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Methodological notes on gauge invariance in the treatment of waves and oscillations in plasmas
via the Einstein-Vlasov-Maxwell system: Fundamental equations
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The theory of gauge transformations in linearized gravitation is investigated. After a brief discussion of
the fundamentals of the kinetic theory in curved spacetime, the Einstein-Vlasov-Maxwell (EVM) system of
equations in terms of gauge-invariant quantities is established without neglecting the equations of motion
associated with the dynamics of the nonradiative components of the metric tensor. The established theory is
applied to a noncollisional electron-positron plasma, leading to a dispersion relation for gravitational waves in
this model system. The problem of Landau damping is addressed and some attention is given to the issue of
the energy exchanges between the plasma and the gravitational wave. In a future paper, a more complete set of
approximate dispersion relations for waves and oscillations in plasmas will be presented, including the dynamics
of nonradiative components of the metric tensor, with special attention to the problems of the Landau damping
and of the energy exchanges between matter, the electromagnetic field and the gravitational field.
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I. INTRODUCTION

The questions about the propagation and even the existence
of gravitational waves go back to the very foundations of the
general theory of relativity [1,2]. These waves have been well
investigated (both experimentally and theoretically [3–16])
over the past decades, culminating in their detection some
years ago by the LIGO system [17–20]. From a theoretical
point of view, the discussion of gravitational waves is very
facilitated and simplified in the linear regime [7–10]. In this
limiting case, it is relatively simple to show that gravita-
tion behaves most like electromagnetism, in the sense that
Einstein equations exhibits gauge freedom, in the same way
as Maxwell equations, and that the gravitational waves pos-
sesses, as electromagnetic waves do, two independent states
of polarization. On the other hand, it is well established in
the realm of the classic field theory that only gauge-invariant
quantities could have a physical significance [21,22], and one
of the objectives of this paper is to exploit this subject and
properly apply it to the study of waves and oscillations in fully
relativistic plasmas in the context of the kinetic theory [23].

The history of the theoretical study of the propagation
of gravitational waves in plasmas began long before the
experimental confirmation of their existence. In the 1970s,
the problem of gravitational wave propagation in a medium
was addressed by considering a hot noncollisional system
of particles through kinetic theory [24]. In this study, a
dispersion relation was derived by the resolution of the
Einstein-Boltzmann (in its noncollisional version, that is,
Vlasov equation) system and it was concluded, on the one
hand, that the impact of the plasma on the propagation of
gravitational waves should be small and, on the other hand,
that there is a possibility of wave-particle resonances in this
physical system. In later works, the controversy over the
possibility of Landau damping of gravitational waves was

discussed at several levels [25], and the effect of gravitational
radiation from distant sources on electromagnetic waves in
dispersive media was investigated [26]. A complete system
of macroscopic equations for the electromagnetic and grav-
itational fields in magnetized plasmas was presented in 1982
and the propagation of gravitational waves in this medium was
investigated using kinetic theory in the following year [27,28].
In the late 1990s, a system of equations governing the nonlin-
ear dynamics of interacting neutrinos and gravitons in plasmas
was established [29] and the excitation of electromagnetic and
Langmuir waves by gravitational waves was considered [30].

At the turn of the century, the effects of intense gravita-
tional waves (i.e., in the nonlinear regime) on cold plasmas
have been investigated [31]. Then, in a series of works,
the interactions between gravitational waves, electromagnetic
waves and a magnetized plasma were explored, and the issue
of gravitational Landau damping was raised again [32–36]. In
the same period, some studies were carried out to examine the
excitation of magnetosonic waves and the transfer of energy
from gravitational waves to the plasma, especially in neutron
star merger events [37–40]. Furthermore, cosmological issues
involving the excitation of plasma waves by gravitational
waves have been considered in 2002, employing relativistic
hydrodynamic equations [41]. In 2004, also with a hydro-
dynamic approach, the nonlinear coupling between Alfvén
waves and gravitational waves in strongly magnetized plas-
mas was scrutinized [42]. Spherically symmetric solutions
of the Einstein-Vlasov-Maxwell system have been discussed
in 2004–2005 [43,44], and the transfer of gravitational en-
ergy to plasma particles in a system of astrophysical interest
and the interaction between gravitational waves in strongly
magnetized plasmas were topics revisited in 2006 [45,46].
In 2010, in a sequence of works, coupling constants for the
nonlinear interactions between gravitational, electrostatic and
electromagnetic waves in a relativistic nonmagnetized and

2470-0045/2024/110(2)/025207(23) 025207-1 ©2024 American Physical Society

https://orcid.org/0000-0001-8480-6877
https://ror.org/041yk2d64
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.025207&domain=pdf&date_stamp=2024-08-26
https://doi.org/10.1103/PhysRevE.110.025207


LUCAS BOURSCHEIDT AND FERNANDO HAAS PHYSICAL REVIEW E 110, 025207 (2024)

noncollisional plasma were obtained, and a system of coupled
equations for gravitational and electromagnetic waves in a rel-
ativistic plasma have been analyzed allowing the identification
of several resonances between gravitational waves and plasma
[47,48].

The effects of dispersion and scattering through the inter-
stellar medium on the detection of low-frequency gravitational
waves have been analyzed in 2013 [49]. In 2015, vor-
ticity generation in a plasma around Schwarzschild and
Kerr black holes was investigated employing a magnetofluid
and Arnowitt-Deser-Misner (ADM) formalisms [50]. In this
work, a prescribed metric was assumed and some results
of astrophysical interest were obtained, such as a proposed
mechanisms for collimation of plasma jets and for vortex
formation in the protoplanetary disks of a supermassive star,
presumably related to planet formation [51]. In 2017, the
damping of gravitational waves in collisional material media
was investigated through the Boltzmann equation, evidenc-
ing two distinct mechanisms for the process [52]. In the
same year, the coupling between the electromagnetic and
gravitational fields was once again the subject of study, pos-
sibly motivated by (at the time) recent observations of the
LIGO-Virgo collaboration [53,54]. In 2018, the magnetofluid
formalism was revisited in a work where plasmas was taken
as a system of multiple perfect charged fluids, and the for-
malism proposed provided suitable tools for characterizing
plasmas in a given curved spacetime, including equilibrium
states [55]. No directly related to gravitational radiation (but
still a very interesting subject), the energy extraction from a
spinning Kerr black hole via magnetic reconection was theo-
retically investigated, showing that the process is possible for
black holes of high spin surrounded by a strongly magnetized
plasma [56]. In recent years, some research topics in the area
have been the excitation of magnetohydrodynamic waves by
gravitational waves in strongly magnetized plasmas [57], the
dissipation of gravitational waves [58] and the propagation
of gravitational waves in magnetized dielectric media [59].
Very recently, some works have focused on the important
issue of the polarization of gravitational waves [60,61], and
a mechanism for the reflection of electromagnetic waves
by a gravitational wave background in plasma media was
proposed [62].

Some excellent theses developed since the early 2000s and
which certainly also deserve mention are the works of M.
Servin [63], J. B. Moortgat [64], and O. Janson [65]. These
texts all deal essentially with the same topic: the propagation
and interactions of electromagnetic and gravitational waves in
plasmas in the context of general relativity. As we have seen,
in the present work we intend to answer questions about the
behavior of this same class of physical system and, therefore,
these three works are fundamental to us.

Our aim in this work is to bring together, in a clear,
concise, direct and (as far as possible) self-contained way,
the fundamentals of the classical theory of fields—especially
the issue of the gauge freedom—and the most profound the-
ory of the plasma state (in a nonquantum level) which, in
our understanding, is the general relativistic kinetic theory.
This approach allows the safe and unambiguous determina-
tion of the radiative components of the gravitational field,
without neglecting the dynamics associated with the other

(nonradiative) components. Furthermore, an approximate dis-
persion relation for gravitational waves in an electron-positron
plasma, obtained from the EVM system of equations, will
be treated and discussed in order to illustrate the established
methodology and, to some extent, to elucidate the behavior
of gravitational waves in plasmas. In short, our goal is to
establish a complete picture of the dynamics and interactions
of gravitation, electromagnetism, and matter in plasma state
using only gauge-invariant quantities whenever possible, and
apply the formalism to find out dispersion relations for any
kind of gravitational oscillation, including the calculation of
their damping and energy exchange rates.

We need to reinforce that the present observational and
experimental status of plasma physics does not require a co-
variant formulation (since gravitational effects are generally
small), except when the aim is to describe the dynamics of
components of the metric tensor that do not have a Newtonian
counterpart, as is the case of the present paper. In addition, our
formalism can have application, e.g., to cosmological plasmas
involving small-scale dynamos in Riemannian spaces. This
is the case of Lobachevsky or spherical geometries, which
are possible geometries for the spatial part of the Friedmann
cosmological models [66].

The paper is organized in the following way. In Sec. II,
Einstein field equations (that is, the equations of gravita-
tion) are established in the linear (weak-field) regime, and
the gauge freedom of the theory is discussed in some detail.
The equations of motion are then written in terms of gauge
invariants analogous to the electric and magnetic fields of the
Maxwell theory, and the general theory of gravitational waves
in terms of these invariants is discussed. Some attention is
payed to classical field theoretical aspects of gravitation and to
the energy carried and exchanged by the gravitational field. In
Sec. III, we digress into the general relativistic kinetic theory
of noncollisional plasmas and write down the Vlasov equa-
tion which, together with Einstein and Maxwell equations,
constitute a complete system of equations for the description
of plasma state phenomena. In that section, the equations are
written in terms of the aforementioned gauge invariants when-
ever possible. Finally, in Sec. IV, an dispersion relations for
gravitational waves in an electron-positron plasma is obtained
and discussed.

When writing this paper we keep in mind a wide public,
specially physicist that, like us, are interested in both branches
of physics (plasma physics and general relativity). The step-
by-step construction shown in the text reflect very much the
path taken by the authors in preparing these methodologi-
cal notes and are presented precisely because, presumably,
other researchers in plasma physics interested in general rel-
ativity (especially in gravitational waves) but without much
experience in the area can benefit from this. Therefore, it is
important to emphasize that a reader specialized in general
relativity can safely skip some parts of the text, especially
Sec. II of Sec. III A.

We follow the convention in which the signature of the
metric tensor is (+ − −−) and the Ricci tensor Rμν is ob-
tained from contracting the first and the last indices of the
Riemann-Christoffel tensor, Rσ

μνρ . Latin indices can assume
values from 1 to 3 and are used do label spatial coordinates.
Greek indices can assume values from 0 to 3 and are used
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to label space-time coordinates. The temporal coordinate is
denoted by x0 = ct , where c is the velocity of light and t is the
time. Einstein summation convention is assumed. It should be
clear from the context when a superscript symbolizes an index
or an exponent.

II. GAUGE TRANSFORMATIONS IN LINEARIZED
GRAVITATION

A. On the weak-field limit of the Einstein equations

We proceed to a brief discussion of the equations of gravi-
tation in the weak-field limit [7–9]. This treatment provides a
linearized version of Einstein equations, facilitating—or even
allowing—a general and detailed study of gravitational waves,
the main object of study of this work. In particular, the Fourier
decomposition of the field is legitimate only in the linearized
theory. In addition to the nonlinearity of Einstein equations,
the theoretical study of gravitational waves is hampered by a
subtlety whose origin lies in the very general covariance of the
theory: As the choice of coordinate system is completely ar-
bitrary, it can be difficult to distinguish which wave solutions
represent real physical effects and which are mere artifices
resulting from a particular choice of coordinates. This last
difficulty will be properly addressed in Sec. II B.

Usually, the full Einstein equations (neglecting the cosmo-
logical term) are written in the form

Gμν = −8πG

c4
Tμν, (1)

with the Einstein tensor Gμν given by

Gμν = Rμν − 1
2 gμνR , (2)

where Rμν , R, gμν , and Tμν are, respectively, the Ricci cur-
vature tensor, the Ricci curvature scalar, the metric tensor
(whose components are the gravitational potentials), and the
stress-energy tensor of the physical system, which constitute
the source of the gravitational field. As usual, c is the veloc-
ity of light in vacuum and G is the Newtonian gravitational
constant. As is well known, in general relativity gravitation
is conceived properly as a manifestation of the curvature of
spacetime caused by a distribution of mass and energy, both
contained in Tμν . Curvature itself is encapsulated primarily in
the metric tensor gμν and second in the Ricci mathematical
objects Rμν and R (among others). Under the exclusive influ-
ence of a gravitational field, a point particle of mass m moves
in spacetime along geodesic trajectories, which are the curved
space analogous of straight lines of the flat (or empty) space.
The equations of motion of the point particle are in this case

d2xμ

dτ 2
+ �μ

νρ

dxν

dτ

dxρ

dτ
= 0, (3)

where the derivatives of the coordinates xμ are taken with
respect to the proper time τ , and �μ

νρ are the Christoffel sym-
bols of the second kind, given in terms of derivatives of the
metric by

�μ
νρ = 1

2
gμσ

(
∂gνσ

∂xρ
+ ∂gρσ

∂xν
− ∂gνρ

∂xσ

)
. (4)

If, besides the gravitation, the particle is subjected to an elec-
tromagnetic field Fμν , then the equations of motion must be

modified to incorporate the electromagnetic force, taking the
form

d2xμ

dτ 2
+ �μ

νρ

dxν

dτ

dxρ

dτ
= q

m
Fμ

ν

dxν

dτ
, (5)

where q is the electric charge of the point particle. The
equations governing the dynamics of the electromagnetic
tensor Fμν (that is, Maxwell equations) in presence of a
gravitation field and the influence of electricity and mag-
netism on gravitation will be briefly discussed in Sec. III A. It
should be mentioned that all the equations so far—including
Maxwell’s—can be derived from a variational principle.
For details in the derivation, one could consult Refs. [7–9]
and [67].

