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Many macroscopic non-Fourier heat conduction models have been developed in the past decades based on
Chapman-Enskog, Hermite, or other small perturbation expansion methods. These macroscopic models have
achieved great success in capturing non-Fourier thermal behaviors in solid materials, but most of them are limited
by small Knudsen numbers and incapable of capturing highly nonequilibrium or ballistic thermal transport. In
this paper, we provide a different strategy for constructing macroscopic non-Fourier heat conduction modeling,
that is, using data-driven deep-learning methods combined with nonequilibrium thermodynamics instead of small
perturbation expansion. We present the mechanism-data fusion method, an approach that seamlessly integrates
the rigorous framework of conservation-dissipation formalism (CDF) with the flexibility of machine learning
to model non-Fourier heat conduction. Leveraging the conservation-dissipation principle with dual-dissipative
variables, we derive an interpretable series of partial differential equations, fine tuned through a training strategy
informed by data from the phonon Boltzmann transport equation. Moreover, we also present the inner-step
operation to narrow the gap from the discrete form to the continuous system. Through numerical tests, our
model demonstrates excellent predictive capabilities across various heat conduction regimes, including diffusive,
hydrodynamic, and ballistic regimes, and displays its robustness and precision even with discontinuous initial
conditions.
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I. INTRODUCTION

Heat conduction in solid materials is generally described
by the Fourier’s law in our daily life, which implies a
diffusive phonon transport process [1,2]. The heat flux is
proportional to the temperature gradient and the bulk ther-
mal conductivity only depends on the materials’ components
and temperature in this classic empirical formula. However,
with the rapid development of advanced manufacturing, ul-
trafast lasers, nanomaterials and other technologies [1,3,4],
specifically, the laser response time has been shortened from
microseconds to picoseconds or even femtoseconds [5], and
with the emergence of low-dimensional materials [6–8] such
as graphene and carbon nanotubes, typical macroscopic mod-
els or theories are difficult to accurately describe the thermal
transport phenomenon at the micro- and nanoscale [9,10].
When the system characteristic length or time is comparable
to or smaller than the phonon mean free path or relaxation
time, or the momentum-conserved normal scattering process
dominates heat conduction, the Fourier’s law will be bro-
ken. Lots of non-Fourier heat conduction phenomena have
been found [1,3,4,9–11], for example, wavelike propagation
of heat with finite speed or heat wave [5,11], size effects [3,4],
and hydrodynamic phonon transport with sufficient normal
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scattering process [6–8]. To study the non-Fourier heat con-
duction processes in solid materials, many theoretical and
numerical methods have been developed as well as ex-
perimental measuring techniques [2–4,7,12–14]. Compared
to microscopic or mesoscopic methods, macroscopic equa-
tions have fewer degrees of freedom, higher computational
efficiency, and can efficiently solve the engineering multiscale
heat transfer problems by introducing some empirical correc-
tion terms or coefficients so that they have a wider audience
until today and many researchers are still keen on macroscopic
non-Fourier heat conduction modeling [5,15–17].

In the past decades, many macroscopic heat conduction
models have been developed for describing non-Fourier heat
conduction phenomena by introducing phase lag, nonlocal,
nonlinear, fractional, or other complex high-order terms to
reflect the actual relationship between heat flux and temper-
ature at the micro- and nanoscales [9,15,17–20]. However,
the task of building models that capture the fundamental
aspects of the underlying physics in simple, understandable,
and reliably universal forms continues to be a complex and
challenging endeavor [21]. This challenge is dual faceted: On
one hand, the deliberate pace of theoretical advancement in
physics encumbers rapid modeling innovation; on the other
hand, rigid physical axioms severely constrain the creation of
computationally feasible models which, compounded by the
inevitable distortions wrought by mathematical abstractions,
circumscribe their applicability. For example, many macro-
scopic non-Fourier heat conduction models are derived by
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the low-order Chapman-Enskog expansion of the Boltzmann
transport equation, which requires that the system character-
istic size or time should be larger than the mean free path or
relaxation time [9].

In this paper, we provide a different strategy for construct-
ing macroscopic non-Fourier heat conduction modeling, that
is, using data-driven deep-learning methods [22–26] com-
bined with nonequilibrium thermodynamics instead of typical
small perturbation expansion [5,15–17]. First, we theoreti-
cally derive a macroscopic heat conduction equation with
unknown functions or parameters which is valid at any scale,
and second, using data-driven deep-learning methods, we
train and learn these unknown functions or parameters. We
present the mechanism-data fusion method, an innovative ap-
proach that seamlessly integrates the rigorous framework of
conservation-dissipation formalism (CDF) with the flexibility
of machine learning to model non-Fourier heat conduction.
Through comprehensive numerical tests, our model demon-
strates superior predictive capabilities across various heat
conduction regimes, including diffusive, hydrodynamic, and
ballistic regimes, and displays its robustness and precision
even with discontinuous initial conditions.

