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Past rewinding of fluid dynamics from noisy observation via physics-informed neural computing
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Reconstructing the past of observed fluids has been known as an ill-posed problem due to both numerical and
physical challenges, especially when observations are distorted by inevitable noise, resolution limits, or unknown
factors. When employing traditional differencing schemes to reconstruct the past, the computation often becomes
highly unstable or diverges within a few backward time steps from the distorted and noisy observation. Although
several techniques have been recently developed for inverse problems, such as adjoint solvers and supervised
learning, they are also unrobust against errors in observation when there is time-reversed simulation. Here we
present that by using physics-informed neural computing, robust time-reversed fluid simulation is possible.
By seeking a solution that closely satisfies the given physics and observations while allowing for errors, it
reconstructs the most probable past from noisy observations. Our work showcases time rewinding in extreme
fluid scenarios such as shock, instability, blast, and magnetohydrodynamic vortex. Potentially, this can be applied
to trace back the interstellar evolution and determining the origin of fusion plasma instabilities.
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I. INTRODUCTION

For decades, computational fluid dynamics (CFD) has seen
dazzling progress, powered by advancements in computer
technology and computational sciences [1]. This develop-
ment has enabled CFD to successfully simulate the temporal
evolution of diverse fluids, ranging from simple incompress-
ible fluid to extreme conditions such as three-dimensional
(3D) shock or rarefaction. Furthermore, it has been actively
utilized in predictions of magnetohydrodynamics (MHD),
such as the evolution of interstellar matters and fusion plas-
mas. Discretization methods such as the finite difference
method (FDM) or finite volume method (FVM) have been
actively used for fluid simulation [1]. More recently, machine-
learning-based approaches such as adjoint solvers based on
differentiable physics have also been developed [2,3], while
they are predominantly used for incompressible flow. These
methods successfully simulate various fluids by advancing in
time from given initial conditions and unfolding the state at
each step.

However, backward (or inverse) problems, where a future
state is given and the task is to reconstruct the past state
that leads to it, are known to be ill-posed problems that are
difficult to solve with these traditional methods [4]. Using
conventional approaches for backward reconstruction tends to
be much more unstable or often leads to numerical divergence.
Several approaches have been introduced and developed for
solving some kinds of inverse problems, such as estimating
unknown coefficients [5], reconstructing internal structures
from indirect measurements [6,7], or restoring the state before
processes in images [8–10]. However, in the context of time-
reversing inverse problems, which is our interest in this work,
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relatively few studies have been conducted beyond the limited
techniques of supervised learning methods [11]. Things get
even worse when the future state includes uncertainties and
noise, which are inevitable under real-world physical obser-
vations. Even if it is a physical state where the past actually
exists, an observed state distorted by noise may not have an
exact past state that leads to it.

Figure 1 shows the forward prediction and backward
rewinding of the dynamics of the Sod shock tube and
Rayleigh-Taylor instability, solved by traditional differencing
schemes (Lax-Wendroff FDM and FVM, respectively). In the
Sod shock tube example, although the forward prediction
exhibits plausible profiles [Fig. 1(a)], the backward rewind-
ing produces unphysical fluctuations near the shock front
[Figs. 1(b) and 1(c)]. This is because numerical errors at dif-
ferent discontinuities are summed as their positions converge
to a single point, even though the CFL condition is satisfied.

When reconstructing the past from an unreachable state,
distorted by noise, it becomes easier for computation to di-
verge in differencing schemes. Figure 1(e) is a progressed
state of the Rayleigh-Taylor instability that occurred in a
situation where denser fluid is on top [Fig. 1(d)], which is a
physically reachable state under the Euler equation system.
Figure 1(f) is a noisy and blurred observation, which is ac-
tually a physically distorted state and cannot be reachable
under the Euler equation system. When performing backward
rewinding through FVM from this unreachable distorted state,
values near the interface diverge or imaginary numbers appear
after a few steps, as shown with null regions in Fig. 1(g).

