

�vi fi, p1 = c2ρ1, (62)

where c is the speed of sound for the fluid. At each time step
�t , every cell computes new values f new

i for the distribution
functions by using Boltzmann’s transport equation in the BGK
(Bhatnagar-Gross-Krook) approximation,

f new
i (�x, t ) =

(
1 − �t

τ

)
fi +

(
�t

τ

)
f eq
i , with τ = 1

2
,

(63)

where the equilibrium values f eq
i are computed from the

macroscopic fields (62). In contrast with LBM schemes for
fluids, τ = 1/2 is perfectly stable for acoustics and other
linear equations [42,43]. Next, the new values f new

i are trans-
ported to the neighboring cells as

fi(�x + �t �vi ) = f new
i (�x, t ). (64)

By performing a Chapman-Enskog expansion, it is shown that
the macroscopic fields (62) satisfy in the continuous limit the
following conservative equations [44]:

∂ρ1

∂t
+ ∇·J1 = 0, (65a)

∂ �J1

∂t
+ ∇·�(0) = 0, (65b)

with

�(0) =
∑

i

�vi ⊗ �vi f eq
i . (66)

If the equilibrium distribution functions f eq
i are chosen in

such a way that �(0) becomes diagonal,

�(0) =
[

p1 0
0 p1

]
, ∇ · �(0) = ∇p1, (67)

taking divergence on both sides of (65b) and using (67) and
(65b) shows us that the pressure fulfills

∂2ρ1

∂t2
+ ∇2ρ1 = 0. (68)

We can diagonalize �(0) by choosing a velocity set �vi with
weights wi such that∑

i

wi = 1,
∑

i

wiviαviβ = c2
s δαβ, (69)

∑
i

ωiviα =
∑

i

ωiviαviβviγ = 0, (70)

where viα is the αth component (α ∈ x, y, z) of �vi and c2
s is a

constant. The equilibrium distribution functions

f eq
i =

{
ρ1

(
1 + (

1/c2
s

)
c2

0(ω0 − 1)
)

if i = 0(
1/c2

s

)
ωi

(
c2

0ρ1 + �vi · �J1
)

if i �= 0
(71)

make �(0) diagonal [Eq. (67)], as desired. Here, cs is the speed
of sound and w0 is the weight associated with the null vector
�v0 = (0, 0). Examples are D2Q5, D2Q9, and D3Q19 with
c2

s = 1/3, and D3Q7, with c2
s = 1/4 (Fig. 4). The method has

been extended to curvilinear cells and has been employed to
simulate the normal modes in trumpets and even in the human
cochlea [43].

025304-6



LATTICE BOLTZMANN APPROACH FOR ACOUSTIC … PHYSICAL REVIEW E 110, 025304 (2024)

Boundary conditions, like a vibrating wall at x0 = 0, can
be set, first, by computing the equilibrium functions f eq

i with
the desired value ρ1(x0 = 0, y, z) = ρa sin(ωt ) for the density
[whereas �J1 is computed from Eq. (62), as usual] and, next, by
overwriting f new

i with that equilibrium value. This operation,
which we call imposing fields, is performed after collision and
before advection, i.e.,

f new
i (�x, t ) = f eq

i (ρ1(x0 = 0, y, z), �J1(�x, t )). (72)

The same procedure is employed to set the initial conditions.
Other boundary conditions, like partially absorbing walls at
xn = Lx − 1 with Lx the length of the simulation domain in
the x direction, are set by performing a bounce-back step
(instead of the usual collision),

fi(�xn, tn+1) = � f j (�xn, tn), (73)

where j is the index satisfying �v j = −�vi and � ∈ [0, 1) is a
damping factor, which we set as � = 0.99. Finally, the results
are plotted from the values f new

i after imposing fields and
before advection.