The paper is organized as follows. The theoretical deriva-
tions of the heat conduction model with two dissipative
variables are presented in Sec. II. In Sec. III, we show how to
learn the unknown functions and optimize the parameters, and
the inner-step operation (ISO) method is presented here. Addi-
tionally, the training data generated by the phonon Boltzmann
transport equation (BTE) is introduced in this section. Many
numerical tests and discussions are conducted to validate our
model in Secs. IV and V. Conclusions and remarks are given
in Sec. VI.

II. MODEL

In this section, we use the framework of conservation-
dissipation formalism (CDF) to derive the model of heat
conduction with two dissipative variables, and the CDF can
guarantee that this model naturally satisfies the first and sec-
ond laws of thermodynamics. With reasonable assumption for
the entropy of the system, we can obtain the specific form of
the model.

A. Model derivation

For the heat conduction in solid materials without exter-
nal heat source, the first law of thermodynamics reads as
∂t u + ∇ · q = 0, where u is the internal energy and q is the
corresponding heat flux. From the mathematical point of view,
Fourier’s law is q = −κ∇θ , with bulk thermal conductivity κ

and temperature θ . The goal of this work is devoted to inte-
grating the mechanism and data to model the non-Fourier’s
heat conduction. To begin with, we present the derivation of
the model by using CDF. Specifically, we introduce two dis-
sipative variables w, Q whose counterpart is the conservative
variable u; w is a vector which has the same dimension as q,
and Q is a symmetric tensor. The system is assumed to have
the following entropy:

s = s(u, w, Q) = seq(u) + sneq(w, Q). (2.1)

Here, seq and sneq are both concave functions and correspond
to the respective entropy equilibrium part and nonequilibrium
part. Based on the generalized Gibbs relations [27,28], we
deduce the evolution of the entropy,

∂t s = su∂t u + sw · ∂t w + sQ : ∂t Q

= −θ−1∇ · q + q · ∂t w + sQ : ∂t Q

= −∇ · (θ−1q + γ sQ · q)

+ q · (∇θ−1 + γ∇ · sQ + ∂t w) + sQ : (γ∇q + ∂t Q)

= −∇ · (θ−1q + γ sQ · q) + q · (∇θ−1 + γ∇ · sQ + ∂t w)

+ s ◦
Q

: (γ
◦

∇q + ∂t

◦
Q) + s ·

Q
: (

γ

N
∇ · q + ∂t

·
Q)

=: −∇ · J + σ. (2.2)

Here, θ−1 := su, and γ is a positive constant, and CDF sug-

gests that q = sw. The tensor is decomposed as Q =
◦
Q + ·

QI,

with tr(
◦
Q) = 0, and

◦
∇q is symmetric where tr(

◦
∇q) = 0. J =

θ−1q + γ sQ · q is the entropy flux and σ = q · (∇θ−1 + γ∇ ·
sQ + ∂t w) + s ◦

Q
: (γ

◦
∇q + ∂t

◦
Q) + s ·

Q
: ( γ

N ∇ · q + ∂t

·
Q) is the

corresponding entropy production.
For simplicity, we only consider the quasi-one-dimensional

case in this paper so that many of the vectors mentioned above
can be approximated as scalars. Since the entropy flux σ is
non-negative according to the second law of thermodynamics,
we follow the CDF [29,30] to obtain that

∂t u + ∂xq = 0, (2.3a)

∂tw + ∂xθ
−1 + γ ∂xsQ = M0q, (2.3b)

∂t Q + γ ∂xq = M1sQ. (2.3c)

Here, M0 = M0(u,w, Q) and M1 = M1(u,w, Q) are two pos-
itive functions since σ is non-negative according to the second
law of thermodynamics.

B. Specific model and discrete version

A specific form of the entropy is considered in this paper,
that is, the entropy of the nonequilibrium part has a quadratic
form of the dissipative variables w, Q,

sneq(w, Q) = −w2

2α
− Q2

2β
, (2.4)

where β is a positive constant and α = α(u) is positive.
Thus, (2.3) becomes

∂t u + ∂xq = 0, (2.5a)

∂t (αq) − ∂xθ
−1 + γ

β
∂xQ = −M0q, (2.5b)

∂t Q + γ ∂xq = −M1

β
Q. (2.5c)

Here we have used that w = −αq (i.e., q = sw) and thus M0 =
M0(u, q, Q) and M1 = M1(u, q, Q). Noticing (2.1) and θ−1 :=
su = seq

u (u), we can assert that (2.5) is well defined with three
unknowns: u, q, and Q.