Our next task is to establish the weak-field limit of the
Einstein equations. We assume a quasi-Minkowskian metric,
that is, a metric in the form

gμν = ημν + hμν , (6)

where ημν is the Minkowski (that is, flat space-time) metric
tensor, represented by the matrix

[ημν] =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ (7)

and

|hμν | � 1 . (8)

The quantities hμν will henceforth be called perturbations of
the metric. It can be shown [7] that in this linear limit the
components of the Einstein tensor are given by

Gμν = 1

2

(
�hμν − ημν�h + ∂2h

∂xμ∂xν
+ ημνη

ραησβ ∂2hαβ

∂xρ∂xσ

−ηρα ∂2hαμ

∂xν∂xρ
− ηρα ∂2hαν

∂xμ∂xρ

)
, (9)

where h = ημνhμν = hμ
μ is the trace of the tensor hμν and

� is the D’Alembert wave operator. Substituting Eq. (9) in
the left-hand side of Eq. (1) gives us the desired weak-field
equations.

It is well known that in general we are, to a certain extent,
free to choose conveniently the properties of the coordinate
system to be used in a specific physical problem. Particularly
in dealing with gravitational waves in vacuum, usually the
preferred one is the transverse-traceless (or T T ) system of
coordinates [8], in which the metric perturbations obeys both
the transversality condition

∂hμ
ν

∂xμ
= 0 (10)

and the traceless condition

h = 0 . (11)

In fact, the T T coordinates are a subcategory of harmonic
coordinates, for which

∂hμ
ν

∂xμ
− 1

2

∂h

∂xν
= 0 . (12)
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With conditions (10) and (11) enforced in Eq. (9) applied to
empty space, Eq. (1) assumes the very simple and suggestive
form

�hμν = 0 . (13)

Field Eq. (13) gives us the impression that generally all 10
independent components of the metric tensor can exhibit a
wavelike behavior, which by no means corresponds to a phys-
ical reality. The solution of Eq. (13) for a plane gravitational
wave propagating in a specific direction furnishes the well-
known plus and cross independent tensor polarization states
for these waves, correctly showing that gravitational waves in
vacuum just have two degrees of freedom associated solely
to the space-space transverse components of the metric, the
other components being zero [8]. Furthermore, we stress that
the aforementioned T T system of coordinates can be chosen
only in vacuum, so the dynamics of the metric in a material
medium—particularly in a plasma—cannot be taken into ac-
count in this oversimplified formulation. Fortunately, all the
difficulties pointed out above can be removed in a gauge-free
version of the linear theory of general relativity, as we shall
see below.

B. Gauge freedom, gauge invariance,
and Einstein field equations

In electromagnetism we write field equations for invariant
gauge quantities and express the electromagnetic force in
terms of these same quantities: The invariant quantities are
the vector fields E and B, which satisfy Maxwell equations,
and the force law is derived from the Lorentz force [21]. It is
desirable, as far as possible, that the same can be done in the
linear theory of gravity. Furthermore, it is worth mentioning
that a theory following the same spirit for nonrelativistic quan-
tum plasmas has already been obtained [68]. In this theory,
the gauge-invariant Wigner function is taken as the basis of a
fluidlike system describing the plasma. So our main objectives
in this subsection are as follows: (i) to express Einstein field
equations in the linear regime in terms of gauge-invariant
quantities and (ii) to show that the only radiative gravitational
modes, in any gauge and in presence of sources (inclusive),
correspond precisely to the pure spatial part of hμν satisfying
conditions of null trace and transversality.

With this, it is removed from the theory any kind of dif-
ficulty and obscurity involving the nondistinction between
objective gravitational waves and mere artifices resulting from
a given choice of coordinate system (which, in general relativ-
ity, is the same as a choice of gauge). We begin the discussion
by establishing expressions for the components of the metric
tensor which will allow us to find gauge-invariant quantities
in the linear theory as directly as possible. Except for conven-
tions, for some notation and for brevity in our approach, our
rationale in this subsection follows closely that of Refs. [69]
and [70]. Furthermore, a more general alternative approach—
although more abstract—is found in Ref. [71].

The scalar part of the perturbation tensor—that is, the time-
time component of hμν , invariant under spatial rotations—can
be identified with the Newtonian gravitational potential φ

according to

h00 = 2φ

c2
. (14)

This identification goes back to the origins of general rel-
ativity, where the equations for the gravitational field were
constructed based on the equivalence principle and forced to
reproduce the results of the Newtonian theory in the limit of
weak fields and bodies moving at low speeds [7].

The vector part of hμν—that is, the part that transforms as a
three-vector under spatial rotations—is identified with the set
of time-space type components of hμν :

[h01 h02 h02] = −1

c
[Ax Ay Az] = −1

c
A . (15)

We proceed a little further now by employing the Helmholtz
decomposition for the vector A. The Helmholtz theorem states
that the vector A, subject to the appropriate boundary condi-
tion at spatial infinity

lim
x→∞ A = 0 (16)

can be expressed as

A = ∇ψ + h , (17)

where ψ is a specific scalar field and h is a vector field
satisfying

∇ · h = 0 . (18)

Equations (17) and (18) allows expressing Eq. (15) in terms
of components as

h0i = −1

c

(
∂ψ

∂xi
+ hi

)
, (19)

with the condition

∂hi

∂xi
= 0 . (20)

The quantities hi are the components of the three-vector h, and
so here the operations of raising and lowering indices must
be performed by contraction with the Krönecker delta, as in
hi = δi jh j (for three-vectors, the lowering and raising indices
operations must be performed with δi j and δi j , respectively).

A strategy similar to the one outlined above can be em-
ployed in structuring the tensor part of hμν—that is, the part
that transforms according to a three-tensor in spatial rotations.
It can be shown that this tensor part of the perturbation admits
a Helmholtz decomposition of the form

hi j = hT T
i j + 1

3
δi jH + 1

2

(
∂Ei

∂x j
+ ∂E j

∂xi

)

+
(

∂2

∂xi∂x j
− 1

3
δi j∇2

)
λ , (21)

where hT T
i j is the transverse traceless part of hi j , satisfying the

conditions

∂hi T T
j

∂xi
= 0, (22)

δi jhT T
i j = 0 . (23)
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Here λ and Ei are, respectively, the scalar and vector potential
for hi j , the last one satisfying

∂E i

∂xi
= 0 . (24)

By contracting Eq. (21) with δi j and employing Eqs. (23) and
(24), we see that H = δi jhi j , that is, the (three-dimensional)
trace of hi j .

A second-order symmetric four-tensor has 10 independent
components. But calculating the total number of independent
functions given by Eqs. (14), (19), and (21) does not give this
value. In fact, in the proposed decomposition we have four
scalar functions (φ, ψ , H , and λ), three vector components
hi, three vector components Ei and the six components of the
symmetric three-tensor hT T

i j , giving 16 functions. On the other
hand, there are six constraints—one given by Eq. (20), three
given by Eq. (22), one given by Eq. (23), plus one given by
equation—which gives us 16 – 6 = 10 independent functions,
as expected. Note that Eqs. (22) and (23) are closely related
to the traceless transverse coordinate condition usually em-
ployed in the discussion of the propagation and properties of
gravitational waves in free space. However, there is no gauge
fixing here: All we have done is to establish an appropriate
decomposition for the perturbation tensor hμν , with the correct
number of independent components (10), without any kind
of restriction on the physical system in question or on the
adopted coordinate system (except, of course, that we are
working in the linear regime of the field equations). It is also
worth mentioning that it can be proved that the decomposition
presented here is unique when the quantities ψ , λ, and Ei

are subjected to certain fairly simple and reasonable physical
universal boundary conditions. However, we will not deal with
the details of this matter here [69].

Let us now look for invariant gauge quantities in the linear
theory, in a sense the gravitational analogs of the E and B
fields of electromagnetism. As is well known, in the linear
regime the perturbations of the metric transforms, in a coordi-
nate system change (or gauge transformation), as [7]

h′
μν = hμν − ∂χν

∂xμ
− ∂χμ

∂xν
. (25)

Under spatial rotations, the transformation four-vector χμ can
also be conveniently decomposed into a scalar and a vector
part according to

χμ = (χ0, χi ) =
(

η

c
,

∂a

∂xi
+ bi

)
, (26)

with the condition

∂bi

∂xi
= 0 . (27)

Note that in Eqs. (26) and (27) above we employ Helmholtz’s
theorem again, now for the three-vector χi. Like χμ, the trans-
formation functions η, a, and bi [subject to constraint (27)] are
completely arbitrary except for keeping the field weak.

For the scalar component of the perturbation tensor, the
transformation (25) gives

φ′ = φ − ∂η

∂t
, (28)

as can be verified by substituting Eq. (14) in the trans-
formation (25) and employing Eq. (26). Substituting the
components given in Eq. (19) into Eq. (25), we find after some
algebra

∂ψ ′

∂xi
+ h′

i = ∂

∂xi

(
ψ + η + ∂a

∂t

)
+ hi + ∂bi

∂t
. (29)

Operating with δi j ∂
∂x j on Eq. (29) and taking into account the

constraints (20) and (27), we find

ψ ′ = ψ + η + ∂a

∂t
, (30)

which, when inserted back into Eq. (29), gives

h′
i = hi + ∂bi

∂t
. (31)

Finally, performing the transformation (25) of the pure spatial
components of hμν , given by Eq. (21), we now find

h′T T
i j + 1

3
δi jH

′ + 1

2

(
∂E ′

i

∂x j
+ ∂E ′

j

∂xi

)

+
(

∂2

∂xi∂x j
− 1

3
δi j∇2

)
λ′

= hT T
i j + 1

3
δi jH + 1

2

(
∂Ei

∂x j
+ ∂E j

∂xi

)

+
(

∂2

∂xi∂x j
− 1

3
δi j∇2

)
λ

− 2
∂2a

∂xi∂x j
− ∂bi

∂x j
− ∂b j

∂xi
. (32)

Contracting Eq. (32) with δi j and taking into account the
constraints (22), (23), (24), and (27), we find

H ′ = H − 2∇2a . (33)

Returning with the result (33) into Eq. (32) and rearranging,
we obtain

h′T T
i j + 1

2

(
∂E ′

i

∂x j
+ ∂E ′

j

∂xi

)
+

(
∂2

∂xi∂x j
− 1

3
δi j∇2

)
λ′

= hT T
i j + 1

2

[
∂ (Ei − 2bi )

∂x j
+ ∂ (E j − 2b j )

∂xi

]

+
(

∂2

∂xi∂x j
− 1

3
δi j∇2

)
(λ − 2a). (34)

By comparing the terms to the left- and right-hand sides of
Eq. (34), we conclude that

h′T T
i j = hT T

i j , (35)

E ′
i = Ei − 2bi, (36)

λ′ = λ − 2a, (37)

which completes the picture of the behavior of the functions φ,
ψ , H , λ, hi, Ei, and hT T

i j under the gauge transformations of the
linear gravitational theory. Note that, so far, the only invariant
quantities are the tensor components hT T

i j , just those related
to gravitational radiation in the traditional approach using the
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transverse traceless gauge. From the set of transformations
(28), (30), (31), (33), (35), (36), and (37) we can find two
more scalar invariants and a vector invariant. The first scalar
invariant, �, is obtained by adding Eq. (28) with the first time
derivative of Eq. (30) and with one half of the second time
derivative of Eq. (37). That gives us

� = φ′ + ∂ψ ′

∂t
+ 1

2

∂2λ′

∂t2
= φ + ∂ψ

∂t
+ 1

2

∂2λ

∂t2
. (38)

The second scalar invariant, �, is obtained by taking the
Laplacian of Eq. (33) and subtracting Eq. (37), giving

� = 1
3 (H ′ − ∇2λ′) = 1

3 (H − ∇2λ) . (39)

The factor 1
3 in Eq. (39) has been included for convenience.

Finally, a vector invariant �i is obtained by adding Eq. (31)
with one half of the first time derivative of Eq. (36), which
results in

�i = h′
i + 1

2

∂E ′
i

∂t
= hi + 1

2

∂Ei

∂t
. (40)

Note that, due to divergenceless conditions (20) and (24), the
vector �i satisfies

∂�i

∂xi
= 0 . (41)

Our next goal is to express the metric tensor in terms of the
11 invariant quantities �, �, �i, and hT T

i j and to establish the
equations of motion for these quantities. In fact, considering
the five constraints given by Eqs. (22), (23), and (41), of these
quantities we have just 11 – 5 = 6 independent functions,
meaning that of the 10 components of the tensor hμν , in
general only six are physically significant.

