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Demonstration of metaplectic geometrical optics for reduced modeling of plasma waves
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The Wentzel, Kramers, and Brillouin (WKB) approximation of geometrical optics is widely used in plasma
physics, quantum mechanics, and reduced wave modeling, in general. However, it is well-known that the
approximation breaks down at focal and turning points. In this paper, we present an unsupervised numerical
implementation of the recently developed metaplectic geometrical optics framework, which extends the ap-
plicability of geometrical optics beyond the limitations of WKB, such that the wave field remains finite at
caustics. The implementation is in 1D and uses a combination of Gauss-Freud quadrature and barycentric rational
function inter- and extrapolation to perform an inverse metaplectic transform numerically. The capabilities of the
numerical implementation are demonstrated on Airy’s and Weber’s equations, which both have exact solutions
to compare with. Finally, the implementation is applied to the plasma physics problem of linear conversion of
X mode to electron Bernstein waves at the upper hybrid layer and a comparison is made with results from fully
kinetic particle-in-cell simulations. In all three applications, we find good agreement between the exact results
and a reduced wave modeling paradigm of metaplectic geometrical optics.
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I. INTRODUCTION

Ray-tracing methods based on geometrical optics (GO)
are widely used for reduced wave modeling, in general, and
in fusion plasmas, in particular (Refs. [1,2]). Within plasma
physics, examples of applications include various beam-based
diagnostics (Refs. [3,4]), electron cyclotron resonance heat-
ing and current drive (Ref. [5]), as well as suppression of
instabilities (Ref. [6]). Unfortunately, the underlying eikonal
Wentzel, Kramers, and Brillouin (WKB) approximation be-
hind GO theory typically breaks down at reflection points
and focal points. Such critical points are, in general, called
caustics. Caustics are common in plasma physics and they
often occur in critical regions for mode coupling, which makes
them essential for various diagnostics and advanced mode
coupling schemes, Refs. [7,8]. Waves typically experience a
natural amplification or swelling near caustics which means
that several nonlinear effects can become particularly impor-
tant [9,10]. Calculating the impact of these nonlinear wave
effects relies crucially on the amplitude of the wave field at the
caustics, Ref. [11]. However, the breakdown of the eikonal ap-
proximation means that the wave amplitude obtained from GO
erroneously diverges. For this reason, many wave phenomena
are challenging to model properly using reduced models based
on GO and one must instead resort to computationally expen-
sive full-wave codes [12,13].

In the recent works of Refs. [14–19], Lopez and coworkers
proposed a method known as metaplectic geometrical optics
(MGO) for reinstating the validity of GO in caustic regions.
MGO takes a geometrical solution strategy by recognizing
that the singularities in GO arise whenever the projection
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of a ray trajectory from phase space to position space is
singular. This is not unlike the widely used Maslov method
(Refs. [20,21]) which works by evolving the wave field in
Fourier space which effectively corresponds to representing
the ray trajectory in a rotated phase space, thereby eliminat-
ing some projection singularities. The MGO method takes
the Maslov method a step further by continuously applying
a metaplectic transform, which corresponds to a continuous
rotation of phase space in a manner such that the projection
of the ray trajectory to the rotated position space is always
well-defined locally. In Refs. [14–19], Lopez and coworkers
developed and demonstrated the MGO method analytically on
a few well-chosen key examples, but the method remained to
be implemented in a fully automated numerical code. In this
paper, we have developed an automated 1D implementation
of the MGO framework which differs from previous semian-
alytical demonstrations of MGO by calculating all quantities
fully numerically, including the inverse metaplectic transform
which we shall return to in Sec. III. The code is openly
accessible on a repository on GitHub, Ref. [22]. As we shall
explain in Sec. IV D, a particular challenge in evaluating the
inverse metaplectic transform is how to analytically continue
a numerical field from the real to the complex domain. This
subproblem can be accomplished using barycentric rational
interpolation. We demonstrate the results of this proposed
method in Sec. V.

In the following, we first present the main ideas and
analytical foundations of GO and MGO in Secs. II and
III. In Sec. IV, we then describe the numerical details of
our implementation of MGO, for which evaluating the in-
verse metaplectic transform is the main challenge and is
achieved with barycentric rational interpolation and Gauss-
Freud quadrature. In Secs. V A and V B, we present results of
applying the method to Airy’s equation and Weber’s equation,
which are fundamental wave physics problems with known
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exact analytical solutions as well as analytical MGO solu-
tions. Finally, in Sec. V C we apply the MGO code to a
caustic occurring in plasma physics when an electromagnetic
X mode couples to electron Bernstein waves (EBWs) at the
upper hybrid layer to showcase a less idealized application.
The MGO results are compared to results from fully kinetic
particle-in-cell (PIC) simulations.

II. GEOMETRICAL OPTICS

In this paper, we consider time-stationary scalar linear
wave equations of the integrodifferential form∫

dx′D(x, x′)ψ (x′) = 0, (1)

where x is the position coordinate, D(x, x′) is the wave op-
erator kernel, and ψ (x) is some wave field such as a scalar
electric field or a quantum mechanical wave function. To the
best of our knowledge, the MGO theory has not yet been
generalized to time-dependent, vector-valued waves, but this
is not an intrinsic limitation to the theory. Also note that our
first iteration of a numerical implementation is only in 1D,
i.e., x = x ∈ R. However, we use vector notation in Secs. II
and III, since Refs. [14–19] have already derived the MGO
theory in multiple dimensions.

The full integrodifferential wave equation in Eq. (1) can
be simplified by assuming the wave field to be of the eikonal
form:

ψ (x) = φ(x)eiθ (x). (2)

Here φ(x) is the envelope and θ (x) is the phase. Within the
theory of GO, the envelope φ(x) is assumed to vary much
more slowly compared to the phase such that high order
derivatives of φ(x) can be neglected. This can also be ex-
pressed in the eikonal parameter which is assumed small,

ε = 1

kL
� 1, (3)

where k ∼ |∂xθ | is the characteristic scale of variation of
the phase and 1/L ∼ |∂xφ| is the envelope variation scale.
The eikonal approximation of Eq. (3) is also known as the
WKB or the Liouville and Green approximation (Ref. [[1],
p. 22]) and a medium satisfying the eikonal criterion is said
to be weakly inhomogenous (Ref. [23]). To first order in ε,
the full wave equation of (1) can be simplified to the GO
equations (Refs. [1,24]):

D[x, k(x)] = 0, (4a)

v(x) · ∂xφ(x) + 1
2 [∂x · v(x)]φ(x) = 0, (4b)

where k(x) and v(x) are, respectively, the local wave number
and group velocity defined by

k(x) := ∂xθ (x), v(x) := −∂kD(x, k)|k=k(x). (5)

Here D(z) is the dispersion symbol which is a function of
phase space coordinates z = (x, k)T and is assumed to be
real implying that we neglect dissipation. To be clear: k is
generally any wave vector, whereas the local wave vector k(x)
is a specific function of x for which (4a) is satisfied. There
are multiple paths for deriving the GO equations, Eq. (4). A
modern approach found in, e.g., Refs. [1,24] is to use Weyl
symbol calculus, which makes it possible to approximate the

wave equation’s differential operator by Taylor expanding its
Weyl symbol in the eikonal parameter, Eq. (3). In this ap-
proach, D(z) is found as the Wigner-Weyl transform of the
wave operator (Ref. [24]). Please refer to Ref. [24] for a full
derivation.