Due to the discreteness of the training data (data exist only
at discrete space-time points), an alternative discrete version
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of (2.5) should be taken into account,

un+1
i − un

i

	t
+ qn

i+1 − qn
i−1

2	x
= 0,

(α)n
i

(q)n+1
i − (q)n

i

	t
− (θ−1)n

i+1 − (θ−1)n
i−1

2	x

+ γ

β

(Q)n
i+1 − (Q)n

i−1

2	x
= −(M0q)n

i ,

(Q)n+1
i − (Q)n

i

	t
+ γ

(q)n
i+1 − (q)n

i−1

2	x
= − 1

β
(M1Q)n

i , (2.6)

where (·)n
i denote the (·)’s value at space-time points

(i	x, n	t ), in which i and n are the indexes of the discretized
cell and time step, respectively.

It is remarkable that (2.5) satisfies the conservation-
dissipation principle and thereby the structure of the system is
globally symmetrizable hyperbolic [30–32] and can be easily
solved by traditional numerical methods. Further, we should
point out that (2.5) is a generalized model since, on the one
hand, it is only constrained by basic laws of physics, i.e.,
the first and second laws of thermodynamics, and, on the
other hand, the model is independent of the data which could
come from numerical results, experimental measurements, or
real-world monitoring.

III. LEARN THE UNKNOWN FUNCTIONS
AND PARAMETERS

In the last section, we derived the model of heat
conduction with unknown functions and parameters in quasi-
one-dimensional systems by using the CDF. In this section, we
will show how to learn the unknown functions and parameters
in (2.5) or (2.6) using deep neural networks, and propose an
innovative method, i.e., the inner-step operation (ISO), to di-
minish the extra errors caused by the chosen discrete version.
The current idea of macroscopic heat conduction modeling
is the biggest innovation of the present paper, that is, first
theoretically deriving a macroscopic heat conduction equa-
tion with unknown functions or parameters which is valid at
any scale, and then using data-driven deep-learning methods
to train and learn these unknown functions or parameters.

A. Training methods

We rewrite the last two equations of (2.6) in the following
abstract form [24]:

(α)n
i (q)n+1

i = (αq)n
i + 	t

2	x

[
(θ−1)n

i+1 − (θ−1)n
i−1

]

− γ

β

	t

2	x

[
(Q)n

i+1 − (Q)n
i−1

] − 	t (M0q)n
i

=: S[α, β, γ , M0]
(
V n

i−1,V n
i ,V n

i+1; 	t,	x
)
,

(3.1a)

(Q)n+1
i = (Q)n

i − γ
	t

2	x

[
(q)n

i+1 − (q)n
i−1

] − 	t

β
(M1Q)n

i

=: S[β, γ , M1]
(
V n

i−1,V n
i ,V n

i+1; 	t,	x
)
. (3.1b)

Here, V n
i = ((u)n

i , (q)n
i , (Q)n

i ), and S[α, β, γ , M0] denotes
that [α, β, γ , M0] need to be learned via machine learning,

and similarly for S[β, γ , M1]. To be specific, [α, M0, M1] are
approximated by the respective neural networks and [β, γ ]
are optimized as parameters. For (3.1a) and (3.1b), the loss
function is defined as

L1
1 =

∑
training data

∣∣(α)n
i (q)n+1

i − S[α, β, γ , M0]

× (
V n

i−1,V n
i ,V n

i+1; 	t,	x
)∣∣2

, (3.2a)

L2
1 =

∑
training data

∣∣(Q)n+1
i − S[β, γ , M1]

× (
V n

i−1,V n
i ,V n

i+1; 	t,	x
)∣∣2

, (3.2b)

where the mean squared error (MSE) is used. In addition,
inspired by the “warm-up” technique [33,34] used in the train-
ing process, we design loss functions consisting of multistep
time information,

L1
k =

∑
training data

∣∣(α)n
i (q)n+k

i − S[α, β, γ , M0]

× (
Ṽ n+k−1

i−1 , Ṽ n+k−1
i , Ṽ n+k−1

i+1 ; 	t,	x
)∣∣2

, (3.3a)

L2
k =

∑
training data

∣∣(Q)n+k
i − S[β, γ , M1]