By isolating the functions φ, H , and hi respectively in
Eqs. (38), (39), and (40), and adequately substituting the re-
sults in Eqs. (14), (19), and (21), we can show that the scalar,
vector, and tensor components of the perturbation tensor hμν

can be expressed in terms of gauge invariants in the form:

h00 = 2

c2

(
� − ∂ψ

∂t
− 1

2

∂2λ

∂t2

)
, (42)

h0i = −1

c

(
�i + ∂ψ

∂xi
− 1

2

∂Ei

∂t

)
, (43)

hi j = hT T
i j + δi j� + 1

2

(
∂Ei

∂x j
+ ∂E j

∂xi

)
+ ∂2λ

∂xi∂x j
. (44)

To clarify, the metric perturbation hμν depends on the 11
invariants �, �, �i, and hT T

i j subjected to the five conditions
(22), (23), and (41)—giving six physical degrees of freedom,
as we saw—and on the five gauge-dependent quantities ψ , λ,
and Ei subjected to the condition (24), totaling 5 – 1 = 4 gauge
degrees of freedom. The total number of degrees of freedom
is 6 + 4 = 10, as expected for a symmetric second-order
four-tensor.

By Eqs. (42)–(44) we see that it is not possible to express
the metric tensor only in terms of invariant gauge quantities,
and this conclusion reflects the equivalence principle: At any
point in spacetime it is always possible to find a locally inertial
frame of reference, which can be mathematically achieved
with appropriate choices of the functions ψ , λ, and Ei.

It can be shown from Eq. (9) that, despite the gauge depen-
dence of the metric, the components of the Einstein tensor Gμν

are expressed only in terms of the gauge-invariant quantities
as follows:

G00 = −∇2�, (45)

G0i = −1

c

(
∂2�

∂t∂xi
− 1

2
∇2�i

)
, (46)

Gi j = 1

2
�hT T

i j − δi j
1

c2

∂2�

∂t2

+ 1

2c2

(
∂

∂x j

∂�i

∂t
+ ∂

∂xi

∂� j

∂t

)

+ 1

2

(
∂2

∂xi∂x j
− δi j∇2

)(
2�

c2
− �

)
. (47)

By checking Eq. (47) we see that the wave operator � appears
just in the first term at the right-hand side, acting on the
transverse traceless part of the metric perturbation. As we
will see soon, this implies that these components are the only
obeying a wave equation and so are radiative, corresponding
to the wave modes of the gravitational field.

The Einstein field Eq. (1) can now be split in a series of
simpler equations, one for each of the gauge-invariant quanti-
ties �, �, �i, and hT T

i j . The equation for � is readily obtained
simply by taking the time-time component of Eq. (1), that is,
by writing

G00 = −8πG

c4
T00 . (48)

From Eq. (45) substituted in Eq. (48) above, we obtain

∇2� = 8πG

c4
T00 . (49)

Next, to establish an equation for the gauge-invariant vector
�i, we take the time-space type components of Eq. (1), getting

G0i = −8πG

c4
T0i . (50)

For the left-hand side of Eq. (50) we substitute Eq. (46), and
for the right-hand side we employ a Helmholtz decomposition
of the form

T0i = c

(
∂S

∂xi
+ Si

)
, (51)

with the condition

∂Si

∂xi
= 0 . (52)

So, the Eq. (50) can now be written as

∂2�

∂t∂xi
− 1

2
∇2�i = 8πG

c2

(
∂S

∂xi
+ Si

)
. (53)

It can be shown that, by taking the three-divergence of
Eq. (53), we can recover the result (49). On the other hand,
we can readily put Eq. (53) in the explicit vector form

∇ ∂�

∂t
− 1

2
∇2� = 8πG

c2
(∇S + S) . (54)
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Then, by taking the curl of Eq. (54) and, remembering that the
curl of any gradient is zero, we are led to

∇ ×
(

1

2
∇2� + 8πG

c2
S
)

= 0 . (55)

Equation (55) implies that

1

2
∇2� + 8πG

c2
S = ∇ f (x, t ) , (56)

where f (x, t ) is some scalar function of coordinates and time.
Since the three-vectors � and S are both divergenceless and
are assumed to vanish as x → ∞, Eq. (56) implies that

∇2� = −16πG

c2
S , (57)

or, in component form,

∇2�i = −16πG

c2
Si . (58)

Equation (58) is the differential equation for the gauge-
invariant vector �i. It is worthwhile to mention that the
equations of motion for � and for �i [Eqs. (49) and (58)] are
both inhomogeneous Poisson-like equations (not wavelike)
and so have only (nonradiative) solutions decaying with r−2,
r being a radial coordinate. Thus, neither � nor �i can be
associated with gravitational waves. Furthermore, notice that
the source for � is T00 and for �i is just the rotational part of
T0i, given by Si.

To obtain equations of motion for the � and hT T
i j , we must

take into account the space-space components of Eq. (1).
Substituting Eq. (47) in the right-hand side of Eq. (1) we
obtain

1

2
�hT T

i j − δi j
1

c2

∂2�

∂t2
+ 1

2c2

(
∂

∂x j

∂�i

∂t
+ ∂

∂xi

∂� j

∂t

)

+ 1

2

(
∂2

∂xi∂x j
− δi j∇2

)(
2�

c2
− �

)
= −8πG

c4
Ti j . (59)

To find the differential equation to �, we contract Eq. (59)
with δi j and use the conditions given by Eqs. (23) and (41).
We obtain, after some algebraic manipulations,

1

c2

∂2�

∂t2
+ 2

3c2
∇2� − 1

3
∇2� = 8πG

c4
P , (60)

where P is given by

P = 1
3δi jTi j . (61)

Substituting Eq. (49) for ∇2� in the third term at left-hand
side in Eq. (60) and taking the Laplacian of the resulting
equation, we get

∇2 ∂2�

∂t2
+ 2

3
∇2∇2� − 8πG

3c2
∇2T00 = 8πG

c2
∇2P . (62)

The first term at left-hand side in Eq. (62) may be tamed by
taking the divergence of Eq. (54) and employing the diver-
genceless conditions (41) and (52). The result is

∇2 ∂�

∂t
= 8πG

c2
∇2S . (63)

Now, taking the time derivative of Eq. (63), it gives

∇2 ∂2�

∂t2
= ∇2

(
8πG

c2

∂S

∂t

)
. (64)

Returning with the result (64) in Eq. (62) and rearranging we
obtain

∇2

(
4πG

c2

∂S

∂t
+ 1

3
∇2� − 4πG

3c2
T00 − 4πG

c2
P

)
= 0 . (65)

Again, since the functions S, �, T00, and P are all assumed to
vanish as x → ∞, Eq. (65) implies that

4πG

c2

∂S

∂t
+ 1

3
∇2� − 4πG

3c2
T00 − 4πG

c2
P = 0 , (66)

that is,

∇2� = 4πG

c2

[
T00 + 3

(
P − ∂S

∂t

)]
. (67)

which is the differential equation for � – again, a Poisson
equation.

Finally, the differential equation for hT T
i j will be found,

again by properly manipulating the Eq. (59). However, at
this point of the development, it is useful first to exploit the
conservation law

∂T μ
ν

∂xμ
= 0, (68)

which is valid in this form to the first order. For ν = 0 we
obtain from Eq. (68) an equation for energy conservation in
the form

1

c2

∂T00

∂t
= ∇2S, (69)

where use was made of Eqs. (51) and (52). To exploit the case
with ν = i, it is convenient to express the components of the
stress tensor Ti j in the Helmholtz decomposed form

Ti j = σi j + δi jP +
(

∂σi

∂x j
+ ∂σ j

∂xi

)

+
(

∂2

∂xi∂x j
− 1

3
δi j∇2

)
σ, (70)

with

∂σ i
j

∂xi
= 0, (71)

δi jσi j = 0, (72)

∂σ i

∂xi
= 0 . (73)

By virtue of Eqs. (71) and (72), the σi j part of Ti j is called
the transverse traceless part of the stress tensor. Now, setting
ν = i in Eq. (68) and taking into account Eqs. (51) and (70),
we obtain a conservation equation that can be readily written
in the explicit vector form,

∇ ∂S

∂t
+ ∂S

∂t
= ∇P + ∇2� + 2

3
∇2∇σ, (74)
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with � = [σ1 σ2 σ3]. Taking the divergence of Eq. (74)
we obtain

∇2

[
3

2

(
∂S

∂t
− P

)
− ∇2σ

]
= 0 , (75)

where use was made of conditions (52) and (71). On the other
hand, taking the curl of Eq. (74) and using the fact that the
curl of a gradient is always zero, we get

∇ ×
[
∂S
∂t

− ∇2�

]
= 0. (76)

Imposing the universal boundary conditions S = P = σ =
Si = σi = 0 as x → ∞, Eqs. (75) and (76) gives, respectively,

3

2

(
∂S

∂t
− P

)
= ∇2σ (77)

and
∂Si

∂t
= ∇2σi. (78)

Yet, from Eq. (77) we can write

∂S

∂t
= 2

3
∇2σ + P, (79)

which will be used latter. Now, by taking the Laplacian of
Eq. (59) we find

1

2
∇2�hT T

i j − δi j
1

c2
∇2 ∂2�

∂t2

+ 1

2c2

(
∂

∂x j

∂∇2�i

∂t
+ ∂

∂xi

∂∇2� j

∂t

)

+ 1

2

(
∂2

∂xi∂x j
− δi j∇2

)
∇2

(
2�

c2
− �

)

+ 8πG

c4
∇2Ti j = 0. (80)

Substituting Eqs. (49), (58), (64), and (67), respectively, for
∇2�, ∇2�i, ∇2 ∂2�

∂t2 , and ∇2� in Eq. (80) we find, after rear-
ranging,

− c4

16πG
∇2�hT T

i j + δi j∇2 ∂S

∂t
+

(
∂

∂x j

∂Si

∂t
+ ∂

∂xi

∂S j

∂t

)

+
(

∂2

∂xi∂x j
− δi j∇2

)
3

2

(
∂S

∂t
− P

)
− ∇2T i j = 0. (81)

At this point, substituting Eqs. (77), (78), and (79), respec-
tively, for 3

2 ( ∂S
∂t − P), ∂Si

∂t , and ∂S
∂t in Eq. (81) and grouping

similar terms, we are led to

− c4

16πG
∇2�hT T

i j + δi j∇2P +
(

∂2

∂xi∂x j
− 1

3
δi j∇2

)
∇2σ

+
(

∂∇2σi

∂x j
+ ∂∇2σ j

∂xi

)
− ∇2Ti j = 0 . (82)

Finally, by the Helmholtz decomposition for Ti j , Eq. (70), we
recognize that the second, third, fourth, and fifth terms at left-
hand side in Eq. (82) when added gives exactly −σi j , that is,

c4

16πG
∇2�hT T

i j + ∇2σi j = 0 (83)

or

∇2

(
�hT T

i j + 16πG

c4
σi j

)
= 0 . (84)

Assuming, as usual, that both hT T
i j and σi j goes to zero as x →

∞, Eq. (84) implies that

�hT T
i j = −16πG

c4
σi j , (85)

completing our set of equations for the gauge invariants �, �,
�i, and hT T

i j . Summarizing, in the weak-field approximation
of general relativity, the Einstein equations are split up in a set
of linear inhomogeneous differential equations given by

∇2� = 8πG

c4
T00, (86)

∇2� = 4πG

c2

[
T00 + 3

(
P − ∂S

∂t

)]
, (87)

∇2�i = −16πG

c2
Si, (88)

�hT T
i j = −16πG

c4
σi j , (89)

where T00, P, S, Si, and σi j are related to the stress-energy ten-
sor of the physical system under consideration and represents
the sources for the gravitational field. Solving Eqs. (86)–(89)
completely determine the six physical degrees of freedom
of the metric. The metric perturbation itself, as discussed
previously, are given by Eqs. (42)–(44) and are clearly gauge
dependent, as it has to be. The Christoffel symbols appearing
in the equations of motion (3) and (5) are also gauge depen-
dent, reflecting the equivalence principle. That is, the objects
�μ

νρ can be locally made to vanish by an appropriate choice
of coordinates. Chosen a gauge (or a system of coordinates)
with ψ = λ = Ei = 0 Eqs. (42)–(44) assumes the very simple
form

h00 = 2�

c2
, (90)

h0i = −1

c
�i, (91)

hi j = hT T
i j + δi j�, (92)

and this will be our preferred gauge in explicit calculations
involving the metric tensor. The Einstein field Eqs. (86)–(89),
of course, are not affected by this or any other choice of gauge,
as they are written only in terms of gauge-invariant quantities.
Just to mention some interesting features of field Eqs. (86)–
(89) and the metric (90)–(92), note that in free space, all field
equations are homogeneous and so the Eqs. (86) and (87) are
the same, leading to � = 2�

c2 . This identification is closely
related to the Schwarzschild solution expressed in isotropic
coordinates and correct to the first order, in which h00 = 2�

c2 ,
hi j = δi j

2�
c2 , and hT T

i j = h0i = 0, where � = −GM
r is the New-

tonian gravitational potential of a point source of mass M.
Furthermore, observe that Eq. (89) is the only wave equa-
tion of the set of field Eqs. (86)–(89). This means that only
the hT T

i j components of the metric perturbation behaves as
waves and can be correctly identified as the radiative degrees
of freedom of the gravitational field, as mentioned before. For
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the sake of completeness, in the next subsection this aspect
will be briefly revised.