The described LBM for waves was implemented in 2D on
a self-developed C++ code (available in Github [45]), while
for 3D simulations, the software 3NSKOG [46] was modified
to include this LB model as an additional feature. A first
numerical test to validate the code was to simulate the density
field in 3D produced by an oscillating point source at the
origin, described by the inhomogeneous wave equation

∇2ρ − 1

c2

∂2ρ

∂t2
= δ(�x − �x′)ρ0 sin(ωt ), (74)

with ω the angular frequency. The solution is found through
Green’s functions [[37], Sec. 6.4] and takes the form

ρ(�x, t ) = ρ0 sin(ωt − kr)

4πkr
, (75)

where r = |�x − �x′| is the distance from the source position to
the measurement point �x. Because the source term of (74) is
proportional to sin(ωt ), the initial condition ρ1(x, t = 0) = 0
everywhere coincides with the source and will not cause nu-
merical instabilities. Figures 5 and 6 show a good agreement
between the analytical solution (75) and the 3D implementa-
tion and on a cubic domain of 64 × 64 × 64 lattice cells.

A relevant test for our application is the simulation of an in-
terface between two media with different sound speeds c0 and
cp The interface is modeled just by setting a smooth change
in the speed of sound along the x axis (to avoid numerical
instabilities),

c(x) = cp − c0

2
tanh

(
x − Lx/2

w

)
+ cp + c0

2
, (76)

with c0 = 0.5 and cp = 0.25, as shown in Figs. 7 and 9.
This kind of boundary condition generates a typical refrac-
tion of waves entering in two media, which is sufficient to
reproduce the Gor’kov force. By setting a traveling pulse as
the initial condition, one expects that both pressure and the
normal velocity must be continuous at the interface, i.e., that
p1,I + p1,R = p1,T and u1x,I + u1x,R = u1x,T , with u1x the x
component of the velocity and the subindexes I, R, and T rep-
resenting the incident, reflected, and transmitted values at the
interface, respectively. By simulating the interface in a domain

FIG. 5. Lattice Boltzmann simulation of the 3D spherical waves
produced by a point source after 60 time steps.

of Lx = cells, we obtain that those continuity conditions are
fulfilled with 1% accuracy.

VI. WAVE-PARTICLE INTERACTION
AND INTERPOLATION

To describe the wave-particle interaction in our LBM
scheme, it is useful to write the acoustic radiation force (14)
in terms of the quantities �J1 = ρ0�u1 and ρ1 = p1/c2

0 that are
computed by the LBM for waves, that is,

〈Fi〉 = − 1

ρ0

∮ 〈(
−J2

1

2
+ ρ2

1 c2
0

2

)
δi j + J1iJ1 j

〉
dS j . (77)

This expression seems to be just a function of the density ρ0

and the speed of sound c0 in the fluid, but the values �J1 and
ρ1 depend on the way the interface is modeled. The boundary
conditions for the acoustic wave at the interface are that the

FIG. 6. Density profile along the positive x semiaxis and com-
parison with the analytical solution for the spherical waves of Fig. 5.
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FIG. 7. Incident waves in LBM.

pressure p1 and the normal velocity �u1 · n̂ (with n̂ a vector
normal to the surface) must be continuous. Those conditions
are equivalent to

ρ
(0)
1 c2

0 = ρ
(p)
1 cp,

�J (0)
1 · n̂

ρ
(0)
0

= �J (p)
1 · n̂

ρ
(p)
0

, (78)

where the superscripts (0) and (p) identify the values of the
fields �J1 and ρ1 at the fluid side and the object side, respec-
tively.

For the sake of ease, we choose a much simpler ap-
proach, assuming that mean densities on both media are equal
(ρ (0)

0 = ρ
(p)
0 ) and that only the speed of sound changes, as

c(�r) = c0 − c0 − cp

2

(
1 + tanh

(
|�r − �r0|2 − R2

p

d

))
, (79)

where �r = (x, y, z), �r′ = (x0, y0, z0) and d is the square
thickness of the interface, which was set as d = 4 for our
simulations. In Fig. 8, a three-dimensional density map of
function (79) is illustrated. This approach is enough to verify
that our procedure reproduces Gor’kov and Wei theoretical
expressions for the acoustic radiation force on a sphere (3D)
and a cylinder (2D), as we will see in the following section.