× (
Ṽ n+k−1

i−1 , Ṽ n+k−1
i , Ṽ n+k−1

i+1 ; 	t,	x
)∣∣2

. (3.3b)

Here, ˜ denotes the outputs of the neural networks, that is,

Ṽ n+k−1
i = (

ũn+k−1
i , q̃n+k−1

i , Q̃n+k−1
i

)
, (3.4)

ũn+k−1
i = ũn+k−2

i − 	t

2	x

(
q̃n+k−2

i+1 − q̃n+k−2
i−1

)
, (3.5)

q̃n+k−1
i = S[α, β, γ , M0]

× (
Ṽ n+k−2

i−1 , Ṽ n+k−2
i , Ṽ n+k−2

i+1 ; 	t,	x
)/

αn−1
i ,

(3.6)

Q̃n+k−1
i = S[β, γ , M1]

(
Ṽ n+k−2

i−1 , Ṽ n+k−2
i , Ṽ n+k−2

i+1 ; 	t,	x
)
,

(3.7)

Ṽ 1
i ≡ V 1

i . (3.8)

Additionally, we also define

L3
k =

∑
training data

∣∣un+k
i − ũn+k−1

i − 	t

2	x

(
q̃n+k−1

i+1 − q̃n+k−1
i−1

)∣∣2
.

(3.9)
Therefore, the total loss function is obtained by combin-
ing (3.3a), (3.3b), and (3.9),

L =
K∑

k=1

(
λ1L1

k + λ2L2
k + λ3L3

k

)
, (3.10)

where λ1,2,3 are coefficients.
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B. ISO

To diminish the extra errors caused by the selected discrete version, (2.6), we present a method, i.e., the inner-step operation
(ISO),

(α)
n+ k−1

N
i (q)

n+ k
N

i = (αq)
n+ k−1

N
i + 	t

2N	x

[
(θ−1)

n+ k−1
N

i+1 − (θ−1)
n+ k−1

N
i−1

] − γ

β

	t

2N	x

[
(Q)

n+ k−1
N

i+1 − (Q)
n+ k−1

N
i−1

] − 	t

N
(M0q)

n+ k−1
N

i ,

(3.11a)

(Q)
n+ k

N
i = (Q)

n+ k−1
N

i − γ
	t

2N	x

[
(q)

n+ k−1
N

i+1 − (q)
n+ k−1

N
i−1

] − 	t

Nβ
(M1Q)

n+ k−1
N

i , (3.11b)

where N is the inner-steps number and k = 1, . . . , N . Further-
more, by this method, 	t is divided into 	t/N , and thus it can
reduce the dependency between the learned models and the
data with an extremely small time step (	t ).

C. Training data

As mentioned before, the model is independent of the
training data which could come from numerical results,
experimental measurements, or real-world monitoring. How-
ever, limited by the difficulty of obtaining large amounts of
real-world monitoring or experimental data for the present
research group, the training data of the model in the
present paper are obtained by numerically solving the phonon
Boltzmann transport equation (BTE) under the Callaway
approximation [11,35,36], which can describe the heat con-
duction in different regimes [6,37–40] and has a good
agreement with the experimental results [7,41–43],

∂e

∂t
+ vgs · ∇xe = eeq

R − e

τR
+ eeq

N − e

τN
. (3.12)

Here, e = e(x, s, t ) is the phonon distribution function of the
energy density depending on spatial position x, unit direc-
tional vector s, time t , and group velocity vg. eeq

R and eeq
N are the

equilibrium state of the momentum-conserved normal scatter-
ing process (N-process) and momentum-destroying resistive
scattering process (R-process), respectively. τR and τN are the
associated relaxation time, respectively.

In this work, the phonon gray model and linear phonon
dispersion are used, and the wave vector in three-dimensional
materials is assumed to be isotropic. The temperature θ is as-
sumed that |θ − θ0| � θ0 so that the equilibrium distribution
function can be written as follows:

eeq
R (θ ) ≈ C

θ − θ0

4π
, eeq

N (θ, v) ≈ C
θ − θ0

4π
+ Cθ

s · v
4πvg

,

where C = C(θ0) is the specific heat at reference temperature
θ0, and v is the drift velocity. The temperature θ , heat flux q,
and the flux of heat flux Q can be calculated as the moments
of distribution functions:

θ = θ0 +
∫

ed

C
, q =

∫
vgsed, Q =

∫
v2

gssed,

where the integral is carried out in the whole solid angle space
d. Here we intend to specify the heat conduction regimes
which change with the dimensionless Knudsen numbers,

defined as

Kn−1
R = L

vgτR
, Kn−1

N = L

vgτN
,

which indicates the strength of the R- and N-process, re-
spectively, and L is the normalized spatial coordinates. Three
distinct types of phonon transport are listed below and shown
in Fig. 1:

(i) hydrodynamics: Kn−1
R � 1 � Kn−1

N ;
(ii) ballistic: Kn−1

R � 1 and Kn−1
N � 1;

(iii) diffusive: Kn−1
R � 1.