C. Gravitational waves in free space

It was pointed out in the Sec. II B that gravitational radi-
ation is associated to the hT T

i j part of the metric perturbation,
which satisfies the traceless condition (22) and the divergence-
less condition (23). In analogy with the wave solutions for
electric and magnetic fields in electromagnetism, the general
solution of the wave Eq. (89) is

hT T
i j (x, t ) = −4G

c4

∫
σi j (x′, t ′)
|x − x′| d3x′, (93)

where we use the definition of the retarded time, t ′ =
t − |x−x′ |

c and the integration is performed over the source.
Furthermore, in Eq. (93) it is understood that σi j are taken
to the leading order. To the solutions given in Eq. (93), which
describes the generation of the field by a gravitational source
manifested in σi j (x′, t ′), we can always add the solution of the
homogeneous equation associated to Eq. (89)

�hT T
i j = 0 , (94)

satisfying to the conditions (22) and (23). Equation (94) ad-
mits as solutions plane waves of the form

hT T
i j = εi je

i(k·x−ωt ), (95)

where εi j are the components of the polarization three-tensor,
which is a symmetric tensor. By imposing the condition (22)
to the plane-wave solution (95) we find

εi jk
i = ε1 jk

1 + ε2 jk
2 + ε3 jk

3 = 0. (96)

Furthermore, the traceless condition (23) implies that

ε11 + ε22 + ε33 = 0 . (97)

As in the discussion of plane electromagnetic waves, an
understanding of the features of the solution given in
Eqs. (95)–(97) is facilitated when considering the propagation
along a specific coordinate axis, say z axis, in the direction of
increasing z. In this case, k1 = k2 = 0 and Eq. (96) furnishes
ε3 jk3 = 0, that is,

ε31 = ε32 = ε33 = 0 , (98)

meaning that every component εi j related to the direction of
propagation (the z direction) has to be zero. This shows that,
indeed, gravitational waves are transverse. With ε33 = 0, from
Eq. (97) we get

ε22 = −ε11 . (99)

Finally, collecting all the results (95), (98), and (99) together
in matrix form we obtain

[
hT T

i j

] =
⎡
⎣ε11 ε12 0

ε12 −ε11 0
0 0 0

⎤
⎦ei(kz−ωt )

=
⎡
⎣h+ 0 0

0 −h+ 0
0 0 0

⎤
⎦ +

⎡
⎣ 0 h× 0

h× 0 0
0 0 0

⎤
⎦. (100)

The two polarization states of gravitational waves are
represented by the two matrices at right-hand side in
Eq. (100): the “plus” polarization are associated to the func-
tion h+(z, t ) = ε11ei(kz−ωt ) and the “cross” polarization to
h×(z, t ) = ε12ei(kz−ωt ). So, there are two different gravitational
wave modes (transverse and mutually independent) contained
in hi j , oscillating in the xy plane. In analogy with the elec-
tromagnetic case, the values of the amplitudes ε11 and ε12

completely specify the field.
Concluding this subsection, it is worthwhile to mention

that the result given in Eq. (100) are independent of any gauge,
being just firmly based in the Helmholtz decomposition in the
way that the tensor components hT T

i j must be taken as real
physical objects. Furthermore, as the traceless and divergence-
less (or transversality) conditions (22) and (23) imposed to
hT T

i j are not related to a gauge choice for waves propagating
in free space (as in the traditional approach using the Lorentz
gauge), these conditions surely apply to gravitational waves
propagating in material media, especially in a plasma.

D. The energy carried by the gravitational field

One of the most profound aspects of the Lagrangian formu-
lation of field theory is the way conservation laws arises. From
an appropriate Lagrangian density L , the equations of motion
for all fields of a physical system can be readily derived by
imposing that the action S obeys the variational principle

δS = δ

∫
d4x

√−gL = 0, (101)

where g is the determinant of the metric tensor. According to
Noether’s theorem [22], if the action S of a system is invariant
under certain continuous transformation of the space-time
coordinates and physical fields, then there will be a conserved
quantity associated with this transformation (the transforma-
tion itself is called a symmetry). Consider then a system
composed by the gravitational field plus other fields (e.g., the
electromagnetic and matter fields). When the symmetry of the
action of this system under space-time translations is properly
analyzed and established, then we are led to a momentum-
energy conservation law. One of the mentioned conservation
laws that can be derived from this procedure is

∂

∂xμ

[√−g
(
tμ

ν + T μ
ν

)] = 0 , (102)

where T μ
ν are the mixed components of the stress-energy

tensor of the system (including electromagnetic and matter
terms, but not gravity) and tμ

ν is a gravitational stress-energy
pseudotensor given by

tμ
ν = c4

16πG

1√−g

[(
�

μ

αβ − δ
μ

β �γ
αγ

)∂ (
√−ggαβ )

∂xν
− δμ

ν R̄

]
,

(103)

with

R̄ = gμν
(
�σ

μν�
ρ
ρσ − �σ

μρ�
ρ
νσ

)
. (104)

The form given for tμ
ν in Eq. (103) and the related conserva-

tion law, Eq. (102), were obtained following Dirac’s approach
[67], although several other explicit forms can be chosen (e.g.,
the Landau-Lifshitz pseudotensor and related conservation
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law). For reasons of scope and space, we will not concern
ourselves here with the derivation of the Eqs. (102) and
(103), neither make an effort to clarify why the gravitational
stress-energy tensor is, in fact, a pseudotensor and why it is
nonunique. For in-depth discussions of the subject, the reader
can consult Refs. [67], [72], and [73]. The point that really
must be clear hereafter is as follows: because of the invariance
of the action S under space-time translations, the conservation
of the total energy and momentum (gravitation plus other
fields) is guaranteed by Eq. (102), with gravitational contri-
butions to the total stress-energy tensor given by Eq. (103).
Observe that the leading term in tμ

ν is of second order, which
justifies the conservation law given in Eq. (68), correct to the
first order. It is important to emphasize that the entire discus-
sion that we will undergo later on about the energy exchanges
between matter and the gravitational field could also be car-
ried out using other choices of the pseudotensor, leading to
physically equivalent results. We chose the expressions given
by Eqs. (102) and (103) because they follow naturally (or, at
least, more naturally) from the variational principle, which, in
turn, provides a unified way of investigating physical systems
(although we recognize that, in part, these choices were made
for reasons of personal taste considering the background of
the authors in their studies of general relativity).

Taking the covariant divergence of Einstein equa-
tion [Eq. (1)] and using that ∇μT μ

ν = 0, it can be shown from
Eq. (102) that

∂ (
√−gtμ

ν )

∂xμ
= c4

16πG

√−g
∂gρσ

∂xν
Gρσ . (105)

Especially, with ν = 0, Eq. (105) becomes the (nearest of a)
gravitational analogous of the Poynting theorem of electro-
magnetism. Indeed, identifying

√−gt0
0 = Ug (106)

and

c
√−gt i

0 = J i
g, (107)

respectively, as the gravitational energy density and the grav-
itational energy flux, Eq. (105) is rewritten as

∂Ug

∂t
+ ∂J i

g

∂xi
= c4

16πG

√−g
∂gμν

∂t
Gμν. (108)

Furthermore, considering the weak-field approximation,
Eq. (108) acquires the form

∂Ug

∂t
+ ∂J i

g

∂xi
= c4

16πG

∂hμν

∂t
Gμν, (109)

with Gμν being the contravariant components of the Einstein
tensor, given by Eq. (9). For gravitational waves in free space
(or for any gravitational field in free space), where Gμν = 0
from the Einstein field Eqs. (1), Eqs. (108) and (109) guar-
antees gravitational energy conservation. Just to clarify the
picture, we mention that, in the weak-field approximation,
Eqs. (106) and (107) for energy density and energy flux of
a plane gravitational wave propagating in the z direction in
vacuum gives

< Ug > = c2ω2

32πG
[(ε11)2 + (ε12)2] (110)

and

< Jg > = c3ω2

32πG
[(ε11)2 + (ε12)2], (111)

where the symbol <> represents the mean value over a period
and ω = c k is the angular frequency of the wave. It is nice to
observe that the results given in Eqs. (110) and (111) greatly
resembles that for electromagnetic waves. On the other hand,
for a medium other than empty space, the right-hand side of
Eqs. (108) and (109) are associated to the coupling between
gravity and the other constituents of the physical system under
consideration, giving the rate of exchange of gravitational
energy. So, Eqs. (108) and (109) constitutes suitable tools to
study these exchanges.

Our last task in this section is to furnish some useful
formulas to calculate the Christoffel symbols in terms of
the gauge-invariant quantities obtained in part B of this sec-
tion (they are needed, among other things, to calculate the
densities Ug and J i

g). For this purpose, we employ our pre-
ferred gauge with ψ = λ = Ei = 0 and, with this, from Eq. (4)
we obtain the complete list of Christoffel symbols of the
second kind, as follows:

�0
00 = 1

c3

∂�

∂t
, (112)

�0
0i = �0

i0 = 1

c2

∂�

∂xi
, (113)

�0
i j = �0

ji = − 1

2c

(
∂�i

∂x j
+ ∂� j

∂xi
+ ∂hi j

∂t

)
, (114)

�i
00 = 1

c2
δi j

(
∂� j

∂t
+ ∂�

∂x j

)
, (115)

�i
j0 = �i

0 j = 1

2c
δik

(
∂�k

∂x j
− ∂� j

∂xk
− ∂h jk

∂t

)
, (116)

�i
jk = �i

k j = 1

2
δil

(
∂h jk

∂xl
− ∂h jl

∂xk
− ∂hkl

∂x j

)
, (117)

with hi j given by Eq. (92). For the contracted Christoffel
symbol appearing in Eq. (103) we obtain, considering the
linear regime,

�γ
αγ = 1

2

∂ ln(−g)

∂xα
≈ 1

2

∂ ln(1 + h)

∂xα
≈ 1

2

∂h

∂xα
. (118)

On the other hand, the four-dimensional trace h of the metric
perturbation is given by

h = ημνhμν = 2�

c2
− 3�, (119)

where use was made of Eqs. (23), (90), and (92). Substituting
Eq. (119) in Eq. (118) we find

�γ
αγ = ∂

∂xα

(
�

c2
− 3�

2

)
, (120)

which is correct to the first order. It is not very useful to
insert all the formulas (112)–(117) and (120) in Eqs. (106)
and (107). The result would be cumbersome and difficult to
manage. It is much more valuable to use the obtained formulas
whenever they are necessary, depending on what dynamical
mode of the gravitational field we are dealing. For example,
to obtain Eqs. (110) and (111) for plane gravitational waves
propagating in the z direction the only nonzero Christoffel
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symbols are those depending on hT T
i j , and �

γ
αγ = 0, which

facilitates calculations.

III. NONCOLLISIONAL PLASMAS: THE
EINSTEIN-VLASOV-MAXWELL SYSTEM

A plasma can be defined as a large quasineutral collection
of charged particles whose dynamics is governed by collective
interactions instead of simple pair interactions. Plasma kinetic
theory, in turn, can be viewed as an attempt to establish, in
a statistical way, the physics involved in the mutual effects
between the electromagnetic field and matter in the plasma
state. It is natural, in general relativity, to try this statistical
approach to study the mutual effects between the gravitational
field, the electromagnetic field and the plasma. So, in this
section we will briefly summarize the basic concepts of kinetic
theory in curved spacetime and write down the fundamental
equation governing the dynamics of the one-body distribution
function for a noncollisional plasma—the Vlasov equation.

A. The Einstein-Maxwell system

For the sake of completeness and clarity of the text, before
we undergo into kinetic theory, it is instructive to review
briefly the Einstein and Maxwell equations in absence of
matter—the Einstein-Maxwell system—in the linear regime.
For a more detailed treatment, one can consult Refs. [7–9,67].
In a material medium, these equations do not constitute a
closed system and so cannot provide a complete description
of any physical system, as we will see.