Recently, physics-informed neural networks
(PINNs) [12–16] have been introduced as an alternative to
traditional numerical-solving techniques. Unlike data-driven
neural network applications for fluidlike dynamics [17–19],
PINN incorporates physics laws, rather than given data,
into objectives for training the neural network. It aims
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FIG. 1. Forward prediction and backward rewinding using tra-
ditional schemes for extreme fluid dynamics scenarios. (a) Forward
prediction and (b),(c) backward rewinding with the Lax-Wendroff
scheme for the Sod shock tube example, while the backward one
shows larger numerical fluctuations (red dashed circles) near the
shock front. Here, the dashed light-gray lines are the observed states,
the dashed black lines are the exact solutions, and the solid blue lines
are the numerical solution obtained by FDM. Rayleigh-Taylor insta-
bility at (d) t = 0 and (e) t = 10. (f) Observed state of the instability
at t = 10, with added noise and blurs. (g) Backward rewinding from
the observed state using a finite volume method, showing numerical
oscillation and divergence, as marked with red arrows.

to optimize a neural network (θ ) that maps continuous
spacetime (x, t) to fluid states (u), in a direction reducing
the error with the governing physics equations. Therefore,
from the beginning of the computation, the fluid state across
the entire time domain is simultaneously updated, while
traditional differencing schemes compute the states by
advancing over time. Due to these characteristic differences,
PINNs demonstrate an advantage in finding solutions to
inverse problems [12,14,20], which have posed difficulties for
traditional schemes. In this study, we introduce a PINN-based
approach as a different methodology for a time-reversal
problem, past rewinding of fluid dynamics. In particular, from
observed states that include unavoidable noise and distortion,
PINNs can reconstruct the most probable past.

II. SOLVING FLUID DYNAMICS USING PINN

To predict fluid dynamics, one must find a solution that
satisfies the governing equations, along with the given con-
straints such as initial and boundary conditions. A set of the
2D Euler equations (F) for fluid dynamics is shown in Eq. (1).
Here, ρ and E are the mass density and the energy, and vx or y

is each component of the fluid velocity v. The pressure p is
determined by the equation of state shown in Eq. (2), where

γ is the adiabatic index. S represents the source term, such as
gravity, external drive, or sink:

F = ∂

∂t
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⎜⎜⎜⎜⎝
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2ρ
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x + v2
y

)]
. (2)

In the general PINN workflow to solve fluid dynamics, the
goal is to optimize a function [û = θ (x, y, t )] that maps con-
tinuous spacetime to fluid states in a direction that satisfies the
governing equations. By constructing this mapping function
with a neural network, in which all nodes are differentiable,
one can calculate the exact derivative values required for the
partial differential equations (PDEs) using the chain rule.

The neural network θ takes spacetime coordinate inputs
(x, y, t) and computes the output states (û = {ρ, v, E}). To
optimize the internal parameters consisting of θ , an objective
function must be set. While the objective function of a data-
driven neural network is the difference between the true and
predicted values, the objective function in a PINN is designed
as the error in the given governing equations. In this study, the
objective function consists of a weighted sum (Ltotal) of three
terms in Eqs. (3)–(5): PDE loss LPDE , boundary condition loss
LBC , and initial condition loss LIC ,

LPDE (θ ) = 1

N�

N�∑
j=1

[‖F (x j, y j, t j ; θ )‖2
2

]

for (x j, y j, t j ) ∈ �, (3)

LBC (θ ) = 1

N∂�xy

N∂�xy∑
j=1

[‖û(x j, y j, t j ; θ ) − uBC‖2
2

]

for (x j, y j, t j ) ∈ ∂�xy, (4)

LIC (θ ) = 1

N∂�t

N∂�t∑
j=1

[‖û(x j, y j, t j ; θ ) − uIC‖2
2

]

for (x j, y j, t j ) ∈ ∂�t , (5)

Ltotal(θ ) = wPDELPDE (θ ) + wBCLBC (θ ) + wICLIC (θ ).
(6)