In addition, the Guyer-Krumhansl (GK) equation can be
derived from Eq. (3.12) by the eigenvalue analysis method
or Champman-Enskog method [9,12,44] in the phonon hy-
drodynamics regime with sufficient N-processes [7,11,37,40],
which is a macroscopic heat conduction equation and plays
the similar role as the Navier-Stokes equation in fluid hydro-
dynamics. The equations reads as

C∂tθ + ∇ · q = 0,

τR∂t q + q = −κ∇θ + l2[∇2q + 2∇(∇ · q)], (3.13)

where the internal energy u = Cθ , κ = (1/3)Cv2
gτR is the

thermal conductivity, and l2 = (1/5)v2
gτRτN . In this paper,

we use dimensionless parameters and set C = vg = 1, τR =
0.1, 1.0, 10, τN = 0.1, 1.0, 10 for pairwise combination.

D. Testing

Once the unknown functions and parameters in the
model (2.5) are trained well, Eq. (2.5) can be solved by tradi-
tional numerical methods, such as the finite-element method,

FIG. 1. A schematic of phonon transport regimes [6,7,12,44].
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FIG. 2. The overview of the framework of the entire training process.

discontinuous Galerkin method, and so on. In this paper, we
use the finite-difference method. The numerical results are
validated by the solutions from (3.12), which are regarded
as ground-truth data. Additionally, we also solve the GK
model (3.13) numerically, in contrast to our model, for pur-
poses of comparison with our model. We close this section by
presenting the overview of the framework of the entire train-
ing process in Fig. 2.

IV. NUMERICAL RESULTS

To show the performance of the present model, the tran-
sient heat conduction in quasi-one-dimensional system is
studied with different N or R scattering rates. Similar to
the transient thermal grating [7,11] or time-domain ther-
moreflectance experiments [45], an ultrafast heat pulse is
implemented on the materials at the initial moment, so that
there is a spatial cosine temperature distribution or a hot
spot at the center [36]. After the external heat source is re-
moved, the temperature will propagate or dissipate along the x
direction.

A. Generating training data and training setting

Generating training data. We solve the phonon BTE (3.12)
by the discrete unified gas kinetic scheme (DUGKS) [11,46]
in the domain (x, t ) ∈ [−π, π ] × [0, T ] with periodic bound-
ary conditions and the initial data constructed below. In
this paper, we take 	x = 2π

80 and 	t = CFL × 	x with
CFL = 0.5. The data are saved every time step, t =
0,	t, 2	t, . . . , 600	t . The initial values are constructed as
follows:

θ (x, t = 0) = αθ1(x) + (1 − α)θ2(x),

θ1(x) = θ0 + 	θ cos(x − x j1 ),

θ2(x) = θ0 + 	θ cos(x − x j2 ), (4.1)

with x j1 = −π + j1 × 	x, x j2 = −π + j2 × 	x, θ0 = 0.6 :
0.1 : 1.0, 	θ = 0.01 : 0.02 : 0.09, and α = 0 : 0.2 : 0.8.

Training setting. With respect to the Knudsen number
pair, we set three neural networks to approximate α, M0, M1

in (3.1), respectively. All of the neural networks have four
hidden layers with 50 neurons in each layer. In order to ensure
the positivity of α, M0, M1, we take the softplus function as the
activation function in the output player, while the sin func-
tion is used in other layers. We also use adaptive activation
functions to accelerate the training [47]. The back propagation
(BP) with the stochastic gradient descent (SGD) algorithm
is selected as the optimizer and CosineAnnealingLR is used
to adjust the learning rate lr. In the training process, the
parameters that need to be optimized are initialized as β =
10, γ = 1. For the loss function, we take K = 1 to “warm
up” the neural networks and, after a number of epochs, we fix
K = 4.

Once the model is learned well, we solve the (2.5) by the
finite-difference method [48].

B. Validation of accuracy, long-term stability,
and generalization

Validation of accuracy and kong-term stability. We first
show the high accuracy of our learned model (2.5) and also
sketch the solutions of the GK model (3.13) for comparison.
The initial values are set so that θ0 = 0.75,	θ = 0.01 in (4.1)
and q = 0, which is not in the training data. Notice that al-
though the training data are restricted to [0, 600]	t , we solve
the learned model up to 900	t .