A. Ray tracing

The GO equations can be solved by finding phase space
trajectories, z(τ) = (x(τ), k(τ ))T satisfying the local disper-
sion relation, Eq. (4a). Such trajectories are called rays. Here,
τ = (τ1, τ⊥)T where τ1 is a longitudinal time parameter and
τ⊥ = (τ2, τ3)T = (x(0)

2 , x(0)
3 )T are the perpendicular initial co-

ordinates of the ray. Given an initial condition z(0, τ⊥) =
(x0, k0)T , a ray can be found from Hamilton’s ray equa-
tions (Ref. [1]):

∂τ1 x(τ1) = −∂kD(x, k), (6a)

∂τ1 k(τ1) = ∂xD(x, k). (6b)

The dispersion symbol plays the role of the Hamiltonian. In
a numerical setting in multiple dimensions, we can launch a
finite family of rays on a discrete τ⊥-grid all with the same
initial x1 position. Thereby, we span out a region of phase
space z(τ) parameterized by τ ∈ U,U ⊆ RN , where N is the
number of spatial dimensions.

The mapping x(τ ) �→ z(τ) = (x(τ ), k[x(τ )])T from x(τ )
to the graph of the local wave vector is called a lift. Con-
versely, the inverse map from z(τ) to x(τ ) is a projection.
The set of points {z(τ) | τ ∈ U } is an N-dimensional Lagrange
manifold which we call the ray manifold.

B. Field construction

Having found a ray z(τ) satisfying Eq. (4a), the corre-
sponding phase and amplitude of the eikonal field can be
found by solving Eqs. (4b) and (5) with the explicit solutions:

φ(τ) = φ(0, τ⊥)

√
j(0, τ⊥)

j(τ)
, (7a)

where j(τ) := det[∂τx(τ )], (7b)

θ (τ) = θ (0, τ⊥) +
∫ τ1

0

dτ1ẋT (τ)k(τ). (8)

Here, det[·] is the determinant of · and the dot is differen-
tiation with respect to the first coordinate τ1. These are the
essential equations of the GO method. First, trace a set of
ray phase space trajectories using Eq. (6) to obtain the ray
manifold {(x(τ), k(τ ))T }. Then, for each ray, determine φ(τ)
from Eq. (7) and θ (τ) from Eq. (8). If we assume that x(τ )
has a well-defined inverse in τ(x), the final field as a function
of position simply is

ψ (x) = ψ[τ(x)] = φ[τ(x)]eiθ[τ(x)], (9)

C. The caustic problem

For Eq. (9) above to be meaningful, the map x(τ ) needs
to be bijective such that it is invertible. This is not satisfied
near turning and focal points which in both cases cause rays
to cross. This caustic problem is also reflected in (7), which
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diverges for j(τ) → 0. In 1D, the caustic breakdown occurs
if the slope ∂xk(x) goes to infinity and therefore the local
wave number function k(x) does not have an explicit repre-
sentation at the caustic point. In general, we shall speak of
the points where j(τ) = 0 as projection singularities. Within
the GO approximation, the wave field diverges exactly where
the projection of the ray manifold becomes singular (Ref. [[1],
p. 147]).

III. METAPLECTIC GEOMETRICAL OPTICS

MGO proposes to solve the caustic problem by continu-
ously rotating the phase space coordinates along the ray, such
that the ray manifold always has an explicit representation
in the new rotated phase space coordinates. The coordinate
rotations are accomplished with symplectic transforms while
the corresponding transformations of the eikonal fields are ac-
complished with metaplectic transforms. For convenience and
readability, we state in the following a few essential results
on symplectic and metaplectic transforms needed to present
MGO. The reader is encouraged to consult Refs. [1,18,25] for
a more elaborate discussion on these topics.

A. Symplectic transforms

Consider linear transformations of phase space coordinates
of the general form

–Z =
(

X
K

)
:= S

(
x
k

)
, (10)

where S is a 2N × 2N matrix and –Z = (X, K)T are the
new phase space coordinates. Within MGO, we impose
two constraints on the transformation matrix S. First, the
linear transformations must be canonical, i.e., they must pre-
serve Hamilton’s equations. It can be shown (see any of
Refs. [1,18,25]) that this is satisfied if and only if S is sym-
plectic such that it satisfies the equation

SJ2NS
T = J2N , where J2N :=

(
0N IN
−IN 0N

)
. (11)

Here J2N is known as the symplectic matrix and it is composed
as a block matrix of the N × N zero matrix, 0N , and the N ×
N identity matrix, IN . Furthermore, we constrain ourselves to
only consider rotations, why S must be orthonormal:

ST = S−1. (12)

The orthonormality and symplecticity requirements restricts
S to be of the block form

S =
(
A B

−B A

)
, (13)

where A,B ∈ RN×N .

1. Generator formalism

As an alternative to (10), the symplectic transformation
z �→ –Z can also be represented implicitly through the genera-
tor formalism. If B is invertible, the first generating function
is given by (Ref. [[1], Appendix E])

F1(X, x) = − 1
2 (XTAB−1X − 2xTB−1X + xB−1Ax). (14)

F1(X, x) is defined to generate the coordinate transformation
via

∂xF1 = k, ∂XF1 = −K. (15)

B. Orthosymplectic transformation for singular B

References [15,18] also treat the case where B is not in-
vertible by considering the matrix projection of A onto the
diagonalizing basis of B. If ρ denotes the rank of B and
ς = N − ρ the corank, then B may be decomposed through
singular value decomposition (SVD) (Refs. [18,26]):

B = LSB̃R
T
S , where (16)

B̃ =
(
Λρρ 0ρς

0ςρ 0ςς

)
, (17)

LT
S LS = I, RT

SRS = I, (18)

where the columns of LS and RS are the left and right singular
vectors and LS and RS are orthonormal. Λρρ is a diagonal
matrix. The index ·μν denotes that the matrix is of size μ × ν.
Using the requirements of orthonormality and symplecticity
it is possible to show that the matrix projection of A onto the
singular vectors must be block diagonal (Ref. [18]):

Ã := LT
SARS =

(
aρρ 0ρς

0ςρ aςς

)
. (19)

C. Metaplectic transforms

For each orthosymplectic transformation z �→ –Z of phase
space coordinates, there exists a corresponding metaplectic
transformation which defines how the field transforms from
the old coordinate representation ψ (x) to the new coordi-
nate representation Ψ (X). Assuming B to be invertible, it is
possible to show that the representation of the metaplectic
transform of ψ (x) in the new X-space is (Ref. [18])

Ψ (X) = α

∫
dxe−iF1(X,x)ψ (x), (20)

where α ∈ C and F1 is the first generating function from (14).
The metaplectic transform must be unitary and this determines
α up to a sign. However, this leaves us with an overall sign
ambiguity such that for each symplectic transformation S
there are two metaplectic transformations (see Ref. [[18], pp.
47–48] and Ref. [[1], p. 470] for a detailed discussion). The
final integral form of the metaplectic transform of ψ (x) is
(Ref. [18])

Ψ (X) = ±e
i
2 xT ab−1x

(2π i)N/2
√

detB

∫
dxψ (x)ei( 1

2 xB−1Ax−xTB−1X).

Here S is already assumed to be of the orthosymplectic form
of (13). Under the same assumption, the inverse metaplectic
transform, which maps Ψ (X) to the old representation, can be
shown to be (Ref. [18])

ψ (x) = ±e− i
2 xB−1Ax

(−2π i)N/2
√

detB

∫
dXΨ (X)ei(− 1

2 XTAB−1X+xTB−1X).

(21)

Note how the metaplectic transform reduces to a Fourier
transform in the special case where A = 0N and B = IN . In
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FIG. 1. Conceptual illustration of the five steps of MGO: (1) trace rays, (2) determine symplectic transformation St , (3) solve GO in rotated
phase space, (4) link the solutions together using metaplectic transforms such that the final solution is continuous, (5) inverse metaplectic
transform the fields and add up the solutions from different branches.

particular, a 1D Fourier transform is the metaplectic transform
corresponding to a 90◦ rotation in phase space.