The acoustic radiation force (77) is computed by dividing
the object’s boundary into N surface elements (which are
segments in 2D and triangles in 3D) and by computing the
normal vector n̂ and the fields ρ1 and �J1 at the center �Rk of
each element, but those points do not usually coincide with the
nodes �RLB of the LB mesh (Fig. 10). To calculate the fields at
�Rk , we use kernel interpolation [47,48], expressing those fields
as a weighted sum on the neighboring cells,

ρI( �Rk ) =
∑

l

ρ1
( �RLB

l

)
δ
(∣∣ �RLB

l − �Rk

∣∣), (80)

�JI( �Rk ) =
∑

l

�J1
( �RLB

l

)
δ
(∣∣ �RLB

l − �Rk

∣∣), (81)

FIG. 8. Three-dimensional density map and mesh for the im-
mersed sphere in 3NSKOG.

with weights depending on the distance r = | �RLB
l − �Rk|

through the kernel function [49]

δ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
6 (5 − 3|r| −

√
−3(1 − |r|)2 + 1) |r| ∈ [

1
2 , 3

2

]
1
3 (1 + √−3r2 + 1) |r| � 1

2

0 elsewhere.
(82)

VII. RESULTS AND DISCUSSION

To compute the acoustic radiation force on a sphere and a
cylinder and to compare the results with the Gor’kov and Wei

FIG. 9. Reflected and transmitted waves in LBM.
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FIG. 10. Kernel interpolation scheme.

et al. solutions, respectively, the simulation domain is a box
with Ly = Lz = 64 cells along the y and z axes in 3D and Ly =
64 cells in 2D. The length Lx along the x axis is chosen such
that Lx = λ/2 + 3, with 100 � λ � 2560 the wavelength in
cell units (Fig. 11). The object, a sphere or a cylinder of
radius Rp, is placed with its center at �r0 = (x0, Ly/2, Lz/2)
and the speed of sound was chosen at every cell by using (79).
The default values for the mean density ρ0, the wavelength
λ, the object’s radius Rp, the speed of sound in the fluid c0

and in the object, cp, are listed in Table I. The default value
for kRp in all tests where neither k nor Rp were varied is
0.125. This value is small enough to compare with Gor’kov
solutions. The left wall, chosen as source, is built with two
extra sheets: one partial absorbing wall at x = 0 and one
source of plane waves at x = 1, forcing the density to oscillate
as ρa sin(ωt ) [Eq. (72)] . The right wall, at x = Lx + 2 (i.e.,
the last cells in the x axis) is chosen as a partially absorbing
reflector [Eq. (73)]. In addition, periodic boundary conditions
are set on y and z directions. The result is a standing wave with
a single nodal plane at x = Lx/2 + 1.

FIG. 11. Simulation’s domain and setup.

TABLE I. Default fixed values for the relevant quantities of the
acoustic radiation force.

Parameter Value

cp 0.25
c0 0.24
p0 1.00
λ 500
Rp 10
kRp 0.125
x λ/8

Each simulation runs for more than 10T time steps, with
T = λ/c0 the period of acoustic oscillations. The acoustic
radiation force is measured at every time step using (77),
giving us a curve of Fx(t ) versus time that stabilizes after
around ten oscillations. Once it stabilizes, 〈Fx〉 is measured
as that signal’s average (Fig. 12).