The results with respect to diffusive (τR = 0.1, τN =
10), hydrodynamics (τR = 10, τN = 0.1), and ballistic (τR =
10, τN = 10) regimes are plotted in Fig. 3. Here the solutions
of the BTE are taken as a benchmark, and the snapshots at
100	t , 300	t , and 900	t are shown. It is easy to see that
our model can predict the solutions with high accuracy, and
performs better than those of the GK model.

Validation of generalization. The performance of the
learned model with discontinuous initial values is explored
in this numerical simulation. The results are demonstrated
in Fig. 4, of which the first row is about the initial values
of u and q. For comparison, we also plot the results of the
GK model. We should point out again that the training data
only consist of smooth cases. From Fig. 4, we can say that
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FIG. 3. The comparison of solutions of our model and the GK model at 100	t , 300	t , and 900	t . The baseline is the solutions of the
BTE. (a), (b) The initial data about u and q, respectively. (c), (d) Diffusive τR = 0.1, τN = 10, (e), (f) hydrodynamics τR = 10, τN = 0.1, and
(g),(h) ballistic τR = 10, τN = 10.
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FIG. 4. The results of our model with discontinuous initial values at 100	t , 300	t , and 900	t . The results of the GK model are also
plotted for comparison, and the baseline is the solutions of the BTE. (a), (b) The initial data about u and q, respectively. (c), (d) Diffusive
τR = 0.1, τN = 10, (e), (f) hydrodynamics τR = 10, τN = 0.1, and (g), (h) ballistic τR = 10, τN = 10.
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FIG. 5. The heat waves of u(−π + 30	t ) with different Knud-
sen numbers. We take BTE as a baseline, and also show the behaviors
of the GK model.

the results of our model agree with the exact ones very well,
especially in the ballistic case, while the GK model disaccords
with the BTE results. This implies that our model is valid with
discontinuous initial data and has good generalization.

C. Heat waves

In this section, we test the behaviors of predicting the heat
waves by the model with dual-dissipative variables, such as
diffusive, hydrodynamic, and ballistic types, the last two of
which cannot be captured by the model with one-dissipative
variable [26]. The total results are drawn in Fig. 5. When
τR = 0.1, the heat conduction is in the diffusive regime, and
the internal energy u decays over time; when τN = 0.1, τR =
10, the heat conduction is in the hydrodynamic regimes, and
the internal energy u decays slowly with large heat waves;
when τN = 10, τR = 10, the heat conduction is in the ballistic
regimes, and the internal energy u decays quickly with small
heat waves. From Fig. 5, it is easy to see that the results of our
model are in consistent with those of the BTE.

D. ISO

In this section, we will demonstrate the power of the inner-
step operation (ISO) in the mechanism-data fusion modeling
process. The ISO is advanced and plays an important role
in diminishing the extra errors caused by the alternative dis-
crete version. For this purpose, we conduct the following
numerical simulation: we only choose 60 points uniformly
in [0, T ] to train the model, not the original 600 points, i.e.,
t = 0, 10	t, 20	t, . . . , 600	t . In the training process, we
use the ISO with inner step = 1, 10, 40, and we also show the
original results for comparison. Here we define the mean-L2

relative error as

L = 1

N

∑N

i=1

√∑80
j=1(u − uBT E )2(x j, ti )√∑80

j=1 u2
BT E (x j, ti )

,

N = 1, 2, . . . , 900.

The corresponding results are demonstrated in Fig. 6, which
shows that the model trained by coarse data with the ISO
method can be competitive with that trained with fine data.
Besides, the ISO method performs better with larger inner
steps.

Moreover, we test the case in which the data consist of
coarser time steps, t = 0, 100	t, 200	t, . . . , 600	t , i.e., six
points in [0, T ]. In this situation, the model cannot be trained
well without the ISO method. However, with the ISO method,
the model still has excellent performance. From Fig. 7, it is
obvious that the ISO method plays a vital role in the model
training process, and the prediction with the ISO method is
even better than the original one.

V. ANALYSIS AND DISCUSSIONS

In this section, we summarize, analyze, and discuss the
proposed model and training methods. Different from most
previous macroscopic non-Fourier heat conduction models
obtained by Chapman-Enskog, Hermite, or other small pertur-
bation expansion methods, the heat conduction model built by
the present framework is not limited by small Knudsen num-
bers. The current framework of macroscopic heat conduction
modeling is the biggest innovation of the present paper; that
is, first theoretically deriving a macroscopic heat conduction
equation with unknown functions or parameters which is valid
at any scale, and then using data-driven deep-learning meth-
ods to train and learn these unknown functions or parameters.