Here, � is the spacetime domain of interest and ∂�xy or t

is its spatial or temporal boundaries. N�,∂�xy or ∂�t is the sam-
pling counts on each domain. wPDE , BC, or IC is the weight
for each loss value. Using the calculated fluid states (û) and
their derivatives ( ∂ û

∂x , ∂ û
∂y , and ∂ û

∂t ) for the given θ , the loss
values from Eqs. (3)–(6) can be obtained. Note that in the loss
function, unlike traditional “data-driven” deep learning, the
error between the prediction and the true label from the given
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FIG. 2. Description of the domain and the optimization of the
neural network for the Sod shock tube example. (a) The spatial and
temporal domain including the collocation points (�, green at 0 <

x < 1 and −0.1 < t < 0.1), boundary points (∂�xy, red at x = 0 and
x = 1), and initial points (∂�t , blue at t = 0). (b) Brief description
of computing the loss function and updating the neural network.

training data is not used. The solution function for the fluid
dynamics (θ∗) can be determined through the optimization
process in Eq. (7),

θ → θ∗ = argmin
θ

{Ltotal(θ )}. (7)

In this work, the optimization of PINN is done by the
Adam [21] and L-BFGS [22] algorithms implemented by
the DeepXDE PYTHON library [15]. More detailed numerical
settings with actual scripts can be found in Ref. [23] .

A. Sod shock tube example

The Sod shock tube example is one of the common test
problems for fluid computation, whose time evolution can
be described by solving the Euler equations. In this section,
we aim to show that PINNs can perform not only forward
prediction, but also backward rewinding in the Sod shock tube
problem, where the latter has been challenging via traditional

solvers. To demonstrate this, we have taken an observation not
from the typical initial state of the Sod shock tube, but from
a state that has progressed by �t = 0.1 [which is the state of
t = 0 in Figs. 2(a) and 3(e)], as shown with the blue dots at
t = 0 in Fig. 2(a). These observation points were uniformly
chosen, and the observed values are input as uIC from Eq. (5).
Additionally, the values at the boundary points (red dots) are
input as uBC from Eq. (4). Subsequently, Eq. (3) is evaluated
for the chosen collocation points (green dots) that include both
the past and the future, and the neural network is optimized,
as described in Fig. 2(b). Here, the initial points were 1000
uniform points, and the collocation and boundary points were
1000 and 100 points, respectively, from the Hammersley point
set, which is a low-discrepancy sequence.

The observed state of the Sod shock tube example is shown
in Fig. 3(e), which sets the state at t = 0 in Fig. 2(a). Then, we
performed temporally bidirectional solving with PINNs. The
history of loss values over iterations can be seen in Fig. 3(a),
where the loss values are converged after ∼2500 iterations.
Figure 3(b) shows the converged spatiotemporal profile of
mass density, with the given observed state represented by
the black dashed line. Centered on the observed time point
t = 0 [Fig. 3(e)], profiles of ρ, vx, and p from t = −0.1 to
0.1 are shown in Figs 3(c)–3(g). For future prediction (t > 0),
the evolving patterns of the shock front and rarefaction are
well captured. Since PINN does not use grids, it does not
exhibit numerical oscillations induced by them, as shown in
Fig. 1(a). Time-reversed reconstruction (t < 0) is also suc-
cessfully demonstrated. A small error in vx can be seen in
the reconstruction of the initial state at t = −0.1, but this
is considerably milder compared to the traditional results in
Fig. 1(b). If the observed states are noisy or distorted, PINN
becomes more favorable for time rewinding than differencing
schemes, which will be discussed in the next section. Given

Observed state (IC)Rewinding Prediction

(e)  = 0 (f)  = 0.05 (g)  = 0.1(c)  = −0.1 (d)  = −0.05

PINN
Exact

(a) (b)

PINN
Exact

Weighted sum

PDE loss
IC loss

BC loss

FIG. 3. Overview of the fluid simulation using PINN. (a) The loss history vs optimizing iterations. (b) The spatiotemporal profile of mass
density after the convergence, while the observed state at t = 0 is indicated with a black dashed line. (c)–(g) The spatial profiles of ρ, vx , and
p at t = −0.1 to t = 0.1. (e) The given observation, (c),(d) The time-rewound states; (f),(g) the future-predicted states. Solid blue lines are the
PINN results, and dashed black lines are the exact solutions.