The measurements are compared with the theoretical ex-
pressions (41) and (60) for the sphere and the cylinder,
respectively, with equal mean densities for the fluid and the
object, that we rewrote as

〈Fx〉3D = −πR3
pP2

a k

3ρ0
�(c0, cp) sin 2kx, (83a)

〈Fx〉2D = −πR2
pP2

a k

4ρ0
�(c0, cp) sin 2kx. (83b)

Hereby we have defined the contrast factor �(c0, cp) as

�(c0, cp) = 1

c2
0

− 1

c2
p

. (84)

Simulations were performed by varying one at a time the
physical parameters the force depends on, whereas the other
parameters remain fixed to default values (Table I). The varied
parameters are the axial position of the object x, the pressure
acoustic amplitude Pa, the radius of the object Rp, and the
wave number k = 2π/λ. The contrast factor �(c0, cp) is also
properly changed to find out its linear relationship with the
force.

FIG. 12. Different curves of the time-dependent force varying
the object’s axial position.
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FIG. 13. Acoustic radiation force of the sphere (3D) for several
pressure amplitudes Pa, sphere’s radii Rp, and wave numbers k. For
k curve kRp were from 0.02 to 0.62, while for Rp from 0.04 to 0.10.

Figure 14 shows that the simulated force follows a behavior
proportional to sin(2kx) for both 3D and 2D cases, being the
force zero when the object is at x = 8L/16 = λ/4 where the
node is (see Fig. 12). When �(c0, cp) > 0, this is a confining
force at the nodal plane. Concerning Rp, k and Pa, we can
see from (83) that a power-law relationship with the force
is expected for each one of them. Figures 13 and 15 show
that this is the case for both the sphere and the cylinder, with
correlation coefficients close to 0.99. The measured exponents
for those power laws show excellent agreement with the ex-
pected values (Tables II and III). As noticed in Fig. 13, the
linear relation for k has some deviations in the last points
from the fitted curve, and the measured parameters k and Rp

differ in 8% and 3% from their theoretical values (Table II).
In Fig. 13, the kRp values for the 〈F 〉 vs k curve run from
0.02 to 0.62, and from 0.04 to 0.10 for the 〈F 〉 vs Rp curve.
Since the theoretical results we acompared with are based on
the assumption kRp 	 1, one could expect some deviations of
the theory from the computational results. Better theoretical
models, as those proposed by Marston in Ref. [35], include
higher order expansions in kRp. A comparison with high order
expressions can be a future continuation of this work. The
influence of resolution has not been studied in this paper, but

FIG. 14. Acoustic radiation forces in 2D and 3D along the x axis
showing a sin 2kx dependence.

FIG. 15. Acoustic radiation force of the cylinder (2D) for several
pressure amplitudes Pa, cylinder’s radii Rp and wave numbers k. For
k curve kRp were from 0.02 to 0.62, while for Rp from 0.04 to 0.10.

we find it plausible to see a reduction of the relatives errors
reported in Tables II and III.

Regarding the contrast factor, we expect a linear relation-
ship between 〈Fx〉 and �(c0, cp) [Eq. (83)]. For this test, the
speed of sound for the fluid was set to c0 = 0.25, whereas cp

was adjusted so the factor � changes uniformly. Figures 16
and 17 confirm that linear behavior for both the sphere and
the cylinder, with R2 = 0.994 and R2 = 0.999 for the 3D and
2D cases, respectively.

Summarizing, our simulations show that the proposed
method to compute the acoustic radiation force reproduces
with great precision both the theoretical expressions by
Gor’kov and Wei et al.

VIII. CONCLUSIONS

We employed a lattice Boltzmann model that reproduces
the wave equation to compute the acoustic radiation force on
a compressible object immersed in an inviscid fluid. Instead of
simulating the full NSEs, our proposal relies on the solution
of the wave equation from which, via an interpolation scheme,
the first-order perturbations in the velocity �u1 and the pressure
p1 are computed on the object’s surface and, from them,
the force. We tested our numerical approach by computing
the acoustic radiation force on a cylinder (in 2D) and on a
sphere (in 3D) produced by a standing wave with a single
nodal plane. All tests were done in the density-matched case.
The method reproduces with excellent accuracy the theoret-
ical predictions by Gor’kov [20] and Wei et al. [22] for the
sphere and the cylinder, respectively, in all studied cases.
The procedure to compute the acoustic radiation force from

TABLE II. Power-law exponents comparison in 3D.