D. Geometrical optics in rotated phase space

Importantly, Refs. [15,18] show that under a symplectic
transformation the GO Eq. (4) will carry over to the new
position space. To arrive at this result, Refs. [15,18] consider
an eikonal form of the metaplectically transformed field in the
new position space:

Ψ (X) = Φ(X) exp[iΘ (X )]. (22)

References [15,18] then impose the eikonal assumption, but
this time in the rotated phase space reference, i.e., |∂XΦ| �
|∂XΘ|. To lowest order in the eikonal parameter, the GO
equations then take the familiar form

D[S−1 –Z(X)] = 0, (23a)

V(X) · ∂XΦ(X) + 1
2 [∂X · V(X)]Φ(X) = 0, (23b)

where V(X) is the group velocity in the new phase-space
coordinates. Furthermore, Ref. [15] shows that the manifold
in rotated phase space is simply obtained by transforming the
original representation of the manifold:

–Z(τ) =
(

X(τ)
K(τ )

)
= Sz(τ ). (24)

Therefore, in complete analogy with Eqs. (7)–(9), the new
envelope and phase will have the explicit solutions in rotated
phase space when away from caustics:

Φ(τ) = Φ(0, τ⊥)

√
J (0, τ⊥)

J (τ )
, (25a)

where J (τ) = det[∂τX(τ)], (25b)

Θ (τ) = Θ (0, τ⊥) +
∫ τ1

0

dτ1ẊT (τ)K(τ ). (25c)

E. Review of MGO

Having presented the essentials on symplectic and meta-
plectic transforms, we will now present a review of the MGO
method as it was developed in Refs. [14–19]. This summary
is, in particular, based on Ref. [18], which the reader is en-
couraged to consult for a full derivation of the theory. The
core idea of MGO is presented in Fig. 1. The method consists
of the following five steps:

(1) Trace a set of rays to obtain a rendering of z(τ) =
(x(τ), k(τ ))T .

(2) For each point τ = t on the ray manifold, determine a
symplectic transformation St which rotates the ray manifold
representation into the new phase space coordinates:

–Zt
(τ) = (Xt(τ), Kt(τ))T = Stz(τ).

The construction of St is given explicitly in Eqs. (27)–(30)
and is designed such that the new position coordinate axes are
all tangent to the ray manifold at τ = t.

(3) For each point τ = t on the ray manifold, solve the GO
phase and envelope equations in the new phase space to obtain
function values of Ψ (Xt ) for all Xt(τ) points.

(4) Ensure continuity of the solution by using a near
identity metaplectic transform (NIMT) to connect the initial
conditions of the fields in rotated phase spaces together.

(5) For each point τ = t on the ray manifold, inverse meta-
plectic transform Ψ (Xt ) to obtain ψ (x(t)). Sum up the field
contributions from all branches of the ray manifold.

The five steps are illustrated in Fig. 1. Note that there is
a new transformation for each τ = t and this is reflected in
the notation. For instance, Xt(τ) is a function of τ for a given
fixed t, while Xt(t) is this function evaluated at τ = t. Finally,
we denote an arbitrary coordinate set in the rotated position
space as just Xt and later on we shall allow Xt to be complex
so we can analytically continue Ψ (Xt ). Also note how the in-
verse metaplectic transform maps the function Ψ (Xt ) defined
on the entire Xt domain onto a single point. In the following,
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we present a summary of the equations resulting from the five
steps above.

Assume that the incoming wave field is defined on the
boundary at position x1:

ψin(τ⊥) = φ(0, τ⊥)eiθ (0,τ⊥ ). (26)

Furthermore, assume that we have an initial z0 satisfying the
local dispersion relation, i.e., D(z0) = 0. The first step of
the procedure is to evolve the rays using (6) to obtain z(τ).
Next, for all ray parameters τ = t, we need to determine a
symplectic rotation matrix St such that the new position space
coordinate axes span the tangent space of the ray manifold at
τ = t. This is accomplished by defining the unit vector

T̂1(t) := ∂τ1 z(t)/‖∂τ1 z(t)‖, (27)

and then defining T̂2(t), · · · , T̂N (t) by Gram-Schmidt orthog-
onalization of the Jacobian matrix [∂τz(τ)]T (Ref. [15]). From
the set of tangent vectors, one can also define a symplectically
dual set of normal vectors:

N̂ j (t) = −J2N T̂ j (t). (28)

Thereby, the symplectic transformation which maps x to the
tangent space of the ray manifold is determined by inverting
the following matrix (Ref. [15]):

S−1 =
⎛
⎝

�⏐ �⏐ �⏐ �⏐
T̂1(t) · · · T̂N (t) N̂1(t) · · · N̂N (t)⏐
 ⏐
 ⏐
 ⏐


⎞
⎠.

(29)

As a result, the symplectic transformation matrix is now on
the orthonormal form of (13):

St =
(

At Bt
−Bt At

)
. (30)

From St, we rotate the manifold representation using (24):

–Zt
(τ) =

(
Xt(τ)
Kt(τ)

)
:= St z (τ). (31)

By construction, this rotation ensures that the new position
coordinate axes are now tangent to the rotated manifold and
therefore the manifold always has an explicit representation
locally. In other words, in a neighborhood of τ = t the wave
field is free from caustics and in this neighborhood it will be
justified to assume the field to be of the eikonal form of (22):

Ψt[Xt(τ)] = Φt[Xt(τ)] exp(iΘt[Xt(τ)]). (32)

The envelope and phase field in the rotated frame is calculated
using (25):

Φt[Xt(τ)] =
√

Jt(t)

Jt(τ)
, (33a)

where Jt(τ) = det[∂τXt(τ)], (33b)

Θt[Xt(τ)] =
∫ τ1

t1

dξ ẊT
t (ξ, τ⊥)Kt(ξ, τ⊥). (34)

Note how the field in rotated phase space is renormalized such
that

Φt[Xt(t)] = 1, Θt[Xt(t)] = 0. (35)

This renormalization choice is convenient, since it allows us
to calculate Φt and Θt independently for each t. To adjust for
this renormalization and ensure continuity of the final wave
field, a NIMT prefactor, Nt, will be multiplied to the final
wave field.
The contribution from Ψt[Xt(τ)] then needs to be brought
back to the original frame. Apart from constants which we will
absorb into an MGO prefactor, Nτ i , the inverse metaplectic
transform from (21) is given by

ϒt =
∫

dεΦt(ε) exp[i ft(ε)], (36a)

where

Φt(ε) := Φt[Xt(t) + ε], (36b)

ft(ε) := Θ[Xt(t) + ε] − 1
2εT AtB−1

t ε − εT Kt(t), (36c)

with ε := Xt − Xt(t). In Sec. IV C, we give details on how we
calculate the integral, which in our current 1D implementation
is only an integral over the real line. If, however, Bt is singular,
we must instead use the form

ϒt =
∫
C0

dερΨt

[
LS

(
Xρ

t (t) + ερ

aςς · xς (t)

)]

× exp

[
− i

2
εT
ρ aρρΛ

−1
ρρ ερ − iεT

ρ Kρ
t (t )

]
. (37)

The quantities LS, aςς ,Λρρ are defined through a SVD of Bt
as explained in Sec. III B.
The final solution to the wave field is obtained by summing up
the contributions from all branches,

ψ (x) =
b∑

i=1

ψ (τ i(x)), where ψ[τ i(x)] = Nτiϒτ i , (38)

where b denotes the number of branches and the prefactor Nt
is given by

Nt = A(τ⊥) exp
[
i
∫ t1

0 dτ1kT (τ1, τ⊥)ẋ(τ1, τ⊥)
]

(−2π i)ρ/2eiϕ/2
√

det Λρρ det aςς detRt
.