025302-3



JAEMIN SEO PHYSICAL REVIEW E 110, 025302 (2024)

TABLE I. The mean-squared error of density estimation using FDM and PINN for the Sod shock tube problem. For visibility, the smaller
errors between FDM and PINN are italicized. Here, the computational times of FDM and PINN are 1.5 s and 47 s, respectively, for the
“Observation w/o noise” case.

Time −0.1 −0.05 0.05 0.1

FDM 0.03155 0.01089 0.007689 0.007623
Observation w/o noise PINN 0.06526 0.01326 0.009529 0.009907

FDM 0.04290 0.02776 0.02403 0.02389
Observation with 2% noise PINN 0.06191 0.01571 0.01341 0.01525

FDM inf inf inf inf
Observation with 4% noise PINN 0.06908 0.01761 0.01143 0.01954

that PINN has no constraints on the observation time point
or temporal direction of solving, both the future prediction
and the past reconstruction are performed through a single
convergence of the optimization.

B. Influence of noise on the observation

We observed that past rewinding using PINN (Fig. 3) re-
constructs a cleaner profile compared to the traditional method
(Fig. 1), while well capturing the discontinuity positions.
However, it is necessary to numerically assess how superior
it is, especially under observation conditions with inevitable
noise.

Table I compares the mean-squared errors in density esti-
mation according to the noise levels in the observation state at
t = 0 for the Sod shock tube problem discussed in Fig. 3. In
each case, the method (FDM or PINN) that resulted in less er-
ror when predicting the state is highlighted in blue. In the case
of observation without noise, FDM showed less prediction
error than PINN in both future prediction and past rewinding.
This indicates that when the exact state is known, FDM can
provide more accurate predictions than PINN. However, when
noise is added to the observation, the error in FDM predictions
increases rapidly. The errors of the FDM predictions doubled
when 2% noise was added to the observation, and the errors
diverged to infinity when 4% noise was added. When the noise
level is high in FDM, the density goes below zero at some
local points, causing numerical divergence. In contrast, PINN
maintains a consistent level of error relative to the noise level.

Here, when 2% noise is added, both FDM and PINN show
relatively large errors for distant past predictions (t = −0.1).
This is due to the inevitable uncertainty inherent in ill-posed
problems. Although PINN shows larger errors compared to
FDM, the more important point is that the size of the errors
in PINN does not vary significantly with the magnitude of the
noise.

C. Exploration beyond the collocation domain

The PINN methodology, commonly used in scientific re-
search, optimizes a neural network to minimize the loss
function on a given collocation domain, �, shown in Fig. 2(a).
Unlike other machine-learning applications, it does not heav-
ily focus on extrapolation or generalization outside the
collocation domain. This is because if the state at a new
point outside that domain is of interest, one can simply in-
clude that point in the collocation domain without additional

information. However, as the collocation domain expands,
issues of nonconvergence or lower optimization efficiency
may arise [24,25]. In this case, the extrapolation capability
of a PINN model optimized within a limited domain can
mitigate these problems. In this section, we aim to examine
the extrapolation capability of a PINN model trained in the
collocation domain of −0.1 � t � 0.1 and 0 � x � 1, shown
in Fig. 2(a).

Figure 4(a) shows the collocation domain used for opti-
mization (green filled area) and the areas for extrapolation
(blue hatched area). Figures 4(b)–4(d) display the predicted
states in the extrapolation area of 0.2 � t � 0.4 and −1.5 �
x � 1.5. Despite this area being far from the collocation do-
main more than twice the domain size, it is observed that the
positions of the rarefaction, contact, and shock discontinuities
are accurately reproduced. While conventional data-driven
deep learning is generally vulnerable to extrapolation, in-
terpreting the underlying physics through physics-informed
learning provides superior extrapolation capability.