The right-hand side of the Einstein Eq. (1) depends on
the distribution of mass and energy of the physical system
under consideration. In the same way, the right-hand side of
the equations governing the dynamics of the electromagnetic
tensor Fμν , given by

1√−g

∂ (
√−gFμν )

∂xμ
= μ0Jν, (121)

depends on the electric four-current Jν defined by

Jν = (ρc, J) , (122)

where ρ is the electric charge density and J is the elec-
tric current density three-vector. As usual, μ0 in Eq. (121)
symbolizes the magnetic permeability of free space, whose
value is 4π × 10−7 H/m. With ν = 0 Eq. (121) corre-
sponds to Gauss law of electricity, and with ν = i to the
Ampère-Maxwell law. The equations corresponding to the
nonexistence of magnetic monopoles (or the Gauss law
of magnetism) and to the Faraday-Lenz induction law are
given by

∂Fνρ

∂xμ
+ ∂Fρμ

∂xν
+ ∂Fμν

∂xρ
= 0 . (123)

Equations (121) and (123) are the Maxwell equations in
curved spacetime and, except for the factors

√−g in Eq. (121)
are the same as in the flat spacetime. Maxwell equations could
too be written in terms of the electromagnetic four-potential
Aμ, but the forms adopted here involves only the gauge-free

quantities Fμν given in matrix representation by

F = [Fμν] =

⎡
⎢⎢⎢⎣

0 Ex
c

Ey

c
Ez

c
−Ex

c 0 −Bz By

−Ey

c Bz 0 −Bx

−Ez

c −By Bx 0

⎤
⎥⎥⎥⎦ , (124)

that is, the components of the conventional electric and mag-
netic fields. So, as our aim is a gauge-free treatment, the
Eqs. (121) and (123) are most adequate for our purposes.
Furthermore, in the linear regime Eq. (121) can be written in
the form

∂Fμν

∂xμ
= μ0Jν − 1

2

∂h

∂xμ
Fμν , (125)

in which the second term at the right-hand side represents an
explicit first-order influence of the gravitational field over the
electromagnetic field. Equation (125) alone provides a nice
insight: The direct coupling of electromagnetism to gravity
involves only the scalar components of the gravitational field
[see Eq. (119)] and, therefore, there is no direct influence of
gravitational wave modes on the dynamics of electromagnetic
fields.

To investigate the reciprocal effects, that is, the influence
of electromagnetism in the dynamics of the gravitational
field, we proceed by conveniently writing the electromagnetic
stress-energy tensor in the matrix form

Tem = 1

μ0

[
Fg−1F − 1

4
g Tr(F̃F)

]
, (126)

where Tem, g, F stands for the matrix representations of the
electromagnetic stress-energy tensor, the metric tensor and the
electromagnetic tensor in terms of covariant components, and
F̃ is given by

F̃ = [Fμν] = g−1Fg−1, (127)

where g−1 is the inverse of g. In view of Eq. (6), to the first
order we have

g = η + h (128)

and

g−1 = η − h , (129)

where η is the matrix representation of the Minkowski metric.
So, to the first order we have

F̃ =

⎡
⎢⎢⎢⎢⎣

0 −Ex
c −Ey

c −Ez

c
Ex
c 0 −Bz By

Ey

c Bz 0 −Bx
Ez

c −By Bx 0

⎤
⎥⎥⎥⎥⎦ (130)

and

1

4μ0
Tr(F̃F) = ε0E2

2
− B2

2μ0
. (131)

For convenience, in Eq. (131) we introduce the electric per-
mittivity of free space, ε0 = 1

μ0c2 . With Eqs. (128), (129), and
(131) inserted in Eq. (126) we obtain, to the first order,

Tem = T(flat)
em + T(curved)

em , (132)
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where T(flat)
em is the flat space-time contribution to Tem,

given by

T(flat)
em =

⎡
⎢⎢⎢⎣

U (flat)
em − sx

c − sy

c − sz

c− sx
c −τ11 −τ12 −τ13

− sy

c −τ21 −τ22 −τ23

− sz

c −τ31 −τ32 −τ33

⎤
⎥⎥⎥⎦ , (133)

where U (flat)
em = ε0E2

2 + B2

2μ0
is the zero-order electromagnetic

energy density. In Eq. (133) we employ the definition of the
Maxwell stress tensor τi j ,

−τi j = T (flat)
em,i j = −ε0EiEj − BiBj

μ0
+ U (flat)

em δi j , (134)

and indicate the components of the Poynting vector s =
1
μ0

E × B [the lowercase s must not to be confused with the
capital S defined in Eq. (51)]. In turn, the first-order correction
T(curved)

em including the gravitational-electromagnetic coupling
is given by

T(curved)
em = − 1

μ0

[
FhF + 1

4
h Tr(F̃F)

]
. (135)

The general form of T(curved)
em is hard to handle, and a better

and cleaner job can be made evaluating the first-order terms
in specific cases and then identify the quantities T00 S, Si, P,
and σi j , necessary to write Einstein Eqs. (86)–(89). A general
procedure to extract these quantities from the stress-energy
tensor in reciprocal space will be discussed in Sec. III D.

As we can see, the Einstein-Maxwell system is a far rich
system of equations. On the other hand, it suffers for not tak-
ing into account the mutual effects between the gravitational
and electromagnetic fields and matter in a material medium,
and so cannot provide a complete description of the field-
matter interactions. Therefore, we will now move on to the
kinetic theory as an attempt to describe these interaction and
formulate a complete theory of plasmas in curved spacetime.
Later, we will apply this theory to the problem of wave prop-
agation in this complex medium.

B. The Vlasov equation in curved spacetime

Plasmas are systems of many electrically charged particles
(mostly partially or fully ionized gases). So plasmas are, at the
same time, affected by the gravitational and electromagnetic
fields and sources of these field. It is then necessary to add to
the Einstein-Maxwell system one more equation to take into
account the effects of the fields on the plasma, an objective
that can be achieved through kinetic theory [23].

In analogy to the phase space of nonrelativistic mechanics,
the phase space of general relativity is also the space of all
coordinates and momenta of a physical system, as shown in
Fig. 1. There are, however, some subtleties to consider in the
relativistic case. They are as follows:

(i) In theory of relativity time is, naturally, a coordinate,
and the construction of the phase space must also incorporate
this fact naturally.

(ii) The components of the three-momentum of a parti-
cle and its total (rest plus kinetic) energy are, respectively,
the spatial and temporal components of the momentum four-
vector, whose magnitude is constant; that is, there is a

FIG. 1. The phase space of general relativistic kinetic theory is
made up of spacetime (a four-dimensional manifold) and the tangent
bundle (the set of all tangent spaces).

constraint between the components of the four-momentum,
which reduces the dimensionality of the phase space.

(iii) Some care is needed in defining the relevant volume
elements, in order to preserve the covariance of the theory.

With the precautions mentioned above, we can define the
relativistic phase space of an N-particle system as the space
of the 4N space-time coordinates (say, x, y, z, and x0 = ct
of each particle) and the 3N spatial components of the four-
moments of the system (say, px, py, and pz of each particle) of
the system (the reason why we are apparently neglecting the
temporal components of the four-momenta is the constraint
mentioned in item (ii) and will be discussed shortly). It is
therefore a 7N-dimensional space. We will see that, despite
the difference in dimensionality between relativistic and non-
relativistic phase spaces (the first is 7N-dimensional and the
second is 6N-dimensional), the one-body distribution function
here also depends on seven variables: In relativistic theory, xμ

and pi take the place of x, t and p. From a geometric point
of view, the 7N-dimensional phase space can be visualized
as a kind of union between spacetime (a four-dimensional
manifold M in which the dynamics of all N particles develop)
and the set of tangent spaces at every point of M (in which
the four-momentum of the N particles resides). Usually, the
tangent space of M at point P is designated by TPM and the
set of all tangent spaces of M is called the tangent bundle.
However, as a result of the constraint

pμ pμ = p0 p0 + gi j pi pj = m2c2, (136)

we can express one of the four-momentum components in
terms of the others, and the most natural choice (i.e., the
one that makes everything more like the usual nonrelativistic
theory) is to express the temporal component as a function
of the spatial components. Thus, the “slice” of the tangent
bundle that interests us in the construction of the phase space
is the one in which Eq. (136) is satisfied for each particle of
the system. Observe that we are symbolizing the contravariant
components of the four-momentum and the three-momentum
equally by pi, as they are identical. On the other hand, writing
pi we are indicating only the covariant components of the
three-momentum.
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Having defined the relevant phase space, we can move
on to the determination of the Vlasov equation in curved
spacetime, that is, the differential equation governing the
dynamics of the one-body distribution function for a collision-
less plasma in general relativity. For brevity, as the details of
this subject can be found and are cleanly discussed elsewhere
[23], we will present the mentioned equation by simple anal-
ogy to its nonrelativistic counterpart, much in the same way
Maxwell equations can be adapted to general relativity. Thus,
by imposing the covariance requirement, we write down rela-
tivistic equations that fall into the nonrelativistic equations in
appropriate limits. The nonrelativistic Vlasov equation can be
written in the form

df

dt
= ∂ f

∂t
+ dxi

dt

∂ f

∂xi
+ d pi

dt

∂ f

∂ pi
= 0 , (137)

where f = f (x, p, t ) is the one-body distribution function. In
general relativity, the dependencies of f must be replaced by
xμ and pi. So, the relativistic Vlasov equation can be readily
written in the form

df

dτ
= dxμ

dτ

∂ f

∂xμ
+ d pi

dτ

∂ f

∂ pi
= 0 , (138)

where f = f (xμ, pi ) ≡ f (x, p). On the other hand, from
Eq. (5) and using that pμ = m dxμ

dτ
, we obtain

d pi

dτ
= −�i

νρ pν dxρ

dτ
+ qF i

ν

dxν

dτ
. (139)

Finally, substituting Eq. (139) in Eq. (138) we find the Vlasov
equation in the form

pμ ∂ f

∂xμ
− �i

νρ pν pρ ∂ f

∂ pi
+ qF i

ν pν ∂ f

∂ pi
= 0 . (140)

The weak-field limit of the Vlasov equation will be discussed
in Sec. III E. However, it is interesting to keep in mind
right away that the Christoffel symbols (which personify the
gravitational force field), in our preferred gauge can all be
expressed solely in terms of the gravitational gauge invariants,
as pointed out in Sec. II. It is also nice to check that the
nonrelativistic Vlasov Eq. (137) is readily recovered from
its general relativistic counterpart, Eq. (140), by taking the
appropriate limits.

The Vlasov equation determines the influence of gravity
and electromagnetism over the distribution function—that is,
over the matter behavior—via the Christoffel symbols �μ

νρ and
the electromagnetic tensor Fμ

ν , being the third cornerstone
in the theory discussed. In the next subsection we will see
how to properly formulate expressions for the matter stress-
energy tensor and charge four-current in terms of the
distribution function f . For now, it is worth to mention that
for a system with many particle species, there is one distribu-
tion function for each of these species, each described by an
appropriate Vlasov equation.

C. Charge four-current and matter stress-energy tensor
in kinetic theory

In nonrelativistic kinetic theory we can obtain several in-
teresting physical quantities by performing integrations of the

one-body distribution function in momentum space. In partic-
ular, the number density, the charge density, the charge current
density and the matter stress tensor are given, respectively, by

n(x, t ) =
∫

f (x, p, t ) d3 p, (141)

ρ(x, t ) = q
∫

f (x, p, t ) d3 p, (142)

Ji(x, t ) = q

m

∫
pi f (x, p, t ) d3 p, (143)

T i j (x, t ) = 1

m

∫
pi pj f (x, p, t ) d3 p. (144)

For the general relativistic counterparts of Eqs. (141)–(144)
above, it can be shown [23] that we must replace the mo-
mentum space volume element d3 p by the invariant

√−g
p0

d3 p,
taking care with the other factors in order to maintain the
dimensional consistency of the formalism. Furthermore, the
charge density and current combine to form the four-vector
Jμ, and the stress tensor is replaced by the most general object
T μν . It gives us

n(x) = mc
∫

f (x, p)
√−g

p0
d3 p, (145)

Jμ(x) = qc
∫

pμ f (x, p)
√−g

p0
d3 p, (146)

T μν (x) = c
∫

pμ pν f (x, p)
√−g

p0
d3 p. (147)

It should be noted that, in view of Eq. (136), in all the equa-
tions above we have

p0 =
√

g00m2c2 + (g0ig0 j − g00gi j )pi pj, (148)

with the contravariant component of the temporal part of the
four-momentum given by

p0 = p0 − g0i pi

g00
. (149)

Our next task is to establish Eqs. (146) and (147) in the weak
field limit. For this, we must first obtain the linearized versions
of

√−g
p0

, p0
√−g

p0
and p0 p0

√−g
p0

. From Eqs. (148) and (149), we
find √−g

p0
= 1 + α(x, p)

p̄0
, (150)

p0

√−g

p0
= 1 + β(x, p), (151)

p0 p0

√−g

p0
= p̄0(1 + γ (x, p)). (152)

where p̄0 = √
m2c2 + δi j pi pj is the flat space-time covariant

time component of the four-momentum and α, β, and γ are
the following nondimensional first-order quantities

α(x, p) = h

2
− h00( p̄0)2 − hi j pi pj

2( p̄0)2
, (153)