Parameter Expected Measured Rel. err. (%)

Pa 2.0000 1.9999 10−13

k 1.0000 0.9222 7.7783
Rp 3.0000 3.0814 2.7119
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TABLE III. Power law exponents comparison in 2D.

Parameter Expected Measured Rel. err. (%)

Pa 2.0000 1.9994 0.0302
k 1.0000 0.9569 4.3108
Rp 2.0000 2.0127 0.6373

the fields p1 and �u1 is general and can be performed with any
numerical method for solving the wave equation.

One of the advantages of our numerical approach is that it
computes p1 and �u1, with second-order accuracy, and hence it
needs fewer cells to compute the acoustic radiation force than
other methods simulating the full Navier-Stokes equations.
Actually, widely used LBMs for fluids compute with second-
order accuracy the zeroth order density and velocity fields and,
with only first-order accuracy the perturbative fields p1 and
�u1. Accordingly, our method obtains excellent results by using
grids of just 250 × 64 cells for the 2D case and 250 × 64 × 64
for the 3D one, whereas a previous work using a LBM for the
full NSE [29] requires 600 × 600 cells to obtain reliable re-
sults in 2D. Our method is also very fast. When implemented
in C++, it takes up to 3 min on a laptop with a single Intel
Core-i5 processor to compute the acoustic radiation force on
a cylinder with the simulation domain described above. Simi-
larly, when implemented in our 3D solver 3NSKOG it takes no
longer than 30 min by running on four processors to compute
the acoustic radiation force on a sphere.

The values of p1 and �u1 on the object’s surface and the
acoustic radiation force computed from them rely on the
boundary conditions employed to model the object itself. For
simplicity, in our tests we used just a smooth change in the
speed of sound when crossing from the fluid to the object,
assuming that the mean densities in both media are equal
(which is the density-matched case). On the one hand, such an
approximation can be enough for nearly buoyant particles. On
the other hand, this strategy assures that both the pressure and
the normal velocity are continuous at the interface. The actual
boundary conditions [Eqs. (78)] relate both the momenta and
the densities on both sides of the interface. Finding the way
to implement those more general boundary conditions in our
LBM will be an interesting subject for future work.

FIG. 16. Acoustic radiation force of the sphere (3D) for several
values of the contrast factor � [Eq. (84)] with kRp = 0.125.

FIG. 17. Acoustic radiation force of the cylinder (2D) for several
values of the contrast factor � [Eq. (84)] with kRp = 0.125.

The proposed approach can be used to compute the acous-
tic radiation force on an object of any shape in 2D or 3D,
like microbots or self-assembled microswimmers. Moreover,
it can be coupled with standard numerical integration algo-
rithms to compute the three-dimensional movement of such
objects due to acoustic radiation forces and introducing vis-
cous drag forces when needed, according to Ref. [50]. This
opens a broad spectrum of future applications in the acoustic
manipulation of many objects. In addition, being able to have
both waves and fluids in the same LBM code allows us to
simulate multiphysics applications efficiently. For example,
the method could be employed for the study of systems like
acoustic-driven bubbles or reactions among fluids pushed by
microparticles of solid catalyst driven by acoustic forces, just
to mention a few. All these are interesting subjects for future
research.

The present paper introduces a fast and accurate numerical
procedure to compute the acoustic radiation force on an object
immersed in an inviscid fluid. The proposed procedure shows
to be a promising tool for the study of the many phenomena
in medicine and engineering where that force plays a relevant
role.

ACKNOWLEDGMENTS

We acknowledge financial support from the Bavarian Uni-
versity Center for Latin America (BAYLAT). Also, we thank
the 3NSKOG developer team, in particular, J. Hielscher and
Dr. O. Aouane, whose advice and technical support were
fundamental in developing the simulation code.