Extrapolation

Collocation
domain

−0.1

0.0

0.1 0.2 0.4

1.0

(a)

(b) (c) (d)= 0.2

PINN
Exact

= 0.3 = 0.4

FIG. 4. Extrapolation results using the neural network trained
from the limited domain. (a) The domain description for the training
(green filled area) and the extrapolation (blue hatched area). (b)–
(d) Extrapolation to the unseen area of t = 0.2, 0.3, and 0.4. Solid
blue lines are the PINN results, and dashed black lines are the exact
solutions.
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(a) (b)
= . = . = = . = . = .

Forward prediction Rewinding

Observation 
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FIG. 5. Forward prediction and backward rewinding of
Rayleigh-Taylor instability using an FVM solver. (a) Forward
prediction from t = 0 to 10. (b) Backward rewinding from t = 10 to
9.96, eventually diverging near the interfaces, shown with blanks.

III. TIME REWINDING OF 2D FLUID DYNAMICS
FROM DISTORTED OBSERVATIONS

Time rewinding via PINN can be usefully employed to
estimate the past initial state of observed fluids. For instance,
it could potentially reveal the origin of an observed instability
in fusion plasma (which will be one of our future works),
which is challenging to capture due to spatiotemporal resolu-
tion limits, or reconstruct the early distribution of interstellar
materials from their limited observations. However, since time
rewinding is an ill-posed problem, using conventional dis-
cretization method solvers (especially for problems in two
dimensions or more) can easily lead to computation diver-
gence, even if the CFL condition is well satisfied. Figure 5(a)
shows the results of forward prediction for Rayleigh-Taylor
instability using FVM, a representative discretization method,
which displays a physically valid development process from
t = 0 to 10. However, when performing backward rewinding
starting from t = 10 [Fig. 5(b)], values near the interface
rapidly increase (yellow) and diverge (blank area) after just

a few time steps. This is because the drastic difference in the
states across adjacent meshes near the boundaries can lead to
negative density or imaginary velocity during the backward
calculation. In this section, we demonstrate that PINN, the
mesh-free method, enables more stable backward rewinding
calculations. Particularly, by performing backward rewinding
for extreme fluid dynamics problems such as Rayleigh-Taylor
instability, blast, and magnetohydrodynamic vortex, we will
show that it can be applied to various practical problems.

A. Time rewinding of compressible Euler fluids

Figure 6 shows the results of time rewinding for the
Rayleigh-Taylor instability and stellar blast by using PINNs.
Here, we intentionally provided a low-resolution blurred ob-
servation [Fig. 6(a)] and an artificially distorted state that is
difficult to exist [Fig. 6(d)] to demonstrate that PINN operates
in situations where it becomes more difficult to use differenc-
ing schemes for rewinding, as shown in Figs. 6(c) and 6(f).

First, to solve for the Rayleigh-Taylor instability, gravity
effects were added to S in Eq. (1). A small perturbation from
equilibrium, with the denser fluid on top, leads to the growing
instability shown in Fig. 6(a), after �t = 10. Figure 6(b)
sequentially presents the results of rewinding its past from
this observed state. The past states are reconstructed in a
pattern close to the nondistorted original solutions shown as
white dashed lines. While a traditional differencing scheme,
FVM, yields diverging errors after a few backward time steps
from the noisy observation, as shown in Fig. 6(c), PINN
could robustly rewind the instability towards the onset phase.
This is because PINN allows for errors in the observed state
and finds the closest solution, rather than strictly solving
equations from an unreachable state such as FVM. Second,
Fig. 6(d) presents the pressure of a virtual stellar blast centered
on the coordinates (x, y) = (2.75, 2.75). Here, the interface of

Observed state Time rewinding (PINN)
(a)

(d)

PINN

hgielya
R

-
ytilibatsnirolyaT

tsalbralletS

(b)

(e)
* Noisy & blurred

* Distorted observation

Euler
equations

Time rewinding (FVM)