We advocate for a groundbreaking mechanism-data fusion
method (MDFM), designed to model heat conduction using
a dual-dissipative variables approach. The meteoric rise in
computational processing capabilities and exponential growth
in data storage capacities present opportunities for synergiz-
ing mechanism-based modeling with data-driven discoveries
of nascent physical principles [49–54]. Advances in statisti-
cal methodologies coupled with machine learning’s evolution
have considerably enhanced the potency of data-driven mod-
els. The ascendancy of these computational tools, such as deep
neural networks (DNNs), recurrent neural networks (RNNs),
and convolutional neural networks (CNNs), have been no-
table. However, that most machine-learning-based models
lack explicit expressions creates a barrier for the interpretabil-
ity of the physical models owing to the reputation of being
referred to as “black box.”

We amalgamate machine learning methodologies with
the conservation-dissipation formalism (CDF) [29,30], thus
deriving an explicit and interpretable series of partial dif-
ferential equations (PDEs) that elucidate both Fourier and
non-Fourier modes of heat conduction. Utilizing the CDF,
we introduce dual-dissipative variables to formulate a system
characterized by first-order hyperbolic PDEs. Anchored in
the second law of thermodynamics, the CDF ensures that the
resultant PDE system adheres to the conservation-dissipation
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FIG. 6. The mean-L2 relative errors of u with different Knudsen numbers. Here, step-∗ is the ISO method with ∗ inner steps. Predic-
tion (	t) denotes that the model is trained by original data of every time step (	t). (a) τR = 0.1, τN = 0.1, (b) τR = 0.1, τN = 10, (c)
τR = 10, τN = 0.1, (d) τR = 10, τN = 10.

principle [31] and manifests as a globally symmetrizable
hyperbolic structure [32]. Subsequent to this theoretical foun-
dation, we employ deep neural networks (DNNs) to train the
unknown functions within these PDEs, utilizing a prelimi-
nary “warm-up” procedure [33] to streamline the integration
of temporal data series. Notably, while the data utilized for
training in this study are derived from the phonon Boltzmann
transport equation (BTE) [11], the training paradigm itself
remains indifferent to the PDE derivation process, thereby
accommodating data from a spectrum of sources, including
numerical analyses, empirical simulations, or direct empirical
observation.

In the training procedure, we propose the inner-step op-
eration (ISO), an ingenious strategy engineered to bridge
the gap between discrete formulations and the continuous
paradigm inherent in system modeling. The discrete nature
of our training data necessitates the adoption of an ap-
proximate discrete representation of the governing PDEs,
which invariably introduces numerical discrepancies. Given
DNN’s insensitivity to higher-order discretizations, which

paradoxically may induce instabilities, our ISO methodology
seeks to attenuate the extraneous errors engendered by the
choice of discretization schemes. Empirical evidence amassed
through a plethora of numerical tests corroborates our asser-
tion that the ISO methodology not only significantly mitigates
these errors, but also lessens the model’s sensitivity to data
characterized by infinitesimal time-step magnitudes.

Many numerical tests are carried out to show the per-
formance of the proposed model. It bears mentioning
that the learned model is amenable to resolution via tra-
ditional numerical techniques, such as the finite-element
method (FEM), finite-difference method (FDM), finite vol-
ume method (FVM), alongside more contemporaneous
approaches such as the deep Ritz method (DRM) [55], deep
Galerkin method (DGM) [56], and physics-informed neural
networks (PINNs) [50]. An attribute of our endeavor is the
model’s proficiency in accurately capturing the thermal wave
behavior characteristic of hydrodynamic and ballistic conduc-
tion regimes, which cannot be replicated in models confined
to a one-dissipative variable framework [26]. Moreover, the
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FIG. 7. The mean-L2 relative errors of u with the ISO method. Here step-∗ is the ISO method with ∗ inner steps. Prediction (	t) denotes
that the model is trained by original data of every time step (	t). (a) τR = 0.1, τN = 0.1 and (b) τR = 10.0, τN = 0.1

model assures not only long-term stability, but also exhibits
an enhanced accuracy over a broad spectrum of Knudsen
numbers in comparison to the typical Guyer-Krumhansl (GK)
model. The model’s performance, particularly with discon-
tinuous initial conditions despite being calibrated solely on
smooth initial conditions, further underscores its versatility.