Here ϕ(t) := arg(det(Bt )). In our 1D implementation, we
require that ϕ(t ) must be monotonically increasing for in-
creasing t . Nt combines the prefactor from the inverse
metaplectic transform and the analytic form of the NIMT
into a single analytic expression which may be evaluated
independently from the integral (Ref. [18]). Note that our
definition of Nt is formulated slightly different from Ref. [18].
First, we have defined ϕ(t ) as the argument of det(Bt ). Since
det(Bt ) ∈ R, ϕ(t ) ∈ {nπ | n ∈ Z}. By construction, ϕ must be
monotonically increasing as a function of t1 to avoid crossing
branch cuts in the square root

√
sign (det(Bt )) := eiϕ/2. This

is directly related to the sign ambiguity of the metaplec-
tic transform discussed in Sec. III C. Second, as opposed to
Ref. [18], we define the nonzero singular values in Λρρ to
always be positive since this is a customary convention for
SVD (Ref. [[26], p. 604]). Finally, we determine the amplitude
constant A(τ⊥) by matching the final MGO field ψ (x) to
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the true field at some x1 coordinate, where the true field is
assumed to be known in the problem. Note also that Rt is
the upper triangular matrix from a QR decomposition of the
Jacobian matrix ∂τz(τ). This is not to be confused with theRS

from the SVD of Bt.

IV. NUMERICAL DETAILS

From this point on, we now restrict the position to be 1D,
i.e., N = 1. This reflects the current state of the numerical
implementation and the three examples on which we apply
the code.

A. Obtaining the ray manifold

We obtained the ray manifold by integrating Hamilton’s
ray equations in (6) numerically using the initial value prob-
lem (IVP) solver from the SciPy Library (Ref. [27]) which
uses a Runge-Kutta scheme. The dispersion symbol, D(z),
depends on the particular physical system but its analytical
form is known in examples below. To obtain the right-hand
side (RHS) of (6), we used automatic differentiation with
PyTorch, Ref. [28]. The IVP solver calculated the solution at
discrete points on the ray manifold, and points at equidistant
τ values were then interpolated with a quartic polynomial. In
addition to integrating the equations forward in τ from some
initial values, we also integrate backward by a smaller amount
to get some ghost points on the manifold preceding our initial
values. This makes the later step when we perform the inverse
metaplectic transform numerically more robust.

B. Determining time derivatives, the symplectic
transformation matrix and the eikonal fields

We used a finite central difference scheme with second-
order precision based on the discrete known points of z(τ )
to calculate the Jacobian j(τ ) = ∂τ z(τ ) and its counterparts
in the different rotated phase spaces Jt (τ ) = ∂τ –Zt

(τ ). As an
alternative, one could have used the RHS of (6) and its sym-
plectically transformed analog. However, since we used a fine
τ resolution in all examples presented below, we expect the
difference between these methods to be negligible compared
to the larger sources of error of the MGO method.

From j(τ ) we calculated St at all points along the ray using
Eqs. (27)–(29). For each point τ = t , the eikonal envelope,
Φt (τ ), was readily calculated using Jt (τ ) and (33), where we
restricted the calculation to only include points on the current
branch in rotated phase space. Note that we define a branch
as a connected interval with a constant sign of Jt (τ ). For the
eikonal phase, Θt (τ ), in (34), we used numerical trapezoidal
integration. With a fine τ resolution and well-behaved ẋ, k the
numerical error associated with this is expected to be negli-
gible. Alternatively, the phase could have been calculated by
integrating the τ derivative of (34) as an ordinary differential
equation coupled to Hamilton’s ray equations.

C. Steepest descent method for the inverse transform

From the eikonal fields, Φt ,Θt in rotated phase space, we
arrive at the inverse metaplectic transform integral of (36),

ϒt =
∫ ∞

−∞
dεΦt (ε)ei ft (ε), (40)

where ε := Xt − Xt (t ). Due to the oscillatory term, ei ft (ε), the
main contribution to the integral will be from the vicinity of
the saddle point where ∂ε ft (ε) = 0. Note that by construction
of ft (ε) in (36c), the phase factor has a saddle point exactly
at ε = 0. Attempting to evaluate the integral along the real
line by simply using the trapezoidal rule will cause erroneous
numerical cancellations due to the oscillatory behavior. In-
stead, we have followed Refs. [17,18] which propose using
the method of steepest descent and Gauss-Freud quadrature.
This section explains the approach.

The steepest descent method utilizes that we may de-
form the integral to a new contour γ (l ) = ε ∈ C in the
complex plane. This deformation of the integration path is
allowed provided that the contributions to the integral as
|ε| → ∞ vanishes and provided no singularities of the inte-
grand Φt (ε)ei ft (ε) are crossed when changing the contour path
(Ref. [[29], p. 158]). From Eq. (33), we see that Φt (ε) will
only have singularities along the real line (at the caustics in
rotated phase space). These caustics are not crossed anew by
a deformation of the contour. From the definition of ft (ε) in
Eq. (36c), we see that ft (ε) is an entire function provided
the eikonal phase Θt (ε) is entire. Thus, we can assume that
a deformation of the integration path is, in general, possible.
The integral is therefore

ϒt =
∫
C0

dεΦt (ε)ei ft (ε). (41)

The new integration contour C0 will be chosen as the path
passing through the saddle point ε = 0, which has the steepest
descent of |ei ft (ε)| when moving away from the saddle point.
This ensures that the integral quickly converges. This is the
same as finding the steepest descent of −Im ft (ε). Note that
Φt (ε) is assumed to vary much more slowly than ei ft (ε), so we
only consider the behavior of ft (ε) to be relevant in choosing
the optimal integration contour.

1. Steepest descent directions without degeneracy

A simple analysis reveals the directions of steepest descent
for a nondegenerate saddle point where f ′′

t (0) �= 0. By con-
struction of ft (ε) in (36c), we have

ft (0) = 0, f ′
t (0) = 0. (42)

If f ′′(0) �= 0, we may therefore approximate ft (ε) in the vicin-
ity of ε = 0 as

i ft (ε) ≈ i 1
2 f ′′

t (0)ε2 = 1
2 | f ′′

t (0)||ε|2ei(π/2+α+2σ ), (43a)

where α := arg f ′′
t (0), σ := arg ε. (43b)

The exponential has cos(π/2 + α + 2σ ) as the real part.
Therefore, |ei ft (ε)| is minimized when the cosine is −1, i.e., in
the two directions where

σ± = −arg f ′′
t (0)

2
− π

4
± π

2
. (44)

Since the cosine is −1 in these directions and since ft (0) = 0,
the real part of ft (ε) will be 0 in these directions, meaning
that ei ft (ε) will be free from oscillations if evaluated along the
steepest descent direction. A similar analysis for the degener-
ate case where f ′′

t (0) = 0, f ′′′
t (0) �= 0 gives the three steepest

descent directions and so forth for higher degeneracy orders.
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2. Gauss-Freud quadrature

Now, assume we have found a parametrization γ : R → C
of the contour such that the contour integral is

ϒt =
∫ ∞

−∞
dlγ ′(l )Φt [γ (l )]ei ft [γ (l )]. (45)

Further, assume that the saddle point is reached at l = 0, i.e.,
γ (0) = 0. If the saddle point is degenerate, C0 may have a kink
at the saddle point and it is therefore convenient to split γ into
two functions:

γ (l ) :=
{
γ−(l ) l � 0
γ+(l ) l > 0.