(c)

(f)
Diverging near interfaces
(NaN)

FIG. 6. Time rewinding using PINN for several extreme fluid examples in two dimensions. (a) Observation of a progressed state of
Rayleigh-Taylor instability, where noise and blurs are intentionally added. (b) Time rewinding of the instability using PINN, successfully
reconstructing a pattern close to the actual state (white dashes). (c) The rewinding of the instability using FVM, causing diverging errors near
the interface regions after a few time steps. (d) Distorted observation of a progressed state of the stellar-shape blast, while a nondistorted state
is shown with a white dashed line. (e) Time rewinding of the blast using PINN, successfully converging towards the original explosion point
(2.75, 2.75). (f) Time rewinding of the blast using FVM, causing diverging errors near the interface regions. The nondistorted exact solutions
are shown with white dashed lines for comparison.
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the observed state was artificially distorted from a well-known
Sedov circular blast [a white dash in Fig. 6(d)] to a stellar
shape. This distortion can be due to measurement errors, dark
matters, or undiscovered physics laws. Even though the ob-
servation was distorted, we can see the physically plausible
convergence towards the original explosion point through time
rewinding in Fig. 6(e). The converging speed and patterns
are close to the nondistorted Sedov blast, shown with white
dashes. In this case, FVM produces diverging errors, shown in
Fig. 6(f), and shortly, the errors spread to the entire domain.
For the sake of brevity, only limited variables are shown in
Fig. 6, but evolving data of further variables can be found in
Ref. [23].

In the case of 2D time rewinding, a larger blurriness at
interfaces is observed in the PINN-reconstructed states in
Figs. 6(b) and 6(e), compared to the 1D results in Fig. 3. Part
of this blurriness can be interpreted as uncertainty due to the
distortion of the observed state. Considering the difficulty in
2D rewinding tasks when using traditional schemes, shown in
Figs. 6(c) and 6(f), the PINN results are quite encouraging.
Even given the sparse, noisy, or limited observation, PINN
finds a solution that approximates the observation as well as
the governing equations.

B. Comparison to the adjoint solver using differentiable physics

Another precursor in physics-based deep learning is the
adjoint solver [2] based on differentiable physics (DP) [3]. A
DP solver is a computational tool that leverages the principles
of differential equations and optimization techniques (utiliz-
ing machine learning) to efficiently solve inverse problems
in physics. Notably, unlike FDM and FVM, the DP solver
can prevent values from diverging to infinity or becoming
imaginary. However, many DP solvers focus on demonstrating
incompressible fluids (such as liquid simulation or simple
smoke plumes) with incompressible Navier-Stokes equations,
and applying them to Euler equations in this study (such as
compressible Rayleigh-Taylor instability) requires additional
techniques, beyond the scope of our work. Instead, in this
section, we provide an indirect comparison with PINN re-
sults through the outcomes obtained using a DP solver for
Rayleigh-Taylor instability in the incompressible limit. Fig-
ure 7 presents another baseline result for the incompressible
Rayleigh-Taylor instability, showing the forward prediction
[t = 0 to 10 in Fig. 7(a)] and backward rewinding [t = 10 to
0 in Fig. 7(b)] results calculated using PHIFLOW [3], a PYTHON

package implementing the DP solver.
Note that in Fig. 7, due to the application of the in-

compressible constraint, the state at t = 10 differs from the
compressible Rayleigh-Taylor instability shown in Fig. 5.
Despite dealing with incompressible fluid, which has fewer
governing equations and less complexity than compressible
fluid, Fig. 7 shows that the DP solver relatively fails to recon-
struct the past state. It does not diverge, unlike the results of
FVM in Fig. 5, but during the rewinding process, small errors
accumulate and amplify due to the butterfly effect, shown as
red dashed circles in Fig. 7(b). The rewound result at t = 0
in Fig. 7(b) shows significant differences compared to the
ground truth in Fig. 7(a).

(a)

(b)

noitciderp
dra

wroF
gnidn i
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R

= . = . = . = . =

= = . = . = . = .