β(x, p) = h

2
− h00 p̄0 + h0i pi

p̄0
, (154)

γ (x, p) = −α(x, p) + 2β(x, p). (155)
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Here, too, the general expressions of the above equations in
terms of the gauge invariants are very complicated and dif-
ficult to handle, making it more practical to obtain explicit
expressions only in specific calculations. For example, for
gravitational waves, we have h00 = h0i = h = 0 and hi j =
hT T

i j . Thus, in this case,

α(x, p) = −γ (x, p) = hT T
i j pi pj

2( p̄0)2
, (156)

β(x, p) = 0. (157)

As another example, consider the Schwarzschild-like met-
ric in isotropic coordinates for points far away from the
event horizon, given by h00 = 2�

c2 , hi j = δi j
2�
c2 , h = − 4�

c2 , and
hT T

i j = h0i = 0. In this case we have

α(x, p) = �

c2

[
δi j pi pj

( p̄0)2
− 3

]
, (158)

β(x, p) = −4�

c2
, (159)

γ (x, p) = −�

c2

[
δi j pi pj

( p̄0)2
+ 5

]
. (160)

With formulas (150)–(152), in weak-field limit the compo-
nents of the charge four-current and of the stress-energy tensor
are expressed as

Ji(x, t ) = q c
∫

pi [1 + α(x, p)]

p̄0
f (x, p)d3 p, (161)

ρ(x, t ) = J0(x, t )

c
= q

∫
[1 + β(x, p)] f (x, p)d3 p, (162)

T i j (x, t ) = c
∫

pi pj [1 + α(x, p)]

p̄0
f (x, p)d3 p, (163)

T 0i(x, t ) = c
∫

pi[1 + β(x, p)] f (x, p)d3 p, (164)

T 00(x, t ) = c
∫

p̄0[1 + γ (x, p)] f (x, p)d3 p. (165)

Equations (161) and (162) represents the source terms for
Maxwell equations, whereas Eqs. (163)–(165) play that role
in Einstein equations. In the next subsection we will see how
to extract from the components T 0i and T i j the objects S, Si,
P, and σi j (necessary to write Einstein equations), a job that
proves to be simpler in the reciprocal space.

D. Fourier transformed source terms for gravity

In order to extract S, Si, P, and σi j from T 0i and T i j ,
it is convenient to take the Fourier transformed versions of
Eqs. (51) and (52) for T 0i and (70)–(73) for T i j . Furthermore,
taking Fourier transforms is the usual starting point for the
study of waves in a material media, providing a simple way
to obtain dispersion relations, as will be done in Sec. IV. We
employ the convention in which the Fourier transform of a
function f (x) and the related Fourier integral are respectively
given by

f̂ (k) =
∫

f (x)e−ik·xd3x (166)

and

f (x) = 1

(2π )3

∫
f̂ (k)eik·xd3k. (167)

Hereafter, a hat over any letter will symbolize a spatial Fourier
transform, as above. By Fourier transforming Eqs. (51), (52)
and (70)–(73) we obtain

T̂0i = c(ikiŜ + Ŝi ), (168)

kiŜi = 0, (169)

T̂i j = σ̂i j + δi j P̂ + i(k j σ̂i + kiσ̂ j ) + (
kik j − 1

3δi jk
2
)
σ̂ ,

(170)

kiσ̂i j = 0, (171)

δi j σ̂i j = 0, (172)

kiσ̂i = 0, (173)

where k2 = kiki = δi jkik j (remember that k is a three-vector,
not a four-vector). Contracting Eq. (168) with ki and taking
into account Eq. (169) we find

Ŝ = ki

ick2
T̂0i. (174)

Returning with the result (174) in (168) and rearranging, we
get

Ŝi = 1

c

(
δ

j
i − kik j

k2

)
T̂0 j . (175)

By imposing conditions (171)–(173) we can also solve
Eq. (170) for P̂, σ̂ , σ̂i, and σ̂i j . The results are

P̂ = 1

3
δi j T̂i j, (176)

σ̂ = −3

2

(
δi j

3k2
− kik j

k4

)
T̂i j, (177)

σ̂i = 1

ik2

(
kkδ

j
i − kik jkk

k2

)
T̂jk, (178)

σ̂i j =
(

δk
i δ

l
j − 1

2
δi jδ

kl

)
T̂kl ;

+ 1

2k2

(
kik jδ

kl + δi jk
kkl − 2k jk

kδl
i − 2kik

kδl
j

)
T̂kl

+ 1

2k4
kik jk

kkl T̂kl . (179)

Although σ and σi do not appears in the Eqs. for the
gravitational field, obtaining Eqs. (177) and (178) for these
quantities was important for writing Eq. (179) for σi j . We now
have at hand all the expressions we need to write the field
Eqs. (86)–(89).
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E. Three-dimensional forms of Maxwell and Vlasov
equations in the weak field regime: The EVM system

From Eqs. (123), (124), (125), and (130), to the first order
in the gravitational perturbation, Maxwell equations can be
written in the familiar three-dimensional form

∇ · E = ρ

ε0
− 1

2
∇h · E, (180)

∇ × B = μ0J + 1

c2

∂E
∂t

+ 1

2

(
1

c2

∂h

∂t
E − ∇h × B

)
, (181)

∇ × E = −∂B
∂t

, (182)

∇ · B = 0, (183)

where ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), as in flat spacetime. Equations (180)–

(183) corresponds to the well-known equations of the
electromagnetic theory, corrected by a few terms proportional
to space-time derivatives of h and to the electric and magnetic
fields themselves. In this same three-dimensional formalism,
Vlasov Eq. (140) can be written in the following friendly
form:

∂ f

∂t
+ cp

p0
· ∇ f + (Fem + Fg) · ∇p f = 0, (184)

where

Fem = q

(
E + cp

p0
× B

)
(185)

is the electromagnetic force and

Fg = p0

c

[
−∇� − ∂�

∂t
+ cp

p0
× (∇ × �)

]
+ FT (186)

is the gravitational force, both correct to the first order. FT

comes from the tensor part of the metric and has components
given by

FT,i = ∂hi j

∂t
pj + c

p0
[ jk, i]pj pk, (187)

with

[ jk, i] = 1

2

(
∂hi j

∂xk
+ ∂hik

∂x j
− ∂h jk

∂xi

)
. (188)

For consistency, in the whole set of Eqs. (184)–(187), p0 must
be taken correct to the zero order. From Eqs. (148) and (149)
we obtain for p0 in this limit

p0 = p̄0 =
√

m2c2 + δi j pi pj . (189)

In Eq. (186), the terms collected in brackets closely resembles
the electromagnetic force—given by Eq. (185)—written in
terms of electromagnetic potentials (note that just the first one
appears in the Newtonian theory of gravitation). However, it is
important to stress that this similarity is somewhat superficial,
since the potentials � and � always satisfy the inhomoge-
neous Poisson Eqs. (87) and (88) (not first-order coupled
equations), and there is not a gravitational analogous to the
Faraday and Maxwell induction terms in the gravitational field
Eqs. (86)–(89). Furthermore, the gravitational potentials we
are dealing are gauge invariant in the linear theory of gravity,

whereas electromagnetic potentials are not invariant with re-
spect to the electromagnetic gauge transformations. It is also
worth to mention that, while the electromagnetic force is in-
variant to the gauge transformations of electromagnetism, the
gravitational force is dependent on the chosen gravitational
gauge, as required by the principle of equivalence.

Einstein Eqs. (86)–(89), Maxwell Eqs. (180)–(183) and
Vlasov Eq. (184) constitutes a complete system to describe
the behavior of a collisionless plasma in a general relativistic
framework—the EVM system. In the next section, the dis-
persion relation for gravitational waves in an homogeneous
plasma will be derived from these system of equations.

IV. GRAVITATIONAL AND ELECTROSTATIC WAVES
IN AN ELECTRON-POSITRON PLASMA

So far we have discussed Einstein, Maxwell, and Vlasov
equations just in the gravitational weak-field limit, that is, no
approximations were made for the electromagnetic field and
for the distribution function. Furthermore, we have yet to in-
troduce in the formalism the fact that plasmas are quasineutral
systems of (at least) two charged particle species. Hereafter,
the whole set of field Eqs. (86)–(89) and (180)–(183) and
correspondent source terms, plus the Vlasov Eq. (184), elab-
orated in the gravitational weak-field limit, will be taken as
exact equations. The dispersion function for any kind of os-
cillation or wave can then be found employing perturbation
theory.

A. The Einstein-Vlasov-Poisson system for an homogeneous
neutral electron-positron plasma

Relativistic electron-positron pair plasmas are principal
constituents of high-energy astrophysical environments, such
as neutron stars and black holes surroundings [74]. Thus, a
theoretical description of this type of plasma is fundamental
in understanding and interpreting several processes and phe-
nomena that occur in these environments, such as pair creation
and annihilation, relativistic jets from active galactic nuclei,
and γ -ray bursts [74,75]. In these systems, collective plasma
processes are responsible for determining the magnetic field
dynamics, energy partition, and radiation emission [74]. Fur-
themore, this type of pair plasma appeared in the very early
universe [76].

Although there are several theoretical works on relativistic
electron-positron pair plasmas dynamics, to our knowledge
there is still a gap regarding an understading the particularities
of gravitational oscillatory modes in this medium—especially
gravitational waves—employing a kinetic approach. For ex-
ample, in Ref. [77] a quantum hidrodynamical model for a
multicomponent electron-positron-ion plasma was proposed
for studying their gravitational instability. In this work, how-
ever, gravitation was taken in the Newtonian sense, that is,
via the Poisson equation for a scalar potential. Employing
a two-fluid model, electromagnetic wave instability in un-
magnetized electron-positron pair plasma was discussed in
Ref. [78], and in Ref. [79] again a two-fluid approach was
established for describing nonlinear waves in an inhomoge-
neous collisionless magnetized relativistic electron-positron
plasma in a prescribed gravitational field. The nonlinear
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interaction between magnetic field-aligned electromagnetic
waves and electrostatic oscillation in a electron-positron-ion
plasma was considered in Ref. [80], and in Ref. [81] rel-
ativistic collisionless shock waves, associated with GBRs,
propagating in inhomogeneous electron-positron plasmas was
studied. In these last two works, however, nothing related to
gravity was considered.

In view of the above, as an application illustrating the
generality, security and simplicity of the gauge-invariant for-
malism, we now apply it to an electron-positron homogeneous
plasma where gravitational and electrostatic wave perturba-
tions takes place. First, in order to write down the appropriate
equations, we must to establish the relevant physical variables
of the problem. For gravitational waves, the scalar and vector
components of the metric perturbation are � = � = �i = 0.
The transversal traceless tensor components are hT T

i j = hi j by
virtue of Eq. (92), and so, hereafter we will omit the super-
script T T in hi j for simplicity. As pointed out in Sec. II C, the
transversality and traceless conditions for gravitational waves
are not restricted to vacuum propagation, being solely based
in the Helmholtz decomposition of the metric tensor. So, here,
too, considering a plane gravitational wave propagating along
the z axis, in the direction of increasing z, we have

ε31 = ε32 = ε33 = 0 (190)

and

ε22 = −ε11 , (191)

which leads to

[hi j =
⎡
⎣ε11 ε12 0

ε12 −ε11 0
0 0 0

⎤
⎦ei(kz−ωt ), (192)

with k1 = k2 = 0 and k3 = k. The relevant Einstein equa-
tions for the system are Eq. (89), which here reads as(

1

c2

∂2

∂t2
− ∂2

∂z2

)
h11 = −16πG

c4
σ11 (193)

and (
1

c2

∂2

∂t2
− ∂2

∂z2

)
h12 = −16πG

c4
σ12. (194)

The transverse traceless tensor components σi j are obtained in
a straightforwardly manner by employing the general proce-
dure outlined in Sec. III D. From Eq. (179), with k1 = k2 = 0
and k3 = k, we find that the only nonzero σi j objects are

σ11 = 1
2 (T11 − T22), (195)

σ22 = −σ11, (196)

σ12 = T12 . (197)

In turn, the matter stress tensor components Ti j are given by
Eq. (163), with the α function given by Eq. (156). In order
to construct these object, we must sum up the positron and
the electron contributions. So, symbolizing the positron ant

the electron distribution functions respectively by f and g, we
find

T11 = n0c
∫

(p1)2

p̄0
(1 + α)( f + g)d3 p , (198)

T22 = n0c
∫

(p2)2

p̄0
(1 + α)( f + g)d3 p (199)

and

T12 = n0c
∫

p1 p2

p̄0
(1 + α)( f + g)d3 p, (200)

with

α = [(p1)2 − (p2)2]h11 + 2 p1 p2h12

2( p̄0)2
. (201)

In Eqs. (198)–(200) (and in every equation hereafter), as usual
in plasma physics, we conveniently renormalize the distribu-
tion functions in the way that the momentum space integration
of its nonrelativistic version in an homogeneous equilibrium
medium results in the unity [see Eq. (141)], which, in turn,
entails the multiplication of every momentum space integrals
of the distribution functions f and g by n0, the equilibrium
particle density for positrons and electrons (the same density
for both species in a neutral homogeneous plasma). We must
not worry about the electromagnetic stress tensor because, as
we will see shortly, it is a second-order object and thus negli-
gible in the first-order approach we begin to discuss below.