(46)

The contour integral can then be written as a single integral
from 0 to ∞:

ϒt =
∫ ∞

0

dl (γ ′
−(−l )Φt [γ−(−l )]ei ft [γ−(−l )] (47)

+ γ ′
+(l )Φt [γ+(l )]ei ft [γ+(l )] ). (48)

Using Gauss-Freud quadrature, an integral of the form above
can be approximated as a finite sum:∫ ∞

0

dlh(l ) ≈
n∑

j=1

w j
h(l j )

ω(l j )
, where (49)

ω(l ) = e−l2
. (50)

Please refer to Refs. [17,29] for more details on the
Gauss-Freud quadrature method. To reduce the error in the
quadrature approximation, we need h(l )/ω(l ) to be well-
approximated by a 2n − 1 degree polynomial (Ref. [29]).
We shall therefore introduce a constant scaling, λ, of the
parametrization, such that the integral becomes

ϒt =
∫ ∞

0

dlh(l ), where h(l ) := h−(l ) + h+(l ), (51)

h±(l ) = λ(γ ′
±(±λl )Φt [γ±(±λl )]ei ft [γ±(±λl )] ). (52)

To choose λ, we note that ft [γ (l )] is purely imaginary and
increasing, and then Taylor expand the imaginary part around
l = 0:

ft [γ (l )] = i

[(
l

λ2

)2

+
(

l

λ3

)3

+ · · ·
]
, (53a)

where λm :=
∣∣∣∣ 1

m!
∂m

l Im ft [γ (l )]

∣∣∣∣
l=0

∣∣∣∣
−1/m

. (53b)

The absolute value is included to stress that we assume the
mth derivative of Im ft [γ (l )] to be positive. We propose defin-
ing the global length scale as λ = λm, where m is the lowest
positive integer for which λm � λm+1. With this definition, we
will approximately have (in the vicinity of the saddle point)

ft [γ (λl )] ≈ ilm (54)

and thereby

h±(l )

ω(l )
≈ λγ ′

±(±λl )Φt [γ±(±λl )]el2−lm
. (55)

The Gauss Freud quadrature is therefore appropriate if
Φt (l )el2−lm

is well-approximated by a (2n − 1) degree poly-
nomial, where m is the order of degeneracy. This should

work especially well for non-degenerate saddle points, where
m = 2.

3. Steepest descent angle update algorithm

Equation (44) is only accurate far from caustics, since the
saddle point becomes degenerate at the caustic. Instead of us-
ing (44), we have therefore implemented an algorithm similar
to, but slightly different from, the angle update algorithm of
Ref. [17]. First, we assume that the directions of the contours
are unchanged as we move away from the saddle point such
that

γ (l ) :=
{

|l|eiσ− l � 0

|l|eiσ+ l > 0.
(56)

We start an iteration on each branch of the manifold at the τ

value with a maximal value of | j(τ )|. This is to ensure that we
are as far from the caustics as possible such that we can use
(44) as our initial values of σ±. Then, for each point on the
ray manifold we minimize −Im{ f (ε)} on a circle of radius L
and select the closest minimal loci σ± relative to the σ±-values
found at the previous τ step. In doing so, we avoid σ+ = σ−
which would not be a valid deformation of the contour. For the
radius of the circle, we choose L = l1λ, where l1 is the lowest
order node in the Gauss-Freud quadrature.

D. Analytic continuation to the complex plane

To evaluate the integrand along the steepest descent con-
tour, we need to know the values of the integrand in the
complex domain. This is no problem in an analytic imple-
mentation of MGO, but in a numerical treatment we only
know the function values of Ψt [ε + Xt (t )] on the real domain
after having calculated the phase and envelope using Eqs. (33)
and (34). To solve this problem, we use barycentric rational
interpolation (see Refs. [30–33]) of the numerical signal of
Ψt , ft . In a barycentric rational interpolation, a function f (z)
of a complex variable z is represented as the ratio of two
partial fractions:

r(z) = n(z)

d (z)
=

m∑
j=1

w j f j

z − z j

/ m∑
j=1

w j

z − z j
, (57)

where f j = f (z j ) are known sampled values of the function
and w j are weights which must be chosen. In this form, one
can see that r → f j for z → z j why defining r(z j ) := f j for
all j is meaningful such that r(z) is continuous and takes
the sampled values at all interpolation points. Multiplying the
nominator and denominator with the node polynomial �,

�(z) =
m∏

j=1

(z − z j ), (58)

shows that the barycentric representation is in fact a ratio-
nal function, i.e., a quotient of two polynomials, Ref. [31].
The barycentric form is less prone to numerical overflow
compared to the raw rational form, Ref. [30]. A well-known
special case of barycentric interpolation is the Lagrange
polynomial interpolation, which uses w j = ∏

k �= j (z j − zk )−1.
Rather than this choice of weights, we use the recently pro-
posed adaptive Antoulas-Anderson (AAA) algorithm to find
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the best interpolation. The algorithm is described in Ref. [31]
and the Python implementation which we use is due to
Refs. [32,34]. Although the algorithm generally performs well
when interpolating, the precision when extrapolating an oscil-
latory function is generally acceptable one wavelength away
from the interpolation domain, Ref. [33]. An issue in using
the AAA algorithm for extrapolation is, however, that we only
know the function values in a limited interval ε ∈ [a, b] along
the real line. Thus, we are not guaranteed to have data in a
sufficiently large radius around ε = 0 for an interpolation to
be valid. Furthermore, there may also be caustics at ε �= 0
in the rotated frame which can cause numerical challenges.
With these considerations, we pick a maximal value M beyond
which we do not extrapolate. The value is chosen based on the
wave number in the rotated phase space such that

M = εmax + π

Kt (t )
, (59)

where εmax =: min(|a|, |b|). The maximal number of quadra-
ture nodes we use is 10, but we choose the highest number
of nodes, n, such that λln < M, where ln is the position of
the nth quadrature node. In the worst case, where even the
first quadrature node is outside the extrapolation domain, i.e.,
λl1 < M, we instead change the scaling λ to make the nodes
fit inside the extrapolation domain. There is a trade-off here;
more nodes improve the accuracy of the integral, but at the
same time requires the barycentric rational interpolation to be
valid in a larger radius in the complex domain. The choices
above are an attempt to balance these considerations in an
automated fashion.

E. Constructing the field

Once the inverse metaplectic transform has been applied,
the branches of different signs of j(τ ) must be superimposed
to produce the total field. As different branches may be known
at different positions and with varying resolutions, we here ap-
ply interpolation once again to evaluate the different branches
in the same points. For this purpose, we use a linear interpola-
tion scheme on the different branches of the wave field in the
original frame.

V. RESULTS

Having outlined the theory of MGO and the numerical de-
tails of the implementation, we will now proceed to showcase
MGO in action. The only type of caustic occurring in 1D is
the fold caustic and we shall see three examples of this. First,
we examine the Airy and Weber equations. Both problems
are fundamental examples of caustics and have been treated
analytically in the previous work by Ref. [15]. Lastly, we
demonstrate the numerical implementation on a fold caustic
in connection with X-B mode coupling in a hot magnetized
plasma. This problem has not previously been treated using
MGO, so we compare the results with PIC simulations.