APPENDIX A: DEDUCTING THE SECOND-ORDER
ACOUSTIC RADIATION FORCE

By replacing the second-order expansion written in (12)
into the mass [Eq. (1)] and momentum [Eq. (2)] conservation
law, using Eqs. (7) and taking the second-order terms only, we
obtain

∂ρ2

∂t
+ ρ0∇ · �u2 + ∇ · (ρ1�u1) = 0, (A1a)

ρ0
∂ �u2

∂t
+ ρ1

∂ �u1

∂t
+ ∇p2 + ρ0(�u1 · ∇)�u1 = 0. (A1b)
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The last term of the left side of Eq. (A1b) can be rewritten by
using the following mathematical property:

1
2∇(�u1 · �u1) = (�u1 · ∇)�u1 + �u1 × (∇ × �u1), (A2)

where the term �u1 × (∇ × �u1) = 0, because the flow is irrota-
tional. Then (A1b) becomes

ρ0
∂ �u2

∂t
+ ρ1

∂ �u1

∂t
+ ∇p2 + ρ0

2
∇(

u2
1

) = 0. (A3)

By using Eqs. (6) and (7a), the second term of the left-hand
side may be written as

ρ0
∂ �u2

∂t
− p1

ρ0c2
∇p1 + ∇p2 + ρ0

2
∇(

u2
1

) = 0 (A4)

and, using the product derivative property for gradients, we
end up with

ρ0
∂ �u2

∂t
+ ∇p2 = 1

2ρ0c2
0

∇(
p2

1

) − ρ0

2
∇(

u2
1

)
. (A5)

Because we are interested in writing the total velocity and
pressure fields in terms of only first-order terms, let us add
Eq. (7a) as a null term such that, by using (12b) and (12c), we
have

ρ0
∂ �u2

∂t
+ ρ0

∂ �u1

∂t
+ ∇p2 + ∇p1 = 1

2ρ0c2
0

∇(
p2

1

) − ρ0

2
∇(

u2
1

)
,

ρ0
∂ �u
∂t

+ ∇(P − p0) = ∇
(

1

2ρ0c2
p2

1 − ρ0

2
u2

1

)
.

(A6)

By using (9), we end up with a total nonstatic pressure

∇(P − p0) = ∇
(

p2
1

2ρ0c2
0

− ρ0

2
u2

1 − ρ0
∂φ

∂t

)
, (A7)

written also in (13).

APPENDIX B: INCIDENT, SCATTERED,
AND INTERFERENCE TERMS

With the velocity potential divided into an incident and a
scattered field, the average force Eq. (4) has three contribu-
tions. The first one, due to φin only,

〈Fi,IN〉 = −ρ0

∮ 〈(
−ρ0

2
|∇φin|2 + ρ0

2c2
0

[
∂φin

∂t

]2
)

δi j + ρ0∂iφin∂ jφin

〉
dSi, (B1)

should be zero because the incident field (which is the solution in the absence of the object) does not receive any physical effect
from the particle. In the case of plane waves, the incident field φin = φ0 cos(�k · �r − ωt ) is spatially homogeneous, implying a
symmetry over the surface, and the closed integral will yield zero [[31], p. 79] [[27], p. 1016]. The other two contributions
containing information about the scattered wave are

〈Fi,SC〉 = −ρ0

∮ 〈(
−ρ0

2
|∇φsc|2 + ρ0

2c2
0

[
∂φsc

∂t

]2
)

δi j + ρ0∂iφsc∂ jφsc

〉
dSi (B2)

and

〈Fi,in-sc〉 = −ρ0

∮ 〈(
−ρ0∇φin · ∇φsc + ρ0

c2
0

[
∂φin

∂t

][
∂φsc

∂t

])
δi j + ρ0∂iφin∂ jφsc + ρ0∂iφsc∂ jφin

〉
dSi. (B3)

The contribution 〈Fi,sc〉 is much smaller than the interference term 〈Fi,in-sc〉 because the scattering cross section of a spherical
particle is proportional to (kRp)4, which is negligible due to Rp 	 λ, and because the scattered potential field solution is
proportional to R3

p, as will be shown later. Thus, the interference term (B3) is the most relevant, and that is the one to be
developed next [[31], p. 79]. By using (9),