Now, as usual in plasma theory, we employ perturbation
theory assuming the following first-order approximations for
the distribution functions and for the metric perturbations:

f (x, p, t ) = f (0)(p) + f (1)(x, p, t ), (202)

g(x, p, t ) = g(0)(p) + g(1)(x, p, t ), (203)

hi j (x, t ) = h(0)
i j + h(1)

i j (x, t ). (204)

A superscript (0) indicates zero order (or unperturbed equi-
librium quantities) and a superscript (1) indicates first-order
corrections, assumed small. As indicated in Eqs. (202) and
(203), the unperturbed distribution functions are assumed to
be independent of positions (as the system is homogeneous)
and time independent. In view of Eqs. (199)–(202), taking
now the unperturbed metric satisfying h(0)

i j = 0 and assuming
that the equilibrium distributions functions for electrons and
positrons are equal, that is, g(0) = f (0), in view of Eqs. (195)–
(204), Einstein Eqs. (193) and (194) correct to the first order
are written as(

1

c2

∂2

∂t2
− ∂2

∂z2

)
h11

= −8πGn0

c3

∫
(p1)2 − (p2)2

p̄0
(F + 2α f (0) )d3 p (205)

and (
1

c2

∂2

∂t2
− ∂2

∂z2

)
h12

= −8πGn0

c3

∫
2p1 p2

p̄0
(F + 2α f (0) )d3 p , (206)
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where we define a first auxiliary distribution function

F = f (1) + g(1) (207)

and omit the superscript (1) in hi j and α to simplify the
notation. Equations (205) and (206), complemented by the
formulas (201) and (207), completes our construction of grav-
itational field equations for the system we are dealing.

We pass now to the elaboration of the relevant Maxwell
equations for the electron-positron plasma. As we are inter-
ested in an electrostatic problem, we must assume B = 0.
For the electric field, we assume the first-order perturbation
expansion

E = E(1)(x, t ) (208)

with E(0) = 0. So, from Eqs. (180)–(183), with h = 0 we are
left with

∇ · E = ρ

ε0
(209)

and

∇ × E = 0, (210)

where we again omit the superscript (1) in E and ρ for sim-
plicity. The equations for B are not relevant here. Observe
that, coherent with the assumption E(0) = 0, the zero-order
charge density vanishing is guaranteed by the condition of
equal equilibrium densities for positrons and electrons and by
the assumption g(0) = f (0). With h = β = 0 [see Eq. (157)]
the first-order charge density is given by

ρ = ρpositrons + ρelectrons = en0

∫
G d3 p , (211)

where was defined a second auxiliary distribution function,

G = f (1) − g(1). (212)

As is well known, Eq. (210) ensures that the electric field can
be expressed as the gradient of a scalar potential � as

E = −∇� . (213)

Inserting Eqs. (211) and (213) in Eq. (209), we are led to the
Poisson equation

∇2� = −n0e

ε0

∫
G d3 p (214)

for the first-order potential �. As mentioned before, as the
electric field E and the metric perturbations hi j are first-order
quantities, Eqs. (132)–(135) shows that, indeed, the electro-
magnetic stress tensor is a second-order object, thus being
discarded in the construction of the Einstein Eqs. (205) and
(206).

Concluding the construction of the Einstein-Vlasov-
Poisson system, we pass now to the relevant Vlasov equations.
Following the usual steps of perturbation theory, to the first
order the Vlasov equations for positrons and electrons are
respectively given by

∂ f (1)

∂t
+ cp

p̄0
· ∇ f (1) + (Fg − e∇�) · ∇p f (0) = 0 (215)

and

∂g(1)

∂t
+ cp

p̄0
· ∇g(1) + (Fg + e∇�) · ∇p f (0) = 0 , (216)

where use was made of Eq. (213). We stress that, as the
difference of electrons and positrons are just the sign of its
charges, the gravitational force is the same for the two types
of particles. In view of Eqs. (205) and (206) and (214), it is
convenient to rewrite the Vlasov Eqs. (215) and (216) for the
auxiliary distributions F and G defined by Eqs. (207) and
(212). Thus, adding and subtracting Eq. (216) from Eq. (215)
we get

∂F

∂t
+ cp

p̄0
· ∇F + 2 Fg · ∇p f (0) = 0 (217)

and

∂G

∂t
+ cp

p̄0
· ∇G − 2e ∇� · ∇p f (0) = 0, (218)

completing the system of equations.
Note that, to the first order, electricity and gravity are

completely decoupled in the electron-positron plasma. First,
there is one pair of equations [namely, Eqs. (214) and (218)]
to describe electrostatic oscillations in the plasma. Second,
there are three equations [Eqs. (205) and (206) and (217)]
doing the same job for gravitational waves. In the former case
the potential function whose oscillations are considered is �

and the relevant distribution is the auxiliary function G . In the
last one, the potential functions are h11 and h12 and the rele-
vant distribution is the auxiliary function F . The problem of
electrostatic oscillations thus reduces to the special relativistic
case, which is discussed in details elsewhere [82] and so will
not be carried forward here. In Sec. III C, we will just deal
with the problem of propagation of gravitational waves in the
electron-positron plasma. However, before we undergo in this
subject, to complete the picture, it is important to write down
expressions for the components of the gravitational force.

B. The force exerted by gravitational waves

From Eq. (186) it is clear that, for the gravitational os-
cillations we are dealing, the only nonzero terms of the
gravitational force are that related to the tensor part of the
metric, given by Eq. (187) (observe that this components of
the gravitational force are just those that have not a Newtonian
counterpart and electromagnetic analogs). To find the desired
force components, we must first compute the Christoffel sym-
bols of the first kind, given by Eq. (188). From the twenty
seven objects [ jk, i], the only nonzero are

[1 3, 1] = [3 1, 1] = 1

2

∂h11

∂z
, (219)

[2 3, 1] = [3 2, 1] = 1

2

∂h12

∂z
, (220)

[1 3, 2] = [3 1, 2] = 1

2

∂h12

∂z
, (221)

[2 3, 2] = [3 2, 2] = −1

2

∂h11

∂z
, (222)

[1 2, 3] = [2 1, 3] = −1

2

∂h12

∂z
, (223)
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[1 1, 3] = −1

2

∂h11

∂z
, (224)

[2 2, 3] = 1

2

∂h11

∂z
. (225)

With Eqs. (219)–(225) inserted in Eq. (187) we find for the
gravitational force components the expressions

Fg,1 = p1�h11 + p2�h12, (226)

Fg,2 = −p2�h11 + p1�h12, (227)

Fg,3 = − c

2 p̄0
[(p1)2 − (p2)2]

∂h11

∂z
− cp1 p2

p̄0

∂h12

∂z
, (228)

where � is the differential operator

� = cp3

p̄0

∂

∂z
+ ∂

∂t
. (229)

We are now in position to pursue the dispersion relation of
gravitational waves in electron-positron plasma.

C. Dispersion relation for gravitational waves

To find the dispersion relation for gravitational waves in
the studied medium, we could proceed as in the nonrela-
tivistic theory by taking the Fourier-Laplace transform (that
is, the Fourier transform in space and Laplace transform in
time) of the Vlasov and field equations, properly treating the
problem as an initial value one. Alternatively, a simpler
although equivalent procedure is to Fourier transform the
equations, allowing a complex angular frequency with a
(presumably) small imaginary part. So, employing the usual
prescriptions

∂

∂t
→ −iω (230)

and

∂

∂z
→ ik (231)

applying the second method to Einstein Eqs. (205) and (206)
and to Vlasov Eq. (217), we are led to the following set of
transformed equations:

(ω2 − c2k2)h̃11 = 8πGn0

c

∫
(p1)2 − (p2)2

p̄0
(F̃ + 2α̃ f (0) )d3 p

(232)

and

(ω2 − c2k2)h̃12 = 8πGn0

c

∫
2p1 p2

p̄0
(F̃ + 2α̃ f (0) )d3 p,

(233)

�̃F̃ = −2 F̃g · ∇p f (0). (234)

Furthermore, by Fourier transforming the α function
[Eq. (201)] and the gravitational force components

[Eqs. (226)–(228)] we find

α̃ = [(p1)2 − (p2)2]h̃11 + 2 p1 p2h̃12

2( p̄0)2
, (235)

F̃g,1 = p1�̃h̃11 + p2�̃h̃12, (236)

F̃g,2 = −p2�̃h̃11 + p1�̃h̃12, (237)

F̃g,3 = −i p̄0c kα̃. (238)

In the set of equations above it was defined

�̃ = i

(
cp3k

p̄0
− ω

)
(239)

and a tilde over any letter symbolizes a space-time Fourier
transform, defined as

f̃ (k, ω) =
∫

f (x, t )e−i(k·x−ωt )dt d3x (240)

for a function f . The correspondent Fourier integral (or in-
verse Fourier transform) is, therefore, given by

f (x, t ) = 1

(2π )4

∫
f̂ (k, ω)ei(k·x−ωt )dω d3k . (241)

Just to mention, in view of Eq. (241) and the form (192) as-
sumed for the gravitational waves, we identify the components
of the gravitational polarization tensor as

εi j = 1

(2π )4
h̃i j . (242)

Our efforts now relies in writing the functions α̃, F̃ , and F̃g,i

in terms of h̃11 and h̃12 and then to substitute the results in the
field Eqs. (232) and (233). From Eqs. (234)–(239), we obtain

F̃ + 2α̃ f (0) = 2

[
(p1)2 − (p2)2

2( p̄0)2
−

(
p1 ∂

∂ p1
−p2 ∂

∂ p2

)]
f (0)h̃11

+ 2

[
p1 p2

( p̄0)2
−

(
p2 ∂

∂ p1
+ p1 ∂

∂ p2

)]
f (0)h̃12

+ 2
ck( c p3

p̄0
k − ω

) (p1)2 − (p2)2

2 p̄0

∂ f (0)

∂ p3
h̃11

+ 2
ck( c p3

p̄0
k − ω

) p1 p2

p̄0

∂ f (0)

∂ p3
h̃12 . (243)

At first sight, it could seems that, when substituted in
Eqs. (232) and (233), Eq. (243) would leave to a linear homo-
geneous system for h̃11 and h̃12. However, assuming an even
zero-order distribution function satisfying ∂ f (0)/∂ pi ∼ pi (the
case of Maxwell and Synge-Jüttner distributions, for exam-
ple), many of the several resulting momentum space integrals
vanishes by virtue of parity, and the only nonvanishing result-
ing integrals are given by

A =
∫

[(p1)2 − (p2)2]2

2( p̄0)3
f (0) d3 p, (244)

A ′ =
∫

(p1)2 − (p2)2

p̄0

(
p1 ∂

∂ p1
− p2 ∂

∂ p2

)
f (0) d3 p, (245)

B =
∫

2(p1)2(p2)2

( p̄0)3
f (0) d3 p, (246)
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B′ =
∫

2p1 p2

p̄0

(
p2 ∂

∂ p1
+ p1 ∂

∂ p2

)
f (0) d3 p, (247)

R = c
∫

1

u − ω/k

[(p1)2 − (p2)2]2

2( p̄0)2

∂ f (0)

∂ p3
d3 p, (248)

S = c
∫

1

u − ω/k

2(p1)2(p2)2

( p̄0)2

∂ f (0)

∂ p3
d3 p, (249)

with u = cp3/p̄0, the z component of the three-velocity. In
terms of the above integrals, Eqs. (232) and (233) gives the
two independent dispersion relations for h̃11 and h̃12, respec-
tively:

ω2 − c2k2 = 16πGn0

c
(A − A ′ + R ) (250)

and

ω2 − c2k2 = 16πGn0

c
(B − B′ + S ). (251)

Indeed, there is no system of equations to be solved here.
Shortly, we will deal with the integrals (244)–(249) and show
that the dispersion relations (250) and (251) are exactly the
same, as one could expect. For now, it is important to ob-
serve that the integrals A , A ′, B, and B′ results in just real
functions of the physical parameters of the plasma (as the tem-
perature and the electron mass), while R and S contains the
denominator u − ω/k, causing the function do be integrated to
become singular for u = ω/k, the phase velocity of the wave
(as in the nonrelativistic theory). This singularity, as is well
known, is related to the Landau damping. In the following
subsection we will solve the integrals found in the limit of low
temperatures and, with this, we will investigate the possibility
of the Landau damping in the electron-positron plasma.