A. Airy’s equation

As a first example, consider Airy’s equation:

∂2
x ψ (x) − xψ (x) = 0. (60)

Insertion of a plane wave ansatz or alternatively taking the
Wigner-Weyl transform of the wave operator gives us the local
dispersion relation for Airy’s equation:

D(x, k) = −k2 − x = 0. (61)

A longer analytical analysis of the problem using the for-
mulas from Sec. III gives the following fields needed for the
contour integrals (Refs. [15,18]):

ft (ε) = Θ[Xt (t ) + ε] + k(t )ε2 − k2(t )

ϑt
ε, (62)

Θt [Xt (t ) + ε] = 8k4(t ) − ϑ4
t

8k2(t )ϑt
ϑt + 1

4k(t )
ε2

+ ϑ6
t − [

ϑ4
t − 8k(t )ϑtε

]3/2

96k3(t )
, (63)

where

ϑt =
√

1 + 4k2(t ),

k(t ) =
√

−x(t ), x(t ) = −(
√

x0 − t )2,

and x0 is the initial position of the traced rays. Finally, the field
in the rotated frame is given by

Ψt [Xt (t ) + ε] = ϑt√
4k(t )k(τ ) + 1

eiΘt [Xt (t )+ε]. (64)

These analytical results will not be used to generate the
numerical results but are used for benchmarking against in
Fig. 3. Airy’s equation has a fold caustic at x = 0 where
the wave number k must vanish for the dispersion relation
to be satisfied. In quantum mechanics, such fold caustics
are encountered at turning points between the classical and
nonclassical region of a potential barrier (Ref. [[35], Ch.
9]). In plasma physics, Airy’s equation, for instance, arises
when an O mode meets its cutoff at the critical density
nc = ε0meω

2/(e2). In a 1D plasma physics context, the wave
field ψ (x) is therefore the electric field E (x). Since (60) is
a second-order differential equation, it has two linearly inde-
pendent basis solutions: Ai(x), Bi(x). Both are special cases
of the modified Bessel functions which are part of the larger
family of hypergeometric functions, Ref. [29]. The solution
to (60) is a linear combination of these two, but since Bi(x)
diverges for x → ∞, the solution we are interested in is the
Airy function of the first kind. Up to a normalization constant,
the solution therefore is

ψ (x) = Ai(x). (65)

For the numerical solutions, we first trace a ray starting at
x = −8, which propagates to x = 0, where it is reflected and
returns to x = −8, at which point we automatically terminate
the tracing. Using the formulas in Sec. II A along with the
initial condition ψ (−8) = Ai(−8), we obtain the GO solu-
tion. For the MGO solution, we trace backwards to x ≈ −13
to provide ghost points for the calculations. Except for this
fact, we use the same ray trajectory as for the GO case.

Intermediate results from the MGO algorithm for a few
selected time points are shown in Fig. 2. The first time point
is at the beginning, far from the caustic, the second is near
the caustic, and the final time point is at the caustic. From
Fig. 2(b), it is clearly visible how at all times the rotated
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FIG. 2. Illustration of the MGO algorithm at different time points for the Airy equation example. (a) Ray manifold with red dot indicating
phase space location at time t . (b) Current branch of symplectically transformed ray manifold. The solid orange line is the part of the current
branch actually used for the Gauss-Freud quadrature integration. (c) Metaplectically transformed eikonal wave field Ψt (ε) = Φt (ε)eiθt (ε) as a
function of ε = Xt (τ ) − Xt (t ) corresponding to symplectic transformation at time t . For (c), we have shown both the exact closed-form MGO
result from (64) and the result from our numerical implementation. The core ray tracing started at x(0) = −8 and was automatically stopped
when returning to its starting position. Besides this, a ghost point tracing was carried out to enable the calculation of the eikonal fields at the
boundaries.

manifold is always tangent to the X axis at τ = t . As a result,
the metaplectically transformed fields plotted in Fig. 2(c) are
all free from caustics in a neighborhood of ε = 0. However,
singularities may still appear further away, as is the case
for t = 1.4. At t = 2.8, we meet the caustic of the original
frame and the ray manifold is rotated 90◦. Therefore, the
metaplectically transformed eikonal field shown at the lowest
plot of Fig. 2(c) is actually a Fourier transform of the Airy
function. Importantly, we see excellent agreement between the
exact analytical fields from (64) and our numerical fields in
Fig. 2(c).

In Fig. 3, we evaluate the analytic continuation step for
the phase factor ft (ε) of (36c) needed in the inverse meta-
plectic transform. We focus in Fig. 3 on the same three time
points as in Fig. 2. At all times, the barycentric rational in-
terpolation using the AAA algorithm appears to agree very
well with ft along the real line. To investigate the analyt-
ical continuation, we show the negative imaginary part of
ft (ε) in Figs. 3(c) and 3(d) in the complex plane. We see
no visible error between the exact result and the AAA fit
in the complex plane either. At t = 2.8, where we meet the
caustic in the original frame, we see how the degeneracy of the
saddle point gives three possible steepest descent directions as
explained in Sec. IV C 1. At all time points, the algorithm for
finding the directions of the steepest decent contours along
with the straight line assumption for the contours appear to

place the Gauss-Freud quadrature nodes close to the intended
contour.

As the final steps of the MGO algorithm, we calculate the
prefactor stemming from the NIMT using the initial condition.
Finally, the branch contributions are interpolated and super-
imposed to give the final result shown in Fig. 4. In Fig. 4, we
compare the three solutions along the original position axis.
Of course, neither of the GO and MGO fields extends into the
evanescent region x > 0. Far from the caustic for x < 0, all
solutions agree very well. Near the caustic, the GO solution
diverges as anticipated while the MGO solution stays close to
the exact solution everywhere.

To quantify the error of the MGO solution, we show in
Fig. 5 the maximal absolute deviation between the MGO
solution and exact Airy function for varying parameters. Fig-
ure 5(a) shows how the error depends on the maximal degree
of the barycentric rational interpolation and Fig. 5(b) shows
the dependence of the error on the number of quadrature
points in the Gauss-Freud quadrature. In both figures, the ab-
solute error quickly converges to about 0.025, corresponding
to a relative error of about 5%. This order of magnitude error
would only result in minor corrections to most subsequent
calculations. We note that the performance of this numerical
implementation is comparable to the results from Ref. [17],
where the exact analytical function ft (ε) is known. There-
fore, the error sources in our results are likely the same as
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FIG. 3. Inspection of barycentric rational interpolation needed for the analytic continuation to evaluate the steepest descent integral as part
of the inverse metaplectic transform step for the Airy equation example. (a) Ray manifold with red dot indicating phase-space location at time
t . (b) Metaplectically transformed phase factor, ft , as function of ε = Xt − Xt (t ) ∈ R, (c) exact negative imaginary part of the analytically
continued phase factor from Eq. (62) evaluated on ε ∈ C, (d) −Im part of barycentric rational interpolation of ft evaluated on ε ∈ C. In (b),
we have included the numerical result (which in Fig. 2 was found to agree with the exact result along Re ε.), and the barycentric rational
interpolation. For (c) and (d), we have also shown the Gauss quadrature node loci (ε j = λl jeσ± ) along the steepest descent contour used to
evaluate the integral of the inverse metaplectic transform.

for the analytic MGO results previously shown in the lit-
erature. The deviations might be attributed to the limits of
using Gauss-Freud quadrature near the caustic, the linear con-
tour approximation, or, perhaps most significant, the NIMT
approximation.

B. Weber’s equation

As our next example, we consider Weber’s equation,(
2Eν + ∂2

x − x2
)
ψ (x) = 0, (66)

where Eν = ν + 1/2 and ν ∈ N0. Weber’s equation describes
the quantum harmonic oscillator, with Eν being the energy
associated with the mode number ν. In a plasma physics con-
text, this could be an O mode inside a nonmonotonic density
profile, where it meets a cutoff on either side of the peak.
These cutoffs are caustics and are found at x = ±√

2Eν . After

a Wigner-Weyl transform, the dispersion symbol is found to
be (Ref. [18])

D(x, k) = (2Eν − k2 − x2) = 0. (67)

An exact solution can be expressed in terms of the Hermite
polynomials, Hν (x), as

ψν (x) = π−1/4

√
2νν!