FIG. 7. Forward prediction and backward rewinding of
Rayleigh-Taylor instability using a differentiable physics solver,
PHIFLOW. (a) Forward prediction from t = 0 to 10. (b) Backward
rewinding from t = 10 to 0. This solver does not diverge, but fails to
reconstruct the initial state, as small errors amplify.

C. Time rewinding of magnetohydrodynamic vortex

To time rewind the dynamics of actual interstellar material
or fusion plasma instability, it is necessary to solve mag-
netohydrodynamics (MHD), which considers the effects of
magnetic fields (B) on the fluids. 2D MHD consists of a set of
equations, shown in Eq. (8), where more physical variables are
tightly coupled than in Eq. (1). The equation of state is given
by Eq. (9). Here, Bx or y is each component of the magnetic
field, and ptot = p + 1

2 (B2
x + B2

y ) is the total pressure,
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvy

ρvyvx − ByBx

ρv2
y + ptot − B2

y

Bxvy − Byvx

0

(E + ptot )vy − By(v · B)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (8)

p = (γ − 1)
[
E − 1

2ρ
(
v2

x + v2
y

) − 1
2

(
B2

x + B2
y

)]
. (9)

To demonstrate time rewinding for MHD, we have brought
the Orszag-Tang MHD vortex example. Figure 8(a) is the
progressed MHD vortex observed at t = 1.5, with a limited
resolution of (128 × 128). Here, the boundary conditions are
set as the periodic condition for both the x and y components,
instead of a Dirichlet condition shown in Eq. (4). The results
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Observed state ( = . ) Rewinded ( = ) Ground truth ( = )(a) (b) (c)

PINN

MHD 
equations

FIG. 8. Time rewinding using PINN for Orszag-Tang MHD vortex. (a) Observation of a progressed state of the Orszag-Tang MHD vortex
at t = 1.5. (b) Time rewinding of the MHD vortex using PINN, successfully reconstructing the initial sinusoidal patterns. (c) The ground truth
of the initial profiles at t = 0.

of reconstructing its initial state (t = 0) by using PINN are
shown in Fig. 8(b). Note that since the periodic boundary con-
dition is applied, not a Dirichlet, there are virtually no hints
other than the MHD equations when reconstructing the initial
state. Nonetheless, rewinding with PINN was able to recon-
struct the patterns almost identical to the actual ground truth
of sinusoidal profiles [Fig. 8(c)]. While visible errors do exist,
PINN could clearly capture the physically meaningful mode
structures, which are important to understand the source, sta-
bility, or impact of the MHD phenomenon. Furthermore, as
PINN directly utilizes the deep-learning framework, which is
rapidly advancing, its performance will continue to improve
with advancements in neural network theory and optimization
algorithms.

IV. CONCLUSION

In this study, we developed a PINN-based fluid simulation
technique that can perform time rewinding of fluid states
from noisy observation, which had limitations before due to
not only numerical but also inherent physical issues with
traditional differencing schemes such as FDM or FVM. Be-
cause observed states distorted by noise or unknown factors
are states that cannot be reached by given physical laws,
there has been difficulty in reconstructing their past with the
traditional method of strictly calculating differential equa-
tions [see Fig. 6(c)]. On the other hand, when using PINN,
we can reconstruct the probable past of the observed fluid, as
shown in Fig. 6(b), as it can provide the most approximate
solution while allowing errors in the given observations and
governing equations. The incorporation of physical laws and
observation data in PINN effectively serves as a “regularizer”
as commonly employed in other inverse problems [12]. We
demonstrated time rewinding not only for extreme dynamics
such as instability and blast, but also for MHD vortex. Time
rewinding of MHD will be applicable to reconstructing the
evolution process of interstellar matter from observations,
or understanding the origin of instabilities occurring in fu-
sion plasmas. In particular, nuclear fusion devices such as
KSTAR [26,27] are equipped with multidimensional imaging
diagnostics to observe MHD instabilities [28,29]. However,
it was nearly impossible to reconstruct the evolution process
of instability backwards due to its limited observation area
and resolution. Using PINN, reconstructing the early stage of
MHD instabilities, such as disruptive tearing instability [30]

and MHD eigenmodes [31], will help us to understand their
mechanisms.