D. Evaluation of the integrals: On the Landau damping

We now proceed to approximately evaluate the integrals
(244)–(248) and to investigate the dispersion relations (250)
and (251). First, to show that the two dispersion relations are
indeed the same, we adopt a spherical coordinate system for p,
with the wave vector k oriented along the z axis. Furthermore,
to perform more concrete calculations, when appropriate, we
will assume the Synge-Jüttner zero-order distribution function

f (0)
SJ (p) = 1

4π m3c3

μ

K2(μ)
e−μγ , (252)

where μ = mc2/kBT is the temperature parameter and K2(μ)
is the modified Bessel function of second kind, of order 2.
Observe that γ (p) =

√
1 + p2/m2c2 is the usual Lorentz fac-

tor [not to be confused with the gamma defined in Eq. (155)],
with p = γ mv, and v is the three-velocity. With the mentioned
choice of coordinates we have

p1 = p1 = px = p sinθ cosφ , (253)

p2 = p2 = py = p sinθ sinφ , (254)

p3 = p3 = pz = p cosθ , (255)

where θ and φ are the polar and azimuthal angles, respec-
tively. Thus, from Eqs. (244)–(248) with p̄0 = γ mc we get,

after some algebraic manipulations and integration in the az-
imuthal angle,

A = B = π

2 m3c3

∫ ∞

0
d p

p6 f (0)

γ 3

∫ π

0
dθ sin5θ, (256)

A ′ = B′ = − π μ

m3c3

∫ ∞

0
d p

p6 f (0)

γ 2

∫ π

0
dθ sin5θ, (257)

R = S = π c

2 m2c2

∫ ∞

0
d p

p6

γ 2

∫ π

0
dθ

sin5θ

u − ω/k

∂ f (0)

∂ pz
,

(258)

with u = pz/γ m. The result (257) was obtained employing
the relativistic distribution (252) but remains valid in the
nonrelativistic limit with γ → 1, for which we can use the
Maxwell distribution. With the results (256)–(258), and taking
into account Eqs. (250) and (251), it is clear that, in fact, the
two polarization states of gravitational waves obeys the same
dispersion relation, as expected.

To analyze the behavior of the dispersion relation (250), it
is instructive do perform the integrals (256)–(258) assuming
low particle speeds, that is, a low-temperature plasma so that
kBT � mc2 (and μ � 1). In this nonrelativistic limit it can be
shown that the Synge-Jüttner function becomes the Maxwell
distribution,

f (0)
M (p) = 1

(2π m kBT )3/2
e−p2/2m kBT . (259)

With the distribution (259) and γ = 1, the integrals (256)
and (257) can be solved quickly by elementary methods and
employing the tabulated integral∫ ∞

0
x2ne−x2/adx = (2n − 1)!!

√
π

2(n+1)
a(2n+1)/2 (260)

for n even. The integration given by Eq. (258) is more
tractable in its original rectangular forms [Eqs. (248) and
(249)] as the Maxwell distribution can be factorized in the
form

f (0)
M (p) = f (0)

x (px ) f (0)
y (py) f (0)

z (pz ) , (261)

with

f (0)
i (pi ) = 1

(2π m kBT )1/2
e−p2

i /2m kBT . (262)

The results are

A = 2 (kBT )2

mc3
, (263)

A ′ = −4μ (kBT )2

mc3
, (264)

R = 2 (kBT )2

mc

∫ ∞

−∞

dF (u)/du

u − ω/k
du . (265)

In Eq. (265) was used the distribution function F (u) for the
velocity u, defined by

F (u) du = f (0)(pz ) d pz. (266)

With this, as is well known, we have

F (u) = m f (0)(mu) =
(

m

2π kBT

)1/2

e−mu2/2 kBT . (267)
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We are now in place to return to the distribution function and
discuss the issue of the noncollisional damping of gravita-
tional waves for a low-temperature electron-positron plasma.
Substituting the Eqs. (263)–(265) in Eq. (250), we find

ω2 − c2k2 = 2 ω2
g

(
2

μ
+ 1

μ2

)
+ 2 ω2

gc2

μ2

×
(

P

∫ ∞

−∞

dF/du

u − ω/k
du + iπ

dF

du

∣∣∣∣ u = ω/k

)
,

(268)

where we used the usual prescription∫ ∞

−∞

F (z)

z − z0
dz = P

∫ ∞

−∞

F (z)

z − z0
dz + iπF (z0) , (269)

in which P stands for Cauchy principal value. Furthermore,
we define the gravitational plasma frequency ωg as

ω2
g = 16πG mn0 . (270)

Compare the definition above with that given in Refs. [63]
and [83], and observe that our definition of ωg would almost
be obtained in the form (270) by taking the electron plasma
frequency given by ω2

p = e2n0/m ε0 and making some formal
substitutions based on the comparison between the Newton
universal gravitation law and Coulomb law, namely ε0 →
1/4πG and e2 → m2.

Now, assuming (ω/k)2 � kBT/m, it is known that [84,85]

P

∫ ∞

−∞

dF/du

u − ω/k
du = k2

ω2
+ 3

2

k4

ω4

c2

μ
+ ... . (271)

Inserting the series expansion (271) in Eq. (268) and retaining
only terms proportional to 1/μ and 1/μ2, we are led to

ω2 − c2k2 = 4 ω2
g

μ
+ 2 ω2

g

μ2

(ω2 + c2k2)

ω2

+ 2iπ ω2
gc2

μ2

dF

du

∣∣∣∣ u = ω/k . (272)

Following the usual procedure, we now write ω = ωR + iωI ,
with ωR and ωI respectively the real and imaginary parts of
ω, and assume ωI � ωR. With ω substituted in Eq. (272) we
arrive at

ω2
R − c2k2 = 4 ω2

g

μ
(273)

and

ωI = π ω2
gc2

μ2ωR

dF

du

∣∣∣∣ u = ωR/k (274)

by discarding terms proportional to 1/μ2 and to any power
of ωI in the expression for ωR and retaining only the leading
terms to determine ωI . To find the damping parameter ωI , we
must first find the expression for the phase velocity vφ = ωR/k
of the gravitational waves from Eq. (272), and then calculate
the derivative in Eq. (274) applied at vφ . It happens, however,
that Eq. (273) leads to a phase velocity greater than c (corre-

sponding to a refractive index less than unity):

vφ = c

(
1 + 4 ω2

g

μc2k2

)1/2

> c . (275)

Thus, as the relativistic particle dynamics does not allows
u > c and no physical distribution function can really extend
to this superluminal regime (although Maxwell’s does, since
it is a nonrelativistic distribution), we conclude that ωI = 0,
and there is no Landau damping for gravitational waves. Phys-
ically, it just means that, as electrons and positrons are not
allowed to travel in the direction of propagation of the wave
with the same speed as it, the resonant wave-particle coupling
cannot occur, and no energy exchange between particles and
waves can take place (the same as for electromagnetic waves).

Let us discuss a little deeper this issue. Despite the fact that
for the system we are studying there is no Landau damping,
let us pretend for a moment that ωI �= 0. From Eq. (109) (see
Sec. II D) we can readily establishes the following expression
for the gravitational instantaneous energy exchange rate (in
watts per cubic meter), in the weak-field approximation:

�g = c4

16πG

∂hμν

∂t
Gμν . (276)

It is the density of work realized by (or on) the gravitational
waves, that is, the rate of gravitational energy loss (or gain)
per unit volume. Now, employing Eq. (47) for the spatial
components of the Einstein tensor, we find for gravitational
waves

�g = c4

32πG

∂hi j

∂t
�hi j . (277)

As usual when dealing with wave phenomena, we are just
interested in the mean value of �g over a period. To achieve
this value, we can proceed in two ways. The first, is to take
the real part of the complex plane wave (192), that could be

hi j = εi je
ωI t cos(kz − ωRt ) (278)

if we assume real εi j , substitute their relevant derivatives in
Eq. (277), and take the mean values of the trigonometric
functions that appear in the calculations. The second approach
is a bit more economic and clean, for it does not requires
any explicit calculation of mean values. In this method, we
persist in writing hi j in the complex form (192), and apply the
prescription [21]〈

∂hi j,Real

∂t
�hi j

Real

〉
= 1

2
Re

(
∂h∗

i j

∂t
�hi j

)
, (279)

where the symbol <> represents the mean value over a pe-
riod. With formula (279) inserted in Eq. (277) we find

〈�g〉 = c4

64πG
Re

(
∂h∗

i j

∂t
�hi j

)
. (280)

Whatever the method used, the result obtained is

〈�g〉 = ωI c2

32πG

(
ω2

R − 2ω2
g

μ

)
εi jε

i je2 ωI t , (281)

where only leading terms were retained and the dispersion
relation (273) was used. Note that, as the smallest possible
value of ω2

R is 4 ω2
g/μ, the bracket in Eq. (281) is always
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positive, and the sign of 〈�g〉 is linked to the sign of ωI . If
ωI < 0, then the gravitational wave is damped and 〈�g〉 < 0,
indicating a decrease of the gravitational energy density with
time. If, on the other hand, ωI > 0, then the gravitational
wave would presents an instability and 〈�g � 0, indicating
an increase of the gravitational energy density with time.
Of course, as the correct value for the Landau parameter is
ωI = 0, then 〈�g〉 = 0, agreeing with the previous affirmation
about the nonexistence of energy exchange between the grav-
itational wave and the particles of the plasma. Just to mention,
observe that the opposite limit, with (ω/k)2 � kBT/m, cannot
be described properly employing the Maxwell distribution,
for it would requires particle speeds typically greater than the
phase velocity of the wave which, in turn, is greater than c.

The physical conclusions found so far are interesting
and reasonable but apply only to a low-temperature plasma
in the limit (ω/k)2 � kBT/m. A general, fully relativistic
treatment valid for a wide range of temperatures and fre-
quencies, requires to solve the integrals (256)-(258) using the
Synge-Jüttner distribution (252). These calculations, although
difficult, can potentially reveal a richer structure for the disper-
sion relation, and will be presented and discussed in a future
opportunity.

V. CONCLUSION

The linear regime of Einstein field equations and the prob-
lem of gauge invariance of the underlying theory were revised
and meticulously analysed employing the Helmholtz decom-
position scheme for vectors and second-order tensors. In this
regime, the field equations are split up in a set of differ-
ential equations for two scalar, one vector, and one tensor
gauge-invariant gravitational potentials, the first three obeying
Poisson-type equations and the last satisfying a nonhomoge-
neous wave equation, being associated to gravitational radia-
tion. Although the metric is dependent on a choice of gauge
(as required by the principle of equivalence), the Einstein ten-
sor is clearly a gauge-invariant object, being physical signifi-
cant. The problem of gravitational waves propagating in free
space were revised under the gaze of the gauge-invariant the-
ory, showing that this methodology it very simple and physi-
cally illuminating, much better than be worried about choos-
ing this or that gauge and embarrassed for differentiating real
gravitational wave effects from spurious coordinate choice
ones. From the theory we can quickly obtain the relevant field
equation for a given system or problem. We set a general
equation describing gravitational energy exchanges and some
useful formulas to write down the source terms for gravitation
employing Fourier transforms. Furthermore, we set some gen-
eral expressions for the Christoffel symbols and for volume
elements in terms of gauge-invariant potential, necessary to

correctly develop the relevant Einstein, Vlasov, and Maxwell
equations and evaluate momentum space integrals.

After briefly revising the Einstein-Vlasov-Maxwell sys-
tem in the linear regime, we apply the theory for describing
electrostatic and gravitational waves in an electron-positron
plasma, showing that, in this case, to the first order, there
is a complete decoupling between electric and gravitational
oscillation. For low temperatures, we find an dispersion rela-
tion for the gravitational waves assuming (ω/k)2 � kBT/m,
showing that these waves are not damped, and so have their
energy conserved. The momentum space integrals involving
the Synge-Jüttner distribution were not solved exactly, a job
that is left to a future work and promises to reveal a struc-
turally richer dispersion relation.

As mentioned in the Introduction, our aim was to con-
sistently bring together plasma kinetic theory and the linear
theory of gravitation in terms of gauge-invariant potentials,
establishing a general, simple and secure methodology to deal
in equal footing with oscillations of any (radiative or not)
components of the gravitational field. In future works, the
methodology presented here will be applied to several prob-
lems with isotropic and nonisotropic plasmas, magnetized or
not, involving the whole set of gravitational gauge-invariant
potentials. We hope that the present paper will help to clarify,
to anyone interested in the subject, some issues involving the
gauge invariance in general relativity, motivating some plasma
physicist to take a tour and make some adventures in general
relativity and general relativistic physicist to make some trials
in plasma physics. We hope too that our systematic and (more
or less) complete presentation could facilitates every physicist
interested in general relativistic plasma and kinetic theory to
pursue their goals, and motivates futures works, in the way the
theory discussed here be extended to the quantum level.

Finally, it is worth mentioning that there are several alter-
native formulations of the theory of general relativity, such
as the ADM formalism. In this version, the covariant general
relativistic plasma equations can be cast into more familiar
special relativistic forms. As a promising avenue, it can be
investigated more deeply, on how the theory fits in this (or
other) alternative formulation and how to employ it in order
to explore gravitational field and plasma dynamics in terms
of gauge-invariant quantities. Unfortunately, we have not yet
been able to make efforts in this direction and, while we
can apologize for this, we also extend an invitation to other
researchers to get involved with this subject.
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