Hν (x)e−x2/2. (68)

Again, we also cite the analytical results from Refs. [15,18] of
the function for the contour integral which we later compare
to in Fig. 8:

ft (ε) = ε

2

√
2Eν − ε2 + Eν sin−1

(
ε√
2Eν

)

− tan(2t )

2
ε2 −

√
2Eνε. (69)
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FIG. 4. Solution to Airy’s equation, Eq. (60). The top plot shows
the ray phase space trajectory. The solid line is the ray trace used
for calculating the final field. The dashed line indicates the extra
tracing carried out to get sufficient data for calculating the field at
the boundaries of the trace domain. In the bottom plot, we see the
resulting wave field. We have shown both the exact wave function,
ψ (x) = Ai(x), the GO approximation, and the solution from apply-
ing the MGO algorithm.

For the numerical solutions, we follow a very similar proce-
dure to Airy’s equation. This time, we initiate the ray tracing at
x = x0 = −Rν , since Rν = √

2Eν is the radius of the oscilla-
tion. The initial condition is chosen to match the exact solution
at x = x0. We use a ghost margin of 16% such that we trace
16% of the number of time points at each side of the ray trace
for ghost points. We show the result of the fundamental mode
in Fig. 6. Again, the GO solution diverges at the caustics,
but here it only agrees well with the exact solution close to
x = 0, in the middle between the two caustics. The MGO
solution generally agrees much better with the exact solution
but is visibly less accurate than for the Airy equation. Still,
the solution stays within ∼10% of the exact solution at all
points. For higher mode numbers shown in Fig. 7, there is
better agreement between the MGO solution and the exact
solution. In phase space, the modes form closed circles of
radius

√
2ν + 1. The higher modes therefore have a smaller

curvature, meaning that the frame is rotated slower with re-
spect to t . When we inspect the barycentric rational AAA
interpolations and the reconstructed −Im ft (ε) in Fig. 8, we
see that although the AAA fit is excellent inside the ε do-
main, where there is data, the contour integral uses quadrature

FIG. 5. Maximal absolute error (across the spatial domain) be-
tween the MGO and exact solution for the Airy problem when
varying (a) the barycentric rational maximal interpolation degree and
(b) the order of the Gauss-Freud quadrature. (a) used ten quadrature
points and (b) used mmax = 20.

FIG. 6. Numerical solution to Weber’s equation (66) for the
ground state (ν = 0). In the top plot, we see the ray phase-space
trajectory. The ray path is seen to be periodic in phase space, and
the ray tracing was automatically stopped after one cycle. However,
the ray was traced a bit more than one cycle to have sufficient data
on the boundaries. In the bottom, we see the reconstructed wave
field in position space within the eikonal approximation of GO. For
comparison, we have also included the exact wave function solution
given by Eq. (68).
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FIG. 7. Numerical solutions to Weber’s equation, Eq. (68), for
first three excited states ν = 1, 2, 3. See caption to Fig. 6.

points which extend further away from the origin than the
data points. Outside the domain, we see the occurrence of
what appears to be Froissart doublets, which can be thought
of as spurious pole-zero pairs very close together such that
they nearly cancel, Ref. [31]. In both the purely numerical
case as well as the case where ft (ε) is known, the straight line
contour approximation and the algorithm that determines the
directions appear to mostly work well. However, some of the
points furthest from the origin seem to deviate slightly from
the true steepest descent contour. Still, the main contribution
to the Gauss-Freud quadrature comes from the points closest
to the origin where the function is reconstructed very well,
and, for this reason, the final result comes close to the ex-
act solution. We note that analytical results using the MGO
method in Ref. [15] perform comparably well.

C. X-B mode coupling in ASDEX upgrade

In the final example, we apply the code to the problem
of X-B coupling where the X mode couples to an EBW at
the upper hybrid layer in a hot magnetized plasma. In this
phenomenon, a forward propagating electromagnetic wave is
coupled to a backward propagating electrostatic wave. X-B
mode coupling occurs when generating EBWs for heating and
current drive (Refs. [36,37]) and for wave trapping related
to low threshold two-plasmon decay instabilities (Ref. [38]).
The nomenclature of what is meant by X-B and the differ-
ent waves vary across the literature. We refer to the forward
propagating wave as the X mode, the backward propagating
wave as the EBW, and the turning point as the upper hybrid
layer. Unlike the cold O and X modes, the X mode and the
EBW are described by the same dispersion symbol and are
simply two different parts of the same ray trajectory with
different physical wave characteristics. The turning point is
a fold caustic and the phase space trajectory around this point
is similar to that of the cutoff in Airy’s equation except that the
caustic occurs at nonzero k and the in- and outgoing branches
describe different types of waves. This problem has not pre-
viously been treated analytically with MGO and is unlikely
to ever be, as the kinetic dispersion relations for magnetized
plasmas are rather complicated. In place of a comparison with
analytical theory, we will make use of 1D fully kinetic PIC
simulations of X-B coupling at the upper hybrid layer. We take
parameters inspired by the Axially Symmetric Divertor Exper-
iment Upgrade (ASDEX Upgrade), which is a medium-sized
tokamak equipped with several gyrotrons used for electron
cyclotron resonance heating and current drive as well as for
collective Thomson scattering diagnostics, Refs. [39,40]. For
these parameters, the upper hybrid layer of the gyrotrons is
found between the fundamental and second harmonic electron
cyclotron frequency.

For the PIC simulations, we use the PIC code EPOCH,
Ref. [41]. It is a low power simulation that has previously been
used in a study of parametric decay in ASDEX, Ref. [42],
with one spatial and three velocity dimensions. It is a deu-
terium plasma with a linear density profile of ne(x) = ni(x) =
5.4 × 1019 m−3 − x 2.0 × 1021 mm−4, where subscripts e and
i refer to electrons and deuterons, with a uniform temper-
ature profile of Te = Ti = 300 eV and a magnetic field of
B = 3.35 T, pointing perpendicular to the x direction. The
domain is 0 mm � x � 13.5 mm with 1666 grid points and
6 × 104 macroparticles per grid point, corresponding approx-
imately to 64 gridpoints per wavelength at the upper hybrid
layer. The particle boundary conditions replace lost particles
at the boundaries with new thermally distributed ones. The
field boundary conditions are open with a ω/(2π ) = 105 GHz
X-mode polarized wave of intensity I = 7 × 107 W/m2 at
the x = 0 boundary. With these parameters, the upper hybrid
layer is found in the vicinity of x = 12 mm and an excerpt
of the longitudinal electric field can be seen in Fig. 11. An
interference pattern in space can be seen in the figure and the
field is seen to peak at a finite value close to x = 12 mm. The
field appears to have a simple harmonic time dependence on
the shown timescale.
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FIG. 8. Inspection of barycentric rational interpolation needed for the analytic continuation to evaluate the steepest descent integral as part
of the inverse metaplectic transform step for the Weber equation example. (a) Ray manifold with red dot indicating phase space location at
time t , (b) metaplectically transformed phase factor, ft , as functions of ε = Xt − Xt (t ) ∈ R, (c) exact −Im part of the analytically continued
phase factor from Eq. (69) evaluated on ε ∈ C, and (d) barycentric rational interpolation of ft evaluated on ε ∈ C. In (b), we have included the
numerical result and the barycentric rational interpolation. For (c) and (d), we have also shown the Gauss quadrature node loci (ε j = λl jeσ± )
along the steepest descent contour used to evaluate the integral of the inverse metaplectic transform.