∇φin · ∇φsc = �uin · �usc, (B4a)

ρ0

c2
0

∂φin

∂t

∂φsc

∂t
= c2

0

ρ0
ρinρsc, and (B4b)

∂iφin∂ jφsc = ui
inu j

sc, (B4c)

the interference term becomes

〈Fi,in-sc〉 = −ρ0

∮ 〈(
−ρ0�uin · �usc + c2

0

ρ0
ρinρsc

)
δi j + ρ0ui

inu j
sc + ρ0ui

scu j
in

〉
dSi. (B5)

By using Gauss’s theorem, the surface integral transforms into a volume integral:

〈Fi,in-sc〉 = −ρ0

∫ 〈(
−ρ0

(
∂iu

m
in

)
um

sc − ρ0
(
∂iu

m
sc

)
um

in + c2
0

ρ0
∂iρinρsc + c2

0

ρ0
ρin∂iρsc

)
δi j

+ ρ0
(
∂iu

i
in

)
u j

sc + ρ0ui
in

(
∂iu

j
sc

) + ρ0
(
∂iu

i
sc

)
u j

in + ρ0ui
sc

(
∂iu

j
in

)〉
dV. (B6)
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The first two terms may be rewritten as(
∂iu

m
in

)
um

sc + (
∂iu

m
sc

)
um

in = (∂i∂mφin)um
sc + (∂i∂mφsc)um

in,

= (∂m∂iφin)um
sc + (∂m∂iφsc)um

in,

= (
∂mui

in

)
um

sc + (
∂mui

sc

)
um

in, (B7)

and the interference term simplifies to

〈Fi,in-sc〉 = −ρ0

∫ 〈
c2

0

ρ0
∂ jρinρsc + c2

0

ρ0
ρin∂ jρsc + ρ0

(
∂iu

i
in

)
u j

sc + ρ0
(
∂iu

i
sc

)
u j

in

〉
dV. (B8)

Now, by using (7) for the incident and scattered fields on all terms but the last one, we obtain

〈Fi,in-sc〉 = −ρ0

∫ 〈
−∂u j

in

∂t
ρsc − ∂u j

sc

∂t
ρin − ∂ρin

∂t
u j

sc + ρ0
(
∂iu

i
sc

)
u j

in

〉
dV −

∫ 〈
−∂u j

in

∂t
ρsc − ∂

∂t

(
u j

scρin
) + ρ0

(
∂iu

i
sc

)
u j

in

〉
dV.

(B9)

Since

−∂u j
in

∂t
ρsc = − ∂

∂t

(
u j

inρsc
) + u j

in

∂ρsc

∂t
, (B10)

the averaged force simplifies to

〈Fi,in-sc〉 = −ρ0

∫ 〈
− ∂

∂t

(
u j

scρin + u j
inρsc

)

+ u j
in

∂ρsc

∂t
+ ρ0

(
∂iu

i
sc

)
u j

in

〉
dV. (B11)

Because the time average of the time derivatives of any peri-
odic function is identically zero, the force simplifies further
to

〈 �F 〉 = −ρ0

∫ 〈
�uin

(
∇2φsc − 1

c2
0

∂2φsc

∂t2

)〉
dV. (B12)

Therefore, the time-averaged force on the small sphere can be
found if we compute the scattered velocity potential φsc.

APPENDIX C: INTEGRATING THE ACOUSTIC
RADIATION FORCE TO OBTAIN THE GOR’KOV

POTENTIAL

With (24) and (35), it is now possible to write a particular
solution for the scattered velocity potential previously defined
in terms of a(t ′) and �A(t ′) [Eq. (17)]. It becomes

φsc(r, t ) = − f1
R3

p

3ρ0r
ρ̇in − f2

R3
p

2r2
∇ ·

( �uin

r

)
. (C1)

This potential actually satisfies a nonhomogeneous wave
equation. By applying the D’Alembert operator, as in (16),
the following source is gathered:

∇2φsc − 1

c2
0

∂2φsc

∂t2
= f1

Vp

ρ0
ρ̇inδ(�r) + f2

3Vp

2
∇ · (�uinδ(�r)).