In addition, we should point out that there are many
“schools” [57] for modeling heat conduction, such as
classical irreversible thermodynamics (CIT) [27], extended
irreversible thermodynamics (EIT) [28], and general equa-
tion for nonequilibrium reversible-irreversible coupling
(GENERIC) [58]. The CDF allows more freedom, which can
also be determined by the deep neural networks, and thus, we
choose CDF as the modeling method in this work, which is
clarified in our previous paper [26].

A. Coupled model

It is noticed that (2.3) is not unique, and we also investigate
the coupled model as follows:

∂t u + ∂xq = 0,

∂tw + ∂xθ
−1 + γ ∂xsQ = M ′

11q + M ′
12sQ,

∂t Q + γ ∂xq = M ′
21q + M ′

22sQ. (5.1)

Here,

M ′ = M ′(u, q, Q) =
(

M ′
11 M ′

12

M ′
21 M ′

22

)

is a positive matrix, and thus (5.1) satisfies the entropy law.
Figure 8 shows the numerical results of (5.1) with the com-
parison of (2.5). It is concluded that the specific model (2.5)
illustrates the ballistic and hydrodynamic non-Fourier heat
conduction very well.

B. Other discrete versions

The proposed model is trained by the discrete version (2.6),
which is based on a discrete time version, and thus some other

discrete versions can be studied. The results of the original
version, Lax-Wendroff scheme, Lax-Friedrichts scheme,
implicit scheme, and the ISO with less data are plotted in
Fig. 9. This shows that higher-order discrete versions seem
not to make great improvements to the results. In addition,
the training method of the continuous-time version is also
used for (2.5), such as the physics-informed neural network
(PINN) [50]. However, we do not achieve an acceptable
result for the time being, and perhaps it is left for future
investigations.

VI. CONCLUSIONS AND REMARKS

In this paper, we propose a mechanism-data fusion method
(MDFM) for modeling heat conduction with dual-dissipative
variables. This method inherits advantages of mathematical

FIG. 8. The numerical results u(−π + 30	t ) of (5.1) and (2.5)
about τR = 10, τN = 0.1 and τR = 10, τN = 10.
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FIG. 9. The mean-L2 relative errors of u with the original version, Lax-Wendroff (LW) scheme, Lax-Friedrichts (LF) scheme, implicit
scheme, and the ISO with 10	t about (a) τR = 10, τN = 0.1 and (b) τR = 10, τN = 10.

rigor and adaptable machine learning and, further, this model
can be solved by conventional numerical methods directly.
Specifically, we use the conservation-dissipation formalism
(CDF) to derive an interpretable system of partial differential
equations (PDEs) for heat conduction, which obeys the first
and second laws of thermodynamics. The PDEs are macro-
scopic heat conduction equations for all phonon transport
regimes, which are not limited by small Knudsen numbers.
Next, we train the unknown functions in this PDE system
with deep neural networks (DNNs); this involves a “warm-
up” technique which prepares the connection of several time
series. Moreover, we propose a method, i.e., the inner-step
operation (ISO), to diminish the extra errors caused by the
selected discrete version. Many numerical tests are conducted
to show that the proposed model can well predict the heat
conduction in diffusive, hydrodynamic, and ballistic regimes,
the last two of which cannot be captured by the model with
one-dissipative variable [26]. The model displays long-term
stability and demonstrates higher accuracy under a wider
range of Knudsen numbers than the Guyer-Krumhansl (GK)
model.

In this paper, we select DNNs for our modeling due to
their substantial computational capabilities and flexibility. No-
tably, one of the most advantageous features of DNNs is their
capacity for transfer learning [59], which enables them to
seamlessly adapt to new data. This adaptability makes them
especially suitable for dynamic environments where data con-

tinuously evolve, thereby enhancing the model’s performance
and ensuring its sustained relevance. Future updates to our
model will leverage this capacity to further refine its accuracy
and expand its applicability across varying datasets. In addi-
tion, it is remarkable that due to simplicity and the strictness of
the training data, we only consider the quasi-one-dimensional
case in this current work. Actually, the derivation (2.2) is
generic for multidimensional cases, but it does not contain the
boundary condition which is necessary for the multidimen-
sional cases. Investigation into modeling for heat conduction
in multidimensions, including presenting a compatible bound-
ary condition, is our ongoing and future work and, in turn, the
result of the current work indicates that the MDFM is reason-
able and powerful, which opens up a feasible and different
way for the modeling method.

The codes used in this study have been deposited in the
public Github without any restrictions (see Ref. [60]).

The data, including training data and testing data, have
been deposited in the public netdisk without any restrictions
(see Ref. [61] ).
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