To model this with GO and MGO, we use the following
dispersion relation (Refs. [43–45]):

D(x, k, ω) = K1(x, k, ω)k2 −
(ω

c

)2
(S2 − D2), (70)

K1(x, k, ω) = 1 + ω2
pe

ω2
ce

exp(−λ)
∫ π

0
dψ

× sin
(
ψ

(
ω

ωce

))
sin(ψ ) exp(−λ cos(ψ ))

sin
(
π

(
ω

ωce

)) , (71)

where S = 1 − ω2
pe/(ω2 − ω2

ce) and D = ωceω
2
pe/(ω(ω2 −

ω2
ce)) are the Stix sum and difference parameters, λ =

k2v2
Te/(2ω2

ce) is a normalized squared wave number, ωce =
eB/me and ωpe =

√
e2ne/(ε0me ) are the electron cyclotron

and plasma frequencies, and vTe = √
2Te/me is the electron

thermal speed. Note that we are neglecting contributions from
the ions because we are considering a wave in the electron

frequency range and the large mass ratio renders the ion
contributions insignificant. As reported earlier in the liter-
ature, the theoretical dispersion relation does not perfectly
match what is observed in EPOCH [46]. The reasons could
include numerical dispersion and that nonlocal and nonlinear
effects are neglected in the linear dispersion relation but not
in EPOCH.

To get a better matching dispersion curve, we multiply
the electron temperature by a factor of 1.28 in our GO
and MGO calculations. This temperature factor was found
by varying the temperature such that the absolute differ-
ence between the GO and PIC fields away from the caustic
was minimized. The different ray traces corresponding to
an electron temperature of 300 eV and 1.28 × 300 ≈ 385 eV
are shown in Fig. 9 on top of the spectral density from the
PIC simulation. Clearly, neither of the ray traces match the
numerical simulation exactly, but the curve with higher elec-
tron temperature goes through the high-intensity region in
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FIG. 9. Ray phase-space trajectory for X-B mode coupling plot-
ted on top of normalized spectral density from PIC simulation. The
colored spectral density plot shows the normalized norm square of
the continuous wavelet transform of Ex from a PIC simulation (see
Fig. 11) at a specific time (t = 8 ns) using a complex Morlet wavelet.
Meanwhile, the white curve shows the ray trace obtained from the
dispersion relation in Eq. (70) with an electron temperature of Te =
300 eV. The orange curve shows the trace if instead Te = 385 eV.

phase space and should therefore match better with the PIC
simulation.

Similar to Airy’s equation, we trace a ray starting as an
X mode at x = 0 and end the tracing when the returning
EBW reaches x = 0. We then reconstruct the MGO wave field
and define the phase and amplitude such that the absolute
difference between the MGO/GO and PIC fields is minimized
across the domain x ∈ [11 mm, 11.5 mm]. As an alternative,
one could have matched the final MGO/GO fields to the PIC
simulation at a specific x location similar to the procedure
of the Airy and Weber examples. However, this alternative
approach would be very sensitive to the specific x location
chosen since, as we shall see, we have a rapidly oscillating
electric field and there is not an exact phase match between
the PIC field and the MGO/GO fields.

In Fig. 10, we show the resulting incoming and outgoing
and combined wave fields according to the MGO implemen-
tation. Crucially, we note that the MGO solution is finite
everywhere and looks smooth except right before the turning
point on the right side, where the curve becomes a little noisy.
We attribute this noise to the interpolation based on the AAA
algorithm in combination with the straight contour approxi-
mation which leads the contours close to spurious poles of the
AAA extrapolation.

Finally, we compare the amplitude of the complex enve-
lope function of both the GO and MGO solutions with that of
the PIC simulations. Since the fields are real-valued in the PIC
simulations, we determine the envelope as the maximum in
the time interval 6.5 ns < t < 12 ns at each grid point inside
the domain. No clear transients occur near the upper hybrid
layer in this period. The resulting comparison is shown in
Fig. 12. All solutions agree well on shape and magnitude
with some minor deviations, except for the GO solution which
diverges at the upper hybrid layer. It is worth noting that the

FIG. 10. Plots of the ingoing (top plot), outgoing (center plot),
and combined (bottom plot) field obtained from MGO for the case of
X-B mode coupling with Te = 385 eV.

FIG. 11. Longitudinal electric field, Ex , in 1D PIC simulations
of X-B mode coupling in ASDEX. An X-mode wave is excited at
x = 0 mm and propagates to the upper hybrid layer near x = 12 mm
where it couples to a backward propagating electron Bernstein wave.
At the shown time, the returning electron Bernstein wave has made
it back to the left boundary of the figure and an interference pattern
can be seen.
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FIG. 12. A comparison of the envelope of the longitudinal elec-
tric wave field for X-B mode coupling. The absolute value of the
GO/MGO fields (with Te = 385 eV) are compared to the maximum
of the PIC result (the PIC field is maximized over a time window of
about 5 ns). The amplitude of the GO and MGO solutions were set by
minimizing the absolute difference between the absolute MGO field
and the maximum PIC field over the interval x ∈ [11 mm, 11.5 mm].

PIC simulations model many more effects than the simple
linear dispersion relation is capturing. As mentioned earlier,
nonlocal and nonlinear effects are neglected even though the
upper hybrid layer is often associated with nonlinear effects
due, in part, to the caustic. Furthermore, although both the
X-mode and electron Bernstein wave become approximately
electrostatic near the upper hybrid layer, the X-B mode cou-
pling is not truly a scalar wave problem. Still, our numerical
implementation of MGO is capable of capturing the features
of the PIC wave field, provided that the dispersion manifold
can be determined sufficiently well.

VI. CONCLUSION AND DISCUSSION

We have presented an unsupervised numerical implemen-
tation of MGO, relying only on a 1D discrete phase space
trajectory produced by a ray tracer. The code needs no addi-
tional information to the ray tracer and reconstructs the wave
field with good agreement, and importantly without singular-
ities, for the benchmarking examples of Airy’s and Weber’s
equation. The numerical solutions display minor deviations
near the caustics with a relative error within 10% in the worst
case example in Weber’s equation. This discrepancy may be

attributed to the numerical integration method used to evaluate
the inverse metaplectic transform or to an approximation of
the NIMT. The contour integrals are performed using Gauss-
Freud quadrature and a barycentric rational function fit, which
reconstructs the target functions with great precision and does
a decent job extrapolating to the complex domain. A problem
in the current implementation is that the barycentric rational
interpolation suffers from Froissart doublets. An approach
to remove these doublets is proposed in Ref. [31], but not
yet implemented in the numerical implementation presented
here. Though there is room for optimization, our numerical
implementation reconstructs the wave field in seconds to a few
minutes on a modern laptop (MacBook Pro 2019), depending
on the resolution needed for the problem (about 30 s for Airy’s
equation with 700 ray tracing points and 1.5 min for the
X-B example with 2500 ray tracing points). The numerical
implementation is fully automated and the implementation
can, in principle, be extended to more spatial dimensions in
future work. However, it remains an unresolved problem to
generalize the steepest-descent methods used in 1D in this
paper to multidimensional integrals. Importantly, the MGO al-
gorithm is agnostic to the type of linear wave equation, though
the current formulation of MGO is reserved to time-invariant
scalar waves.

When applied to the problem of X-B mode coupling in
a magnetized fusion plasma, the numerical implementation
of MGO is capable of achieving good agreement with PIC
simulations, with similar or better performance than GO and,
crucially, without the divergent behavior at the caustic. This
opens up applications in reduced modeling of phenomena
which depend nonlinearly on the electric field intensity such
as three-wave interactions and stochastic heating.
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