Other areas where time rewinding can be applied include
the following: (i) Estimating the epicenter of earthquakes or
nuclear tests from shock waves observed on the ground and
underwater. (ii) Estimating the origin of bacteria and virus
spreads that follow a reaction-diffusion system similar to
fluid. (iii) Understanding the early area of tokamak breakdown
that was difficult to measure due to the validity regime limit
of existing diagnostic systems.

However, this work serves as a proof of concept for past
rewinding from noisy observations, and there still exist chal-
lenges when applying it to real physical phenomena. One of
the current limitations of PINN is the decreased accuracy
when trying to estimate points that are far from the obser-
vation time. Recently, techniques such as ensemble methods
and time adaptation have been introduced to improve the
long-term accuracy of PINN [25]. Since PINN directly uti-
lizes versatile deep-learning frameworks, as AI technologies
advance, particularly in neural network theory and optimiza-
tion algorithms, we expect that the performance of numerical
simulations applying PINN will also improve.
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APPENDIX: NUMERICAL SETTINGS AND
PERFORMANCE

In implementing PINNs for the fluid dynamics problems
in our paper, we utilized the DeepXDE library [15] with a
TensorFlow backend [32]. The neural network weights were
optimized using the Adam [21] and L-BFGS [22] algorithms,
sequentially. The number of hidden layers and neurons was set
to three layers with 32 neurons each for the 1D Sod problem
and four layers with 64 neurons each for the 2D problems.
Hyperbolic tangent (tanh) activation functions were applied
to add nonlinearity in the hidden layers. Here, we observe
that using piecewise functions for nonlinear activation such
as ReLU causes lower performance, probably due to the edge
effect near the boundary.
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TABLE II. The numerical settings for training the neural network shown in this paper.

Rayleigh-Taylor
Sod shock tube instability Blast MHD vortex

Governing 1D Euler 2D Euler 2D Euler 2D MHD
equation equations equations equations equations
Inputs (x, t ) (x, y, t ) (x, y, t ) (x, y, t )
Outputs (ρ, vx, E ) (ρ, vx, vy, E ) (ρ, vx, vy, E ) (ρ, vx, vy,

Bx, By, E )
Layers × neurons 3 × 32 4 × 64 4 × 64 4 × 64
Learning rate N/A 0.001 0.01 0.001
for Adam
Epochs for Adam 0 2 × 105 5 × 102 2 × 104

Epochs for L-BFGS 3 × 103 1 × 103 1 × 103 1 × 103

(wPDE , wBC, wIC) (1, 1, 100) (1, 1, 10) (1, 1, 1) (1, 1, 10)

For the 1D Euler equations, the input to the neural network
is (x, t ) and the output is (ρ, vx, E ). In the 2D Euler equations,
the input is (x, y, t ) and the output is (ρ, vx, vy, E ). Lastly, for
the 2D MHD equations, the input is (x, y, t ) and the output
is (ρ, vx, vy, Bx, By, E ). Other detailed settings for training
are shown in Table II and the actual PYTHON scripts and
observation data can be found in Ref. [23].

For the forward schemes, for comparison, the Lax-
Wendroff finite difference method was used for the 1D
problem, and the finite volume method was used for 2D
problems.

The computational experiments in this study were per-
formed on an Apple M1 processor. The elapsed wall time
required for each problem to reach saturation was 47 seconds
for the Sod problem, 21 minutes for the stellar blast, 17
hours for the Rayleigh-Taylor instability, and 13 hours for
the MHD vortex. The time taken to reach saturation seems to
vary depending on the characteristics of the problem, but more
analysis will be needed regarding it. The computation time ap-
pears to be a drawback compared to differencing schemes that
maintain relatively consistent wall times when the resolution
is fixed.
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