(C2)

After plugging in (C2) into (16), we have

〈Fi〉 = −Vp

∫ 〈
f1ρ̇inui

inδ(�r) + f2
3ρ0

2
ui

in∂k
(
uk

inδ(�r)
)〉

dV

= − f2
3ρ0Vp

2

( ∮ 〈
ui

inuk
inδ(�r)

〉
dSk

−
∫ 〈(

uk
in∂k

)
ui

inδ(�r)
〉
dV

)
− f1Vp

〈
∂ρin

∂t
ui

in

〉
. (C3)

Because the Dirac’s delta of the second term does not contain
the surface, the whole integrand is identically zero, leading to

〈Fi〉 = − f1Vp

〈
∂ρin

∂t
ui

in

〉
+ f2

3ρ0Vp

2

〈(
uk

in∂k
)
ui

in

〉
. (C4)

As a final step, we can exchange the time derivative in the first
term, because the derivative of the whole product is identically
zero (just because the incident field oscillates harmonically);
thus 〈

∂ρin

∂t
ui

in

〉
= 1

2ρ0c2
o

〈
∂i p

2
in

〉
, (C5)

where (7) was considered. By using (A2) in the second term of
(C4) and by replacing the previous result, the Gor’kov Force
takes its definitive form,

〈Fi〉 = −∂iVp

(
f1

1

2ρ0c2
0

〈
p2

in

〉 + f2
3ρ0

4

〈
u2

in

〉) = −∇U, (C6)

written in (36).

APPENDIX D: COMMENTS ON THE ACOUSTIC
RADIATION FORCE IN VISCOUS FLUIDS

The case of a compressible sphere in a viscous fluid was
first studied by Doinikov in 1994 [51]. He defined a viscous
penetration depth as

δ =
√

2ν

ω
(D1)

with ν the kinematic viscosity and ω the sound angular fre-
quency. For δ 	 Rp, the viscosity effects can be neglected,
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FIG. 18. Viscosity can be neglected to compute the acoustic ra-
diation force when the particle radius is larger than the penetration
depth.

thus the dimensionless factor

δ

Rp
=

√
2ν
cR0√
kRp

(D2)

is useful to determine if viscosity must be included or not
[[34], p. 3048]. In Fig. 18, we show the regimes for which

the viscosity can be neglected (green shaded region). On top
of that, we also report the constraint imposed by our linear ex-
pansion in Rp/λ (dashed line). While our numerical approach
is valid in the region between the lines, experimental results
have shown that viscosity can be neglected in the full shaded
area [52]. Additionally, Danilov and Mironov [50] showed
that the particle can experience drag forces during its motion
that may contribute significantly to the total motion dynamics
of the sphere, but they do not affect the acoustic radiation
force. Other viscous correction for the acoustic radiation force
for spheres was proposed by Settnes and Bruus in 2012 [53]
where the dipole coefficient f2 is modified as follows:

f2 = 2(ρp − ρ0)(1 − ζ (δ))

2ρp + ρ0 − 3ρ0ζ (δ)
, (D3)

where

ζ (δ) = −3

2

[
1 + i

(
1 + δ

R

)]
δ

R
. (D4)

The imaginary part of (D3) was corrected by Marston in 2016,
showing in Eq. (13) of Ref. [54] that a factor of 2 was missing
in the Settnes and Bruus formula (Eq. (49) of Ref. [53]). For
the case of cylinders, proposed corrections can be found in
Ref. [55], where acoustic forces and torques are calculated,
and Ref. [56] where the force on a cylinder close to a boundary
in a viscous fluid is computed.
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